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1 THE REAL LINE AND EUCLIDEAN SPACE

1 The Real Line and Euclidean Space

1.1 Algebraic Properties of R (as a Ordered Field)
Axiom 1.1.1 Field Axioms: Recall the following properties
¢ Addition Axioms

(1) commutativity: x +y=y+x

(2) associativity: (x +y) +z=z+ (y + 2)
(3) thezeroelement: x+0 =z

(4) the negative element: x + (—z) =0

This further gives the definition of subtraction: y — x = y + (—x).
e Multiplication Axioms

(5) commutativity: xy = yx
(6) associativity: (zy)z = x(yz)
(7) the one element/unit vector: x -1 ==
(8) inverse:foreachxz # 0,3z 'st.z- 271 =1
This further gives the definition of division: y/x = y - = when = # 0.
(9) distribution: x(y + z) = xy + xz
(10) 140

¢ Order Axioms

(11) reflexivity: x < x

(12) anti-symmetry:lfz <yandy <z = z =y.

(13) transitivity: Ifz <yandy <z — z <z

(14) linear relation: For each pair z, y, either z < y ory < .

(15) compatibility with addition:ifr <y — z+z2<y+2z Vz

(16) compatibility with multiplication: If 0 < xand 0 <y = 0 < zy.

Definition 1.1.2 (Ordered Field). A system (or a set) F is called an ordered field if it satisfies all the
above 16 properties.

Remark 1.1 (Examples of Ordered Field) R and Q.

Definition 1.1.3 (Field). A set is called a field if satisfies all the addition and multiplication axioms.
Definition 1.1.4 (Ring). A set is a ring if it satisfies (1) — (9) except (5) and (8).



1 THE REAL LINE AND EUCLIDEAN SPACE 1.1 Algebraic Properties of R (as a Ordered Field)

Example 1.1.5 Z as a Ring
zZ=A...,-3,-2,-1,0,1,2,3,...}, the set of integers, is a commutative ring, but not a field.

Remark 1.2 There is no division operation in a ring as multiplicative inverse is not defined.

Definition 1.1.6 (Group). A set is a group if it satisfies (1) — (4).

Theorem 1.1.7 Law of Trichotomy
If x and y are elements of an ordered field, then exactly one of the relations x < y, x = y,orz >y
holds.

Proposition 1.1.8 Other Algebraic Properties of R (as an Ordered Field):

1. unique identities: If a + © = a for every a, then x = 0. If a - x = a for every a, then z = 1.
2. unique inverses: If a + x = 0, thenz = —a. Ifax = 1, thenz = a1,
3. nodivisors of zero: If zy = 0, thenz =0 ory = 0.
4. cancellation laws for addition: Ifa +x = b+ x,thena =b. Ifa+ 2z < b+ z, thena < b.
5. cancellation for multiplication: If ax = bx and « # 0, thena = b. If az > bz and x > 0, then a > b.
6. 0.2 = 0 forevery z.
7. —(—x) = x for every x.
8. —x = (—1)x for every z.
9. Ifx #0,thenz~! #0and (1)~ = .

10. If z # 0and y # 0, then 2y # 0 and (zy) ! = 2~ 1y~ L.

11. If z <yand 0 < z,thenzz < yz. Ifx <yand z <0, then yz < zz.

12. Ifz <0andy < 0,thenxy > 0. Ifx <0andy > 0, then zy < 0.

13. 0 < 1.

14. Forany z, 22 > 0.

Proof'1. (Of No. 14)
Ifa: > 0, then 22 = 2 - = > 0, by property (16) of Axiom 1.1.

[CaseI1|1f z < 0, then

z*=x-z=(-1)(—2z) - (-1)(—x) [byproperty 7 of Proposition 1.7]
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Note that 0 = (—1)(—1+1) = (—1)% + (—1) if we distribute (—1). Then, adding 1 on both sides, we have
1=(-1)%*+(~-1)+1=(-1)* |byadditive inverse]

Thatis, (—1)?2 = 1. So, 2% = (-1)? - (—z)2 = 1- (—2)? = (—x)? > 0 by Case L.

QED. ®m
2, 12
Proposition 1.1.9: ab < a4 ;b .
Proof 2.
(a —b)> >0 [By property 14 of Proposition 1.7]
a’?+b%>—2ab>0
2ab < a® + b?
a’ + bv?
< .
ab < 5
QED. =
x, x>0
Definition 1.1.10 (Absolute Value (Norm) and Distance (Metric)). For z,y € R, |z| =
-, x <0

is the absolute value, and d(z,y) = |x — y| is the distance.
Proposition 1.1.11 Properties of Absolute Value and Distance:

* |z| > 0 for every x.

|z| = 0ifand only if z = 0.

zy| = |2lly.
* d(z,y) >0
* d(z,y) =0ifand only ifx = y.

* d(z,y) = d(y, ).

Theorem 1.1.12 Triangle Inequalities
Vr,y,z € R

L |z +y| < |z + |yl
2. ||z| = |yl| < |z -yl

3. d(z,y) < d(z,z) + d(z,y)

Proof 3. (Of No. 1)
Suppose z > 0and y > 0. Then, z + y > 0, and

e +yl=z+y=|z|+y. O

6




1 THE REAL LINE AND EUCLIDEAN SPACE 1.2 Construction of R and Completeness of R

WLOG, suppose z > 0 and y < 0.

e Suppose x + y > 0, then
[ty =z +y=lz[ - (=y) = lz] - [y < fx] + ]yl O
* Suppose z + y < 0, then
z+yl=—(z+y)=—2z—y=—lz[+|y < |z[+ |y O

Case I1I | Suppose x < 0 and y < 0. Then, z + y < 0, and
[z +yl=—(z+y) = -2+ (-y) = |z| +[y]
QED. =

1.2 Construction of R and Completeness of R

Notation 1.1. Recall the following number systems:
N=7Z"=1{0,1,2,3,...} | non-negative integers
Z integers
Q= {@ cm,n €L, n# O} rational numbers
n
Proposition 1.2.2 Important Properties of Number Systems:
e ForN:
- Definition 1.2.3 (Principle of mathematical induction). If S is a subset of Z* s.t. 0 € S and
keS = k+1€S,thenS=27".

— Definition 1.2.4 (Well-Ordered Property). Each subset S # & has a smallest element.
As a consequence of well-ordering property, we have the principle of complete induction:

Definition 1.2.5 (Principle of Complete Induction). If S C Z" isasubset s.t. {z € Z* | x < n} C
S = necS, thenS =2".

e For Z:

- Commutative ring with identity
e For Q:
— Definition 1.2.6 (Countable). QQ can be placed in one-to-one correspondence with N (or a
subset of it). The whole QQ can be displayed as a list or sequence.

Remark 1.3 A simple way to prove it is to consider the points in the plane with integer coor-
dinates, say (p, q). After assigning fraction b (simplified to lowest terms and leave out cases
q

when q = 0) to this point, we achieve a one-to-one correspondence.
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- Definition 1.2.7 (Dense in Itself). If z,y c Qandz <y = Fz€Qst.x <z <.

- Proposition 1.2.8 Archimedean Property:
VreQ, dneZst.n>x.

Proof1.1f x <0,taken = 1. Ifz = Bwithp,q> 0, taken =p+ 1.
q
QED. =1

Remark 1.4 Equivalent formulation of the Archimedean Property:
x Ifx € Q, then 3 integern s.t. v < n.
« Ifr,y € Qand0 < x < y, then 3 integerk s.t. kx > y.

1
« Ifxr > 0€Q, then3integern > 0s.t.0 < — < x.
n

— Ordered field.

Qs already an ordered field, why do we bother to define R for analysis?

The big idea: Q is not quite complete

* Evidence 1 (Analysis POV): There is no rational whose square is 2. That is, > = 2 has no
solution in R.

Proof 2. We will use proof by contradiction. Assume 3 solution x = ™ with m,n € Z and
n
they have no common factors. Then,

2
(@> =2 — m? =22
n

So, m? is even, then m is even as well. Suppose m = 2k, k € Z. Then,

m? = (2k)? = 4k? = 2n?

n? = 2k>.

So, n? is even, and n is even.

% m,n both even, so they have a common factor of 2. This contradict with our assumption.
So, Basolution z € Q s.t. 22 = 2.

QED. N

* Evidence 2 (Geometry POV): There is no rational representation of the diagonal of a square
of size 1.

Remark 1.5 (Informal Definition of Sequence Limit) A sequence is said to converge to a limit x if we
cna guarantee that the points in the sequence are as close as we wish to x by going far enough out in the
sequence.
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Definition 1.2.9 (Limit of a Sequence). A sequence {z,} is said to converge to x if Ve > 0, 3 integer
N s.t. |z, — x| < e whenever n > N. (Alternatively,n > N — |z,, — x| < ). We denote the limift as

lim x, =« or,simply =z, - xasn — oc.
T—00

Remark 1.6 N depends on e, and the smaller the <, the bigger the N .

1
Example 1.2.10 Show lim ntl_
n—oon + 2
1
Proof 3. Given e > 0 [fixc], weneed to find N s.t.n > N = |z, — 1| < ¢, where z,, = %
n
Consider
n+1 n+l—n-—2 -1 1
|£L’n— ]_‘ — — = — — .
n+2 n+2 n+2 n+2
Then, we want . .
<eg = n+2>- <= n>--—-2.
n+2 € €

1
By the Archimedean property, choose integer N > . 2. [N is fixed and is what we want to find]

Then, based on the arguments, when n > N [n is changing], we have

1 1
—1| = < .
[on =1 nt2 "Ntz °©
That is,
lim z, = 1.
n—oo

QED. H
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Theorem 1.2.11 Basic Properties of Limits

Sandwich Lemma/Squeeze Theorem: Suppose =, — L, y, — L, and z,, < z, < y, forall
n. Then, z, — L. It is also enough to assume that 3 Ny s.t. n > Ny = x, < 2, < Yn

Ifa <z, <bforeverynandz, — x,thena <z <b.

e Uniqueness: If z,, is a sequence in an ordered field and z,, — = and x,, — y, then z = y.

Boundedness: A convergent sequence is bounded.

Arithmetic of Sequence and Limits: Suppose z,, — x and y,, — y. Then,

{xn}+{yn}:{xn+yn} = Tp+Yn 2 T+Y
Mzn} = {2} = Az, = A\
{xn}{yn} = {mnyn} = TpYn — TY

Definition 1.2.12 (Monotone Sequence Property/MSP). Every monotone increasing sequence that is
bounded (bdd) above converges.

Remark 1.7 “monotone increasing sequence” refers to a sequence where x,, < x,+1 Vn; “bdd above”
referstodx s.t. x, < x Vn,and we call this x an upper bound.

Definition 1.2.13 (Completeness). An ordered field F is said to be complete if it has the MSP.

Construction of R (from Q)

Consider set S of sequences,
S ={(x1,22,...) | zn, € Q, x, T (Mmonotone increasing), z,, bdd above}.
Define equivalence relation (reflexive, transitive, symmetric) ~ on S:
{zp} ~{yn} < =z, and y, have the same upper bounds.

Then, each equivalence class defines a unique real number (as the limit of the representing se-
quence). Let
R = {z | x is an equivalence class in S}.

If r € Q, then r is represented by the sequence r itself ({r}). So, Q C R.

Claim 1.2.14 R is a complete ordered field under the following operations: For x = [{xz,}] and

v =[{yn}],

o Addition: z +y = [{z,, + yn}]

10



1 THE REAL LINE AND EUCLIDEAN SPACE 1.3 Another Approach: Least Upper Bound

e Multiplication: z - y = [{zy, - yn}]

e Order: x <y <= Jupper bd of {z,,} thatis < all upper bd of {y,, }.

Theorem 1.2.15
R is the “unique” complete ordered field.

Remark 1.8 By unique, we mean isomorphism. That is, if 3 another complete ordered field F, we can
put F and R into a one-to-one relationship.

Proposition 1.2.16 Properties of R:
* Ris Archimedean: Vz € R, Jinteger n > z.
* QisdenseinR:

-Ifzr,yeRande <y = IreQst.x<r<uy.

- IfreRande >0 = IreQst. |z —r|<e.
* The interval (0, 1) is uncountable. (Hence, R is uncountable).

Proof 4. (of uncountability)
Assume (0, 1) is countable. Then, it can be put into a one-to-one relationship with N. Say the
following list exhauste elements of R:

r1 =0.a11012 - a1p -+, x2 = 0.a21a22 - Q2 -+ ..., T = 0.ap1Q2 - Ap -+ 5 - ..
[Goal: find a new number that is not in the list] Define a new number:

r=0z\ah-x) -,

4 lf QL 7§ 4 . .

where for each k, z} = [This construction ensures ) # ay;,] Then, z € (0,1) and
3 ifag, = 4.

x # x, ¥ k. % We have constructed a number that is not in the list. So, (0, 1) is not countable.

QED. H

1.3 Another Approach: Least Upper Bound
Definition 1.3.1 (Upper Bound/Least Upper Bound). Let S C R.
e We say bis an upper bd for Sifx <b Vax € S.
» We say b is a least upper bd for S if b is an upper bd and < any upper bd of S.

We use lub(S) = sup(S) to denote the lease upper bd. (sup stands for supremum). For sets without an
upper bound, we define sup(S) = +oc.

11



1 THE REAL LINE AND EUCLIDEAN SPACE 1.3 Another Approach: Least Upper Bound

Remark 1.9 b = lub(S) <= (1) b is an upper bound, and (2) b < any upper bound of S.

Example 1.3.2
Suppose S1 = (0,2); Sz = [0,2]; S3 = @; Sy = (0,00). Then, lub(S;) = 2, lub(S2) =

2, lub(S3) = 400, lub(Sy) = 4oc.

Definition 1.3.3 (Greatest Lower Bound). We use glb(S) = inf(S) to denote the greatest lower bound.
It is the largest lower bound of S. For sets without a lower bound, we define inf(S) = —cc.

Example 1.3.4
Example 1.3.2: inf(S;) =0, inf(S2) =0, inf(S3)= —oo, inf(Ss4) =0, inf((—o00,4))= —oc.

Proposition 1.3.5: Let S C R, S # &, then

* b=1ub(S) <= bisanupperbound andVe > 0, 3Fz € Ss.t.x > b—e. Thisimplies that an
element slightly smaller than b is not an upper bound any more.

* g =inf(S) <= aisalowerboundandVe >0, Jze€Sst.z<a+e.

Proposition 1.3.6 : Suppose @ # A C B C R. Then,

inf(B) < inf(A) <sup(A) < sup(B).

Theorem 1.3.7 Equivalent Condition for Completeness: Least Upper Bound Condition
R has the following properties:

* LUB property: Every non-empty subset bounded above has the least upper bound.

* GLB property: Every non-empty subset bounded below has the greatest lower bound.

Proof 1. (of the LUB Property)
Set-up: Fixany S € R that is bounded above and S # @.

[WTS: the existence of lub(S) <= Tool: MSP (but we need to construct monotone sequence first.)

Step 1| Construction of a Monotone Sequence
k

Fix an upper bound M for S. For each fixed integer n > 1, consider ay, = M — on k=1,2,.... By
the well-ordering property, we can choose an integer k,, who is the 1% integer k s.t. ax, is not an upper
bound.

kn . L. .
Letb, = M — on” Then, b, is not an upper bound, but b,, + o Isanupper bound (by construction).

Apply MSP to {b, }

* b, is monotone increasing:

12



1 THE REAL LINE AND EUCLIDEAN SPACE 1.4 Cauchy Sequence and Cauchy Completeness

Note that

kin_:,_l kn an - k;n—i-l
b1 —bn = (M— 2n+1> - (M—Qn) = ot

1
Suppose, for the sake of contradiction, that b, +; — b, < 0. Then, b, 1 — b, < ~onil That is,

1

bn > bn+1 + on+1"

. . L.
x However, by construction, b, is not an upper bound, but b, 1 + n1 1S an upper bound. So,

there is a contradiction, and thus b,, 1 — b, > 0. This contradictions shows that b,, is a monotone

increasing sequence.

¢ ), is bounded above:

Note that b,, < M. So, b,, is bounded above.

By MSP, suppose b,, — b for some b € R.
Step 3 |Show b = lub(.5)

e bis an upper bound:

. 1
lexES,Wehaveben—i—Q—n Vn. When z — oo,z < b+ 0. So, z < b.

e bhis theleast upper bound: [WTS:Ve >0, dxe€ Sst.b—e<uz.]

As b is the limit, we can always find a b, s.t. |b, — b| < e. Thatis, b — b, < ¢, 0orb, > b—c. Hence, b
is the least upper bound.

QED. H

1.4 Cauchy Sequence and Cauchy Completeness

Definition 1.4.1 (Cauchy Sequence). A sequence z,, € Ris a Cauchy SequenceifVe > 0, 3N s.t.n,m >
N = |z, —zp| <e.
Proposition 1.4.2 : Every convergent sequence is Cauchy.

Proof 1. Suppose z,, — x € R. Given ¢ < 0. Consider

[T — | = |0 — ¢+ & — 2y

< |ap — x| + |2 — 2|
<€+€
- 2 2’

QED. H

Theorem 1.4.3 Cauchy Completeness
Every Cauchy sequence in R converges.

13



1 THE REAL LINE AND EUCLIDEAN SPACE 1.4 Cauchy Sequence and Cauchy Completeness

Remark 1.10 (Strategy of the Proof) Cauchy Sequence==2"42%1_. Bounded Sequence ——22em1%5

Lemma 1.4.6
3 convergent subsequence + Cauchy sequence ———— Sequence converges.

Lemma 1.4.4 : Every Cauchy sequence is Bounded.

Theorem 1.4.5

Every bounded sequence in R has a subsequence that converges to some point in R.

Proof 2. Let {z, } be abounded sequence inR. Fix M s.t. — M <z, <M Vn.

Divide [-M, M] into subintervals [-M, 0] and [0, M]. One of them, called I, must contain infinitely
many terms of {x,, }. Choose ng s.t. z,,, € .

Divide I into two equal subintervals. One of them, denoted I;, contains infinitely many elements.
Choose ny > ng s.t. x,, € I.

Continuing this process, we obtain subintervals I, = [ay, by for k£ = 0,1, ..., and includes n; with
the following properties:

e yoL1DIhbD---

M
* by —ay = oF
® Ty, € I
[To prove {z,, } converges, we prove {a;} and {b;} converge, and apply the Squeeze Theorem.]

e Show {a;} converges: a; is monotone increasing and bounded. By MSP, a;, — a € R.

M
e Show {b;} converges: Note that by, = aj, + oF When k& — 0,
M
ag + ? =a-+ 0=a.
So, b, — awhen k£ — oc.

Hence, as ay, < z,, < by, ar — a, by — a, it must be that z,,, — a as well.

QED. =
Lemma 1.4.6 : If a subsequence of a Cauchy sequence converges to z, then the sequence itself con-
verges to x.

Proof 3. Given {z, } is Cauchy and z,,, — z, [WTS: z,, — z]. Consider

Ty — x| = |2y = Ty, + Ty, —
< |xn - xnk| + |$nk -z

N——
Cauchy = small  Convergent —> small

QED. N

14



1 THE REAL LINE AND EUCLIDEAN SPACE 1.4 Cauchy Sequence and Cauchy Completeness

Summary I: Completeness on Ordered Field

Let F be an ordered field.
Definitions

* Archimedean Property: Vx € F, Jinteger N s.t. z < N.

1
(Equivalently,Ve > 0, Jintegerns.t.0 < — < ¢).
n

Monotone Sequence Property (MSP): Every monotone increasing sequence

bounded above converges.

Completeness: We say F is complete if it has the MSP.

LUB Property: Every set S # @ bounded above has a least upper bound.

Cauchy Property: Every Cauchy sequence converges.
Facts in any ordered field
e MSP — Archimedean Property

Remark 1.11 [n general, the converse is not true. For example, Q has the Archimedean
property but not MSP.

¢ MSP <= LUB Property.

e MSP = Cauchy Property

Remark 1.12 The converse is true when Archimedean property is true.

Factsin R

e MSP < LUB Property <= Cauchy Property

15



1 THE REAL LINE AND EUCLIDEAN SPACE 1.5 liminf and lim sup

1.5 liminf and lim sup

Example 1.5.1 Cluster Points of a Sequence
Consider the sequence

1
=(-1)"+ —.
Gn ( ) + n
1 1 1 .
Then,a; =0, as = 1+ 5 a3 =—1+ 5 04 = TR This sequence does not converge. However,

its terms seem to “cluster” around 1 and —1.

Definition 1.5.2 (Cluster Points). A point z is called a cluster point of a sequence {z,} if Ve > 0, 3

infinitely many values of n s.t. |z, — z| < e.

Remark 1.13 This definition is weaker than that of limits.

Proposition 1.5.3 Relation Between Limits and Cluster Points: Suppose z,, € R and =z € R. Then,
1. zisa cluster pointof {z,,} <= Ve > 0andVinteger N,3dn > N s.t. |z, — z| < e.
2. zisacluster point of {z,,} <= 3subsequence z,, — z.
3. z, - ¢ <= every subsequence converges to z.
4. r, — ¢ <= the sequence is bounded and z is the only cluster point.
5. z, — ¢ <= every subsequence has a further sequence that converges to z.
Proof 1. (of some claims)
1. Follows from Definition.

2. (=) Assume z is a cluster point. [WTS: 3 subsequence z,,, — z].
Givene; =land N =1,by(1),3n; > 1 s.t. |z, —z| <e=1.

} 1 1
Given ey = 5 and N = ny, by (1), I3ng > ny s.t. |xy, — x| <e = 5

. . 1
So, in general, given ¢, = z and N = nj_1,

1
Ing > np_1 = Ni st |y, — x| <ep = e

Then, z,, — zask — oc.

3. (<) [Prove by contrapositive/contradiction] Assume every subsequence converges. For the sake
of contradiction, assume x,, does not converge to x. Then we need to construct a subsequence

T, S.t. T, /7 .

4. (<) [Prove by contrapositive/contradiction]

16



1 THE REAL LINE AND EUCLIDEAN SPACE 1.5 liminf and lim sup

5. («) Use (4). Every subsequence has its own subsequence that converges to x. So, x is a cluster
point of every subsequence. Then, we just need to show z is the only cluster point of {z,, }.

QED. H

Definition 1.5.4 (lim inf and lim sup). Given a sequence z,, € R. For each integer k& > 1, let

ar = inf{xky1, Tkyo,...} and by =sup{xgs1,Tps2,...} = sup Sk.
Set Sg,

Then,
liminf z, =sup{axy} and limsupz, = inf {bs}.

Remark 1.14

* aj < by, a, is monotone increasing sequence, and by, is monotone decreasing sequence. Thus,

liminfz, = lim a; and limsupz, = lim b.
k—o00 k—o00

Also, liminf x,, < limsup z,,.
e limsupz, = +oo < b, = +oo Vk < uz, is not bounded above.
liminfz, = —00 <= ap = -0 Vk < x, is not bounded below.
Proposition 1.5.5: limsupz, =b e R < Ve >0,
1. AINst.n>N = z, <b+¢ and
2.VM,dn> M s.t.x, > b—e.

Proof 2. (of forward direction) By definition, we know hrn by, = b, which implies Ve > 0, 3N s.t. k >
N = |by—b] < e. Thatis, —¢ < by —b < . As be is monotone decreasing, by — b > 0. So,
0<b—b<e|

1. Note that by = sup {zx+1,Tgs2,...}. So,ifn >k, x, <bp, <b+e Vk > N. Therefore,

n>N+1= z,<b+e.

2. Wehave 0 < by — b, orb, > b Vk. Given any integer M. [We need to find n > M s.t. x,, > b — ¢]
Then,

bar = sup {xar+1, Tarrom, ... F > b.

So, by definition of supremum, we can findn > M s.t. x,, > byy —e > b —e.

QED. =
Proposition 1.5.6 : limsup z,, = b € R = 3 subsequence z,, — b.

17



1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space R"™ and General Metric Space

Proof 3. We will construct a subsequence n; inductively such that

1
b—cp <y, <b+ter, ep= e

Given ¢ = 1, by Proposition 1.5.5(1), 3Ny s.t. n > Ny = =z, < b+ ;. Further, by Proposition
1.5.5(2), for M = Ny, 3ny > Ny s.t. z,,, > b — 1. Therefore,

b—€1<xn1 <b+eq.

Claim Given k,,, we can find ny1 s.t. ng1 > ng, and

1
b—7<:cnk+1 <b+m

After {z,, } is constructed, use the sandwich lemma to prove z,, — b.
QED. m

Remark 1.15 Similar arguments hold for lim inf z,, = a.

Proposition 1.5.7 Relation Between Cluster Points and Limit: Let =, € R be a given sequence.
1. If x is a cluster point = liminf x,, < z < limsup z,.
2. Ifa = liminf z,, is finite = a is the smallest cluster point.
3. If b = limsup z,, is finite = b is the largest cluster point.
4. z, > € R <= liminfz, = limsupz, = .

Proof 4. (of (1)) Suppose z is a cluster point. Then, 3 subsequence z,, — z as k — oo.

WTS:a, <z <b, Vn]

For each n, b, = sup{zn41,2n42,...} > z,, for large enough k. Let k& — oo, we have b, > z.
Similarly, a,, = inf {z), 11, 2p42, ...} < x,, forlarge enough k. As k — oo, a,, < x.

So, a,, < x < b,. Take the limit as n — oo:

lim a, <z < lim b, — liminfz, <z <limsup z,.

n—oo n—o0

QED. N

1.6 Euclidean Space R" and General Metric Space

Notation 1.1. R" = {(z1,29,..., %) | Z1,...,2, € R}.

18



1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space R"™ and General Metric Space

Remark 1.16 (R™ is a Vector Space) We can write its standard bases as {e1, e, . .., e, }, and the general
P 8

representation of x will be

n
xr = E :Bjej.
j=1

Definition 1.6.2 (Norm and Metric). For z, y € R", define norm (or length) as

and the metric (distance) as

d($7 y) =

Definition 1.6.3 (Inner Product). We define the inner product (or dot product) as

n
=1

Geometrically, if 4 is the angle between = and y, then

(@, y) = ll=[ - lyll - cos 6.

So,ifx Ly, (z,y) =0.
Proposition 1.6.4 Properties of Inner Product: Suppose (-, -) is an inner product, then

* Positive definite: (x,z) > 0and (z,z) =0 < z =0.
e Linearity: (z,y + 2) = (z,y) + (z,2) and (az,y) = oz, y).
e Symmetry: (z,y) = (y,x).
Proposition 1.6.5 Properties of Norm: Suppose ||| is a norm, then
* Positive definite: ||z|| > 0and ||z|| =0 < x =0.
* Linearity: ||az| = |af - ||z]
e Triangle Inequality: ||z + y| < ||=|| + [|y||-
Proposition 1.6.6 Properties of Metric: Suppose d(-, -) is a metric, then
* Positive definite: d(z,y) > 0and d(z,y) =0 <= z =y.
e Symmetry: d(x,y) = d(y, x).
e Triangle Inequality: d(z,y) < d(z, z) + d(z,y).

Remark 1.17 Inner product always induces a norm. Norm always induced a metric.

