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1 THE REAL LINE AND EUCLIDEAN SPACE

1 The Real Line and Euclidean Space

1.1 Algebraic Properties of R (as a Ordered Field)

Axiom 1.1.1 Field Axioms: Recall the following properties

• Addition Axioms

(1) commutativity: x+ y = y + x

(2) associativity: (x+ y) + z = x+ (y + z)

(3) the zero element : x+ 0 = x

(4) the negative element : x+ (−x) = 0

This further gives the definition of subtraction: y − x = y + (−x).

• Multiplication Axioms

(5) commutativity: xy = yx

(6) associativity: (xy)z = x(yz)

(7) the one element/unit vector : x · 1 = x

(8) inverse: for each x ̸= 0, ∃x−1 s.t. x · x−1 = 1

This further gives the definition of division: y/x = y · x−1 when x ̸= 0.

(9) distribution: x(y + z) = xy + xz

(10) 1 ̸= 0

• Order Axioms

(11) reflexivity: x ≤ x

(12) anti-symmetry: If x ≤ y and y ≤ x =⇒ x = y.

(13) transitivity: If x ≤ y and y ≤ z =⇒ x ≤ z

(14) linear relation: For each pair x, y, either x ≤ y or y ≤ x.

(15) compatibility with addition: If x ≤ y =⇒ x+ z ≤ y + z ∀ z

(16) compatibility with multiplication: If 0 ≤ x and 0 ≤ y =⇒ 0 ≤ xy.

Definition 1.1.2 (Ordered Field). A system (or a set) F is called an ordered field if it satisfies all the

above 16 properties.

Remark 1.1 (Examples of Ordered Field) R and Q.

Definition 1.1.3 (Field). A set is called a field if satisfies all the addition and multiplication axioms.

Definition 1.1.4 (Ring). A set is a ring if it satisfies (1)− (9) except (5) and (8).
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.1 Algebraic Properties of R (as a Ordered Field)

Example 1.1.5 Z as a Ring

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, the set of integers, is a commutative ring, but not a field.

Remark 1.2 There is no division operation in a ring as multiplicative inverse is not defined.

Definition 1.1.6 (Group). A set is a group if it satisfies (1)− (4).

Theorem 1.1.7 Law of Trichotomy

If x and y are elements of an ordered field, then exactly one of the relations x < y, x = y, or x > y

holds.

Proposition 1.1.8 Other Algebraic Properties of R (as an Ordered Field):

1. unique identities: If a+ x = a for every a, then x = 0. If a · x = a for every a, then x = 1.

2. unique inverses: If a+ x = 0, then x = −a. If ax = 1, then x = a−1.

3. no divisors of zero: If xy = 0, then x = 0 or y = 0.

4. cancellation laws for addition: If a+ x = b+ x, then a = b. If a+ x ≤ b+ x, then a ≤ b.

5. cancellation for multiplication: If ax = bx and x ̸= 0, then a = b. If ax ≥ bx and x > 0, then a ≥ b.

6. 0 · x = 0 for every x.

7. −(−x) = x for every x.

8. −x = (−1)x for every x.

9. If x ̸= 0, then x−1 ̸= 0 and (x−1)−1 = x.

10. If x ̸= 0 and y ̸= 0, then xy ̸= 0 and (xy)−1 = x−1y−1.

11. If x ≤ y and 0 ≤ z, then xz ≤ yz. If x ≤ y and z ≤ 0, then yz ≤ xz.

12. If x ≤ 0 and y ≤ 0, then xy ≥ 0. If x ≤ 0 and y ≥ 0, then xy ≤ 0.

13. 0 < 1.

14. For any x, x2 ≥ 0.

Proof 1. (Of No. 14)

Case I If x ≥ 0, then x2 = x · x ≥ 0, by property (16) of Axiom 1.1.

Case II If x < 0, then

x2 = x · x = (−1)(−x) · (−1)(−x) [by property 7 of Proposition 1.7]

= (−1)2 · (−x)2.

5



1 THE REAL LINE AND EUCLIDEAN SPACE 1.1 Algebraic Properties of R (as a Ordered Field)

Note that 0 = (−1)(−1+1) = (−1)2+(−1) if we distribute (−1). Then, adding 1 on both sides, we have

1 = (−1)2 + (−1) + 1 = (−1)2 [by additive inverse]

That is, (−1)2 = 1. So, x2 = (−1)2 · (−x)2 = 1 · (−x)2 = (−x)2 ≥ 0 by Case I.

Q.E.D. ■

Proposition 1.1.9 : ab ≤ a2 + b2

2
.

Proof 2.