19



1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space R"™ and General Metric Space

Theorem 1.6.7 Cauchy-Schwarz Inequality

(@, y)| < ]l - flll-

Example 1.6.8 Use Cauchy-Schwarz Inequality to Prove Triangle Inequality of Norms
Proof 1. Note that

lz+yl* = (x+y,z+y) [Definition]
=(r+yz)+{z+yy) [Distribution]
= (z,z) + (y,2) + (2,9) + (¥,9) [Dsitributionl]
= [ll® + llylI* + 2(x, v) [Symmetry]
< l® + llyll* + 2 [l - 1yl [Cauchy-Schwarz]
= (llll + llylh>*.

QED. ®m

Definition 1.6.9 (General Metric Space). A metric space (M, d) is a set M and a functiond : M x m —
R s.t. Va,y, z € M, the following conditions hold:

* Positive definite: d(z,y) > 0and d(z,y) =0 < z =y.
e Symmetry: d(z,y) = d(y, x).
e Triangle Inequality: d(z,y) < d(z, z) + d(z,y).

Definition 1.6.10 (General Normed Space). A normed space (V, ||-||) is a vector space V' together with
afunction ||-||: V — Rs.t.Vz,y € Vand Va € R,

* Positive definite: ||z|| > 0and ||z|| =0 < x =0.
* Linearity: ||az| = |af - |||
e Triangle Inequality: ||z + y|| < ||z|| + ||y]|

Definition 1.6.11 (General Inner Product Space). An inner product space (V, (-, -)) is a vector space V'
and a function (-,-) : V xV - Rs.t.Vz,y,z € Vand Va € R:

* Positive definite: (z,z) > 0and (z,z) =0 <= x =0.
+ Symmetry: (z,y) = (y,2).

* Linearity: (o, y) = a(z,y) and (z + y,2) = (z, 2) + (y, 2).
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space R"™ and General Metric Space

Example 1.6.12
* R™is a metric space with d(z,y) = ||l — y||

* Discrete Metric: Given any set M, define

0, z=y
1, z#y.

d(l‘,y) =

* Bounded Metric: Given metric space (M, d), define p: M x M — R:

d(z,y)

p(z,y) = m

Claim 1.6.13 (MM, p) is also a metric space.

e R?is a metric space under the taxicab metric d; : R? x R? — R:
d1((9«“1,y1)a (962,y2)) = |2 — 1] + [y2 — y1l.
* Let C([0, 1]) be the collection of all continuous function f : [0, 1] — R. Define

1
(f,9) = /0 F(2)g(z) da.

Then, C is an inner product space.

Remark 1.18 (Relation Among Inner Product, Normed, and Metric Space)
Inner Product —- Norm — Metric
* Aninner product (-, -) induces a norm:
2] = v/ {z, ).
* Anorm||-|| always induces a metric:

d(z,y) = ||z =yl
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space R"™ and General Metric Space

Theorem 1.6.14 General Cauchy-Schwarz Inequality
In an inner product space (V, (-, -)), we have Vv, w € V,

-(fw,fw)%.

N|=

(v, w)| < (v, v)

Proof 2. If v = 0 or w = 0, it is trivial.
Assume v # 0 and w # 0. For any ¢ € R, consider

(tv + w, tv + w)

Then,
0 < (tv+w, tv +w) = 1 (v,v) +2t (v, w) + (w, w)
N—~— S—— =

a b c

Let f(t) = at® 4 2bt + ¢ be a 2" order polynomial of t. Note that f(t) > 0 Vt € R. On the other hand
(OTOH), since a = (v,v) > 0, f(¢) has minimum where f’(¢) = 0.
f'(t) =2at +2b=0

b
t=——.
a

So, f<—b> >0, or
a

b2 2
——2—+4c>0
a
b2
c> —
a
b2§ac

QED. ®m
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2 TOPOLOGY OF EUCLIDEAN SPACE

2 Topology of Euclidean Space

2.1 Open Set
Definition 2.1.1 (Neighborhood & Open Set). Let (), d) be a metric space. Fixz € M and ¢ > 0.

* Neighborhood (nbdd):
D(z,e) ={y € M | y(z,y) <e}.

It is also referred as e-nbdd, <-disk, or e-ball.

* Open Set: Aset A C M isopenifVz e A, 3¢ > 0s.t. D(x,e) C A.

Example 2.1.2 Open Set
* The unitdisk D = {(z,y) € R? | 2? + y* > 1} is open in R?.
e The interval (0,1) C R! is open.

 Given any metric space (M, d) and zp € M. The disk
D(zg,r) ={x e M |d(z,z0) <}

is open Vr > 0.

Proof 1. Fix x € D(zg,r). [WIS:Je > 0s.t. D(z,e) C D(zg,7).]

Since z € D(xg,r), by definition, d(x, z) < r. Hence, e = r — d(x, o) > 0.
Claim 2.1.3 D(z,¢) C D(zo, ).

Proof. Lety € D(z,¢). Then,

d(y,z) < d(y,zo) + d(zo, x)
< e+d(xg,x)
=r — d(ze;T) + d(2¢;T)

=7

So, d(y, z) < r. By definition, y € D(xq, 7). O
So, D(z,e) C D(zo,r). By definition, d(Xy, r) is open.

QED. ®m

* Theset S = {(z,y) € R? | zy > 1} is open.
Proof 2. Givene (z,y) € S. [WTS: 3¢ > 0s.t. D((z,y),2) C 5]

1 1
Since xy > 1,)\:<1—) > 0.
2 Ty
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.1 Open Set
WLOG, assume z > 0 and y > 0.
Let ¢ = min {\z, A\y}. Then, for (u,v € D((z,y),e), we have
d((”?”)u (a?,y)) <e
Ve —u)?2+(y—v)?<e.
So, | —u| < eand |y — v| < e. Then,
u
o=t <
xr
O R . S Y
X X X
Similarly,
YS1-a
Yy
Then,
u v
== .= 1— )2
u-v xy(wy)>( )" (zy)
> (1—2)\)(xy) = 1.
So, as uv > 1, (u,v) € S. Hence, S is open.
Sketch. Given zy > 0; Want uv > 1. Note that
u v
uw= - - — Ty
Y Y
~ <~
(1=2) (1-x)
= (1= X)?*(zy)
> (1—2X\+ A?)(2y)
> (1—2\)(ay)
>1
1
— 1-2\> —.
ry
QED. =

Remark 2.1
* In the above definition, = depends on the point x.

» The open set is defined w.r.t. the underline metric space.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.1 Open Set

Example 2.1.4
A =(0,1). Then, A is an open set as a subset in R'. However, 4 is not open as a subset in R2.

Proposition 2.1.5 Properties of Open Set: Let (), d) be a metric space. Then,
* The intersection of a finite number of open sets is open.
* The union of any number of open sets is open.

* g and M are open.

Proof 3. (of ®) Suppose A = ﬂ A;. Fixz € A. By definition, x € A; Vj =1,...,n. Then, we can
j=1
finde; > 0s.t. D(x,¢5) € Aj. As A; is open. Take ¢ = min {1, €2, ...,e,}. We know

D(z,e) e Aj Vj=1,...,n.

Hence, D(z,¢) € ﬂ A;. So, Ais open.
j=1
QED. H

Remark 2.2 The intersection of infinitely many number of open sets may not be open.

Definition 2.1.6 (Interior Point). Let A C M. A point z € A is called an interior point of A if 3¢ >
0s.t. D(xz,e) C A. The interior of A is the collection of all interior points, denoted by int(A).

Example 2.1.7

e A={z0} C R" int(A) = @ as there is no nbdd around the point x.
e A=(0,1) C RY, int(A) = A.

Remark 2.3 A set is open if every point in A is an interior point of A.

e B=[0,1] C R!, int(B) = (0,1).

Proposition 2.1.8 Properties of int(A):
* int(A) is open.
* int(A) is the union of all open subsets of A.

Remark 2.4 Or, int(A) is the largest open subset of A.
e Aisopen < A =int(A).
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.2 Closed Sets

2.2 Closed Sets

Definition 2.2.1 (Closed Set). A set A C M is closed if its complement, A¢ = M \ A4, is open.

Example 2.2.2

A=[0,1] Cc RL
AC = (—00,0) U (1, 400).

A% isopen = A is closed.

B={(z,y) e R? |1 < 2?+y? <4]}.
B¢ = {(z,y) e R?* | 2? + y* < lora? +y? > 4}.
B is not open and not closed.

* Asingle point set is closed.

* B(x,e) ={y € M| y(y,z) < e}isclosed.

Proposition 2.2.3 Basic Properties of Closed Sets: Given (), d), then
* Union of finite number of closed set is closed.
* Intersection of any number of closed set is closed.
e @ and M are always closed.

Remark 2.5 In property ®, one cannot replace “finite number” by “countably many.”

Definition 2.2.4 (Accumulation Point). A point z € M is an accumulation point of the set A if Ve >
0, dy € Ast.y#zandy € D(z,¢). The collection of accumulation points of A is denoted as ac(A).

Remark 2.6 x does not need to be in A.

Definition 2.2.5 (Closure/cl(A)).

cl(A) = intersection of all closed sets containing A

= AUac(4).
Definition 2.2.6 (Boundary of A/0A/bd(A)).

bd(A4) = 0A = cl(4A) Ncl(M\A)
=cl(A)\int(A).
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.2 Closed Sets

Theorem 2.2.7 Equivalent Conditions of Closed Sets
Let A C M, the following are equivalent (TFAE):

A is closed.

e ac(4) C A.

A=cl(A).

bd(A) C A.

Proof'1.

(® = @): Let A C M be closed and = € ac(A). [WTS: z € A.] Assume x ¢ A. Then, x € M\A.
[Proof by contradiction.]

Since A is closed, M\ A is open, which means = € int(M\A). Thatis, 3¢ > 0 s.t. D(z,e) C M\A.
Hence, D(z,e)A = @. % This contradicts with the assumption that € ac(A4). As D(z,e) N A = &,
Byc Ast.yec D(z,e). Hence, z € A. [

(@ <= @): We have cl(A) = AU ac(A).

(=): If @is true, ac(A) C A. Then, cl(A) = A.
(<): If@istruecl(A) = A. Then, AUac(A) = A,soac(4) C A. O

(® = @): Note that bd(A) = cl(A) Ncl(M\A). Then, bd(A) C cl(A). If A = cl(A), then bd(A) C
cl(4)=A. O

(® — ®): Suppose bd(A) C A. Assume A is not closed, then M\ A is not open. [Proof by contradic-
tion.] So, 3z¢ € M\ A thatisnot an interior point. Hence, Ve > 0, D(zg,¢) ¢ M\A. So, D(xp,e)NA # @.
Hence, 3y € D(x,e)NA. Note thatzy € M\Abuty € D(xg,)NA. So, zg # y. By definition, z¢ € ac(A).
¥ As g € ac(A) C bd(A), but zy € A, this contradicts with the assumption that bd(A) C A. Hence, A
must be closed.

QED. =
Proposition 2.2.8 :

e cl(A)N A=A
 If Ais open, then bd(A) C M\A.

Definition 2.2.9 (Limit Point of a Set). A point x € M is called a limit point of A if U N A # for every
open set U containing x.
Proposition 2.2.10:

e If z € ac(A), then x is a limit point.
e If zisalimit pointof Aand z ¢ A, then z € ac(A).
e If z is a limit point of A, 3 a sequence z,, € A with z,, — .

e Aisclosed < A contains all of its limit points.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.2 Closed Sets

Summary II: Definitions on Point Set Topology

Let M be a metric spaceand A C M.
* x € Aisan interior point of Aif 3¢ > 0 with D(z,¢) C A.
* Aissaid to be open if every point of A is an interior point, or equivalently, int(A) = A.

* A neighborhood of a point x is any open set U containing x.

A s closed if its complement M\ A is open.

A point x € M is an accumulation point of AisVe > 0,3y € Awithy # zandy € D(z,¢).

Closure of A: cl(A) = AU ac(A).

Boundary of A: 0A = bd(A4) = cl(A) Ncl(A\M) = cl(A)\ int(A).
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.3 Convergence

2.3 Convergence

Definition 2.3.1 (Convergence of a Sequence). Let (), d) be a metric space. Let z;, € M be a sequence
and z € M. We say that x;, converges to = (write x;, — x) ifVe > 0, IN s.t. d(z,z) <e Vk > N.

Theorem 2.3.2 Equivalent Definitions of Convergence

* zp, >x < VopensetU containingz, 3N s.t.xz, € U Vk > N.

Remark 2.7 This definition replaces ¢ - neighborhood by an arbitrary neighborhood.

ez = v < d(zg,x) — 0.

Theorem 2.3.3 Equivalent Definition of Convergence in R"”

In R", write
Vg = (Ulgl),vlgz), 500 7v’(€n)) and v = (7)(1),7)(2), 500 ,U(n)) o
Then,
d(vr,0)* = [log = o] Z)
Thus, v, = v < v,(gl) 0@ Vi=1...,n

Proposition 2.3.4 : Let vi, wx, € R™ and Mg, A € R with vy — v, wp — w, Ay — A. Then,
* v +wr = v+ w
e \up — Av

i )\kvk — v

Theorem 2.3.5 Convergence and Closedness
Let (M, d) be a metric space and A C M.

* Aisclosed < for every sequence z;, € A that converges in M, the limit lies in A.

* xecl(l) < Jdxp € Ast.xp — x.

Proof 1. (of @, sketch):

(=) Assume A C M is closed. Let z;, € A be a sequence with z; — x € M. [WTS: 2z € A.] Suppose
x ¢ A. Then, z € M\ A.Aisclosed — M\Aisopen — Je > 0with D(z,e) C M\A. As z, — =,
some x € D(z,e) C M\A. % This contradicts with our assumption that z; € A. So,z € A. O

(«<): Suppose x € Awith 2, — = € A. Assume A C M is not closed. Then, M\ A is not open
= dJox e M\As.t.Ve >0, D(x,e) ¢ M\A. Fore = %, Jdxy, € D(x, ;) N A. Then, ¥ z;, — x ¢ A,

contradicting with the assumption z;, — = € A. Hence, A must be closed.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.3 Convergence

QED. ®m
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.4 Completeness

2.4 Completeness

Definition 2.4.1 (Cauchy Sequence). {z;} € M is a Cauchy sequence if Ve > 0, AN s.t. Vm,n > N,
d(zp, xm) < €.
Definition 2.4.2 (Bounded Sequence). A sequence {z;} € M is bounded if 3xy € M and 3R > 0 s.t.

d(xo,z) < R Vk.

Or, z, € B(zg,R) Vk,where B(z¢, R) denotes a closed call centered at x( with radius R.
Definition 2.4.3 (Completeness). (M, d) is complete if every Cauchy sequence in M converges.

Example 2.4.4
e R! and R" are complete
1
* M = R'"\{0} is not complete. For example, z;, = Z does not converge in R\ {0}.

* QQis not complete.

Proposition 2.4.5 Basic Properties of Cauchy Sequence:
e Cauchy sequence is always bounded.
* Any converging sequence is always Cauchy.
» If a subsequence of a Cauchy sequence converges, then the original sequence converges.

Proof'1. (of @): Suppose {z} is Cauchy sequence. [WTS: 32¢ and 3 R s.t. z, € B(xo, R) Vk.]
Then, fixe = 1. By Cauchy sequence, 3N s.t. m,n > N = d(x,,z,) < ¢ = 1. Define

R = max{e,d(zn,z1),d(xN,x2),...,d(zN,TN-1)}

=max {1l,d(zN,zx) :k=1,...,N -1}

Then, we have d(zy,xzny) < R Vk, which implies that Cauchy sequence is bounded.
QED. =1

Theorem 2.4.6 Closedness and Completeness
Let (M, d) be a metric space.

e N C M iscomplete = N is closed. [Completeness is stronger than closedness]

e N C M isclosed and M is complete —> N is complete.

Remark 2.8 If (M, d) is a metric space and N C M, then (N, d) is also a metric space.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.4 Completeness

Proof 2.

* (of ®): Suppose N C M is complete. [WTS: every sequence z;, € N that converges, the limit is in
N.]
Given {z;} € Nwithzy -z € M. [WTS: 2 € N.]
Since {x} € M converges, itis Cauchy. Further, as N C M is complete, by definition, xz;, — =z € N
as desired. O

* (of @): Suppose N C M is closed and M is complete. [WTS: Cauchy sequence =, — = € N.]

Given z;, € N is a Cauchy sequence. Then, z;, € M as N C M. Since M is complete, we know
xp — x € M. Further, as N is closed, we know z;, — = € N. Hence, every Cauchy sequence
converges in N. By definition, N is complete.

QED. ®m
Definition 2.4.7 (Cluster Point). =z is a cluster point of {z;} if Ve > 0, 3 infinitely many indices
ks.t.d(xg, x) <e.
Proposition 2.4.8 Properties of Cluster Points:

e risacluster point <= Ve >0, VN, 3k > N s.t. d(zg,z) < €.
e zisa cluster point <= dJsubsequence z,, — .
e r;, - x <= eachsubsequence z,, — x.

e r; — x <= each subsequence has a further subsequence that converges to x.
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3 COMPACTNESS AND CONNECTEDNESS

3 Compactness and Connectedness

3.1 Compactness

Definition 3.1.1 (Cover and Subcover). Let A C M.

* A cover ofaset A C M is a collection {U;} of sets U; C M such that
U U; D A.

* We say {U,} of A is an open cover if each U; is open.
* A subcover of a given cover is a subcollection of {U; } whose union contains A.

* We say a cover is a finite cover if the subcollection contains finite number of sets.

Example 3.1.2
Suppose A = [0, 1] C R!. Consider

Uy =(-1,0.1), Uy =(0,0.5), Us=(0.5,1).
U, = (0.2,0.6), Us=(0.8,2), Us=(0,1).
Then,
e {Uy,...,Us} is a finite cover of A.
* Itis also an open cover.

» {U1,Us, Us} is a subcover.

Definition 3.1.3 (Compactness). A set A C M is called compact if every open cover of A has a finite
subcover.
Definition 3.1.4 (Sequencially Compact). A set A C M is sequencially compact if every sequence in A
has a subsequence that converges to a point in A.
Definition 3.1.5 (Totally Bounded). Aset A C M is totally bounded ifV ¢ > 0, 3finiteset {z1,z2,...,xn} C
M s.t.

N

AcC U D(x;,¢€).

i=1

Remark 3.1

* A is sequencially compact —> A is closed and bounded.

Proof'1. Suppose A is unbounded. Fix xo € M. Foranyn > 1, 3z, € A s.t.
d(zp, x0) > n.
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3 COMPACTNESS AND CONNECTEDNESS 3.1 Compactness

By sequential compactness, 3 subsequence x,,, — v € A such that

d(xn,, o) < d(xn,,x) + d(x, z0)
< e+d(z,xo).

Takes = 1, d(zp,,x0) < 1+ d(x,x0) is a finite number. However, d(x, ,xo) > ng. % Asni — oo,
1+ d(z, x0) is a finite number, we reach a contradiction. Hence, A must be bounded.

QED. 1

» Ais totally bounded — A is bounded.

Theorem 3.1.6 Bolzano-Weirstrass Theorem (B-W Thm.)
A C M is compact <= A is sequentially compact.

Proof 2.
Lemma3.1.7: A C M is compact — A is closed.
Proof. [WTS: M\ Ais open.]

1
Fixx € M\A.Forn=1,2,...,letU, = {y | d(z,y) > n}
Claim {U,, |n=1,2,...} isan open cover of A.

Proof. In fact, leta € A. Then, d(a, z) > 0. By Archimedean, 3n s.t.

1
—<d :
- < d(a,2)

This implies that a € U,,. So, a € U U;. Thatis, A C U U;. O

=1 =1
By the compactness, 3 finite subcover, say {Uy, ..., Ux}. Thus,

N
1
ACUUi:UN:{y|d(y,x)>N}.

=1

Therefore,
1 1
D(CE,N) = {y | d(y,z) < N} C M\A.
Hence, by definition, M\ A is open, and so A must be closed. O

Lemma 3.1.8 (When is the converse of Lemma 3.1.7 true?):
B C M is closed and M is compact — B is compact.
Proof. Given an open cover {V; | i € I} of B. [WTS: 3 a finite subcover of B. |
Since B is closed, M\ B is open. Then,

{VilielI}Uu{M\B} isanopen cover of M.

34



3 COMPACTNESS AND CONNECTEDNESS 3.1 Compactness

Since M is compact, 3 a finite subcover of M:

(Vi,Va,...,Vn} U {M\B.

Note that
N
Uvio s,
i=1
we know
{V1,Va,...,Vn} isafinite subcover of B.
Hence, by definition, B is compact. O

(=): Now, we prove the forward direction of the B-W Theorem. Let A C M be compact. [WTS: A is
sequentially compact]

* Set Up: Given a sequence {z;} € A. [WTS: 3z, — = € A]
By Lemma 3.1.7, compactness = closedness. Since A is closed, all converging sequence con-
verges to some point in A. Hence, we only need to show 3 converging subsequence.

* Reduction: To this end, we may assume that {z;} contains a subsequence of distinct terms. De-
note this subsequence by {y;}. [WTS: {y,} has a convergent subsequence]
If {x;.} does not contain subsequence of distinct terms, then {z;} is a constant sequence after
sufficient terms. Therefore, it must converge and is trivial in this discussion.

* Suppose, for the sake of contradiction, {y; } does not have a convergent subsequence.

* Claim y, s are “isolated:” For each k = 1,2, ...,3 neighborhood Uy, of yj, s.t. y; ¢ Uy, forany j # k.

Proof. Suppose, for the sake of contradiction, that the claim does not hold. Then, 3 £ with the
1
property Ve > 0,35 # kst.y; € Uy = D(yx, k). Take e = p— We obtain subsequence y;,, €

1
D(yk, ), m =1,2,.... Hence, whenm — oo, y;,, — y.
m

This implies {y;} has a convergent subsequence. > This contradicts with our assumption that
{yr} does not have a convergent subsequence. Hence, the claim must be true. O

* Now, proceed with the assumption that this claim is true.

Consider the set formed by elements in {y; }:

B:{ylay27"'}

Since {y,} has no convergent subsequence, B has no accumulation point, and so cl(B) = B,
which implies B is closed.

By Lemma 3.1.8, B is compact.
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3 COMPACTNESS AND CONNECTEDNESS 3.1 Compactness

On the other hand, {U}} is an open cover of B. But by claim, 3 no finite subcover. 3% This contra-
dicts with the fact that B is compact. Thus, {y;} has a convergent subsequence, which converges
to a point because A is closed.

O
(«<): Now, let’s consider the backward direction. Suppose A C M is sequentially compact. [WTS: A
is compact]
Let {u;} be an open cover of A. [WTS: 7 a finite subcover]

Claim (1) 37 > 0s.t. foreachy € A, D(y,r) C U, for somei. —> Each point has a neighborhood of
fixed size that is contained in some U;.

Proof. Suppose otherwise. Then,
1 1Y) . . .
Vr=—>0, 3y, € As.t. D{ y,, — | is not contained in any U;.
n n

By assumption, A is sequentially compact. Then, {y, } has a convergent subsequence z, — z € A.
On the other hand, U; is an open cover of 4, then z, € U, for some i,. Further, since U;, is open,
de > 0s.t. D(z,e) C Uj,.
Fix large N s.t.
d(zn,2) <

DN ™

So,
D(z, g) C D(z,e) C Us,.

2% This is a contradiction with our assumption that D <yn, > is not contained in any U;. Hence, the
n

original claim is true. O

Claim (2) A is totally bounded.

Proof. Suppose otherwise. Then, 3¢ > 0 s.t. A cannot be covered by finite number of balls of radius
e. Choose y; € Aand y; € A\D(y1,¢). Then, choose y3 € A\(D(yi,e) U D(y2,¢)). This process can go
forever as A cannot be covered by finite number of balls of radius €. So, we get sequence

UYn € A\(D(yl, eyU---u D(ynfl,a)).
We have a sequence {y,, } with the property that
d(zp, xm) > Yn#m.

So, {y,} does not have a convergent subsequence.

Everything convergent must be Cauchy. d(z,,z,) > ¢ implies not Cauchy, so it must be non-
convergent. % This contradicts with the assumption that A is sequentially compact (has a subse-
quence converges to some point in A). Hence, this claim must be true. O
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3 COMPACTNESS AND CONNECTEDNESS 3.1 Compactness

Now, let > 0 be as in Claim (1). By Claim (2), 3y1,y2,...,yn € A s.t.

N

AC U D(yj,r).
j=1

Then, further by Claim (1), we get D(y;,r) C U;,. So,
N N
AcC U D(yj,r) - U Uij-
j=1 j=1

Therefore, A can be covered by a finite subcover. Hence, A is compact.
QED. =1

Theorem 3.1.9
A C M is compact < A is complete and totally bounded.

Remark 3.2 So, if a set is not bounded/totally bounded, it cannot be compact.

Proof 3. (=): Done when proving B-W Thm. O

(«<): Assume A is complete and totally bounded. [WTS: A is compact/sequentially compact]

Let {y,} be a sequence in A. [WTS: 3 subsequence y,,, converges in A|

WLOG, we may assume {y,, } is formed by distinct terms. If we don’t get distinct terms, we will have
a constant sequence when n gets sufficiently large. Hence, it converges in A and is trivial to discuss.

Since A is totally bounded, for e; = 1, A is covered by finite number of balls:

D(.I'gl),é“l), .. .,D(x(Lll),sl).

We can choose a subsequence {y1,,},. ; of {y,} thatis contained one of the balls.

1
Repeat that for e, = 3 we have

AC D<x§2),62> U---u (m(gg,&‘z).
We can choose a subsequence {2, },- ; of {y,} thatis contained in one of the balls.
Continuing this process with ¢, = —, m = 1,2,.... We obtain a subsequence {y,, },. , that is
m

1
contained in a ball of radius ¢,, = p Then, we have the following subsequence:

Y11, Y12, Y13, ty Yin,
Y21, Y22, Y23, 5 Yon,
Yml, Ym2, Ym3, 5 Ymn,
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3 COMPACTNESS AND CONNECTEDNESS 3.2 Compactness in R"

Each subsequence is a subsubsequence of the proceeding subsequence.
Select y11,v22,933, - - -, Ynn, - - - to form a subsequence of {y, }.

Denote this subsequence as {z,} = {ynn}-

A is complete. To show z,, converge in A, we only need to show z, is Cauchy.

Claim {z,} is Cauchy.

Proof. Assume n > m:
2
d ny ~“m -
(2n, 2m) < -
When m — oo, d(zn, zm) — 0. So, {z,} is Cauchy. O
Since A is complete, {z,} is Cauchy, we have z, — z € A. Hence, A is sequentially compact. By
B-W Theorem, A is compact.

QED. H

3.2 CompactnessinR"

Theorem 3.2.1 Heine-Borel Theorem

Aset A C R"is compact <= A is bounded and closed.

Proof 1. (=): True in general metric space. [

(<): Assume A C R" is closed and bounded. [WTS: A is sequentially compact]

Given sequence {z} in A, write

T = (xl(cl),fﬁgf), . ,l’én)) e ACR"
Aisbounded = {x;}is bounded — {x,(cl)} is bounded in R.
: (CO
= dconverging subsequence {:c F R }k:1'
. 2 1™ . . . 2 1
Similarly, {x ) }kzl isbounded in R. = 3 converging subsequence {a: Fa (k) }k:1'
In this way, we obtain subsequence
_ (M @) (n)
Lfulk) = (xfn(k)’xfn(’f)’ a ’xfn(k)>
with xyz(k) ko0 ) fori = 1,2,...,n. Hence,
Ty (k) — (x(l),:n@), e ,:r(”)) € A
Therefore, A is sequentially compact.
QED. =

Remark 3.3 In Heine-Borel Theorem, (<) does not hold in general metric space. That is, A metric space
that is closed and bounded does not imply compactness. For example, let M = infinite set with discrete
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3 COMPACTNESS AND CONNECTEDNESS 3.3 Nested Set Property

metric
0, =y

1, T #y.

d(xv y) =

M is closed and bounded, but M is not compact.

Example 3.2.2

A C R"isbounded = cl(A) is compact.

A =10,1] C R! is compact.

A = (0,1] C Ris not compact.

R is not compact because it is not totally bounded.

3.3 Nested Set Property

Theorem 3.3.1 Nested Set Property
Let F; be a set of non-empty compact sets in M s.t.

Fro W CF, VE=1,2,....

Then,
o
n . # 2.
k=1
Proof' 1. For each k = 1,2,..., choose z;, € Fi. Then, {z;} C F;. Since F} is compact, 3 subse-
quence

T f(k) IH—OO> x € .

Claim x € F,, Vn.

Proof. Fixn > 1. Then, forlarge k£ (3 NV s.t. k > N), we have f(k) > n. Then, Fyry C F. Recall that
k—o0
Ty € Ff(k) and Tpk)y — T, then
z e F,
as F,, is closed. O
Hence, x € ﬂ I, # o.

k=1
QED. H

Remark 3.4 “Compact” cannot be replaced by “open,” “closed,” or “bounded open.”
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

3.4 Connectedness

Definition 3.4.1 (Path-Connected, Geometric Point of View). A set A C M is path-connected if each
pair of points x,y € A can be joined by a continuous path given by a continuous map

v:[0,1] = A st. p0)==z and ¢(1)=y

Example 3.4.2

* This is not path-connected:

e Lety : [0,1] — M be a continuous map. Then, C = ¢([0, 1])] € M (the image of this maaping)
is path-connected.

Definition 3.4.3 (Disconnected Set, Topological Point of View). A set A C M is said to be disconnected
if Jopensets U,V C M that separate A:

e UNVNA=g
e UNA##gandVNA#A =9

e ACUUV
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

Definition 3.4.4 (Connected Set). If a set is not disconnected, then it is connected.

Remark 3.5 It is easy to prove disconnectedness since we only need to find one pair of open sets satisfying
the 4 conditions. To prove connectedness, we need to showY open sets U,V C M, they cannot satisfy the
4 conditions at the same time.

Theorem 3.4.5
Path-connectedness = connectedness

Proof 1. We will start the proof with the following claim (The proof is trivial, and so we omit the
proof):
Claim 3.4.6 The interval [a, b] C R! is connected.

Suppose, for the sake of contradiction, that A C M is path-connected but not connected. Then, 3
open sets U, V' that separates A as defined in Definition 3.4.3.

FixreUnNnAandy € VN A.

Since A is path-connected, 3 a continuous map ¢ : [0, 1] - A with ¢(0) = z and ¢(1) = y. Let

C=¢ HANU) C[0,1]
={te[0,1] | ¢(t) e ANU}.
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

Similarly, we can define D = ¢=*(AN V). Then, 0 € Cand 1 € D.
Claim 3.4.7 C is closed.

Proof. Lett, € C s.t. t; — t. Then, by continuity of ¢, ¢(tx) — ¢(t) € A. Suppose, for the sake of
contradiction, ¢(t) ¢ U. Then, ¢(t) € V. Since V is open, ¢(tx) € V forlarge k. Hence,

o(ty) e ANUNV = 2.

% We reach a contradiction. So, ¢(t) € U, which implies ¢t € C. Ast;, — t € C, we have shown that C'is
closed. O
Corollary 3.4.8 : By symmetry of C and D, D is also closed.

To derive a contradiction with Claim 3.4.6, note that

ANUNV =g,

which implies C N D = @. Therefore, the two open sets (R\C) and (R\D) separates [0, 1].% This
contradicts with Claim 3.4.6 that [0, 1] is connected. Hence, our assumption was wrong, and A must be
path-connected and connected. In other words, path-connectedness —> connectedness.

QED. =

Remark 3.6 The converse is not true.

Example 3.4.9
Suppose A = {(a:,sin ;) | z > O} u{(0,y) | -1 <y <1} C R

g

segment of y-axis

graph of f(z)=sin (1)
Then, A is connected but not path-connected.

Proposition 3.4.10: A C R" open and connected —> path-connected.
Proof 2. (Sketch) Fix a point 2y € A s.t.

B ={y € A|zpandy can be joined by a continuous path € A}.

Show:
* B#0 [zo € B]
e Bisopen.
* Bisclosedin A.

Then, B = A. [If B # A, thenU = Band V = A\B separates A — A is disconnected —
contradiction, it must be A = B.]
QED. ®m
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

Theorem 3.4.11 Equivalent Ways to Describe Connectedness

 In Definition 3.4.3, one can replace “open sets” by “closed sets.”

A C M is disconnected <= Jdclosed sets E, F s.t.

-ENFNA=92
- EnA#gand FNA# o
- ACFEUF

[Take complement of open sets, we get closed sets]

* In Definition 3.4.3, one can replace “U, V” by “disjoint open sets.”

A C M is disconnected < Jdisjoint open sets U; and V; s.t.
-UiNViNA=o

—-UinNA#4gandViNA#o
-AcU;uWn

Proof 3. (Hint of @): Consider the distance function d(z, AN V) given fixed z € U N A.

Claim Vz € ANU, defined(z) = d(x,ANV) = inf{d(z,a) | a € ANV}. Then, d(xz) > 0. Similarly,
Vye ANV, defined(x) =d(y, ANU) =inf {d(y,a) | a € ANU}. Then, d(y) > 0.

Define open sets Uy, V; as follows:

Ulz{D<a:,;d(m)> |meAﬂU} and m:{D(;,,;d(y)) \yeAﬂV}

We have the desired disjoint U; and V4.
QED. m
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4 CONTINUOUS MAPPINGS

4 Continuous Mappings

4.1 Continuity

Definition 4.1.1 (Maps). Suppose (M, d) and (N, p) are metric spaces. Let A C M. Then, f : A — N is
a map (or a function)

Definition 4.1.2 (Continuous Maps). f is continuous at a point xy € A if

lim f(z) = f(xo)-

Tr—IQ
T€EA

f is continuous in A if it is continuous at each point in A.

Definition 4.1.3 (Limit of a Function). b € N is the limit of f(x) at z(, written as

lim f(z) =0,

T—T0

ifVe>0,30 >0s.t.x € Aand d(z,z0) <d = p(f(x),b) <e.

// \\ // \\\
e \ / f (o) \
\ T ! ! )
\ 0 / [ :
\ / \ b !
\\_,/ \ /

\ 1 /

’

Definition 4.1.4 (Isolated Points). xy € A is an isolated point in Aif 36 > 0 s.t. D(z9,0) N A= {xo}.
Remark 4.1

» The continuous definition implies three things: the function is defined, the limit exists, and the
limit value equals the function value.

* A point is either an isolated point or an accumulation point.
e For the limit definition, x is not required to be in A. For example,

£y = ") e 0. 1 f@) = 0 ¢ (0.1).
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4 CONTINUOUS MAPPINGS 4.1 Continuity

 Ifz is anisolated point in A, then li_>m f(x) = f(zo) is always true. Therefore, any function f(x)
T—xT0

is continuous at isolated points.

Example 4.1.5

e f(x) =z :R™ — R" (identity function) is continuous

z, 0<z<l1 . : .
* g(x) = : [0, 3] — R! is continuous at every point except for z = 1.
2z, l<ax<3
r, xzFl : : :
* h(z)= : R — R is continuous at every point except x = 1.
3, r=1

Theorem 4.1.6 Equivalent Conditions for Continuity
Let f : AC M — N. The following are equivalent:

e fiscontinuous on A.
 For each converging sequence x, — = € A, f(xx) — f(x).
Remark 4.2 Continuous map preserves the convergence of sequences

* For each open set U C N, the pre-image f~!(U) C Ais open relative to A. That is

fFYU)={zcA| f(x) eU}=ANV, whereV C M is open.

* For each close set ' C N, the pre-image f~!(F) C A is closed relative to A. That is,

fY(F)=AnE, whereE C M is closed.

Proof 1. We will prove equivalence by the following cycle: ® —= @ —= @ — ® — @.
(® = @): Given sequence zj, € Awith z;, — z € A. [WTS: klim flxg) = f(2)]
—00

45



4 CONTINUOUS MAPPINGS 4.2 Properties of Continuous Mappings

(@ = @): Fix closed set F € N. [WIS: f~'(F) = Ancl(f '(F))] It is trivial that f~!(F) C
Anc(f~'(F)). So, we only need to prove the “>” direction. Given z € Ancl(f~'(F)), 3 sequence
r, € f~Y(F) C As.t.z, — x. Then, y, = f(z,) = f(z) € F by @ and closedness. So, z € f~!(F). That
is, Ancl (f~1(F)) > f~*(F). Hence, f~(F) = Ancl (f~!(F)), implying f~!(F) is closed in A.

(@ = ®): [Use complement: U C N isopen <= F = N\U is closed]

p(f(x), f(xo)) < el LetU = D(f(z0),€) < ris open. By®, f~1(U) is openin A. i.e.,
fY(U)=AnV, V c Misopen.

Note that g € f~1(U) = z¢ € V. Since V is open, 3§ > 0 s.t. D(z,0) C V. [WTS:x € A, d(x,x¢) <
0 = p(f(x), f(zg)) < e] Suppose x € A with d(z,zy) < 6. Then, z € Aand x € V. That is,
r€ ANV = f~1(U). Hence, f(z) € U. By definition of U, we get p(f(x), f(x0)) < ¢ as desired.

QED. =

4.2 Properties of Continuous Mappings

Theorem 4.2.1 Images of Compact and Connected Sets
Suppose f : M — N is continuous. Then,

e If K ¢ M is compact, then f(K) is also compact.

* If B C M is connected, then f(B) is also connected.

Proof 1.

e Let 2, be a sequence in K. Then, y, = f(zy) is a sequence in f(K). [WTS: f(K) is sequentially
compact.] Suppose K is compact, 3z, — x9 € K when j — co. By continuity of f, f(zy,) —
f(zo0) € f(K)whenk — oo. So, for sequence y; = f(z), we find a subsequence f(xx;) — f(zo) €
f(K). So, f(K) is sequentially compact. [

* Given connected set B C M. Assume, for the sake of contradiction, that f(B) is disconnected.
Then, Jopensets U,V s.t. f(B)NUNV =@and f(B)NU # @, f(B)NV £2, f(B) CUUV.
[We can derive that B is also disconnected, which is a contradiction.] So, it must be that f(B) is

also connected.

QED. H

Theorem 4.2.2 Operations on Continuous Mapping
Addition, multiplication, divisions, and compositions of continuous functions (if they are well-
defined) are also continuous.
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4 CONTINUOUS MAPPINGS 4.2 Properties of Continuous Mappings

Example 4.2.3
If f(x) =R - R, g : R — R are continuous, then, f(x)g(x) is also continuous.
Proof 2. Denote F(xz) = f(x)g(x). Then,

[F () = F(xo)| = [f(x)g(x) — f(x0)g(zo)]
< [f(x)g(x) = f(x)g(xo)| + | f(2)g(z0) — f(w0)g(x0)]
= [f(@)[lg(z) = g(xo)| + lg(zo)[|f (z) = f(zo)]

QED. H

Theorem 4.2.4 Maximum/Minimum Property
Let K C M be compactand f : K — R be continuous. Then,

e fisbounded on K (i.e., f(K) is a bounded set)

* dxg,x1 € K s.t.

f(@1) =max f(z) and f(zo) =min f(z).

zeK zeK
Thatis, f(z0) < f(z) < f(z1) VzeK.

Proof 3.

* Since K is compact and f is continuous, f(K) is compact. Since f(K) C R is compact, f(K) is
closed and bounded.

* Since f(K) is bounded, we know inf(f(K)) and sup(f(K)) exist and are finite. Further since f(K)
is closed, inf(f(K),sup(f(K) € f(K). Hence, 3z¢ = inf(f(K)) and 21 = sup(f(K)) s.t.

flwo) < f(z) < flz1) VaeK.

QED. =1
Remark 4.3

* The condition “compact” cannot be removed.

Example 4.2.5

1
f(z) = —:(0,1) — R is continuous but not bounded
X
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4 CONTINUOUS MAPPINGS 4.2 Properties of Continuous Mappings

f(x) =z :(0,1) — R is bounded, but does not have max/min values

 The condition “continuity” cannot be removed.

Example 4.2.6

1

—, >0

Consider function f : [0,1] — R by f(z) = {96 ! Although [0,1] is compact, f(x) is
2, z=0.

nto continuous, and f is not bounded and does not have max/min values on [0, 1].

» We don't need differentiability here.

Theorem 4.2.7 Intermediate Value Theorem (IVT)
Let K C M be connected and f : K — R be continuous. Suppose z,y € K with f(z) < f(y).

Then, for any intermediate value c s.t. f(z) < c< f(y),dz € Kwithz < z < y s.t. f(z) =c.

Proof 4. Let K C M be connected and f : K — R be continuous. Suppose z,y € K with f(z) <

f(y). Assume, for the sake of contradiction, 3cwith f(z) < ¢ < f(y) s.t. c ¢ f(K).
Since K is connected and f is continuous, f(K) is also connected. However, U = (—o0,¢) and
V = (¢, +00) separate f(K), implying f(K) is not connected. % We reach a contradiction. So, such a ¢

does not exist.
QED. m

Example 4.2.8 Application of IVT I
Let f(z) be a polynomial of odd degree. Then, f has at least one real root.

Proof'5. Suppose f(x) : R — R is continuous. Write f(z) as

f(x) = apz™ + ap_ 12"+ + a1z + ao,
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4 CONTINUOUS MAPPINGS 4.3 Uniform Continuity (UC)

where a,, # 0 and n = 2k + 1 is odd.
WLOG, suppose a,, > 0. Then,

lim f(z)=—-o00 and lim f(x)= occ.

T—r—00 T—00

So, 3z,y € Rs.t. f(z) < 0and f(y) > 0. Therefore, by IVT, 3z € R s.t. f(z9) =c=0.
QED. =

Definition 4.2.9 (Fixed Point). x is a fixed point of f if f(x) = «.

Example 4.2.10 Application of IVT II
Let f : [1,2] — [0, 3] be continuous with f(1) =

0, f/(2) = 3. Then, f has a fixed point.
Proof 6. Apply IVT to a new function: F'(z) = f(z)

— z. Take ¢ = 0 as the intermediate value.
QED. =

4.3 Uniform Continuity (UC)

Definition 4.3.1 (Uniform Continuity (UC)). A function f : A € M — N is uniformly continuous on A
ifVe>0,30 >0s.t.x,y € Aandd(z,y) <d = p(f(x), f(y)) <e.

Remark 4.4
* For uniform continuity, the § depends only on ¢ not on points.

e For continuity (at x¢), the § may depend on ¢ and the point x.

Example 4.3.2 .
Consider f(z) = —: (0,1) — R. f is continuous at any point zy € (0, 1). But to satisfy
T

|z — 0| <6 = [f(x) — f(wo)| =

we need to pick

1 1
x—1x9| =06 = min{2x%6, J,‘()}.

Theorem 4.3.3 Uniform Continuity on Compact Set

Let f : K C M — N be continuous and K be compact. Then, f is uniformly continuous on K.

Proof'1. Fixe > 0. For each = € K, since f is continuous at x, 36, s.t. fory € K with d(z,y) < J,,

we have p(f(x), () < 5.
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4 CONTINUOUS MAPPINGS 4.3 Uniform Continuity (UC)

: d . .
Consider the open cover of K: {D <:U, ;) ‘:c eK } Since K is compact, 3 subcover:

D(xi,%>, i=1,2,...,L

2
5y
1<i<r | 2 |°

Finally, let

0 = min

Claim z,y € K withd(z,y) <d = p(f(x), f(y)) <e.

Proof. Note that

d(y7 xl) < d(ya x) + d($, xl)

Oz,
<d+ ?
< Oy, -
One can continue to show that p(f(z), f(y)) < e. O
QED. =
Definition 4.3.4 (Lipschitz Continuity). A function f : A C M — N is called Lipschitz if 3 constant

L s.t.
p(f(x), fly)) < L-d(z,y) Va,ye A

Theorem 4.3.5 Lipschitz and Uniform Continuity
If f: AC M — N is Lipschitz, then f is uniformly continuous in A.

Corollary 4.3.6 : Suppose [ : (a,b) — R is differentiable and 3M > 0 s.t. |f'(z)] < M Vz € (a,b).
Then, f is Lipschitz.
Proof 2. Given z,y € (a,b). Then,

fy) = f@)] = |f'(z)(y — 2)| [Mean Value Theorem|
< M|z —yl.

QED. N

Example 4.3.7 Lipschitz Functions

f(x) = zand f(x) = sin x are Lipschitz functions.

Remark 4.5

 If f has bounded derivative (or slope), then f is uniformly continuous.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

* Butif f is differentiable and uniformly continuous, f may not have bounded derivative.

* Open End-ed Questions:

- f:R — R is bounded and continuous, f may not be uniformly continuous.

- f,9 : R = R are uniformly continuous, f - g is not uniformly continuous in general.

— Butif f, or g, or both are bounded and uniformly continuous, is f - g uniformly continuous?

4.4 Differentiability

Remark 4.6 Starting from this section, we will only consider functions f : an interval — R.

Definition 4.4.1 (Differentiability). A function f is differentiable at a point x if it is defined in an open

interval that contains xy and its derivative exists:

Fan) — tim T@) =)

T—xQ T — X0

or equivalently, set h = = — z,

1oy _ i S @0+ h) — f(xo)
fwo) = fig ==
Remark 4.7 (Interpretation)

e Rewrite (D) as

lim f(x) = f(@o) — f'(w0)(z — 20)

T—T0 Tr — X0

=0.

This implies the functiony = f(x) can be approximated by the linear function

y = f(zo) + f'(z0)(z — x0)

in a neighborhood of x.

e Rewrite (D) as
lim f(wo + Az) — f(z0)
Az—0 Ax

— f(x0)| = 0.

this implies the slope of tangent line is the limit of the slope of secant lines.

(D)

Theorem 4.4.2 Continuity of Differentiable Functions
Suppose f : A € M — N is differentiable at (. Then, it is continuous at x.

Proof 1. Given ¢ > 0. Since

Jim LOZI0) gy,
— f(@o)

361 > 0s.t. |z — x| < 61 = ‘f(x; < |f'(x)| + 1. Choose

) €
0= mm{wﬂﬂ, 61}.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

So, when |z — z¢| < §, we have

@) = )| = LT o
W@+ Y s

= E.
QED. ®m
Remark 4.8 The converse if not true: continuity =~ differentiability. Counterexample: f(x) = |z|.

Proof 2. (Another Approach) Note that

i (7(0) = o) = fiy [T =T (o)
"= lim [M] lim (x — x0) [Product Rule of Limit]
T—T0 xr — Xg T—T0
= /()0
=0.

So, the function is continuous.
QED. H

Theorem 4.4.3 Rules of Differentiation

Constant multiple rule:

(kf) (z0) =k - f'(z0).

Sum rule:
(f +9)(x0) = f'(x0) + ¢ (x0)

Product rule:

(f9) (x0) = f'(z0)g(xo) + f(x0)g' (x0).

Quotient rule:

<f)/(x0) _ J'(@o)g(xo) — f(0)g'(x0)
9 (9(x0))?

Chain rule:

(g0 f)(z0) = ¢'(f(x0)) - f'(w0).

Lemma4.4.4:1If f : (a,b) — R is differentiable and f has a max (or min) at ¢ € (a, b), then f’(c¢) = 0.

52



4 CONTINUOUS MAPPINGS 4.4 Differentiability

Proof 3. Assume f hasamaxatc € (a,b). Then,

f'(c) = lim

h—0

f(h+¢) = fle)
- :

[WTS: f’(¢) > 0and f'(c) <0.]
As fhasamaxate, f(h+¢) < f(c), and so

f(h+ o)~ f(e) <.
Case1]h > 0:

Casell | < 0:

f'(c) = lim

h=—0 h
As f'(¢) > 0and f’(c¢) <0, it must be that f/(¢) = 0.
QED. ®m

Theorem 4.4.5 Rolle’s Theorem
Let f : [a,b] — R be continuous and f be differentiable on (a,b). If f(a) = f(b) = 0, then
Jde € (a,b) s.t. f'(c) = 0.

Proof 4. f has max and min on [a, b] as [a, b] is compact. [WTS: This max/min occur in (a, b).]
Since f(a) = f(b) = 0, then max and min cannot both occur at the endpoint (i.e., either max or min
occur in (a, b)) unless f is the constant function f(z) = 0.
Now, by Lemma 4.4.4, 3¢ € (a,b) s.t. f’(¢) = 0, where c is either the max or min.
QED. =

Theorem 4.4.6 Mean Value Theorem (MVT)
Suppose f is continuous on [a, b] and differentiable on (a, b). Then, 3¢ € (a,b) s.t.

Remark 4.9 Rolle’s Theorem is a special case of MVT. We will use the special case to prove the general
case.

Proof'5.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

Construct ¢(x):
b) — f(a
ol) = 1)~ [ ta) + LD Do g

One can verify the following:

* p(a) =0;

* p(b) =0; and

* ¢ is continuous and differentiable.
Then, apply Rolle’s Theorem to ¢(z): 3¢ € (a,b) s.t.

¢'(c) =0.
Note that ¢'(¢) = f'(c) — f(bl)):i:(a) = 0, we have
iy F0) = fa)
f (C) - b —a

QED. ®m

Remark 4.10 (Geometric Interpretation) There is at least one point where the instant change of rate is
the same as the average change of rate.

Definition 4.4.7 (Monotonecity).
» We say f(x) is increasing (or strictly increasing) at a point z if 3 open interval (a, b) containing z
with:
—a<z<z) = f(2) (wo) (or f(x) < f(x0));
(o) (o1 f(2) > f(x0)).

* Similar definition for decreasing (or strictly decreasing) at a point .

<f
—rp<zx<b= f(x)>f

* f(z)isincreasing (or strictly increasing) on an interval I if for z1, x5 € I

a1 <wy = f(z1) < f(xg) (or f(a1) < f(22)).
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4 CONTINUOUS MAPPINGS 4.4

Differentiability

* Similar definition for decreasing (or strictly decreasing) on an interval.

Theorem 4.4.8 Local Monotonecity and Derivative
Let f be differentiable at zy. Then,

e fincreasingatxy = f'(zg) > 0; f decreasingatzy — f’(x¢) < 0.

e f'(xg) >0 = f strictly increasing at xg; f'(z¢9) < 0 = f strictly decreasing at x.

Proof 6. (of ®): Suppose f is increasing at xy. Then

f(xo+h) — f(zg) >0 whenh >0
<0 whenh <O0.

Then,

(of @): Suppose f/(zg) > 0. Then, fore = %fl(x(]) > 0,36 > 0s.t.

Seoth) = f@o) ol oo 2 e
2

0<|hl<d
<|h| <o = Y

—%f’(mo) < fl@o + h})L — f(0) — fl(wo) < %f’(xo) = 0< %f’(mo) <

Whenx<a;0,h:a:—:cg<0.Asf(x0+h})Lf(xo) >0,
f(zo+h) = fzo) = f(x) = flzo) <O = f(z) < f(z0)
When z > xo, h =z — 29 > 0,
f(@o+h) = fzo) = f(z) = flzo) >0 = f(x) > f(z0).

Hence, f is strictly increasing.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

Theorem 4.4.9 Global Monotonecity and Derivative
Let f be continuous on [a, b] and differentiable on (a, b). Then,

e f'(x)>0 Vaz € (a,b) = fincreasingon [a, b).
e f'(x) <0 Va € (a,b) = f decreasingon [a, b].
e f'(x) >0 Vax € (a,b) = f strictly increasing on [a, b].

e f'(x) <0 Vxe€ (a,b) = f strictly decreasing on [a, b].

Theorem 4.4.10 Local Max/Min and Derivatrive
Suppose f is continuous on [a, b] and twice differentiable on (a, b). Let zy € (a, b).

e f'(xg) =0and f"(zg) >0 = ¢ is astrict local min of f.

e f'(xg) =0and f"(xg) <0 = x¢is astrictlocal max of f.

Proof 7. (of ®) By Theorem 3.3.8(2), f”(z9) > 0 = f’(x) is strictly increasing at . Then,
o f'(z) < f'(x9) =0 Vax € (xzg—0d,x9) = f(x)strictly decreasing on (z¢ — §, z¢)
o f'(z) > f'(x0) =0 Vx € (xg,x0+9) = f(x) strictly increasing on (zo, zo + 9).

QED. N

Theorem 4.4.11 Inverse Function Theorem (IFT)
Suppose f'(z) >0 Vz € (a,b) (o1, f'(x) <0 Vzx € (a,b)). Then,

e f:(a,b) — Risabijection onto its image
* Inverse f~! is differentiable on its domain.

s (f Y= , where y = f().

L
/()

Proof 8. Assume f'(z) > 0 Vz € (a,b). Then, f is strictly increasing. Then, f is 1-to-1 function
— fisabijection = f~!exists. [WTS: f~!is continuous.]
Let U be an open set in (a,b). [WTS: (f*‘)f1 (U) = f(U) is open.]
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4 CONTINUOUS MAPPINGS

4.5 Integration

Finally, write y = f(z). Then, z = f~!(y). Let yo = f(x0). Then,

Y=o Y—Y0
= lim i
v=wo f(x) — f(xo)
, 1
=28 T — f(@o)
Tr — X0
_ 1
i 1) = f(=0)
T—T0 T — Tg
1
~ f(o)

4.5 Integration

QED. N

Definition 4.5.1 (Riemann Integrable). Let A C R be bounded and f : A — R be a bounded function.

[We want to make sense / f(x)dx.]
JA

¢ Partition the interval:

Ifinterval [a, b] D A and extend function f(z) to [a, b] by letting f(z) =0 Vz ¢ A.

Partition the interval [a, b] by points: a = zg < z; < - -+ < z, = b. Denote P by

P = {1'0,1'1,172,‘ o ,l’n}.

e Form Upper and Lower Sum of f.

Upper sum

=~ — 7

Lower sum

Ti—1 Zg

For any fixed partition, let

U(f,P) = sup{f(z) |z € [zimr, 3]} (wi = zi1)
=1
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4 CONTINUOUS MAPPINGS 4.5 Integration

is the upper sum, and

L(f,P) =) inf{f(z) |z € [zi-1, 2]} (i — 2i-1)

i=1
is the lower sum.

Claim Supposem < f(x) < M. Then,

» Upper integral and Lower integral are defined as

/ f=1inf{U(f, P): Pisapartition} (Upper Integral)
A

/ f=sup{L(f,P): P osapartition} (Lower Integral)
Ja

* We say a function f is Riemann integrable if

Ji=]1
ol I

and we write

Example 4.5.2 Riemann Integrable

e Define f : [0,1] — R by

0 if z is rational
0 if x is irrational.

Then, for any partition P,
Z 1 (2 —mimq) =1

and

ZO — Tj— 1 =0.

So, -
/f;é /f — fisnotintegrable
A JA

71 1
e Compute / xdz and xdz.
0 Jo
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4 CONTINUOUS MAPPINGS 4.5 Integration

. . .. 1 2
Hint: Consider partition P,, = {O << =< <K n}
n n n

Lemma 4.5.3 : Let f : [a,b] — R be bounded. If P, P’ are partitions of [a,b] with P C P’ (P is a
refinement of P), then

L(f.P) < L(f,P") <U(f,P) <U(f, P).

Remark 4.11 In words, when the partition gets finer, lower sum increases but upper sum decreases.

Original upper sum

LTi—1 €; Ti41

/abe/abf

Proof 1. For any fixed partition Pand Q. As P C PUQ and Q C P U Q, by Lemma 4.5.4, we have

Proposition 4.5.4 :

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).

Then, ,
/ f=swL(f,P)U(f,Q) foranyQ

So,

/abfgigfv<f,@>=Lbf.
QED. ®

Theorem 4.5.5

e If f: [a,b] — R is bounded and is continuous at all but finite many points, then f is inte-
grable.

e If f is increasing or decreasing on [a, b, then f is integrable.

Proof 2.
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CONTINUOUS MAPPINGS 4.5 Integration

b 7b
* (Proof of ®): Observe that V partition P, L(f, P) < / f< / < U(f, P). [To prove a function is
integrable, it's sufficient to show that Ve > 0, 3 partition P s.t. U(f, P) — L(f,P) < ¢.]

- Suppose f is continuous on [a, b] except at aj, as, . . ., ax. Since f is bounded, Im, M s.t. m <
flx) < M Vaz € [a,b]. Choose partition P; s.t. each subinterval containing some a; has
€
| th< -+ ————M—.
O8NS o k(M —m)

Let K be the union of the remaining subinterval in P;. Then, K is compact and f is contin-
uous on K. So, f is uniformly continuous on K. That is,

36 >0st. 21,09 € K st |1 —x2| <d = |f(z1 — fz2)| <

2(b—a)

— Construct the refinement P of P; so that each subinterval in P not containing some a; has
length < 4. So,

P={a=2y<z1<---<z,=0} and I; —[zj_1,z;].

Denote
M; =sup f(x) and m; = 1}1ff(x)
; j

IJ
If I; contains some a;, thenm < m; < M; < M.
If I; contains no discontinuous points, then /; C K, and
M; —m; = max —min < S
I J 2(b—a)
- Finally, we have

n

U(f,P) = L(f,P) = > _(Mj —my)(z; — x;-1)

j=1
=Y (My—my)(xj —aja) + Y (My—my)(w; —xj1)
a;€l; a;¢l;
worse case:
2k such intervals 1 total length
= € € ——
< 24 = +
M 2 (M —mm)  2b—a) (b—)
estimate of
Mj—m; length of I, estimate of
5
- e + e
202
= E&.

Therefore,

b 7b
/ f= / f = fisintegrable.
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4 CONTINUOUS MAPPINGS 4.5 Integration

* (Proof of @): Assume f is increasing. Given ¢ > 0. Consider an equal partition

b—a

Pn:{azwo,m1:x0+ ,:L'Q,...,mn:b}.

Then, by equal partition and f is increasing, we have

U(f,Pa) = flaj) (@ —zj1) = b > flay)
=1

j=1
and . .
LU, Pa) = 3 Flay )y — g0 = 20 o).
j=1 Jj=1
So,
UG Pa) = DU Pa) = 03 fa) = Fla)
j=1

_b ; ¢ (f(xn) = f(z1)) [Intermediate terms cancel]

=220 ) ~ fw)
Whenn — oo, U(f, P,) — L(f, P,) = b ; a(f(b) — f(a)) — 0. Therefore,

U(f,P,) — L(f,P,) <e forlargen — fisintegrable.

QED. N

Remark 4.12 To prove a function f is integrable, it is sufficient to show thatV e > 0, 3 partition P s.t.

U(f,P)=L(,P) <e.
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4 CONTINUOUS MAPPINGS 4.5 Integration

Theorem 4.5.6 Rules of Integration

b b
e k| f(x)de :/ kf(x)dz, k is a constant.

'/b(f( ) 4 g(o dx—/f dxi/b (z) dz
/f dx—/f dzv+/f )dz, fora < b <ec.

J Iff<g,then/ f(z d:c</ g(z) dx.

In particular, —|f| < f < |f]|, so

—/ab!f\S/abe/ab!f!-
/:f‘g/ablfl-

Definition 4.5.7 (Antiderivative). Let f(x) : [a,b] — R. An antiderivative of f is a continuous function
F(z):[a,b] = Rs.t. F'(z) = f(z) Yz € (a,b).

That is,

. J

Remark 4.13 (Antiderivative is not Unique) Suppose F(x) is an antiderivative of f(z). If G is another

antiderivative, then
—[G(2) = F(2)] = G'(z) — F'(z) = f(z) — f(x) =0 Va € (a,b).

So, by MVT, G(x) — F(z) = C, where C' is some constant, or

Theorem 4.5.8 Fundamental Theorem of Calculus (FTC)
Let f(z) : [a,b] — R be continuous. Then, f has an antiderivative F', and

b
/ f(z)dz = F(b) - F(a)

Proof 3. Define F'(z) by

forx € [a, b)].

Claim F(x) is an antiderivative of f(x).
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Proof.

|
! F(x) |
| |

! /AL

Fixz € (a,b). Leth > 0s.t. (x — h,x + h) C (a,b). Then,

Note that
dt

=

B

1
S| =
&\H
+
>

{5

So,

Given e > 0, f is continuous at x. So, 30 > 0 s.t.
[t—z|<d = |f(t)— f(x)| <e.

Then, when |h| < §, we have

. _ . z+h
F( +h})L F(z) é‘;/z f(t)—f(x)dt‘
1 z+h
<o |f(t) — f(x)|dt
1 z+h
<W ) edt
1
:M-E;-M
So,
0 im TEERZF@ ey e Fl@) = f(a)
e e e

1

h

1 T z+h T 1 z+h
:hWJr/ F)dt — dt :h/ F(t) dt.
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Furthermore, one can show that F'(z) is continuous on [a,b]. [As F(x) is differentiable on (a,b), it is
continuous on (a, b). We only need to check for the endpoints.] O
Finally, by definition,

F(b) = /bf(t) dt and F(a) = /bf(t) dt = 0.
So, ,
/ f(t)dt = F(b) — F(a).
QED. =H

Remark 4.14 In FTC, the continuity assumption of f (x) cannot be removed. More specifically, it cannot
be replaced by integrability. For example,

f is integrable, and its antiderivative
Fz) = / F(t)dt s well-defined.
0

However, F'(z) = f(z) for1 < x < x. Whenz = 1, F'(z) does not even exist.
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5 UNIFORM CONVERGENCE

5 Uniform Convergence

5.1 Definition of Convergence

Definition 5.1.1 (Pointwise Convergence). Given a sequence of functions f(z) : A ¢ M — N for
k=1,2,.... Wesay fp(z) — f(x) converges pointwise on A if Vx € A, the sequence of points { f;(z)}
converges to f(z). Thatis,Vz,Ve > 0,3 K s.t. k > K = p(fr(z), f(x)) < e.

Definition 5.1.2 (Uniform Convergence). f;(z) — f(x) converges uniformlyon Aifve > 0,3 K s.t. k >
K = p(fr(z), f(x)) <e Vze A. Wewrite f — f UC on A.

Remark 5.1 For pointwise convergence, the choice of K depends both on ¢ and the point x. However, for

uniform convergence, K only depends on ¢ but not specific point x.

Definition 5.1.3 (Convergence of Series). Assume N is a normed space. Suppose g, : A C M — N.

o
Then, Z gr(z) converges to g(z) pointwise or uniformly. Using sequence of partial sums, we have
k=1

falz) =) gil@).
k=1

Remark 5.2 UC s stronger: UC = pointwise convergence.
However, pointwise convergence =~ UC in general.

Example 5.1.4
Consider A = [0, 1] and
0 if% <z<l
fe(z) = 1
1 fo<ae <~
k
Note that f;(z) — f(z) pointwise, where
0 z >0
flz) =
1 T =
1
ol I I
However, this convergence is not uniform: Jey > 0 s.t. VK, 3k > K s.t. p(fx(x), f(z)) >
1
go for some x € A. For example, take cg = and 0 < x < T
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5 UNIFORM CONVERGENCE 5.1 Definition of Convergence

Theorem 5.1.5 Continuity of Uniform Limit
Let fr : A C M — N be a sequence of continuous functions and f; — f uniformly converges on
A. Then, f is also continuous.

Proof 1. Fix g € A. Givene > 0. By UC, 3K s.t. p(fr(x), f(x)) <
continuous, 36 > 0 s.t.

% Ve € A. Since fx is

x €A, dz,x0) <0 = p(fr(x), f(z)) <

w| ™

Therefore, by triangle inequality, we have

p(f (@), f(x0)) < p(f(2), fre () + p(fx (), [ (20)) + p(fx (0), f(70))
<

+o4c
3

Wl ™

<
3

E.

So, f is continuous at xg.
QED. B

Remark 5.3 This result can be used to show that a convergence is not uniform.

Example 5.1.6
. ful2) = —2 with A= [0,2]
n - 1 + l‘n ) - ) M
- Find pointwise limit
0, 0<x<1
1
fol@) = f@) =4 5 =
1, 1<z <2

— Determine uniform convergence:

The convergence is not uniform because f is not continuous.

* Geometric Series: Counterexample to the converse of Theorem 5.1.5

> 2F with A = (—1,1).
k=0

— Converge pointwise to g(z) = 1

Find partial sum:
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5 UNIFORM CONVERGENCE 5.1 Definition of Convergence

Since z € (—1,1),asn — oo, "1 — 0. So,

1— n+1
Sp(z) = ——

n—oo

for —1.1).
1—=x 1—=x z€(-11)

- Uniform convergence on subinterval [—a, a] forany 0 < a < 1.

Estimate the error term:
|x|n+1

Sn(@) = gla)| =

When z — 1, |S,(z) — g(z)] — oo as |1 —z| — 0. However, if we restrict € [—a, a] for
some(0 < a < 1,then |1 — x| > 1 — a, and we have

Ve>0, dNst.n>N —

n+1

= ysn(x)—g(xngf <e Vazé€l-a,d.

- Convergence is not uniform on (-1, 1).
|ZL“N+1

Observe that for any fixed IV, we have T | 2l . Therefore,
— X
|IE0|N+1
dxg < 1 s.t. |1 — :L'0| = |SN(330) —g(ﬂ?o)‘ >1=¢g.

Definition 5.1.7 (Uniformly Cauchy Sequence). A sequence of functions f; : A C M — N is uniformly
Cauchy sequenceifVe >0, 3L > 0s.t. j,k > L = p(fr(z), fj(z)) <e Vze A

Theorem 5.1.8 Cauchy Criterion

Let (N, p) be a complete metric space and f; : A C M — N be a sequence of functions. Then, fj
converges uniformlyon A <= Ve >0, 3L > 0 s.t.

g k>L = p(fe(z), fj(z)) <e VzeA

Proof 2. (=) Assume fj, — f uniformly. [WTS: f; is uniformly Cauchy:.]

p(fi(x), fi(x)) < p(fi(@), f(2)) + p(f(2) + f;(z)). O
(<) Assume { f;, } is uniformly Cauchy.

¢ Find the limit function (pointwise)

For each fixed = € A, the sequence of points { fx(z)} is Cauchy in N. By completeness of N, fi(x)
converges to some point in N. Denoted by f(x).
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5 UNIFORM CONVERGENCE 5.1 Definition of Convergence

» Show f,.(x) — f(x) UC
Givene > 0,3 Ly s.t. j,k > L1 = p(fe(z), fi(x)) < % Vz € A. Furthermore, as fi(z) — f(x)
pointwise, foranyz € A, 3L, > Ly s.t. j > L, = p(fj(z), f(z)) < %
Now, let K = L. Then, when k > K we have

p(fe(@), f(2)) < p(fr(2), fr.(2)) + p(fL. (%), f(2))

Just pick j = L., we have different intermediate term for different x's.

QED. n
Corollary 5.1.9 Weiertrass )M Test: Let NV be a complete normed space and g;, : A — N be a sequence
of functions s.t. 3 constants M;, with

e |lgr(x)|| < My forallz € A, and

o0
. E M;, converges.
k=1

Then, the series Z gk (z) converge uniformly.
k=1
Proof 3. The sequence of partial sums { f,,(z)} is uniformly Cauchy.

fn(x) = ng(l‘>
k=1

Then, apply Cauchy criterion.

QED. m
Example 5.1.10
. i (Sinnzz)z, A=R.
n=1
Set gn () = (Slnn’;f”)Q Then, |gn(z)| < %

As i 1 converges, by M test f: (sinnz) ’ converges uniforml
2 2 g€es, by ,n:1 ) g y.

[oe} n\ 2
. Z <x> — f(x) on R pointwise

n!
n=0

[ee] n\ 2
If we limit A = [—a, a], then ) (Z) uniformly converges.
n=0 ’

68



5 UNIFORM CONVERGENCE 5.2 Integration and Differentiation of Series

5.2 Integration and Differentiation of Series

s a

Theorem 5.2.1
Suppose f, : [a,b] — R and integrable and f,, — f uniformly on [a, b]. Then, f is integrable, and

b b b
lim fn(2) d$:/ nlingofn(x) dx:/ f(z)dz

n—00

Proof'1. Assume f is integrable. Then,

/fn d:n—/f Ydx| <

/|fn ~ f(@)] da

<e Vuz,byUC
</ edr =¢(b—a).

QED. H

Remark 5.4 One cannot replace uniform convergence by pointwise convergence.

Example 5.2.2

has area of 1

0 k 1
Define fi(z) : [0,1] — R s.t.
1
/ fi(z) do =
0
Observe that fi(x) pointwise, f(x)=0 Vz€]0,1]. So,

/01 fl@)dz - /Olf(w) da

Remark 5.5 The same result is not true for differentiation. One cannot simply replace integrable with
differentiable. For example, consider
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5 UNIFORM CONVERGENCE 5.3 The Space of Continuous Functions

We have f, () N f(x) = 0. However,

lim f/(z) # lim f'(x).

n—oo n—oo

Theorem 5.2.3
Let f, : (a,b) — R be differentiable, converging pointwise to f(z) : (a,b) — R. If f/ (x) are
continuous and converges uniformly to a function g, then f'(z) = g(x). i.e.,

lim S (fu(@) = S (m fu(@)) = S fa) = g(a).

n—oo dx n—00

Proof 2.

,
8

=)

8

Use Fundamental Theorem of Calculus,

f( ) fn(x() +fn fn(xO)

— fulo) /f ) dt.

When n — oo, for fixed z € A,

Fue) = £(@), Salon) > fa), [ Cpiyde - / "oty at

So,
x

f(2) = flao) + / gt) dt

L) = )+ 5 [ atar
lim, f4 () = /() = 0+ g(x) = gla).

n—oo

QED. H

Example 5.2.4 One cannot replace UC with pointwise convergence

2 . .
n pointwise
In= i T1Eesl= Lo/

g(x)
However, f] (z) # g(x).

5.3 The Space of Continuous Functions

Notation 5.1. Let A C M be a metric space and N is a normal vector space. Then

70



5 UNIFORM CONVERGENCE 5.3 The Space of Continuous Functions

* C=C(A,N)={f]| fA— N continuous}: the collection of all continuous functions f : A - N

*(C, = C(A,N) = {f ecC]| fisbounded}: the collection of all bounded continuous functions
@AM st |f(x)|y <M Vzel

Example 5.3.2
A=1[0,1 CR, N =R. Then,

Cy, =C, thesetofall continuous functions on [0, 1].

Remark 5.6

* Cy andC are vector spaces;
* Goal: Study Cy, as a normed vector spaces as R".

Definition 5.3.3 (Norm on (). Given f € Cp. Define || f|| as follows:

IfIF = sup {[f(2)ll5 | € A}.

This is called the maximum absolute value norm.

Theorem 5.3.4
||-|| defined in Definition 5.3.3 isanorm in C. i.e.,

* Positive definiteness: ||f|| > 0and || f|| =0 < f=0;
e Scalar multiplicity: ||af|| = |o|||f]] VaeR

* Triangle inequality: || f + gl| < [[f[| + llg]l

Proof 1. (of ®) By definition, ||f + g|| = sup{||f(z) + g(z)||y | z € A}. [WTS: ||f|| + ||¢|| is an upper
bound.] Note that

1 () + 9@y < (@)llx + lg(@)l v [triangle inequality in N]
< [If1I+1lgl [definition]

So, |[f +gll < Il71 + llgll-
QED. =
Definition 5.3.5 (Convergence in C;). f; — f in C, means that || f — f|| — 0as k — oc.

Theorem 5.3.6
fr — fin Cy (convergence in norm as vectors) <= f; — f uniformly on A (convergence in
function)
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5 UNIFORM CONVERGENCE 5.3 The Space of Continuous Functions

Proof 2. (=): Assume ||fi — f|| = 0. Then,Ve >0, 3K st. k > K = ||fix — f|l <e. Thus, Vz € A4,
by definition of norm, for k£ > K,

1fe(z) = f@)lly < M1fk = fll <e

So, fi(z) — f(z) uniformlyon A. O
(«<): Assume fj(z) — f(x) uniformly on A. Then,Ve > 0,3 K s.t. k > K = || fi(z) — f(z)|y <e.
Then, ¢ is an upper bound. Note that

1fx = fII = sup {l| fiu(x) = f(@)l|y [ = €}

is a least upper bound. So,

e = fIl = sup {|[ fu(z) — f(@)l[y | € A} <e

So, || fxfll = 0as k — cc.
QED. =1

Theorem 5.3.7 Completeness of C;
If N is complete, so is Cy(A, N).

Proof 3. Let { f.} be a Cauchy sequence in C. Then, Ve > 0,3 K s.t. j,k > K = ||f; — fill < e. By
definition, we have

I1fi(x) = fe(@)ly < |Ifj — full <e Ve A

So, { fx(x)} is a uniform Cauchy sequence on A. By Cauchy criterion,
fr(z) — f(z) uniformly on A.

f is also continuous since UC preserves continuity. By Theorem 5.3.6, we have f;, — f in Cp. So, Cp, is
complete.
QED. =

Remark 5.7 (Comparison Between C, and R™) Let A C M be compact and N = R".

Properties R” Cpy(A,N =R")
Normed Space v v
Completeness v v
Finite Dimension v X

. Arzela-Ascoli: A C M compact.
Heine-Borel: .
i Then, B C Cy is compact
Compact Subset B C R" is compact )

) < B s closed, bounded, and
<= B isclosed and bounded . . .
equicontinuous in A
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5 UNIFORM CONVERGENCE 5.4 The Contraction Mapping Principle (CMP)

Definition 5.3.8 (Equicontinuous). A family of function 5 is equicontinuous at a pointz € AifvVe >
0,36 >0st.yeDx,d)NA = |f(z)—fly)lly<e YfebB.

Remark 5.8 ¢ is independent of f € B.

Example 5.3.9

e B={feCR,R)| f(z) >0 VxeR}.

— Is B open? No.
Suppose f — 0 as x € co. Then, no matter how small we take the §, some part of D(f, )

will not be contained in B.

- Whatis cl(B)?
c(B)={f €CGR,R)| f(z) >0 VzeR}

— Whatis int(B)?
int(B) ={f € G(R,R) | inf(f(z)) >0 Ve R}

Think of inf(f(z)) > 0 in this way: we need a buffer zone.

e B={fecC([0,1,R) | f(z) >0 Vael0,1]}

5.4 The Contraction Mapping Principle (CMP)

Theorem 5.4.1 CMP
Let (M, d) be a complete metric space, and ® : M — M be a map. Suppose 3 constant k s.t. 0 <

k<1s.t.
d(®(z), ®(y)) < k-d(z,y) Vaz,ye M.

Then,
e ® has a unique fixed point in M. Thatis, 3!z* € M s.t. ®(z*) = x*.
* The fixed point can be constructed (or approximated) as follows:

Fix any point zg € M. Letz; = ®(x¢), 22 = ®(21),...,Tn+1 = ®(zy),.... Then,

lim =z, = z".
n—oo

\.

Remark 5.9 @ is continuous. Further, ® is Lipschitz =—> ® is uniform continuous.
Proof 1. Fixxy € M. Letzy,+1 = ®(x,) forn=0,1,2,....
Claim {z,} is Cauchy.
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5 UNIFORM CONVERGENCE 5.4 The Contraction Mapping Principle (CMP)

Note thatVn > 1,
d($na xn—s—l) = d(q)(xn—l)a q:)(xn)) < kd(xn—la xn)
< de(xn—la xn—l)
< k"d(zg, z1).
Thus,Vp > 1,

d(xn, xn+p) < d(fL'n, $n+1) + d(l'nJrl» xn+2) + -+ d(l‘nerfla $n+p)
< k"d(zo,21) + K" d(z0, 21) + -+ + K" d (20, 1)

= (k" + Mg /{i”ﬂ’_l) d(zg,z1) =0 as n — co.

geometric series

As the geometric series converges, {z, } is Cauchy.
Since M is complete, x,, — z* € M.

Claim z* is a fixed point.
Since @ is continuous,

lim ®(z,) = ®( lim :pn> = d(x").

n—oo (n—)oo
Meanwhile, ®(z,) = x,41, SO
ol Blom) = Iy, Fnrr = 7
Hence, z* = ®(z*), implying z* is a fixed point.
Claim The fixed point is unique.

Let y* € M be another fixed point. One can show

d(z*,y*) < d(®(z*), B(y")) [*,y* are fixed points]

< kd(z*,y") [® is a contraction mapping]

= d(z*,y*) =0.

QED. =
Example 5.4.2 Application in ODE
Consider the following initial value problem (IVP):
d
— = () wlto) =0 (IVP)
t
* Basic Assumptions:
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5 UNIFORM CONVERGENCE 5.4 The Contraction Mapping Principle (CMP)

1. f(t,) is continuous in a neighborhood U of (tg, z9) € R?

2. f(t,x)is Lipschitz in x: 3 constant K s.t.
|f(t 1) = [t @2)| < Koy — 32| V(t1,31), (f1,22) €U

e Apply CMP:

Theorem 5.4.3
If f(¢, x) is continuous in U an Lipschitz in z, then (IVP) has a unique solution = = ¢(t)
in the neighborhood of #y: (¢y — §,to + 9). i.e.,

@'(t) = ft,o(t)), @(to) = xo.

* Solving (IVP) is equivalent to finding a function ¢(t) s.t.

Or, by integration:
t
Ot)=z0+ | f(s,0(s))ds [zocomes from plugging in the initial condition]

to

This is just a fixed point for the following map (an integral operator):

D :g(t)— P(g9) = o+ i f(s,9(s))ds

Theorem 5.4.4
We need to construct an appropriate metric space M C Cp s.t. ® : M — M is a contrac-
tion mapping.

Algorithm 1: Iterative Method to Approximate the Solution to (IVP)
1 begin

2 Yo = To;
3 forn=0,1,2,... do

L ouia(0) = 0pa(®) =20+ [ S5, 0(s)) s

to

'
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5 UNIFORM CONVERGENCE

5.4 The Contraction Mapping Principle (CMP)

Example 5.4.5
Consider the IVP: f(t,z) = tz? + 23,
Let ¢o(t) = 1. Then,

z(0) = 1.
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6 DIFFERENTIAL MAPPINGS

6 Differential Mappings

6.1 Definition and Matrix Representation of a Differential

Definition 6.1.1 (Linear Transformation). A function 7' : R” — R is called a linear transformation if
Vz,y € R"and A € R, we have

* T(x+y)=T(x)+T(y)
e T(Ax) = A\T'(x)

These two properties can be combined and written equivalently as T'(ax+by) = a1 (x)+bT (y) Va,y €
R"and Va,b € R.
6.1.2 Matrix Representation of 7'.

Observation: Given m x n matrix A, define function 7' : R — R™ by T'(z) = A - z. Then, T is a linear
transformation.

Proof'1.
T(az + by) = A(az + by) = A(az) + A(by) = aAx + bAy = aT'(x) + 0T (y).

QED. ®m

Example 6.1.3

2 3
Suppose A= |1 —1|. Then,
0 4
2 3 2x1 + 372
I 3
Tx)=A -z = -1 [ ]— r1—xzy | ER
z2

Theorem 6.1.4 Fact
Every linear transformation 7' is determined by a matrix in such a way as above (via matrix mul-
tiplication).

Proof 2. Given T' : R™ — R™ linear, we need to find a matrix A (m x n) such that

T(z)=A-x VzreR"™
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6 DIFFERENTIAL MAPPINGS 6.1 Definition and Matrix Representation of a Differential

To construct A, consider the standard basis for R” : {ej,ez,...,e,} and for R™ : {e}, ¢ ..., e, }. Then,
m
T(ej) = Zazjeé, Vi=12,...,n.
i=1

Let A = (aij)

mxn

Claim T'(z) = Az Vz € R".

I
x2 . . . . .
Infact,letz = | | € R™. Then, we can rewrite x as a linear combination of standard basis:
Ln
n
Tr = Z ZTj€j.
j=1
So,
air G2 - G | |21
azy G2 - Gp | |2 .
T(z) = 21T (e1) + z2T(e2) + -+ xnT(en) = | | o . | = Az. [T is Linear]
|@ml Am2 ' Gmn | |Tn

QED. N

Remark 6.1 The collection of { linear transformationT : R" — R™} forms a1-to-1 correspondence with
the collection of {m x n matrices A}.

Theorem 6.1.5 Continuity of 7’
If T : R™ — R™is linear, then it is Lipschitz, and hence continuous.

Proof 3. Recall the definition of Lipschitz: |f(x) — f(y)| < L - |x — y|.
Since T'(xz) — T(y) = T(x — y), we only need to show that

|T(x)|| < M - ||z| for some M € R.

Letz = » mje;. Then, T(x) = > x;T(e;). So, ||T(z)| < Z ;] - || T(e;)]-
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6 DIFFERENTIAL MAPPINGS 6.1 Definition and Matrix Representation of a Differential

Recall that ||z = |3~ a2 So, |a| < |lz||. Hence,
J

1T (@) <D Nl - 1T (el = (Z T(@j)) Jlzll = M - ||zl
J j=1

M, independent of =

QED. =1
6.1.6 Derivative (Differential) as a Linear Transformation.

* Recall one variable case: Let f : (a,b) — R. Then, we can rewrite f'(zg) = h_}m @) = f(wo) as
T—X0 Tr — X

i [£®) = (@) = f'(wo)(z — o)

T—T0 T — X0

* Definition 6.1.7 (Generalization to Higher Dimensions).A map f : A C R” — R™ is said to be
differentiable at z( € A if there is a linear map, denoted by Df(z) : R" — R™ with

o 1@ = £@0) = Df @)@ — o)

=0 [ = ol

(x)

Remark 6.2 Interpretations of ():

1. Rewrite (x):Ve > 0,35 >0st.Vx e A,
|z —zoll >0 = | f(z) — f(z0) — Df(z0)(x — z0)|| <ellz — 0.

2. f(z) =~ f(xo) + Df(zo) - (x — x0) is called the affine map.

linear map

3. Geometric Interpretation: z = f(x) : R® — RY. Then, z — f(x¢) = Df(x0)(z — x0) represents
the tangent plane of the surface = = f(z).

4. For f : R! — R, Df(x) is the differential, representing a linear transformation, whereas f'(x)
or - is the derivative, which is just a number.

For example, f(x) = x2. Then, f'(x) = 2x. However, Df(x) is a linear transformation R —
R!, defined as
Df(z)(h) = 2zh, YheRL

e Uniqueness of Differential

Theorem 6.1.8
Let A € R" beopenand f : A — R™ be differentiable at 2y € A. Then, the differential
Df (o) is uniquely determined by f.
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6 DIFFERENTIAL MAPPINGS 6.1 Definition and Matrix Representation of a Differential

Proof 4. Let L; and Ls be two linear transformations such that

o 1@ = fo) = I =) _ @) = f(o) = La(e = wo)|

) & — o] vy o — ol

We need to show that Ly = Ls. i.e., Li(h) = La(h) Yh € R".

Fix any unit vector e € R". Let z = z + te, where ¢t € R and ¢ # 0 (This makes sense because A is
open by assumption). Then,

[L1(te) — La(te)|

[1L1(e) = La(e)|| =

]
_ (@ = o) = (f(z) = f(20)) + (f(2) = f(x0)) — La(z — o) |
[l — ol
< Iz = 2o) = (f(x) = flao)) || + [|(f(2) = f(z0)) = La(z — zo)|
- [l — ol
_ (e = 2o) = (f(@) = Flro)ll | () = f(20)) = Lo(2 — 20|
[ — ol [l = ol '

Note that both parts — 0 as x — z. So, ||Li(e) — La(e)|| = 0, and thus Li(e) = La(e) V unit
vector e. Using linear transformation, Ly (h) = La(h) Vh € R™.

QED. H

Remark 6.3 Theorem 6.1.8 is not true if A is not open. A trivial example would be when A = {z},
the set of just one point. Then, any linear map satisfies the differential definition. That is,

1f () = f(wo) = T(x — xo)|

A3 & o]

=0 VlinearmapT.

Or, equivalently, || f(z) — f(zo) — T'(x — x0)|| < €l|lz — zo]|.

6.1.9 Matrix Representation of the Differential D f(x).
Question: Given f, how do we find the linear transformation D f (z)?

Definition 6.1.10 (Partial Derivative). Write f(x) = (fl(acl, cesTn)s fo(xr, ooy mn)y ooy (T, . ,xn)> €
R™. Then,

8fj — lim fj(:cl,...,azi_l,xi + h,SL‘H_l,. . .,l‘n) — fj(xl,... s Liy e ,xn)
axi h—0 h '
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6.1 Definition and Matrix Representation of a Differential

Theorem 6.1.11 Relation Between Differential D f (z) and Partial Derivatives
Suppose A C R"isopen and f : A — R™ is differentiable at z € A. Then, afj exists and the
T
matrix of the linear map D f(x) is given by
on oh | oh
0x1 Oxo Oxy,
R L | eR™
Ofm Ofm . Ofm
Or1 Ozo Oxy,
and we denotes this matrix as J¢(x), the Jacobian matrix of f at x.
: _ _0f;
Proof 5. Denote the matrix of D f(x) by B = (bj; . We need to show b;; = e
mxn I3
Recall: bj; = j—th component of Df (z)(e;) = 37", bjie}. Fix 4, j andlety = x + he;, h € R. Then,
by definition of differential,
1£w) = F@) ~DI@W -l o Hoy o
ly — ||
Taking the j-th component,
’fj(xl,...,xi—i-h,...,:tﬁ)hr fj(xl,...,xn) _bji h‘ 00 ash -0
So,
lim fj(l‘l,...,l’i —Fh,...,:ﬂn) — fj(l‘l,... ,SCn) _ bﬂ
h—0 h
Hence, of
P bj; Vi,j.
So, Df(x) is determined by the Jacobian matrix J(z).
QED. n
Example 6.1.12
© f(z,y,2) = (a'y,ze?) : R® — R
or Oy 0z 4y 2t 0
Jr(@,y,2) = =1 . aE
of of o L0 e
oxr 0Oy Oz
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

e Special Case: m = 1: f : R™ — R. Then,

pa=[2 8

isal x n matrix.
Ox1 0Oxo 8.%'n]

Definition 6.1.13 (Gradient). The gradient, grad f or V f, is defined by the following vector:

sz(af 9 3f>.

Ox1 Oxs’ " Oxp

Gradient points towards the direction of fastest growth.

rsiny

* f(z,y,2) = . . Computing Df and V f.

Solution 6.

2

Df(e) = Js(e) = |

siny xcosy rsiny
z z z

Vi) = (siny T CcosyY _:rsiny>.

z oz 0 22

Remark 6.4 (Relation Between D f () and V f) For anyh € R", we have

matrix multiplication + Df(x)h = (V f,h) — inner product/dot product

 Special Case: n = 1. Consider z = ¢(t) : [a,b] C R — R™. Then,

is the tangent vector.

6.2 Necessary and Sufficient Conditions for Differentiability

Definition 6.2.1 (Locally Lipschitz). f is locally Lipschitz at zy if Vg € A, 36 > 0 and M s.t.

[z = xol| <0 = [|f(z) = f(wo)l| < M - ||z — zo].

Theorem 6.2.2 Necessary Condition for Differentiability I
Suppose A C R"isopen and f : A — R™ is differentiable. Then, f is locally Lipschitz.

Remark 6.5 (Ideas to Prove this Theorem)
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

e Linear map Df (z) is Lipschitz;
* f(x) can be approximated by D f(xq) locally.
Proof 1. Fix x( € A. By definition,

i | f(z) = f(z0) — Df (o) (z — |

=0.
T [ = o

Fore =1,3§ > 0 s.t.
|z — ol <6 = [|f(x) — f(w0) — Df(z0)(x — w0)|| < & |l — 20| = || — 20]|-.

By triangle inequality,
1f () = f (o) || < |Df (x0)(x — @)l + [l2 = zol|-

Since D f(x¢) is Lipschitz, 3 L s.t.
D f (20) (& — xo)|| < L - ||l — ol|.
So, ||z — x| <6 =

| f(z) = f(zo)|| < L- ||z — zol + ||z — zo|
= (L+1)|lz — 0|
——
M
=M- Hl‘ —!EOH-

QED. ®m

Remark 6.6

 Continuity is not sufficient to guarantee differentiability. For instance, f(z) = |x|.

However, differentiability —> continuity.

* Derivative of a differentiable function may not be continuous. For example, consider the function
2

x“sin —, x#0
flx) = x ; f:RY — RY. Then, we have
0, xz =0.
x? sin !
— £(0 o 1
1/(0) = lim flw) = 1(0) = lim L = lim zsin — = 0.
z—0 xT z—0 xT z—0 x
When z # 0, . . . . .
f(x) = 2:1:sin; + 22 cos E(_ﬁ) = 1wsin5 — cos —.
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

Conclusion: f is differentiable in R'. However,

1 1
2z sin — — cos —, x#0
x x

fl(z) =
0, z=0

is not continuous at x = 0.

Theorem 6.2.3 Necessary Condition for Differentiability IT

Suppose f : A C R" — R™ is differentiable. Then, the partial derivatives, 0f;

A,existsVz’,j.

(2

Example 6.2.4 The Converse is not True
The converse of Theorem 6.2.3 is, in general, not true. Here we will consider a counterexample.
Consider function f : R? — R given by

Ty

——  (z,y) #(0,0)
flz,y) = V22 +y?
0, (z,y) =(0,0)
Claim f is continuous at (0,0).
In fact, we have (a — b)? > 0 = a® — 2ab+ b* > 0. So,
2, 12
ab < a4 ;b a,beR.
Then,
1 4 2 Ty
Claim 6/(0.0) _ 0 and 9/(0.0) _ 0.
Oz y
ox z—0 x—0 z—0 X

Claim f is not differentiable at (0,0).

If f were differentiable, the matrix of Df(0, 0) is given by

J4(0,0) = @‘2,‘;@’;) - (0,0).
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

However, note that

|zy]
If(z,y) = £(0,0) =Df(z, y)| _ V2 +y?> _ |ay]
(2, y) = (0,0)]] VaZ+y? 2ty

|zy|

2 +y

Since

5 does not — 0 as (z,y) — (0,0), f is not differentiable at (0, 0).

of;

i

Conclusion: Continuity + Existence of Partial Derivative =~ Differentiability.

Theorem 6.2.5 Sufficient Condition for Differentiability

Let A C R"beopenand f = (fi1,...,fm) : A — R™. If all the partials 0/ exist and continuous

Gxi
on A, then f is differentiable on A.
Proof2. WIS:Vx € A,
o @) = 1@ — @ -2l _,
y—e |y — |l
It is sufficient to show that this is true for each component f; of f = (fi, fo,..., fm). Thus, we may
assumem = 1: f : A C R® — R, Then,
_(9f of af
Ti(z) = <8x1 Oy 8azn>'
So,
N 9f
and
f(y)*f(x) :f(ylay2a"'ayn)7f(l‘17x2?"'7xn)
:f(y17y2a"'7yn)_f(m17y27"'7yn)
+ f(@1,y2, - yn) — f(w1, 22, .., Yn)
+ flx1, 29, yp) — - each time, we change one component
+f(l'1,a?2,-~-,yn) _f($17$27"'7$n)
By MVT,
of
f(y17y2>"'7ym) _f(xlvy%"'vyn) = 87 (yl _331)‘
Z1
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

Applying MVT to other terms, we obtain

(1) (2) (n)
flo) = sy = 2D L ) L OTET),

Thus,

n (i) n .
1) — Fl@) — Jy(@)(y — o) = |3 2L 5~ 0f(@)

= O = O
8f (Z(i)) 0 / (l‘) Triangle Inequality:
<2 Tan om0 -1/ <lly—|
By continuity of partial derivative, Ve > 0, 36 > 0 s.t.
" Jaf(9)  af(x)
Hy—xl<(5:>; 0, oa, <e
Hence,
1f(y) = f(z) = (@) (y — 2)|| <elly — ]|
QED. n

Definition 6.2.6 (Directional Derivative). Let f : R” — R and e € R" be a unit vector. The directional
derivative of f at z in the direction e is given by

d —
Def(x0) = af(ﬂfo + te) i = %g% fzo+ tet) f(fUO)'

Claim 6.2.7 If f is differentiable at x(, then D, f(z¢) = Df(zo) - e

Proof 3.
@+ t0) = fla) = Df@a)(te)] _,
=0 [tell

Def(zo) = Df(x0)(e).
QED. =

Remark 6.7 Exitence of directional derivatives =~  differentiability

Example 6.2.8
Continuity of f + Existence of directional derivative ==  differentiability.
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

Consider function f : R? — R given by

S z, 0,0
oy = VT (z,y) # (0,0)
0, (z,y) = (0,0).

Claim D.f(0,0) exists for any direction e € R?.

i 10.0) 4 26) = £(0,0)

exists Ve e R2.
t—0 t

Definition 6.2.9 (Tangent Line/Plane).

* The tangent line to the curve y = f(x) at z is given by
y = f(zo) + f'(z0)(z — x0).
* The tangent plane to the surface z = f(x) at z is given by

z = f(xo) + Df(z0)(z — x0).

Example 6.2.10

Find the tangent plane at (1, 2) to the surface z = 22 4 y2.
Solution 4.

Jﬂ@:(%ﬁi%):(% @)

The tangent plane is given by

2= F(1,2) + Df(L,2)((x.y) - (1,2))

:ﬁ+?+Px24

:m{zqt:ﬂ

z=5+4+2(xz—-1)+4(y —2).

95—1]
(@y)=(1,2) [¥ — 2
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6 DIFFERENTIAL MAPPINGS 6.3 Differentiation Rules

Summary III: Relations among Properties of f : R — R™

Differentiability
— Existence of Directional Derivative

—> Existence of Partial Derivative (moving in direction of the basis)
+ Theorem 6.2.5 —> Differentiability
== Continuity

—> Continuity

=~ Existence of Partial Derivative

6.3 Differentiation Rules
6.3.1 Chain Rule

Recall the one variable case: h = g(u), u = f(z). Then,

h=fof(z)=g(f(x)),

and dh dh d
U ! !
@Z@'@:g(f(@)'f(m)-

Theorem 6.3.1 General Case Chain Rule

Let f: A C R" — R™and g : B — RP be differentiable with f(A) C B. Then, the composite
go f: A— RPisdifferentiable, and

D(g o f)(z) = Dg(f(z)) o Df(x),

a composition of linear mappings.
In matrix notation, define h = g(u) and v = f(x). Then, h = g o f(z) = g(f(z)), and

Ju(z) = Jo(f(z)) - Jr(z) product of matrices
9 Om) [Oh  0h
ouq Oy, 0x1 Oxy,
O9p . O | |Ofm = Ofm
ouq Oy, Ox1 Oxy,

Proof'1. (Sketch). We need to show: for fixed x € A C R",

o 1) = h(a) = Dh(a)(y = )|

y—e ly — =]

=0,
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6 DIFFERENTIAL MAPPINGS 6.3 Differentiation Rules

> o w) ~ 9 @) ~ B E)DI @) -l _
o v —al |
Work with the numerator:
numerator = [lg(f(y)) — 9(f(x))-Dg( F(2))(/(5) — /()
() () - < > Dy (2))[BS ) (y — )|
< Jlg(/ ) — 9/ (2)) ~ By ) [BS )y — )] triangle inequality
+ By @) (F(w) ~ F(@) ~ Da(F (@)D (a)(y — )]

<eillf(y) = F@)I + Dg(f @) - 1 (y) — f(z) = Df(2)(y — )]l
(e1 : g is differentiable; dg(f(z)) : common factor)

<er-Llly —zl + M - eafly — ||
(L : local Lipschitz; M : differential bounded; ¢ : f is differentiable)
= (Ley + Mes) - ||y — x|

Therefore,
t L M —
li Dumerator  (Levt Meolly=2ll o4 oare, — o,
v ly -z yoe ly — || y—e
QED. =
Example 6.3.2
* Change of Variable
x =rcost
(z,y,2) < (r,0,2) : {y = rsinf (cylindrical coordinate)

z=Zz

Let h(?“, 97 Z) = f(x7y7 Z) = f($(T, 0) z),y(r, 97 Z)? Z(Ta 97 Z)) Then’

cos@ —rsinf 0
Dh = = : ) =Jy- |sind rcosf 0O
0 0 1

89



6 DIFFERENTIAL MAPPINGS 6.4 Geometric Interpretation of Gradient

* Consider composition of the maps [0, 1] - R EN Y Then, h(t) = f(y(¢)). By chain rule,

/

1
of of o ofy| =0
8901 8$2 8xn

B (t) =Df oDy = <

=S Yy = (Vi A

o0x;
i=1

6.3.2 Other Differentiation Rules

Theorem 6.3.3 Product Rule
Letf: ACR*— R™and g : A — R be differentiable. Then, the product gf : A — R™ is
differentiable, and

D(gf) = g(Df) + (Dg)f.

More precisely, for each z € Aand h € R",

D(gf) - h = g(z) - Df (z)(h) +Dg(z)(h) - ().
m ER™ scalar ERS;:

In particular,
dg(f;) _ ~ Of; n dg

8$i =9 8951 8.%2 '

i

Theorem 6.3.4 Other Differentiation Rules

D(f + g) = Df + Dy
D(\f) = ADf

ID)<§> — g]D)f—gz(]D)g)f (derived from product rule: ; =f. ;)

6.4 Geometric Interpretation of Gradient

Let f : A C R" — R be differentiable.
Definition 6.4.1 (Df(x), V f(x), De f(x)).
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6 DIFFERENTIAL MAPPINGS 6.4 Geometric Interpretation of Gradient

* Differential of f: a matrix/linear transformation

o= [ 2 0]

dry drs  Oxy
e Gradient of f: a vector

Vf(x):(af or. af).

Ox1 Oxo’ " Oz,

e Directional derivative of f in the direction e:

Def(x) =Df(z)e = (V f(x),e€).

Geometric meaning of D, f(z): Rate of change in the direction of e.

6.4.2 Geometric Meaning of Gradient.
Claim 6.4.3 V f is perpendicular to the level surface S defined by f(z) = constant.

Vf

flz)=c

level surface

Proof 1. Fix any curve y(t) on S: v : [a,b] — S. Then, f(y(¢)) = c. By chain rule,
Df(v(1)) -7 (t) =0 = (Vf(w0),7'(x0)) = 0.

So, V f(xzg) L 7/(x¢). Thatis, Vf L curveyon S = V[ LS.

QED. =
Corollary 6.4.4 Tangent Plane: The tangent plane at x of the level surface is given by

(V f(z0),x — x0) = 0.

Example 6.4.5

Find the tangent plane at (1,0, 1) to the surface 2> — y? + zyz = 1.

Claim 6.4.6 The direction of V f is the direction in which f has the greatest rate of change, which is
given by ||V /.
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6 DIFFERENTIAL MAPPINGS 6.5 Mean Value Theorem (MVT)

Proof 2. Fix a direction e € R". Then, the rate of change in direction e is given by

D.f(x0) = (V.€) = |V f]le]| cos ),

where 0 is the angle between V f(xy) and e. Then, the rate of change is maximized when cos = 1. So,

# = 0. That is, e is in the direction of V f.

QED. =

6.5 Mean Value Theorem (MVT)

Theorem 6.5.1 MVT in 1-D

Let f : [a,b] — R! be continuous and differentiable on (a, b). Then, 3¢ € (a, b) s.t.

b) — f(a
70 =LO=ID or 1)~ fa) = £0)0 - a).

Theorem 6.5.2 MVT in Higher Dimension

Let f : A C R™ — R be differentiable on an open set A. Then, for any pair of points z,y € A s.t.

the line segment [z, y] joining = and y is contained in A, 3 a point ¢ € [z, y] s.t.

fy) = f(x) =Df(c)(y — ).
9(t)
A
0
Proof1.letg(t) = (1 —t)z+tyfor0 <t <1land
B(t) = Fog(t) = F(1—t)a+ty) : [0,1] — R.
Apply Theorem 6.5.1 to h, we know 3ty € (0,1) s.t.
h(1) = 1(0) = h'(to)(1 - 0)
fly) = f(x) =Df(g(to)) - 4 (to) [Chain Rule]
=Df(g(t)) - (y — @)
Denote g(t9) = ¢ € [z,y]. Then,
f(y) = f(x) =Df(c)(y —x)
QED. =
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6 DIFFERENTIAL MAPPINGS 6.6 Taylor’'s Theorem & Higher Order Differentials

Definition 6.5.3 (Convex Set). A set A C R" is convex ifVz,y € A, [z,y] C A.
Corollary 6.5.4 : Let A C R" be open and convex, and f : A — R™ differentiable. IfDf = 0, then f is
constantin A.

Proof 2. (Sketch)

Apply MVT to each component of f = (f1, f2,. .., fm).

QED. H

6.6 Taylor’s Theorem & Higher Order Differentials
6.6.1 One Dimensional Case

Theorem 6.6.1 Taylor’s Formula

Let f : (a,b) — R be one of class C" (i.e., f'(z), f"(z), ..., f")(z) are continuous). Then, for any

xo,z € (a,b), we have

» 1) Remainder
F(&) = Flao) + £z @ — o) + T (@ ) 4 4 f(r_(f;?)(x — 50|+ Re 1 (20),

Taylor’s polynomial of degree r—1

where R,_; is the remainder at z; and can be written as

12E)

r!

" for some c between x and .

(x — x9)

Remark 6.8 (Key Idea to Prove) Use integration by parts in a reversed way multiple times.

Proof' 1. Write h = x — zy. Then, by Fundamental Theorem of Calculus,
1q
Fa) = 1(e0) = flao+ ) = flan) = [ 3o +1h) e

d
Now, apply integration by parts. Taking v = af(xo +th) = f(xg+th)handdv =dt = v=1t—1,we
have

1
f(@) - f(zo) = / wdv

1 1
—/vdu
0 0
1

= —(=1)f"(z0)h —/ (t — 1) f"(xo + th)h?) dt

0

= uv

1
= f'(xo)h — /O f"(zo + th)h*(t — 1) dt.
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6 DIFFERENTIAL MAPPINGS 6.6 Taylor’'s Theorem & Higher Order Differentials

Apply integration by parts again with
1
uw=f"(zo+th)h? and dv=(t—-1)dt = v= St = 1)2.

Then, we obtain

/1 Fxo + 2t — 1) dt = " (z0+ th)iﬂ%(f )2 .
0

1 1
1
—/ —(t —1)2f"(wo + th)h* dt
0 0

" 1
_ S@0) +/ S (0 + th)h - 1(t —1)2dt.
2 0 2
So, .
"
f(x) = f(zo) = f'(zo)h + f(;“)h? +/ FO (g + th)h® - %(t —1)%dt.

0

By induction, we obtain that

Taylor’s polynomial

" e (r—1) z
f(@) = f(wo) = | f'(xo)h + / (2 0)pe 4 S ?E! P S f(r(l)?)h”
r— ! T r(t — 1)7171

7

Remainder

b b
Lemma 6.6.2 274 MVT for Integral: If g > 0, then / F@)g(z) do = FN) / o(z) da.
Apply 24 MVT to the remainder, we have

r—1 ¢(r) r ! (t - 1)7”71
Ry = (=1)" f" (w0 + toh)h / NCEE dt
0 - .
- r 1 —1)"—1 is absorbed wh
=f ( )(.7)0 =+ tOh)h ’ ; |:( ev)aluatlisnz til%rilftegalen}
o f(r) (C) hr Denote c=x¢+toh, a point
- rl between zg and x

Combining everything, we get exactly what we have claimed.
QED. =

Summary IV: Taylor’s Formula & Taylor’s Approximation

e Taylor’s Formula:

* Taylor’s Approximation:

94



6 DIFFERENTIAL MAPPINGS 6.6 Taylor’'s Theorem & Higher Order Differentials

6.6.2 Taylor Series

Definition 6.6.3 (Taylor Series). Let f € C*°. Then, the Taylor series is defined as

f"(20)
2

(0= w0)? +
n

0 4(n) (5
S L0 (o = fw0) + fw0) (& — 20) +
n=0 '

Definition 6.6.4 (Real Analytic). f is (real) analytic at z if its Taylor series converges to f(z) in a
neighborhood of z. i.e.,

0 4(n) (4
f(a:)zzf (' 0)(13—:1:0)”, |x — zo| < R.
n=0 ’

n
Corollary 6.6.5: If f € C*°(R) and for each interval [a, b], 3 constant M s.t.
‘f(”)(x)‘ <M" Vnandz € [a,b],

then, f is real analytic at each point 2y and it has Taylor series representation. Namely,

> f(n)
Fle) =3 L0 gy, e ] < oo
n=0 :

n

Proof 2. Fix xy € R. For any z € R, choose b > 0 s.t. xo, z € [—b, b]. By Taylor’s Formula,

f(ZL‘) = Pn,1($) +Rn,1.
———
partial sum
of the series

Recall:

"™ for some c.

(z — o)

Then, A
|R,_1| < FL’L‘ —xo|" Vaz €[-bb).

oo
. . M . .
Since the series E — | — o |" converges by ratio test, its n-th term,
n:

n=0

n
W\x—xo\"—)o asn — oo.

Hence, R,—1 — 0 asn — oo. Then, P,_1(x) — f(z) asn — oc.
QED. H

Example 6.6.6

* ¢” and sin x are real analytic in R. Find Taylor series at zy = 0:
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6 DIFFERENTIAL MAPPINGS 6.6 Taylor’'s Theorem & Higher Order Differentials

Solution 3.

= 1
e’ = E —z", |z — x| < 0.
n!

* s every C* real analytic? No.

Counterexample 6.7. Consider the function f(z):

Claim f(z) € C*.

Proof. Atz =0,

/ T f(a:)—f(O) T 671/962
FO=ln""—0 ~

=0 (byLH.)

Atz #£0,

/a2 2 2/23
flx)=eY <$3> = el/m —0 asz—0 (byLH.)

So, f'(x) is continuous at x = 0, and

) 0, x =
f= e 1/e? (;) z#0
By induction, one can show that
- f™M0)=0 WVn
- f"(z) > 0asz — 0.
So, f(”) (z) is continuous at x = 0. So, f € C*. O

Claim f(x) is not real analytic atx = 0.

Proof. Taylor series:

n! n!

0 4(n) (5 0 4(n)
n=0

n=0

So, the Taylor series does not converge to f(z) on any neighborhood of z = 0. O
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6 DIFFERENTIAL MAPPINGS 6.6 Taylor’'s Theorem & Higher Order Differentials

6.6.3 Higher Dimensional Case
Observation: Let f : A C R™” — R.

e Differential: Df(z) is a linear transformation R"” — R.

e Letg(x) = Df(x). Then,g: A C R — L(R",R) ~ R", where L(M, N) is the space of linear
transformation from M to N.

* Dg(x) is a linear transformation R” — R™ or L(R", R).

Notation 6.8.Higher Order Differential The second order differential of f at z is denoted as
D*f(z) = Dg(x) = D(Df(x)).
Definition 6.6.9 (Bilinear Maps). Given f and x € A. Define a bilinear map, R x R™ — R by
D2f (@) (u,v) = [D2f(x)(w)] (v),
where u,v € R" and D?f(x)(u) € L(R™, R). In matrix notation,
uBv',

where uis1 x n, Bisn xn,andv' isn x 1.
Definition 6.6.10 (Matrix Representation of the Bilinear Map). D?f(z) : R” x R” — R is given by

O f o’ f . Of ]
O0x10x1 Ox2011 0z, 011
o f *f  f
| 0x10x, Ox20x, 0xn0%n | nxn

This matrix is denoted as H,(f), the Hessian matrix of f at z. Then, in matrix form, we have that for
u = (u1,u2,...,u,) € R"and v = (vy,ve,...,v,) € R, and

D2 f(z)(u,v) = u- Hy(f)-v' €R.
Proof 4. Note that

g(x) = <af o7 af) : R" — R™.

Ox1 Oxg’ 7 Oxy,
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6 DIFFERENTIAL MAPPINGS 6.6 Taylor’'s Theorem & Higher Order Differentials

Then,

D*f(z) = Dy(z)

9 9f 00f 0 of
8561 81‘1 8952 81‘1 Ekcn (‘)xl
9 af 9 af 0 of
Ox1 0z, Ox9 O0xy, Oz, Oz,

QED. ®m
Lemma 6.6.11 Symmetry of the Partials and Differentials: Let f(z,y) : A C R? — R be of class C%.
Then,

Pf  f
oxdy  Oydx’
In general, for f : A C R" — R in class C?,
2 2
OF _ 91

8.1‘i0$j N 835]833@
Extension 6.1 If f € C\"), the order of taking n-th derivative does not matter.

Corollary 6.6.12: If f is of class C?, then D?f(x) : R® x R” — R is symmetric. That is,

D*f () (u,v) = D f () (v, u).

Proof'5.
D f (@) (u,0) = w- Ho(f) -0

Since D% f(x)(u,v) € R, we have

D2 f(2)(u,v) = [D2f (2)(u,0)] | = (u- Ho(f)-0")T
v Hy( )T
v Hy(f) -
= Dgf(x)(u, v).

) u
f)-u’ [by symmetry of H,(f)]

QED. N

Example 6.6.13 Symmetry of Partials
Let f(z,y, 2) = €®Y + zyz : R — R. Verify the symmetry of the partials.
Solution 6.
af of of

pr ye™ +yz; o = ze™ 4+ yz; 5, = Y-

98



6 DIFFERENTIAL MAPPINGS

6.6 Taylor’'s Theorem & Higher Order Differentials

0% f

oydr

% f

0xdy -

of

ox
of

Jy

) = e + xye™ + z;

) = e + zye™ + z.

Summary V: Higher Order Differentials

e 1-st Order Differential: Df(x) : R” — R: 1-linear form
D (20)(v) = Jr (o) v—Z% '

* 2-nd Order Differential: D?f(x() : R® x R” — R: bilinear form

n

_*f
—1 81‘1856]

T

D?f(z0)(v,w) = v - Hy(wo) - w V; - Wj.

e k-th Order Differential: D* f(xg) : R*R” x --- x R® — R: k-linear form

n an
k 1 2 (k)Y — @ (k)
D f(zo) (', v, ..., 0\ | Z T T v, Vi
11,82,..,0=1
In particular, denote h = = — xp € R", then
D* f(z0)(h, b, ..., h) = ih‘ iy - - hi
0 glUgooog - 833“611712817% 11 "%2 (7N
k
* Speical case: n = 2: Write D¥ f (o) (h, h) = (8%1 + 3%2) f(zo) - (h,h). Then,
o o\, of  of d o \?, Of 92f  O%f
]D)l — Y Y 2 _
! <8x1 8:62) F= O t oy 8562 D°f = <8x1 8:52) F= 83:% + 28:518332 83:%’
> f > f O f >f
D?f(h, h,h) = —5h} hih hih2 h3
f(h,h,h) = 93 1+38%82 2+3818212+63
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Theorem 6.6.14 Taylor’s Theorem
Let f : A C R" — R be of class C". Suppose z,zy € A s.t. the line segment joining = and =,

[z,20] C A. Then, 3¢ € [z, z] s.t.

£(2) = $(z0) + Df (20)(@ = 20) + 5% (w0)(z = 0,7 — 70) +

]D)T_lf(mo)(x — g, T — Xg, ..., T — Tg) + Rr_1,

1
+ (r—1)!

where R,_; is the remainder given by

1
R._1= HDTf(C)(CC — L0y X — 1‘0)

and satisfies R
_1(x
r-1(zo0) —0 as z — zp.

lz — o

Proof 7. Consider 1-variable form, o(t) = 2 + t(z — o). Define

g(t) = f(zo +t(x — x0))

fort € (a,b) with [0,1] C (a,b).
Apply Taylor’s Theorem in 1-D to g(t), we get

" (r—1)
g9(1) = g(0) + ¢'(0)(1 - 0) + g 2(!0) (1-02+ -+ w(l —0) '+ R,y

<3

1
f(x) = f(zo) + g(k)(0)+:!g‘”<é), ¢ e 0,1].

k=1

k!
By chain rule, one can get
g'(t) =Df(p(t)¢'(t)
g'(0) = Df (o) (x — o)
g"(t) =D f (1) () - #'(2)
g"(0) = D f (wo) (z — x0)* = D*f (o) (2 — w0, — ).

So,
g(k)(O) = ]D)kf(a?o)(l' — X0, T — Ty .., T — T0).

QED. ®m

Example 6.6.15 Polynomial Approximation using Taylor’s Theorem
Determine the 2-nd order Taylor’s formula for f(z,y) = e(®Y* cos y at (1,0).
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6 DIFFERENTIAL MAPPINGS 6.7 Minima & Maxima in R"

Solution 8.

e Compute partials:

of _ @12 osy: O — g1
B 2(x —1)e CoS Y; 9y e siny
ﬁ =2e D% cosy + Az — 1)26(1_1)2 COS U; ﬁ = —e 1 cosy
Ox2 T Oy '
2
;;éfy = —2(z — 1)e<x*1)2 siny
 Evaluate at base point (1,0):
orf g o er _, 2f i
Oxlng Wlao T 9lag T Wlag T HPlag

* Taylor’s Formula: h = z — zp = (z,y) — (1,0).

flw,y) = £(1,0) + Df(1,0)(h) + D*f(1,0)(h, h) + R,

wheref(l,O):l,]Df(l,O):[O o},andDZf(LO): (2) O].SO,

Df(1,0)(h) =0

D2f(1,0(h, h) = (x—l,y) [2 0 ] (x_1> — 2@z — 1)2 — 2.

0 -1 Y
Then, .
flz,y) =14 5 [2(@ = 1)* = %] + Ra,
where .
722 —0 as (z—1,9)— (1,0).
[(z —1,y)l

6.7 Minima & Maxima in R"

Question: Given function f : A C R"™ — R, how do we find (local) maximum or minimum points for f
in A?

6.7.1 Optimization in 1-D. Suppose f : (a,b) - R

* Alocal max/min point (or extreme point) zo must be a critical point:
f'(xz0) =0 or f'(z¢) D.N.E.
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6 DIFFERENTIAL MAPPINGS 6.7 Minima & Maxima in R"

e 2-nd Order Derivative Test (for critical points):

f"(xo) > 0: local min;  f"(z¢) < 0: local max.

Definition 6.7.2 (Extrema). Suppose f : A C R" — R.

e Then, zg € Ais a local minimumif36 > 0s.t. z € A and
|z —x0| <6 = f(z) > f(xzo).
e Similarly, z¢ € Ais a local maximumif 3§ > 0 s.t. x € Aand

lx — x| <6 = f(z) < f(xo).

Theorem 6.7.3 Necessary Condition for Extreme Points
If f: A C R" — Risdifferentiable and z( € A is an extreme point for f, then x is a critical point,
ie., Df(xo) =0.

Remark 6.9 This is only a necessary condition but not sufficient. For example, in R}, f(z) = x2 at (0,0)
orinR?, f(x,y) = 22 — 42 ar (0,0).

For a critical point that is not an extreme point, we call it a saddle point.

Proof'1. (Sketch).
Assume Df(zg) # 0. Then, WLOG, v € R" s.t. Df(zo)(v) = ¢ > 0. By definition of differential,
choose § > 0 s.t.
1o 1) = (o) = B o) (W) < g ] ¥ ] < b
~——

=e

Choose h = Av with A > 0 and ||h|| < §. Then, by triangle inequality,
flxo+ M) — f(xg) >0 but f(xg— Iv) — f(xg) <O0.

Contradiction!

QED. =
Definition 6.7.4 (Positive/Negative (Semi)definite). A bilinear form B : R" x R" — R is call positive
definite (or negative definite) if B(z,z) > 0 (or < 0) Va € R", = # 0. We say B is positive (or negative)
semidefinite if B(z,x) > 0 (or < 0) Vx € R".
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Definition 6.7.5 (Major Diagonal Factors). Recall B is determined by a matrix H as follows:

ai - Qip
B(z,z) =xHz', where H =

Gn1 " QOnn
nxn

The major diagonal factors are given by

Al = det ((LH) = ail
A2 — det ail  azi

aiz a2
A, = det(H).

Lemma6.7.6:
* Hispositive definitie <= Ay >0 Vk=1,....n
e H is positive semi-definite — Ay >0 Vk=1,...,n.

* H is negative definite <= (—H) is positive definite.

Example 6.7.7

2 -1
H = [ L 3 ] = A} =2, 5 =5 = H is positive definite.

Theorem 6.7.8 Second Order Sufficient Condition
Suppose f : A C R — Ris of class C? and =g € A is a critical point (i.e., Df(z) = 0).

* If Hy(x0) is negative (or positive) definite, then z is a local maximum (or minimum).

* If 29 is alocal maximum (or minimum), then H(x) is negative (or positive) semidefinite.

Remark 6.10
* Max of f <= Minof (—f)
* About minimum point:

- Ay >0 Vk, Hy(zo) is positive definite = x is local minimum.
- g is a local minimum = Hy(xo) is positive semidefinite — A, >0 Vk.

- Ay <0 forsomek = xq is not a local minimum.
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* About maximum point:

- Ay, <0 foroddk and Ay, > 0 forevenk —> (—Hy(xo)) is negative definite — H¢(xo) is
negative definite = x is local maximum.

- ¢ is local maximum — Hy(xo) is negative semidefinite — Ay <0 for odd k and Ak > 0
for even k.

- A <0 forsomeevenk — xg is not a local maximum — xq is a saddle point.

Proof 2. (of @)

* Set-up: Suppose H is negative definite. Need to show:

36> 0s.t.||ly—z| <8 = f(y) < f(xo). (*)

Scartch:

By Taylor’s Theorem

Flg) = o)+ Df(ro) (y—)+ 3Dy — 0,y — 7o)
N——

=0,critical point

F() ~ flao) = D)y — 70,y — w0).

If D2 f(c) is negative semidefinite, we are done with the proof. However, we only know defi-
niteness at . Let’s add and subtract D? f (zg):

f(y) — f(wo) = %DQf(l’O)(y — T0,Y — T0) +% D? f(c) — D? f(x0) | (Y — 0,y — T0)

negative make it small

¢ Consider the function
g(x) =D?f(20)(z,z) : R" = R.

Denote D?f(xy) = H,theng(x) = H(x,z). gis continuous. Then, 37 € S = {z € R" | ||z| = 1} s.t.
H(z,z) < H(%,Z).

Extreme Value Theorem: Continuous function on closed and bounded set attains its maximum
and minimum. Since H is negative definite, H(z,7) < 0. Lete = —H(z,7) > 0. Then, for any
h € R™ with h # 0, we have

h h

o m) = 02 (e

) EHE )
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So,
H(h,h) < —el|1?|

* Prove (x) is true in a neighborhood.

By continuity of D% f at zg, 35 > 0 s.t.

ly — o] <6 = y € A,

D f(y) — D*f(zo0)|| <

@

ay

N ™

operator norm

Operator norm satisfies: | T(x,y)|| < ||T| - |l=|| - ||y]|-

By Taylor’s Formula, because D f(z¢) = 0, we have

Fly) () = 3D?F(E) (b, ),
where y € B(xg,9), h =y — o, and ¢ € [x¢, y]. Note that
D2£(€)(hy h) = [D2f(c) — D2 (xo) | (h,h) + D2 f(wo) (b, h)
< [[D2(c) ~ Do) | - 1 + (<) A
< el + (ol

€ 2
=——||h]|” £0.
lnP <

Then, f(y) < f(x) Vy € B(xg,J). So, g is the local maximum.

By (D)
By (II)

QED. ®m

Example 6.7.9
Find and classify the critical points for f(x,yz) = cos 2z siny + 22.
Solution 3.

* Find the critical point:

of
ox

0 0
= —2sin 2z sin y; a—f = €08 2 cos y; /
Y

0z

Set
of _of _of _,

or Oy 0z

Then,
—2sin2zxsiny =0

or

cos2zxcosy =0

22=0

— = 2z.
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* Classify critical points:

Compute the Hessian

0? 0? 0?
8755]20 = —4cos2xsiny; 6yéf:x = —2sin 2z cos y; Ozﬁfx =0
f cos 2z si O f 2
—= = - x sin y; =0, —5 =2
B2 Yo tzay T 922
So,
—4cos2xsiny —2sin2xcosy 0
H¢(x) = | —2sin2xcosy —cos2xsiny 0].
0 0 2
k 2541
(Caselle="" y=" "0 . =0.Then,
2 2
—4(=1)F(-1) 0
km 25+ 1 .
m(F 2 m0)=| 0 ey

Then, A; = —4(—1)71%, Ay = 4(—1)?k(-1)% =4 > 0,and A3 = 2- Ay = 8 > 0.
- If j + kis odd, then A; > 0. Then, Hy is positive definite, and the critical point is a local
minimum.

- If j + k is even, then A; < 0. Then, the critical point is not a local minimum. But
Az =0 > 0, so it cannot be a local maximum. Hence, it must be a saddle point.

2k +1
(Case Il ]z = jﬂ,y:jﬂ,z:omhen,

0 (=2)(=D*(=1) 0
Hf<2k2_17r,j7r,0) = [(=2)(=1)F(~1) 0 0].
0 0 2

Then, A; = 0, Ay = —(=2)(=1)* . (=2)(=1)k* = —4(—1)2(:+) = —4 < 0, and A3 = 0. As
As < 0, they are saddle points.

¢ Conclusion:

(lm 25 +1 0> local minimum when & + j is odd
il T

2 2 saddle point when & + j is even.

<2k+1

1 7r,j7r,0> : saddle point.

106

6.7 Minima & Maxima in R"




7 INVERSE AND IMPLICIT FUNCTION THEOREM

7 Inverse and Implicit Function Theorem

7.1 Inverse Function Theorem

7.1.1 Linear Case.

* Consider a linear map: y = f(z) : R" — R" given by

Y1 = a11T1 +a2x2 + -+ a1py
Yn = p1x1 + ap2T2 + -+ AppTy.
Or, in matrix notation:
Az =y (x)

* Giveny € R", () is a linear system of equations.

e Fact: (x) has unique solution z <= A is invertible. i.e., det(A) # 0. In this case, the solution is

givenby x = A1y,
» = A~ !y is the inverse function of y = f(z).
7.1.2 When can we solve a nonlinear system?.

* Nonlinear System:
filzr, 29, ... 2n) =u1
, orf(z)=y.
(@1, @2, ... 20) = Yn
In order to have inverse, dimension must match.

¢ Notation 7.3.

l.y = f(z) : A C R" — R", where A is open and f is differentiable on A. Suppose y =
(y1>y27"'>yn)1x = ($1,£L'2,. . 'axn)’ andf = (f17f2>"'7fn)'

2. Df(x) = (gf) and J¢(x) = det(Df(x)) is the Jacobian determinant of f at x.
2 1]

Theorem 7.1.4 Inverse Function Theorem
Lety = f(z) : A C R® — R" be of class C'. Suppose zo € A and J¢(zo) # 0. Then, 3 neighbor-
hoods U of g and W of yg = f(z0) s.t.

1. f(U)y=Wand f : U — W hasaninverse f 1 : W — U
2. f~1: W — Uisofclass C'. Additionally, if f € C", then f~' € C".

3. Df1(y) = [Df(x))"" VyeWandy = f(x).
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

» Proof 1 of Inverse Function Theorem

Theorem (Contraction Mapping Principle / CMP) Let X be a complete metric space and p : X — X.
Suppose 40 < k < 1 s.t.

d(e(z),p(y)) <k-d(z,y) Vzx,yeX.

Then, 3 unique fixed point =* s.t. o(x*) = z*.

Reductions

* We may assume that Df(z() = I.

In fact, let T = Df (o). Then, J¢(zo) #0 = T~ ! exists. Consideranewmap: 7o f: A — R.
Then,

D(T o f) =DT(f(x0)) o Df(x0)
=T 'oT
=1.

If the inverse of T~! o f exists, then the inverse of f also exists. So, once the identity case is true,
we just multiply T—1 to f and we can get the general case is true.
* We may assume that zp = 0 and f(zp) = 0.

To see this, let h(z) = f(z + z¢) — f(x0). Then, h(0) = 0 and DA(0) = D f(xo). If the inverse of h(x)
exists, the n the equation f(z) = y can be solved:

f(@) = h(z —z0) + f(20) =y
h(z —z0) =y — f(z0)
x—xo=h""(y - f(x0))
z=h""(y— f(0)) + z0.

Existence of Inverse

* Byreduction above, we have zo = 0, yo = f(z¢) = 0, Df(z9) = Df(0) = I.

WTS: 3 neighborhoods U, W of 0 s.t. themap y = f(x) : U — W has an inverse in W. i.e,
Vy e W,3uniquez € U s.t.y = f(x).
Forafixedy € R", define g,(z) =y + 2 — f(z) : A = R".
If g, (x) has a fixed point: g,(z*) = 2* = y + 2* — f(2*) = y — f(2*) = 0. So, we want to show
gy(x) has a unique fixed point.
 Construction of neighborhoods U and W'
Let g(x) = x — f(z). Then,
Dg(0) =1 —Df(0)=1—1=0.
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

. . . 1
Since f € C!, g € C'. Then, Dg(x) is continuous at 0. Then, Ve = 5 35 > 0s.t.
n

1
|z =0l <6 = [[Dgi(x) — Dgi(0)[| = [|Dgi(x) — Ol = [[Dgi(z)]| < 5,

2n
Where g = (917927 cee 7gn)'
Apply MVT to each of g;, we obtain Vz € B(x¢,d), 3¢; € [0, ] s.t.
9i(x) = gi(z) — gi(0) = Dgi(c;)(z — 0).
So,
lg@)| <> llgi(@)| = ) IDgi(ci) - ]
i=1 i=1
<> IDgi(e)| - 1] [operator norm|
i=1
=~ 1 -
< —||z|| [continuity of Dg]
il
= Sl

. 1 — —, 1 — . . )
ie., |g(x)] < 5\|yc||. Thus, g : B(0,d) — B(0, 56) C B(0,9)isacontraction map. Let W = B(O, >

2
and U = {x € B(0,9) : f(x) € W}. WIS: U and W are the desired neighborhoods.

e Show existence of f~!1: W — U.

Fixy € W. Then, Vz € B(0,0),

gy (@Il = lly + g(@)[| < llyll + [lg()]l

1) 1 )
LS = . vV — e
<2+25—5 {yEW—B<O,2>7

1 R
g@)] < el = € U = B(0,5)

— — 1
Then, g,(z) : B(0,0) — B(0,6) and g, is also a contraction map with k£ = 5 Then, by CMP, 3
unique z s.t. g,(x) = x. Then,

So, for fixed y, 3 unique z s.t. y = f(z). Then, f is a bijection, and thus the inverse exists.

Continuity of 1.

WTS: f~!is Lipschitz continuous.
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

Fix y1,y2 € W. Letz; = f~'(y;) fori = 1,2. Then,

£ ) = FH w)|| = ller — 22l = llg(21) + F(z1) — ga2) — f(z2)]|
< lg(z1) — g(z2)|| + [l f(z1) — f(z2)||
= [lg(z1) — g(@2)|| + [lyr — 2.

1 _
Since || Dg(z)|| < 5 for z € B(0,0), by Mean Value Inequality,

1
lg(z1) = g(z2)]| < Sllar — 2l

Then,
lar — @all < gllas =l + s — ol
So,
Slles — ol < ln — ol = lle1 — 2] < 2llys — o]l
That is,

£ ) = £ (w2)|| < 2llvn — w2l ()

Thus, f~! is Lipschitz and thus continuous.

Differentiability of !

e Proposition [Df(0)]~! exists and Df (z) is continuous at0 = 3¢’ > 0 s.t. [Df(x)]"! exists and
bounded by M :
IDf () - ()| < [IM]] - [lol] - V]| < 0" andv € R".
N —’

operator norm

o WTS: f~1(y) is differentiable at any fixed point yo € W and
Df " (yo) = [Df (20))"" withyo = f(x0).
Fix yo € W. Then,

17 () = f (o) = DF (wo) - (v — wo) ||

|y = woll
|l f(0)] " - Df (o) - f1|(|Z) _yD| {(wo) Sl o - B
— 90
s @)™ - Do) (@ = 20) = (f(x) = o)) R
_ IS (o))~ - [Df (o) (x — o) — (f(2) — f@o))] - llz — o Multiply by magic 1

1f(z) — f(zo)] - []z — o
<2H[Df($0)]_1[®f(370)(37 —x0) — (f(x) — f(z0))]]]

|z — o

[Lipschitz continuity, Eq ()]

—0 aszx — xp.
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

So, f~!is differentiable, and

Df " (y)] = [Df ()] "

QED. n

Example 7.1.5

Investigate the invertibility (both local and global) for the map W = (u,v) = f(z,y) : R> — R?
given by u = e” cosy and v = e sin y.

Solution 2.

Firstly, we know f € C*°. Compute the Jacobian determinant:

Ji(z,y) = det(Df(x)) = det < [au/ax 3“/83/])

ov/dx 0Ov/dy

e’ cosy —eTsin
= det ) Y Y
e*siny e®cosy

= €2 cos® y + > siny?

=2 > 1.

So, by the Inverse Function Theorem, f is invertible locally at any point, and the differentiable of
the inverse is given by

. -1
Df_l(u,'u) = [Df(x,y)]_l _ [6 cosy —e Slny] .

e*siny e®cosy
Now, let’s examine if f is globally invertible (i.e., if f is a one-to-one function on R?). Note that
f(@o,y0) = €™ cosyo
and
f(zo,yo + 2m) = €™ cos(y + 2m) = €™ cos(yo) and f(xo, yo — 27) = €*° cos(yo — 2m) = €*° cos(yo).

So, f is not globally invertible since f is not an injection.

Remark 7.1 f can be written in complex notation: f(z) = e*, where z = x + iy € C. Then,
f(z) =€ = " = ¢%(cos x + isiny).

Meanwhile, f~1(z) = In(2).
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7.2 Implicit Function Thm and Applications
Motivation
e Given a function f : R — R. Consider an equation f(y) = z. If it can be solved for y

(uniquely in terms of z), then the solution y = g(z) is the inverse of f. Thatis, (f o g)(x) = z.
* Reinterpretation of Inverse:
Rewrite f(y) =xasz — f(y) =0 @.
Then, f is invertible <= Equation @ is solvable for y.
* Question: When can we solve a general equation for y, F'(z,y) = 0 (F : R" x R™ — R™)?
The solution of f(z,y) = 0, denoted by y = g(x), is called the implicit function determined
by F(z,y) = 0.

Example 7.2.1
Consider equation 22 + y> — 1 = 0 to be F(z,y) : R! x R! — R!,
Given (z9, yo) s.t. F'(zo,y0) = 0 with yy # 0. Then, 3 a unique solution

V1—a2? ifyg >0
y:
—V1 — a2 ifyo < 0.

in the neighborhood of z.

= 2y # 0 when yq # 0.
Y=Yo0

Note that 8—F
0y

Theorem 7.2.2 Implicit Function Theorem
Let A C R" x R™ and F(x,y) : A — R™ be of class C'. Suppose (g, 79) € A with F(xq,yo) = 0. If

A = det <gF> = det (8(F1, = ’Fm))

Yy aylv -y Ym
or, o
ayl aym
= det : 3 7é 0 at (.%'0, yO)a
OFm om,
oy &

then 3 neighborhoods U of =, V' of yy, and a unique function y = f(z) : U — V such that
F(z,f(x)) =0 VzeU.lie.,y= f(x)is the solution of F'(z,y) = 0.
Furthermore, if F* € C", then f € C".

Remark 7.2

* y = f(x) is called the implicit function determined by the equation F(x,y) = 0 based at the point
(70, Y0)-
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* Differential of implicit function:

Supposen = m = 1 and F(xz,y) = 0. Then, by chain rule,

OF do  OF dy

or dr oy A"
dy ~ OF/oz
de  OF/oy
In the general case, lety = f(x) = (f1,..., fm) : R® — R™. Let f be the implicit function deter-

mined by F(xz,y) = 0. Then, »
()" (%)
» Proof 1 of Implicit Function Theorem
Given F(z,y) = A C R" x R™ — R™. Consider themap G : A C R” x R™ — R" x R™ given by
Gz, y) = (z, F(z,y)).

We want to use Inverse Function Theorem. So, we need a map that maps to the same dimension.

Suppose G~! exists in a neighborhood of (o, yo). Write
G, 0) = (z, f(x).
Then, y = f(z) is the solution of F(z,y) = 0 because

G(z, f(z)) = (2,0)
= (z, F(x, f(z)).

So, F(x, f(z)) = 0.
It remains to show that G is invertible. This follows from the inverse function theorem. Consider

i 0 --- 0 0 0 ]
0
00 1 0 0 0
DG =

(z,y)=(z0,y0) OF, OFy oFy OF;

9z, Dy oy Y

OF,, OFn | OF, i
| 8:131 81:71 8y1 8ym -

113
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So,
OF /0y, -+ OF1/0ym
JG(x(byO):det :A#Ov
as assued in implicit function theorem. Therefore, by the inverse function theorem, G is invertible.
QED. nH
Example 7.2.3
. . y+x+uv=0 . .
Discuss the solvability of for u, v in terms of z, y near the point (0, 0,0,0) and
uzy +v =20
. . . ou ov .. .
the point (1, 1, V2, —ﬂ). If impossible, compute p and p if exists.
i X
Solution 2.
F=y+z+4+uwv
F(z,y,u,v) = 0and =Y Let’s compute A:
Fy = uxy + v.
A:det(a(Fl’F2)> _ 8F1/6u 8F1/8v
9(u,v) OFy/0u OF,/0v

v u
= det
Ly 1]

= v — uzxy.
Then, A(0,0,0,0) = 0. So, Implicit Function Theorem does not apply. On the other hand,
A(1,1,V2,—V2) = —V2 - V2 = —2V2 #0.

So, by Implicit Function Theorem, 3 unique solution v = u(x, y) and v = v(z, y) in a neighborhood.
Furthermore, the differentiable is given by

= (afw)_l (agfw)

-1
B voou 1 1
zy 1 uYy Uur
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Theorem 7.2.4 Application: Domain-Straightening Theorem
Let f : A C R" — R. Suppose Df(zp) # 0 and f(z9) = 0. Then, 3 open sets U and V (with
xo € V) and invertiblemap h : U — V s.t. f(h(z1,...,2,)) = zo.

Remark 7.3 Under change of variables h, one can flatten the level curves of function f(z).

Theorem 7.2.5 Application: Range-Straightening Theorem
Suppose f: A C RP — R" with p < n and rank of Df(xy) = p. Then, 3 neighborhoods U, V, and
invertiblemap g : U — V s.t.go f(z1,...,2p) = (z1,...,2p,0,...,0).

7.3 Constrained Extrema
7.3.1 Morse Theory: Local Behavior Near a Critical Point

Let f(z) : A C R" — R be of class C? and z is a critical point. Then, one can use H (o) to classify

critical point .
* Morse Theory makes this classification more prcise.

e Lemma 7.3.1 Morse Lemma: Let f(z) : A C R® — R be of class C? with critical point zg € A. If
Hy(x0) is nondegenerate (i.e., det(H(zo)) # 0), then 3 neighborhoods U for x¢ and V for 0, and
invertible map g : V' — U s.t. the function h = f o g has the form

h(y) = f(zo) — 162+ 93+ + 3] + W3+ + 2,

where ) is an integer called the index of f at x.
e Interpretation/Application:

1. A = 0: x¢ is alocal minimum. Paraboloid open up.
2. X = n: xpis alocal maximum. Paraboloid open down.
3. 0 < X < n: zg is a saddle point. Hyperboloid.

* Whatis \?

A (the index of f at z) is the number of negative eigenvalues of H(z).

Example 7.3.2
Determine the shape of the surface given by z = 22 + 3xy — 3 near critical point (0, 0).
Solution 1.
Df = (295 +3y 3x— 2y>. Therefore,
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The eigenvalues are t = ++/13. So, index A = 1. As 0 < \ < n, (0,0) is a saddle point. The shape is
thus a hyperboloid.
g

7.3.2 Constrained Extremal Problem
Goal: To maximum (or minimize) a function f(z) : R" — R under the constraint g(z) = c.

Tool: Lagrange Multiplier Method.

Theorem 7.3.3 Necessary Condition
Let f,g : U C R® — R be of class C'. Assume g(xq) = co with Vg(z¢) # 0. If f restricted to the

surface S : g(z) = ¢p has maximum or minimum at z(, then 3\ € R s.t.

V f(x0) = AV g(0)-

Remark 7.4 (Geometric Meaning) V f(Xy) is parallel to V g(xy).

Proof 2.
e Geometric proof: WTS: V f(z() L S.
Fix curve c(t) at tg. So, c(tg) = xo. WIS: V f(x) L ().
Since f restricted to S has a maximum at z, h(t) = f(c(¢)) has a maximum at . Then,

0= h'(to) = V f(zo) - ¢'(to) = (Vf(20),¢ (o)) -

So, V f(xg) L (o), and thus V f(zg) L S.

* Analytical proof: Substitute the condition g(z) = ¢y into f(z)

Since 5 5
g g =
v ==, ..., = 0
slon) = (S 52) 2
9g , dg - .
then 3 D # 0forsomei =1,...,n. WLOG, assume B # 0. By Implicit Function Theorem, the
equationz "
g(x1,...,xn) = o
can be uniquely solve for z:
Tp =h(x1,. .., Tp_1).
Let k(x1,...,2p—1) = f(z1,...,Zpn-1,h(z1,...,24—1)). Then, the maximum of f correspond to
maximum of k. Then,
0 Ok of of  oh fori=1,...,n—1. (1

:a$i:a$i+ﬁ.al‘i
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.3 Constrained Extrema

Furthermore, g(x) = ¢o. So, g(z1,...,zpn—1,h(z1,...,2n—1)) = ¢o. Then,
dg dg Oh .
a:[;i T%aml_o fOI‘Z—l,...,n ].
Then, /
oh dg/0x;
- _ 2
ox; 0g/0zy, @

Substitute (2) into (1):

of __0f oh __ 05 —0g/om
Oz, Ox; Oz, Og/0r,

(%ri
_ Of/0xy Og
~ 0g/0x, Ox;
A
_ 99
o )\0.% '
So, of 5
g .
= =1,...,n.
oz, )\o%vi V1 RN 1)
That is,
V f(z) = AVg(x).

QED. H

Theorem 7.3.4 General Procedure to Solve an Extremal Problem

* Solve the equations for x € R” and A € R:

g(x) = co
Vf(z) =AVg(z)

e Compare values of f at these points.

Example 7.3.5
Find extrema for the function f(x,y) = x? — y? subject to the constraint 22 + y? = 1.

Solution 3.
Solve the equations:
2 +y?=1 24y =1
9(x) = co
- 2z 2z = 2z = \2z
Vf(x) =AVyg(x) =A :
—2y 2y —2y = A2y.
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.3 Constrained Extrema

e Ifzr=0,y==+1,and A = —1.
e Ify=0,z=+1,and A = 1.
Possible candidates: (0,1), (0, —1), (1,0), and (—1,0).

e At(0,1), £(0,1) =02 — 12 = —1.

At (0,-1), £(0,—-1) =0% — (-1)2 = —1.

At (1,0), f(1,0) =12 - 0% =1.

At (—1,0), f(=1,0) = (=1)2-0=1.

Then, (0, 1) and (0, —1) are local minimum, and (1, 0) and (-1, 0) are local maximum.

Theorem 7.3.6 Extremal Problem with Multiple Constraints
Maximize/Minimize f(z) with constraints g;(z) = ¢y, ..., gm(x) = ¢,. Then, we solve

g1(z) =1

gm(x) =Cm

Vi) =MVag(x)+ -+ A Vgn(x).
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8 INTEGRATION

8 Integration

8.1 Definition of Integration
8.1.1 Geometric Motivation. To compute the area of region under the curve y = f(x).

* Form the upper and lower approximation:

U(f,P)= ZS}l_p f()l(Iy)
=1

L(f,P) =) _inf f(@)0(L).

=1

e Form the upper and lower integral:
/ f=infU(f,P)
A P

[ =swprr.)
8.1.2 General Formulation of Integral.
e Set-up: Let f : A C R™ — R be abounded function on a bounded set A.
* Goal: define the volume of the region under the surface y = f(z) (or the integral /A fdx).

* Step 1: choose arectangle B = [a1, b1 X [ag, ba] X - - - X [an, by] that contains A. Extend f s.t. f(x) =0
when z ¢ A.

N/

Then, the volume over A is the same as the volume over B. That is,

/Af(:r)dm:/Bf(m)dx.

e Step 2: partition B: divide slides of B into sub-intervals to obtain a partition P, collection of
smaller rectangles.
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8 INTEGRATION 8.1 Definition of Integration

e Step 3: Form upper and lower sums:

U(f,P)= Z sup f(z)-v(R) (Upper Sum of fw.r.t.P)
REP&/—/ base
height
L(f,P)= Z i%ff(x) -v(R) (Lower Sum of fw.r.t.P)
ReP

 Step 4: Form upper and lower integrals:
/ f=inf(U,P) and / f=supL(f,P).
A P JA P

¢ Observation:

L(f,P) <realvolume < U(f,P) = / f < real volume < / 1.
JA A
* Definition 8.1.3 (Integrable).We say f is Riemann integrable if
=L
Ja A

The integral of f on the set A is defined as / flx)dz = / f= / f. Sometimes, the integral is
A JA A

alsowrittenas/f or /f(a:)dxldxg---dxn.
A A

Theorem 8.1.4 Equivalent Conditions for Integrability
Suppose f : A C R" — R is bounded and A and B are bounded. Let B be a rectangle in R".
Assume f(z) = 0 for z ¢ A. Then, the following are equivalent conditions for f to be integrable:

e (Riemann’s Condition): Ve > 0, 3 partition P (of B) s.t.
O S U(f, 7)5) - L(f, 7)5) < Eo

¢ (Darboux’s Condition): 3 a number I s.t. Ve >0, 36 > 0 s.t.

1. P is any partition of B into rectangles By, Bs, ..., By with side length less than ¢, and

2. Ifz; € By, 9 € By,...,zN € By, then we have

. J

Remark 8.1 e The number I is the value of the integral
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8 INTEGRATION

8.1 Definition of Integration

N
. Z f(zi)v(B;) is called the Riemann sum of fw.r.t.P.

i=1

* [Interpretation: Darboux’s condition says that when the partition is fine enough (side length < 9),

then the Riemann sum is a good approximation of the integral.

» Proof 1 of Equivalent Conditions for Integrability

f integrable — Riemann’s Condition

Given ¢ > 0, need to find a partition P- s.t. U(f,P.) — L(f,P:) <

Since

Af:@Umpm

by definition of infimum,

3Py st U(f,Py) < /Af +e

Similarly,

3%&tuﬁ%ﬁ>éf—;

E.

Let P. = P; U P (partition refinement). Then, P. is a refinement of P; and P». Therefore,

U(f,/PE)SU(f,,Pl)< Af+;> and L(f,PE)ZL(f,P2)> /Af_;

Hence,

U(f,Pe) = L(f,Pe) <U(f,P1) — L(f. P2)

/f+—/f+
= [ [+

=0+¢
=c. O

Step 2 | Riemann’s Condition — f integrable
By Assumption, Ve > 0, 3 partition P. s.t.

U(f,P:) — L(f,P:) <e

Since/f:i%fU(f,P),wehave
A

/Af < U(f,Pe:).
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8 INTEGRATION 8.1 Definition of Integration

Similarly, we have / f > L(f,P-). Then,
A

OSAf_AfSU(f7P€)_L(f7PE)<E

Thus, -
/ f= / [ = fisintegrable. [J
A JA

Darboux’s Condition —> Integrability
Let I be the number in Darboux’s condition.

WTS:/;‘f_I_/f;f.

Claim 8.1.5 Ve > 0, 3 partition P s.t.

\L(f,P)—1| <e (%)
Scratch:
N N
IL(f,P) = I| < |[L(f,P) = fla)o(Bi)| +|D_ flai)o(Bi) — 1
i=1 i=1
=N, 1]131ff(7'z) — f(x)|v(By) <§. by Darboux
So, we will make
11 (e _ f( . €
since we want g eventually. Then,
. e ¢
|L(]L,P)—[‘ < 5“!‘5 = £.

Given € > 0. By Darboux’s condition, 36 > 0s.t. VP = {Bj, Bs,..., By} with sides < §, we have

N
€
> fliu(Bi) — I < >
i=1
forany x; € B;, wherei =1,..., N.
To prove (x), we can choose z; € B; s.t.
0 < f(z;) —inf f(z;) < _c
- ! B; ! 2'U(B/L)N
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8 INTEGRATION 8.1 Definition of Integration

Then, it follows that
\L(f,P) = 1| <

Zf z;)v

mf f(z;) (x)|v

<Z
Z2N/(/BVT/QB/S+

_NN2

=)

—5+3

Furthermore, (x) = L(f,P) > —¢ Ve > 0. So,

/f:supL(f,P) > .
JA P

Similarly, Ve > 0, 3P s.t. |[U(f,P) — I| <e = U(f,P) < I +e. Then,

/Afzigfw,msz

Ji- -t

Integrability — Darboux’s Condition (Scratch)

e Givene > 0,d7P s.t.

So, it must be

I- <fol ) < U(f, )<I—|—§.

 Given partition P, 3§ > 0 s.t. for any partition P’ with side length < §, the sum of volumes of
sub-rectangles in P’ that are not completely/entirely contained in a sub-rectangle in P is less
than e.

P

<0 L |:| Coarse rectangle in P

o 1::} Fine rectangle in P’

i Not fully contained in P, total volume < ¢/

QED. m
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8 INTEGRATION 8.2 Criterion for Integrability

Example 8.1.6 An Exercise
Compute the upper and lower sums for fol x dx over special partition P:

12 1
P:{o,,,...,” }
n n n

8.2 Criterion for Integrability
Question: When is f integrable? How can we tell from other properties?

Short Answer: f is integrable when the set of discontinuity is “small.”

8.2.1 Measure Zero: How to Measure the Size of a Set

Definition 8.2.1 (Volume of A). Given a bounded set A C R", define characteristic function of A by

1 ifreA
Ta(z) = .
0 ifrg A

We say that A has volume (or Jordan measurable) if 1 4(x) is integrable on A. We write
wm:/iﬂwm.
A
Remark 8.2 Whenn = 1, v(A) is the length of A. Whenn = 2, v(A) is the area of A.

Fact: AsethasvolumeO (i.e.,v(A) =0) <= Ve > 0, Ifinite cover of A byrectangles S1, Sa, ..., Sy s.t.

v(S;) < e.
=1

Proof 1. Suppose v(A) = / 14(x)dx = 0. Then, Ve > 0, I partition P = {Py,...,Px} of B s.t.
A

Ula(z),P)<I+e=ce.

= Z supLa(x)-v(P;) = Z v(P;) < e.

PiNAFE | , PiNA#D
=1

Note that {P; | P; N A # @} is a finite cover of A.
QED. =
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8 INTEGRATION 8.2 Criterion for Integrability

Definition 8.2.2 (Measure Zero Set). A set A C R" (not necessarily bounded) is said to have measure
zero, m(A) = 0, if Ve > 0, 3 countable cover of A by rectangles {S;} s.t.

> w(S) <e.

i=1
Remark 8.3

* v(A)=0 = m(A) =0

* Any finite set has volume zero.

. . 3 .
* Any countable set has measure zero. (use geometric sum: first point covered by 5 second point

£ . £
covered by 1 N -th point covered by Q—N)

Example 8.2.3
Let A be the z-axis (real line).

o If Ais considered as a subset of R?, then m(A) = 0.

Proof 2. To cover the z-axis, we can cover it interval by interval. But the volumes of the
rectangles need to get smaller and smaller:

e e

forn =0,+1,+£2,....
QED. ®m

» However, if A is considered as a subset of R!, then m(A) # 0.

Theorem 8.2.4
Suppose A; C R® withm(4;) =0 Vi=1,2,.... Then,

A:Dm
=1

has measure zero.

oo

Proof 3. Given ¢ > 0 foreachi = 1,2,..., m(4;) = 0. So, 3 rectangles {SJ@} . s.t. A; C U S](-i)
j=1

j=

with Z v (Sj(i)) < % Then, {Sj@ }::1 is a countable collection of rectangles with
j=1 ’

ca=UJacYUs’
i=1

i=1j=1
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8 INTEGRATION 8.2 Criterion for Integrability

LYY () <

i=1 j=1 i=1
So, by definition, m(A) = 0.
QED. ®m

Remark 8.4

* The above theorem is not true for volume zero sets. A counterexample if the rationals in [0, 1]. Each
rational is volume zero, but their union is not volume zero as 1 4 is not integrable.

* In Definition 8.2.2, we can replace “closed rectangles S;” by “open rectangles S;.”

8.2.2 Lebesgue’s Theorem

Theorem 8.2.5 Lebesgue’s Theorem

Let A be a bounded set in R"” and f be a bounded function on A. Extend f to R" by letting
f(z) =0 Vaz ¢ A. Then, f is integrable on A <= the points on which the extended function
f is discontinuous form a set of measure zero. That is, extended f has support on A, and if D
denotes the set of discontinuity of extended f, then m(D) = 0.

Example 8.2.6

e A=10,1] and
1 z rational

fz) =

0 o/w.

Then, the set of discontinuity is D = [0, 1], and m(D) # 0. By Lebesgue’s Theorem, f is not
integrable.

e A = {rationals € [0,1]} and f(z) : A — R by f(z) = 1. Then, f is continuous on A4, but it
is not integrable on A. The extended f has D = [0, 1], not measure zero. So, by Lebesgue’s
Theorem, f is not integrable.

e A={(z,y) |22 +y2 <1} CR%and f(z): A — Rby

22 + sin <1> y#0
fz,y) = Y

x? y=0.

Then, the set of discontinuity is D = [-1,0] x [1,0] + dA. Then, m(D) = 0 in R2. So, by
Lebesgue’s Theorem, f is integrable on A.

Corollary 8.2.7 of Lebesgue’s Theorem:
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8 INTEGRATION 8.2 Criterion for Integrability

e Abounded set A C R" has volume <= 9A has measure 0.

Proof 4. Assume v(A) exists. Then, 1 4(z) is integrable. So, the set of discontinuity of extended
14(x)is D = OA. By Lebesgue’s Theorem, f = 1 4(x) is integrable <= m(0A) = 0.

QED. ®m

e Let A C R" be a bounded set with volume. If f : A — R is bounded and has only a (finite or)
countable number of discontinuity, then f is integrable.

Proof 5. Denote the set of discontinuity of f on A as M. The set of discontinuity of the extended
fwillbe D € 9A U M. Since A has volume, by the previous Corollary, we know m(9A) = 0. Since
M is countable, m(M) = 0. Then, m(0AU M) =0 = D C AU M has measure zero. By
Lebesgue’s Theorem, f is integrable.

QED. H

» Proof 6 of Lebesgue’s Theorem

Preparation and Reduction

* The set-up: Fix arectangle B D A (so cl(A) C [(B)) and define g : B — R by

flx), z€A
g(x) = {
0, x ¢ A

Let D denote the set of discontinuity of g(x). That is,
D = {z € B | g(x) is not continuous at x}.

Need to show: f integrableon A <= m(D) = 0.
* How to quantify discontinuity?

1. Definition 8.2.8 (Oscillation).The oscillation of a function h(z) at a point zg is
O(h, zo) = inf {sup {|h(x2) — h(z1)| : 21,22 € U} : U is a neighborhood ofxo},

where O(f,U) = sup {|h(z2) — h(z1)| : #1,22 € U} is the oscillation in a neighborhood U,
and inf takes over all possible neighborhoods of .

2. Claim 8.2.9 h is continuous at z9 = O(h,xp) = 0.

Proof. his continuous atzy = Ve >0, 3§ > 0 s.t.

1z — x| <6 = |h(z) — h(zo)| < %
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8 INTEGRATION 8.2 Criterion for Integrability

ForU = {|z — xzo| < 6} N A4,

z1,22 €U = |h(@2) — h(z1)| < [h(w2) — h(zo)| + [h(w0) — h(w1)]
< g + g =Ec.

Then, O(h,U) < e = O(h,z0) = 0. O

Step 2 | (<) Assume m (D) = 0. Prove g is integrable.
We will show: g satisfies Riemann condition.

* Set up:
Fixe > 0. Let D, = {z € B | O(g,z) > ¢}. Then, D. C D. So, m(D,) = 0.

By Definition, 3 collection of open rectangles | B;| s.t.

D.c|JB; and ) w(B)<e.

Claim 8.2.10 D. is closed (and hence compact).

Proof. (Sketch) D, contains all its limits points. That is,
xn € Doy {zp} > 2 = x € D..
Assume, for the sake of contradiction,
x¢ D. = O(g,x) <e.

But O(g, x,) > ¢, we can derive a contradiction from there. O

Since D. is compact, it has a finite subcover:

N

{Bl,BQ, .. .,BN} s.t. ZU(BZ) <e.
i=1
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8 INTEGRATION 8.2 Criterion for Integrability

e Initial Partition of B:

Construct a partition P from {Bi}i]i , s.t. eachrectangle S € P is either:

1. disjoint form D,, or

2. its interior is contained in one of the B;’s.

T T T T T T B
| | | | | |
; ; R D.: discontinuities of g
”””” l"”1’7"’”””T*RTT””’ -
7777777 S R T o N A ' | B;:open cover of D,
,,,,,,, A 2 S AU B S S
; 7 | [ \*\ reo
;_," | TR ' Partition P
,\/ I [ I :
2 | I I I I 1
17 I I I I I I 1
1 I I I I I I 1
1 | | A | | | Ly
\ | | | | | 3
****** S et s P St
ISl L"" I
,,,,,,, A NN N

The way to construct P is to extend the sides of B; to form a partition on B.

LetC; = {S € P : int(S) is contained in one of B;} and Cy = {S € P: SN D, = &}.

¢ Refinement of P

FixSe(y,SND. =2 = O(g,z) <e Vaz € S.Then,Vz € S,Ineighborhood U, s.t.
sup {|g(71) — g(x2)| : 71,22 € U} < O(g,7) + 6,
1
where § = 5(5 — O(g,z)). Then,
supg —infg < O(g,z) + 20 = e.
Uy Uz

Denote My, (g) = sup g and my, (g) = iélf g. Then,

Uz

| Mu,(9) = mu.(9) < <] )

Since S is compact and S C U Us.
TES

— dJfinite collection of neighborhoods {U,, } that covers S. Partition S so that each rectangle
is contained in some U,,. Do this partition for each S € C;, ad we obtain a refinement of P,
denoted by P’.

e Verify Riemann’s condition for P’:
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8 INTEGRATION 8.2 Criterion for Integrability

Note that

U(g,P) = L(g,P") = Y (Ms(g) — ms(g))v(S)

S'ep!
= Y (Mg(g) —mg@(S)+ D (Ms(g) —mg(g)v(S)
S’'cSeCy S’'CSeCq
< >0 e2Mu(S)+ ) e(d)  [lgx) <M and ()]
S'cSeCy S'CSeCy
<2M C Z v(B;) + ev(B) [C} is covered by Bs] < 2Me + ev(B)
=¢e(2M +v(B)).

In summary, given ¢ > 0, 3 partition P’ s.t.
Ulg,P') — L(g, P') < e(2M + v(B)).

So, we satisfy Riemann condition. [J

(:>) f isintegrable — m(D) = 0.

Forn=1,2,...,1let

1
Dy, = D|O > — 5.
in={ze 1060 > 1}
Then,
D =Dy
i=1
Need to show: m(D;,,) =0 Vn.
Fixn > 1. For any partition P, write
Dy jn = 51U 52,
where
S1={ze Dy, | z is on the boundary of some S € P}

and

Sy = {x € Dy, | = € int(S) for some S € P}.
Then, m(S1) = 0. We need to show m(Ss) = 0.

Given ¢ > 0. By Riemann’s condition, 3 partition P s.t.

> (Ms(g) — ms(g)v(S) < %

SeP

Let C denote the collection of all S € P s.t. Dy, Nint(S) # @. Then, C covers Sz and forany S € C,

S|

Ms(g) —ms(g) > O(g,z) >
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8 INTEGRATION 8.2 Criterion for Integrability

Thus,
>~ (Ms(g) —ms(9)(S) £ D (Ms(g) = ms(9))(S) <~
SeC SepP
Since X )
> (Ms(g) —ms(9)() 2 Y~ ~v($) = = 3 v(S),
SeC SeC SeC
we have .
2 0(8) < 3 (Ms(g) —ms(a))u(s) < .-
SeC SseC
That is,
%Z’U(S) <= = Y <e
SeC SeC

Therefore, m(S2) = 0 as well.
Since m(S1) = m(S2) = 0and D, , = S1 U S, m(D;/,) =0 Vn. Then,

i=1

Theorem 8.2.11 Properties of Integration
Let A, B C R" be bounded, c € R, and f,g : A — R be integrable. Then,

QED. m

. f+gisintegrableand/(f+g):/f+/g
a A A

cf is integrable and/A(cf) :c/Af.

|f|isintegrableand‘/ f’g/]f\
A A

Iffﬁg,then/fé/g
A A

If A has volume and |f| < M, then

/ f) < Mu(A).

(Mean Value Theorem for Integrals): If f : A — R is continuous and A has volume and

is compact and connected, then 3zy € A s.t. / f(z)dz = f(xzo)v(A4). The quantitive
A

S / f is called the average of f over A.
U A A

Let f : AUB — R. If the sets A and B are such that AN B has measure zero and f | (AN B),
f| A, and f | B are all integrable, then f is integrable on A U B and / / [+ / f.
AUB
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8 INTEGRATION 8.3 Improper Integrals

8.3 Improper Integrals

Goal: Study integral of the form [, f(z), where f : A C R" — Ris an arbitrary function and A C R" is
an arbitrary set.

Definition 8.3.1 (Integral).

e If A Cc R"is bounded and f is bounded, then
/ flx) = / flz) = / f(z) (Riemann Condition)
A A JA

e f(x) > 0bounded and A is arbitrary, then

/ ACR"

[ @ =jm [ s
A a—=0 J A, /

e f(x) > 0unbounded and A is arbitrary.
For M > 0, define

Then,
/A fla)= Jim_ /A fu(a).

e fisarbitrary and A is arbitrary.

(a) = fa)  fwzo . =1 fx)>0
<0, —fl@)  f(@) <0

Let

Remark 8.5 1. f1(x) is the positive part of f and [~ (z) is the negative part of f.
2. ftf->o.

3. f(x) = fT(z) — f~ (x). We can write any function as the difference of two non-negative func-
tions.
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8 INTEGRATION 8.3 Improper Integrals

4. [f(@)] = fH () + f(2).

So, f is integrable on A if both f* and f~ are integrable on A. We write

fl@)=[ fH@) = | f(2)
fyser=fre ),

Remark 8.6 1. One can show this definition preserves linearity of integral from bounded case.

2. Observation: f integrable —> [ and f~ integrable — |f| = f* + [~ is also integrable.

However, | f| integrable =~ f integrable. For counterexample,

on[0,1].

1 z rational
-1 z irrational

|f(z)] =1 = integrable. But f*, f~, or f are not integrable.

Theorem 8.3.2 Comparison Principle
Suppose

e 0<g< fonAand / f converges (i.e., f is integrable on A)
A
e gisintegrable on each finite rectangle [—a, a]™.

Then, g is also integrable on A, and / g < / f.
A A

Remark 8.7 The second condition is crucial and cannot be removed.

Proof 1. Since g > 0 and is integrable on [—a, a|", define

Gw:%;mmw

Then, G(a) is an increasing function of a. Furthermore,

v<f = 0w=[ @[ s@s e
So,

J 90 = Jim 60 < [ (o).
QED. =

b
Question: When does an integrable / f(x) (one-variable function) converge? If it converges, how to
a

compute?
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8 INTEGRATION 8.3 Improper Integrals

Theorem 8.3.3 Integral of Functions of One-Variable

* Suppose [ : [a, 0] — R is continuous with f(z) > 0. Let F'(x) = f(z). Then,
/ f(z)dz = hm / f(z)dz = hm [F(b)—F(a)].
* Suppose f : (a,b] — Ris continuous with f(z) > 0. Then,

b b
/f( )dx = lim f(x)dz

e—0t a+e

Example 8.3.4

e Consider / 2P dzx.
1
Solution 2.

Forb > 1,

/xpd:):— 1
1

b
When b — oo, / 2P dx diverges when p > —1 and converges when p < —1. So,
1

[ee]
/ 2P dx  is divergent when p > —1
1

and
o 1 .
/ 2P dx = ——— is convergent when p < —1.
1 P +1
O
o0 2
. Consider/ e 23 du.
1

Solution 3.

Converges by comparison.
O

Definition 8.3.5 (Conditional Convergence).

o) b
/ f(z)dx (conditional) = lim flx)dz

b—oo J,
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8 INTEGRATION 8.3 Improper Integrals

Remark 8.8 (Types of Convergence) For an improper integral / f(z) dz, there are three types of con-
vergence: ¢

* Absolute Convergence: / |f(z)| dz exists.

b

* Conditional Convergence: lim f(x) dx exists.
b—oo J,

* Divergence.

For general function, absolute convergence = conditional convergence. For continuous function,
absolute convergence is stronger, and —> conditional convergence.

Example 8.3.6
. . *cosx . . .
Determine whether the integral —— dz is absolute convergence, conditional conver-
1 X

gence, or neither (divergence).
Solution 4.

* First, consider absolute convergence.

00 9] nm/2
/ ’cosa:’dx:/ |cos x| de 2/ |cos x| de
0 T 1 T /2 T

n—1 (k+1)m/2 ’COSJE’
S
k

Observe that

k=17 km/2 r
n—1 1 (k+1)7/2
> ﬂ/ |cos x| dz
k=1 (k‘ + 1)5 kﬂ'/Q
——
harmonic

— 00 as n — oQ.

OS T

dz is not absolutely convergent.

T x

So, / ‘Cosx‘dx diverges, and thus / ¢
1 1

* Conditional convergence:

b . b b .-
/ O o = BT 4 / e ¥ [Integration by Parts]
1 X xr 1 1

22
When b — oo,
. sinx b sin
lim = converges.
b—oo T 1 1
Further,
sin 1 1 * |sinzx 1
a xT X 1 T 1 e
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8 INTEGRATION 8.4 Lebesgue Convergence Theorem

 sinx .
So, 5— dz absolutely converges by comparison.
1 x

b

COS T
Then, /
1

dz is conditional convergence.

g
8.4 Lebesgue Convergence Theorem
Goal: When do we have
= i ?
i [ s@)as = [ (tm fi0)) as e
Theorem 8.4.1 Lebesgue Monotone Convergence Theorem (LMCT)
Let g, : [0,1] — R be a sequence of non-negative integrable function such that
* gn+1(z) < gn(x) VYV €]|0,1] (decreasing sequence)
. nlgrologn(a:) =0 Vzel0,1].
Then,
1 1
lim gn(z)dz = / 0dz = 0.

Corollary 8.4.2 : Suppose f,(z), f(z) : [0,1] — R with

* fn< foyi(z) < f(z) Yz el0,1]

* folz) = f(z) V.
Then,

lim fn )dx = / f(z
n—oo
Proof 1. Apply LMCT to the sequence gn( )= f(z (x) > 0.
QED. =

Remark 8.9

e For () to hold, we only need f,(z) T f(z) (f,(x) is monotone increasing and the limit of f,(x) is
f(x))

» The assumption that A = [0, 1] C R is not essential. Result is true for any set A C R".

» The monotonicity assumption cannot be removed. For example:

1
n, O0<z<-—
0, olw



8 INTEGRATION 8.4 Lebesgue Convergence Theorem

Then, we have g,(z) — 0 Vz € [0, 1]. However,

1 1
/ gn(x)de =1 Vn and / 0dx = 0.
0 0

1 1
/ gndx;«é/ O0dz,
0 0

So,

and LMCT does not hold anymore.

» Proof 2 of Lebesgue Monotone Convergence Theorem

1
Lemma 8.4.3 : Suppose [ : [0, 1] — R be integrable with |f| < M and/ f > a > 0. Then, the set
0

E={rep] f@>2)

. . . L . a
contains a finite union of disjoint open intervals of total length > o7

a //\\//\\

|2

[\)

Proof. By definition of integral, 3 partition P s.t.

e~ e

OS/Olf—L(f,P)<

Then,
« 3

1 (67
P> [ 1-za-5-7.

Let ¢ denote the total length of the intervals 7 in P with I C E. Then,

2 <ri.p) =% (@)

rep
= inf f(x) )l(x) + inf f(x) )4(1)
Ie;m ( > Ie;\E < )
< N Mo+ Y S
IEPNE IEP\E
§£M+%-1 [If]e,éE, () g%
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8 INTEGRATION 8.4 Lebesgue Convergence Theorem

So, /- M > % = (> ﬁ. Remove endpoints from /, we get open intervals. O

. Set up and Reduction:

1 1
0<gnt1 < gn = / gnv1(r) da S/ gn(z)dz.
0 0

Then, the limit exists:
1

lim gn(x)dx =X > 0.

n—o0 0

Need to show: A = 0.

Assume X > 0, and we will derive a contradiction (with the assumption g,(z) -0 Vz € [0,1]).

. Apply the above Lemma 8.4.3 to the cut-off function (g,),,, where M > 0.

Then,
1 1
/0 gn(z)dz = lim (Gn)ps-

2
Choose M = = s.t.

1 1
0< /0 (90 — (gn)ar) < /0 (91— (1)) <

2
Let E, = {:L‘ €[0,1] | gn(z) > 5}. Then,

1. E,41 C E, by monotonicity

2\ ¥ 4\
2. {x € [0,1] | (gn)ps(z) > %} C E,. Choose a s.t. — = %to apply the Lemma. — a = =
O

4\ . . . L
Apply Lemma 8.4.3 to (g,),; and o = = Then, E, contains a finite union of disjoint open

intervals of total length

a 4N 1 A
> — =2, - 2
—4M 5 4M  5M

+ [Step 3]Show that (] B, # 2.
n=1

Let
oo oo
D= U {z €[0,1] | g» not continuous atx} = U D,,.

n=1 n=1

Since g, is integrable, we have m(D,,) = 0. So,

m(D) = m([j Dn> = 0.
n=1
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8 INTEGRATION 8.4 Lebesgue Convergence Theorem

Thatis, D is covered by U, a countable union of open intervals of total length < ¢ = 5LM
ByStep 2, E, ¢ U.

Claim 8.4.4 cl(E,) C E, UU.

Proof. Infact, if zy € cl(E,)\E,, then [WTS: 2y € U]

2\ ) .
gn(x0) < = —> g, is not continuous at x.

22

Suppose zg € cl(E,) = 3dxp € B, s.t. 1, — x9ask — oo. Also, gu(xr) > —, but g,(z0) <
J

2\ . .

= = gn(xk) # gn(x9) = discontinuous

So, zg € D,,, and thus z¢ € U. So, this Claim 8.4.4 is true. O

Note, let F,, = cl(F,,)\U. Then,

1. F, is compact

2. F, C E, (byClam 8.4.4)

So, by the nested set property: ﬂ F, #+ @.As F,, C E,, we further have ﬂ b, # 2.

n=1 n=1
pay 2\
Let xg € ﬂ E,, then g, (z¢) > = Then, lim g,(zg) # 0. % This derives a contradiction with the
n—oo
n=1

second assumption in LMCT (i.e., g,(z) — 0). So, A > 0 is impossible, and it must be that A = 0.
QED. n

Corollary 8.4.5: Let g, : A — R be integrable and non-negative. Assume

g9(x) = gn(®)
n=1

is also integrable. Then,

o)

/A g(x) = /A gjlgn(x) -3 /A gn ().

Proof3. Let f,(x) = > _ gi(x), the partial sum.

k=1

Then,

[ @)= [ S =Y / ge(z) [property of integral
A Ap=1 k=174

Asn — oo, fr, = g(x), and fr4+1 > fn (g, is non-negative). Then, apply Corollary 8.4.2, we have

/A 9(x) =§jl /A gn ().

QED. ®m
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9 COMPUTING INTEGRALS

9 Computing Integrals

Question: In practice, how do we compute the integral / f(x)da?
A

e In R!: Fundamental Theorem of Calculus.

[ rwyar= rw

 In R": Reduce to R! case by Fubini’s Theorem. Or, use change of variable (substitution first),

and then use Fubini’s Theorem.

9.1 Fubini’'s Theorem

Theorem 9.1.1 Fubini’s Theorem

for each fixed = € [a, b], the following integral exists:

z/cdf(:v,y)dy

Then, g(x) is integrable on [a, b], and

fsin = [arse= [ ([ )

Let A= {(z,9) | a <2 <b, c <y <d}bearectanglein R? and f : A — R be integrable. Suppose

Corollary 9.1.2: If f : A — R is continuous, then

IRCTE / ( / o) dy ) do 220 | ’ (/ bf(x,y)dx> dy.

Corollary 9.1.3 Generalization: Let A be a region given by A = {(z,y) | a <z < b, ¢(x)
where ¢ and ¢ are continuous. If f : A — R is continuous, then

/Af(x,y)Z/ab (/::)f(x,y)dy> dz.

Remark 9.1

* The roles of v and y can be interchanged.

<y <(x)},

* Results are true in higher dimensions. For example, let C = A x B C R"™™, where A C R" and

B CR™, Fixx € Aandy € B. Then,
/ f=/ </ f(:v,y)dy> dz
AxB A B

140



9 COMPUTING INTEGRALS 9.1 Fubini’s Theorem

Example 9.1.4 Computing Integral
Compute / (x 4+ y) dzdy, where A is the following region:
A

Solution 1.

N

)
_l’_
<
~—
o,
8

o
I

_.
8
+

| —
&

V)
[N
8

2

Lo =

<
Il
S
N
8
<
+
\]
<
N———

» Proof 2 of Fubini’s Theorem

d
e Letg(x) = / f(z,y) dy. WTS: (1) g is integrable on [a, b], and (2) / gdz = / f. We will compute

the upper and lower sums of f and g.

* Fix any partition P4 of A, where P4 = {S;}, T where S; ; = v; x w;. Then, P4 induces a partition
of [a, b], where Py, ;) = {v;}, and a partition of [c, d], P g = {w;};.

* Next, estimate the lower sum L(f,P4):

L(f,Pa)=)_ if f(@) v(Si)
i e
denote as m;_;(f)

—me v(v; X wy)
= me -v(w;).
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9 COMPUTING INTEGRALS 9.1 Fubini’s Theorem

Key Observation:

inf {f(z,y) | (z,y) € vi xw;} <inf{f(z,y):y € w;} Vzeu.

fix z, allow y to vary

Denote inf {f(z,y) | y € wj} = m;(f, x). Then, for any fixed = € [qa, b],

mi;(f) < m;(f,z)
mi; (flo(w;) < m;(f, z)v(w))
Zmi,j(f)v wj) < ij f,x) - v(wj)

lower sum of f(z,y) in the
variable y w.r.t. partition P, 4

= L(f(l‘, y)? ,P[c,d})

d
< / fla,y)dy = g(z) Ve

Thus,
me v(w;) < inf g(x)
me v(v;) < inf g(a)v(vi)
ZZmM v(wj)v(vs) < Zigifg(z:)v(v)
me v(wj)v(v;) <Zl£12fg v(v;)
L(fPa) L(9:Pia,1))
So,

L(f,Pa) < L(g. Play))-

e Similarly, we have
U(f,Pa) > U(g,Plas))-

e Therefore, we have
L(f,Pa) < L(g, Piay)) <U(g: Pap) < U(Sf,Pa).

Since f is integrable, by Riemann’s condition,
0<U(f,Pa) — L(f,Pa) <e¢

Then,
0 <U(g,Pap) — L(9,Pay)) <¢
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9 COMPUTING INTEGRALS 9.2 Change of Variable

So, g is integrable as well. Moreover,

QED. nm

Example 9.1.5

Compute the volume of the region

A={(z,y,2) |2>0,y>0,2>0, z+y+2<1}

by integration.

Solution 3.

1 11—z l—z—y
U(A)/ 14= / / / 1dzdydz.
A 0o Jo 0
O

9.2 Change of Variable

General Setting: f : B — R bounded is an integrable function

change of variabl
y=g(x)

Goal: Transform integral / f(y) to an integral on A.
B

ACR"”

Example 9.2.1 1D Case

/f(y) dy:/f(g(:c))g’(x) dz.
dy
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COMPUTING INTEGRALS 9.2 Change of Variable

Theorem 9.2.2 Change of Variable Formula in Higher Dimension
Assume Jy(xz) # 0 Vo € A If f : B — R is bounded and integrable on B = g(A), then
fog(z)- (Jg(x)) is integrable on A, and

/f(?/)dyz/f(g(x))-|Jg(9c)|dx.
B A ———

dy

Proof'1. (Sketch)

e Change of volume under linear map:

Let L : R? — R? be a linear map given by

Denote y = Lz. Then,

* Linear approximation of g : A — B:

Fix xy € A. Then, in a neighborhood of z(, g can be approximated by a linear map:

g(x) = g(xo) + Dg(xo)(z — x0) + error.

* Conversion into integral formula:

Fix small rectangles S in A. Then, g(S) is “1nearly” parallelogram. So,
v(9(5)) = |Jg(z0)[v(5).
Do this for each rectangle S;; in a partition:
v(g(Sij) & | Jg(2ij)v(Si5)-
Then,

fyii)v(g(Siz)) = f(g(xiz))Jg(2ij)|v(Sij)
> Fwii)v(g(Siy)) = > Flglai))T(xi)o(Sij)

Through the summation and limit process:

/f(y)dy:/f(g(x))ug(x)\dx.
B A
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9 COMPUTING INTEGRALS 9.2 Change of Variable

QED. ®m

Example 9.2.3
Evaluate the integral using the change of variables v = 22 — y? and v = 2zy.

1,1
/ / (2% 4 y?) sin (x2 - y2) dxdy.
0 JO

1. Sketch the regions in zy-plane and uv-plane:

11)2_1 u=1—-v

u

g(u,v) = (z,y)

2 2

u=2x"—
Y and g¢: (u,v) = (z,y) = w=1?— —.
v =22y

2. Compute the determinant: g=! : (u,v) — (x,7).

dxr Ou/d 2r —2
Jg-1(z,y) = Ouf0z Ou/dy v Y = 4a” + 4y°.
ov/0x (%/8y 2y 2z
So,

3. Apply the change of variable formula:

1-(1/4)22
/ / 22 + %) smm — 2 dwdy—/ / (22 +y )sin(xQ—y2)|Jg(a:)]dudv

(1/4)v2—1
1—(1/4)-v 1
y sin(u) ——s5——=dudv
/ /1/4)'02 1 ( )4M

(1/4)v
/ / sin(u) dudv.
(1/4)v2-1

Remark 9.2 (Special Coordinate Systems)
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9 COMPUTING INTEGRALS 9.2 Change of Variable

e Polar Coordinate in R?:
T = rcosf

Jg(r,0) =,

=rsinf
= / f(z,y) dzdy = / f(rcos@,rsin@)rdrdd.
B A
e Spherical Coordinate in R3:

x = rsinp cos
y = rsinpsinf Jy(r,0, ) = r’sinep

Z =TCcos¢y

= /f(x,y7z)dxdydz:/f(rsingpcos@,rsingasin@,rcosgo)rQSingodrdenp.
B A

(z,y, 2)

e Cylindrical Coordinate in R3:

T =171cosb
y =rsinf Jg(TaGaZ):T

=z

= /f(x,y,z)dxdydz:/f(TCOSO,rSinG,Z)TdeHdz.
B A

Example 9.2.4

[e.9]

e Evaluate / e~ dz

—00

Solution 2.

Evaluate integral

/ e oY dxdy
R2
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9 COMPUTING INTEGRALS 9.2 Change of Variable

by polar coordinate (x = rcosf and y = rsinf). Let Dr denote the circle centered at origin
with radius R Then,

5 o 2 R ) 27 1 9
ferrsne [ e [ ()
Dpgr 0 0 0 2

1 1
=27 <—26_R2 + 2) = —me ® + .

So,

/ e dedy = lim e T dady
R2

R—oo Dr

= lim (—WB_R2+7T)

R—o

= .

Evaluate

/ e Y dzdy
R2

by Fubini’s Theorem.

Let S, = [~b,b] x [—b,b] C R2. Then,

b—o0

Sp
b b 9 5
= lim/ / e ¥ e Y dady
b—oo —bJ—b
b 2 b 2
= lim </ e * d:1:> : </ e Y dy)
b—oo —b —b
) ) 2
= (/ e’ dx)

/ A daxdy = lim A dady
]RQ

Combine Steps 1 and 2:

So,

e Evaluate /

————— dadyd
s T2+ g2 o2 T YeE

. Evaluate/ 2¢*" V" drdydz, where R = {(z,y,2) | 2? +y? < 1,1 <z < 2},
R
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10 FOURIER ANALYSIS

10 Fourier Analysis

10.1 Introduction

General Idea: Try to decompose certain objects into simpler components.
 Algebraic Model: R”
xr = Z Ti€;,
i=1

where ¢;’s are the standard basis.

* Calculus Model: Taylor Series
f(x) =) el —a)™
n=0
 Fourier Analysis: Theory of infinite dimensional inner product space of functions.

Goal: Decompose a function f(z) into a “linear combination of basis:”

Physics Motivation: Decompose complicated waves into harmonies.

10.2 Inner Product Space of Functions
10.2.1 Basic Concepts

Definition 10.2.1 (Inner Product). Let V' be a complex vector space. Then, an inner product on V is a
map (-,-): VxV —=>Cst. VfgheVanda,b, € C,wehave

* Linearity:
(af +bg,h) = a(f,h) +b(g,h).

* Conjugate Symmetry:

(fr9) =9, )

¢ Positive Definiteness:
(/20 and (f,f)=0 <= f=0.

Example 10.2.2
Cis an inner product space under the inner product:

(21, 22) = z17%3.
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10 FOURIER ANALYSIS 10.2 Inner Product Space of Functions

Corollary 10.2.3 Conjugate Linearity in the Second Component:

(hyaf +bg) =ah, f) +b(h,g).

Proof'1.
(h,af +bg) = (af + bg, h) [Conjugate symmetry]
=a(f,g)+0b(g,h) [Linearity]
=a(h, f)+b(h,g). [Conjugate symmetry]

QED. H
Definition 10.2.4 (Norm and Distance Induced by Inner Product).

¢ Norm:
[FAE VAN
* Distance from f to g:
a(f.9) = If =4l

Corollary 10.2.5 Facts:

* (V,]]]]) is a normed space.

* (V,d) is a metric space.
Lemma 10.2.6 Cauchy-Schwarz Inequality:

[(Fo )l < ILFI- llgll

Proof 2.

The projection should have the smallest length:

)9, f—={f.9)9)

(fr9)9) = (f.9) (9. f—([.9)9)

(f9) (f.9) = (f.9) (9, ) + (f.9) (. 9) (9, 9)
L) = 191+ 1 ) Pllgll.

0<|If = (f9) 9l = (£, {f.g
=(f,f—
=(f.f) -
= [£1* -1
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10 FOURIER ANALYSIS 10.2 Inner Product Space of Functions

Normalize: let ||g|| = 1. Then,

0 < [I£1* = 1(f. 9)I?
191 < (111
L <A =1F1- gl

QED. =
Definition 10.2.7 (Convergence). Suppose f,, f € V. Then, f, — fin Vif| f, — f|| = 0asn — co. We

call this convergence in norm.

10.2.2 The Space C and L>

Definition 10.2.8 (Integral of Complex Valued Functions). Suppose f(z) = fi(x) + ifo(x) : [a,b] — C
be a complex-valued function, where fi, fs : [a,b] — R. Then,

b b b
/ F@)de = / (@) dz + 1/ Fola) da.
Definition 10.2.9 (The Space C and L?). Fix an interval [a, b].
e C:={f(z)| f:[a,b] — Ciscontinuous}.
b
o [? = {f :|a,b) = C | / |f(x)]* dz < oo}.
b
The condition / |f(z)|? dz < oo is called L? integrable.

Corollary 10.2.10 Facts:
e C and L? are vectors spaces. C is a subspace of L2.

e ZerovectorinC: f(z) = 0.

Zero vectorin L?: f(r) =0 a.e. (almost everywhere).

Thatis, m({z € [a,b] | f(z) # 0}) = 0.

fi=foinl? <= fi(z) = fo(z) a.e.
N—— —_——

vectors function

Inner Product:

b
<f79>:/ f(l’)@dx

Claim 10.2.11 With the above definition of inner product, C and L? are inner product spaces.
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10 FOURIER ANALYSIS 10.3 Fourier Analysis on Inner Product Space

10.3 Fourier Analysis on Inner Product Space
10.3.1 Geometry of an Inner Product Space

Definition 10.3.1 (Orthogonality). f, g € V are orthogonal (denoted as f L g) if (f,g) = 0.
Definition 10.3.2 (Orthonormal Family). A family {¢1, p2,...,} C V is called an orthonormal family
if

* (pi,pj) =0 Vi#]

* normy; =1 Vi.

Or equivalently,
1, ifi=j
(i, 05) = 0y = ’
0, ifi#j.
Example 10.3.3
InR™: {ey, ea,...,e,}, the standard basis, is an orthonormal basis.

Theorem 10.3.4 Gram-Schmidt Process: Generate Orthonormal Family from Linear Indepen-

dent Family

{90,91,-.-} —>{<P0,~-7601,--.}J

linear independent orthonormal

1. Orthogonal projection:

T = g Ci€i,
i
where ¢; = (z, ¢;). Then, we have

(x — (x,e;) ei,e;) =0.

2. Inductive Process:

90
Yo = —
llgoll
_ _h
f1 =91 — {91, ¥o) o, —— ==
I| f1l]
n—1 f
fa=0gn=>_ (gn,0i) i, = ¢n = m
n

=0
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10.3.2 Fourier Series and Complete Family

Definition 10.3.5 (Complete Orthonormal Family). An orthonormal family {¢¢, ¢1, ...} (countable)

is called complete if each f € V can be written as

[ = Z CL Pk (*)
k=0

Remark 10.1

* The meaning of (x):

n
Hf—chgok —0 as n— oo.

k=0

* () is called the Fourier series of f w.r.t. {©o, 1, .. }.

e If{po,p1,...} iscomplete, then it is an orthonormal basis of V.

Objective: Find suitable complete orthonormal family and expand f € V into Fourier series.

Theorem 10.3.6
If f has Fourier series expansion:

(0.9]
=) cror,
k=0

then,
Ck:<f,g0k> fOI‘k:O,l,....

ci’s are called the Fourier coefficients of f.

Proof 1. Let

n

Sp = Z CkPj-

k=0
Then,
|f—Sull =0 ans n — co.

Fixm > 0. Then, for any n > m,

Cm 22 (f,0m) = (f = Sn + Sy Pm)
= <f — Sn, (Pm> + <S'fla 4Pm>

= (f — Sn.om) + cm [orthogonality]

{Cauchy—Schwarz]
I f=Snll—0

=0+4+¢, asn— oo

SO’ <fa gpm> = Cm-
QED. H
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10 FOURIER ANALYSIS 10.3 Fourier Analysis on Inner Product Space

Question: Given f and {¢1, ¢2, ... }, does the series

00
Z fagok
k=0

converge to f?

Theorem 10.3.7 Properties of Fourier Coefficients
Assume {yo, 1, - . . } is an orthonormal family in V.

* Bessel’s Inequality:

S 1 f e < £
k=0
* Parseval’s Equality (One can View this as the Pythagorean Theorem):
If .
F=Y(f 00 er:
k=0
then

DL el =117
k=0

n

Proof2.Let S, = Y (f, or) k. Denote ¢ = (f, py).
k=0
IF1P = 11f = S+ Sal?
=(f = Su+ S, f — Sn+ Sn) [definition]
= If = Snll* + [|Sall? [Linearity, f — S, L S,]

n

150l = (Sns Sn) = D lexl™.

k=0
Then,

= o S > el” = ,

I£17 = |1 = Sall Z\kl 17112 Z\k! Zlfs%

5 k=0 k=0

true for any n. So, we get @ by letting n — oo.
Under the assumption of @, when n — oo, we have || f — 5,||* — 0. So,

AP =D lenl? = D 1(f om)l?
k=0 k=0

QED. ®m
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10 FOURIER ANALYSIS 10.3 Fourier Analysis on Inner Product Space

Theorem 10.3.8 Best mean Approximation Theorem (BMAT)

Assume {yo, 1, .. . } is an orthonormal family in V. For any scalars ¢, t1, . .., t, € C, we have
n n
3w > |- el
k=0 k=0

* The first sum is an arbitrary element in the plane formed by {pq, ..., ¢, }.

* The second sum is the orthogonal projection of f onto the plane.

Remark 10.2 (Geometric Inpterpretation)

Pn+1

s feV

Pn

< orhotongal projection

4 N
$Yo n
Yotk > (feR)er
k=0 k=0
arbitrary eleent

on the plane

LHS < RHS: the shortest distance from a point f to the plane is achieved by the orthogonal projection
(or, the perpendicular line).

Proof 3. Let h,, = Zn:tkgok. Then,
k=0
Hf - hnH2 = <f —hn, f — hn>
= <fvf> - <hn7f> - <f7hn> + <hn;hn>

n n n
= FI2 =D twer — D> trer + > Il
k=0 k=0 k=0
linearity

n n
= IFIP =D lenl* + ) ltn — el
k=0

k=0

n
=f = fal? + D 1t — el
k=0
~—_——
>0
So, BMAT is proven.

QED. H
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10.4 Completeness and Convergence in *

7~

Theorem 10.4.1 Orthogonal Functions in 2
Let V = L%([a, b)), where [a, b] = [0, 27].

* Exponential family: .
emx
on(r) = N n=0,+1,+2, ...

e Trig. family:

1 cosmx sinnx

\/27'(’ vV 2T ’ \/27?’

n,m=12 ...

\.

Claim 10.4.2 Both families are orthogonal.
Proof 1. (of exponential family)
WTS:

1, n=m

0, n#m

<99m 99m> = (Sn,m =

27
(s om) = /0 on(@)Pm(@) dz

1 2m .
- = elnt | o—imz g,
2 0
1 2m
_ el(n—m)x dx
2 0
1, n=m
= =0
2 i(n —m) ¢ 0 , mAm

QED. H

Theorem 10.4.3 Mean Convergence Property/Completeness
The exponential family {p,,}>2__ is complete in L?

Remark 10.3 To prove this Theorem, we aim to show: any function f(z) € L? can be represented by its

Fourier series:
oo

f@) =3 (fon)on

n=—oo

ie.,.

(n—00)

Hf(iﬂ) — Y (fn) on 0.

k=—n

L2
Lemma 10.4.4 Stone-Weierstrass Theorem: Continuous functions can be approximated by polyno-
mials of e!” and e~*. More precisely, given f : [0, 27] — C continuous with f(0) = f(2r). Then, Ve > 0,
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dn>1landc,, k=0,%1,... s.t.

where

a polynomial in €% and =%,

Lemma 10.4.5 : Integrable functions can be approximated by continuous functions. That is, let f € L?

and € > 0 be given, 3 continuous function g : [0, 27] — C with g(0) = ¢g(27) s.t.

If =gl <e.

» Proof 2 of Mean Convergence Property

. Special Case:

Let f be continuous with f(0) = f(27). Write

n

k=—n

WTS: || f — S, — 0asn — co.

Pk>

elkx

where ¢ (z) =

5

Fixe > 0. By Lemma 10.4.4, we can choose py () s.t.

7(2) = (@) < =

IF — pwll < (/0<

Then,

Thus, Vn > N, we have

1f = Sull < [If = Swll

<|f —pnll
<e.

So, ||f = Sp|| = 0asn — co.

. General Case:

Fix f € L2 WTS: f = Y (f, k) ¢

k=—00
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By Lemma 10.4.5, 3 sequence of continuous functions g, : [0, 27] — C with g(0) = g(27) s.t.
lIf —gnll =0 as n — occ.

By Step 1, for each g,,, we have

o0
gn = Z <gn780k:> Pk-
k=—oc
WTS: || f — Sn|| — 0.
Fixe > 0. Choose N s.t.
€
17~ gnll < 5.

Then, choose M s.t.
€

=M = gy = Sulow)l < 3

where S, (gn) denotes the partial sum of Fourier series of gy .

Sn(gn) = D {gn, o) ¢

Thus, Vn > M, we have

1f = Snll = [[Sn = Snlgn) + Snlgn) — gn +gn — [l
< [1Sn = Su(gn) I + 1Sn(gn) — gnll + llgn = £

1S = Sulam) |l = || D (fr06) e — Y (an on) @x
k=—n k=—n
=11 Y (= gn.en) on
k=—n
= < S Af—gnR) ek > (f — 9 k) 90k>
k=—n k=—n
n 1/2
= (Z I(f —9N790k>!2> [Pythagorean Theorem|]
k=—n
<IIf —gvll < 5
So,
e € ¢
> M _S <S4 —c
n2M = |f-Sl<S+S+5=c
Therefore,

If = Su]| =0 as n — occ.

QED. H
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With that, these notes mark the end of a journey through the rigorous landscapes

of Real Analysis. From the foundational structure of R to the elegance of Fourier

series in L2, this document reflects not only the theorems and proofs, but also the
quiet persistence of curiosity.

T'would like to express my sincere gratitude to:

Professor Shanshuang Yang
for his guidance, clarity, and intellectual generosity throughout MATH 411 & 412.

Jerrold E. Marsden and Michael ]J. Hoffman
whose text Elementary Classical Analysis served as a source of inspiration,
challenge, and reflection.

My peers and friends
for the many shared ideas, problem-solving moments, and philosophical tangents.

Myself
for persistence, patience, and the willingness to wrestle with the abstract.

End of Notes
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