(a− b)2 ≥ 0 [By property 14 of Proposition 1.7]

a2 + b2 − 2ab ≥ 0

2ab ≤ a2 + b2

ab ≤ a2 + b2

2
.

Q.E.D. ■

Definition 1.1.10 (Absolute Value (Norm) and Distance (Metric)). For x, y ∈ R, |x| =

x, x ≥ 0

−x, x < 0

is the absolute value, and d(x, y) = |x− y| is the distance.

Proposition 1.1.11 Properties of Absolute Value and Distance:

• |x| ≥ 0 for every x.

• |x| = 0 if and only if x = 0.

• |xy| = |x||y|.

• d(x, y) ≥ 0

• d(x, y) = 0 if and only if x = y.

• d(x, y) = d(y, x).

Theorem 1.1.12 Triangle Inequalities

∀x, y, z ∈ R

1. |x+ y| ≤ |x|+ |y|

2. ||x| − |y|| ≤ |x− y|

3. d(x, y) ≤ d(x, z) + d(z, y)

Proof 3. (Of No. 1)

Case I Suppose x ≥ 0 and y ≥ 0. Then, x+ y ≥ 0, and

|x+ y| = x+ y = |x|+ |y|. □
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.2 Construction of R and Completeness of R

Case II WLOG, suppose x ≥ 0 and y < 0.

• Suppose x+ y ≥ 0, then

|x+ y| = x+ y = |x| − (−y) = |x| − |y| ≤ |x|+ |y|. □

• Suppose x+ y < 0, then

|x+ y| = −(x+ y) = −x− y = −|x|+ |y| ≤ |x|+ |y|. □

Case III Suppose x < 0 and y < 0. Then, x+ y < 0, and

|x+ y| = −(x+ y) = −x+ (−y) = |x|+ |y|

Q.E.D. ■

1.2 Construction of R and Completeness of R

Notation 1.1. Recall the following number systems:

N = Z+ = {0, 1, 2, 3, . . . } non-negative integers

Z integers

Q =
{m
n

: m,n ∈ Z, n ̸= 0
}

rational numbers

Proposition 1.2.2 Important Properties of Number Systems:

• For N:

– Definition 1.2.3 (Principle of mathematical induction). If S is a subset of Z+ s.t. 0 ∈ S and

k ∈ S =⇒ k + 1 ∈ S, then S = Z+.

– Definition 1.2.4 (Well-Ordered Property). Each subset S ̸= ∅ has a smallest element.

As a consequence of well-ordering property, we have the principle of complete induction:

Definition 1.2.5 (Principle of Complete Induction). IfS ⊂ Z+ is a subset s.t. {x ∈ Z+ | x < n} ⊂
S =⇒ n ∈ S, then S = Z+.

• For Z:

– Commutative ring with identity

• For Q:

– Definition 1.2.6 (Countable). Q can be placed in one-to-one correspondence with N (or a

subset of it). The whole Q can be displayed as a list or sequence.

Remark 1.3 A simple way to prove it is to consider the points in the plane with integer coor-

dinates, say (p, q). After assigning fraction
p

q
(simplified to lowest terms and leave out cases

when q = 0) to this point, we achieve a one-to-one correspondence.
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.2 Construction of R and Completeness of R

– Definition 1.2.7 (Dense in Itself ). If x, y ∈ Q and x < y =⇒ ∃ z ∈ Q s.t. x < z < y.

– Proposition 1.2.8 Archimedean Property:

∀x ∈ Q, ∃n ∈ Z s.t. n > x.

Proof 1. If x ≤ 0, take n = 1. If x =
p

q
with p, q > 0, take n = p+ 1.

Q.E.D. ■

Remark 1.4 Equivalent formulation of the Archimedean Property:

* If x ∈ Q, then ∃ integer n s.t. x < n.

* If x, y ∈ Q and 0 < x < y, then ∃ integer k s.t. kx > y.

* If x > 0 ∈ Q, then ∃ integer n > 0 s.t. 0 <
1

n
< x.

– Ordered field.

Q is already an ordered field, why do we bother to define R for analysis?

The big idea: Q is not quite complete

• Evidence 1 (Analysis POV): There is no rational whose square is 2. That is, x2 = 2 has no

solution in R.

Proof 2. We will use proof by contradiction. Assume ∃ solution x =
m

n
with m,n ∈ Z and

they have no common factors. Then,(m
n

)2
= 2 =⇒ m2 = 2n2.

So, m2 is even, then m is even as well. Suppose m = 2k, k ∈ Z. Then,

m2 = (2k)2 = 4k2 = 2n2

n2 = 2k2.

So, n2 is even, and n is even.

⋇m,n both even, so they have a common factor of 2. This contradict with our assumption.

So, ∄ a solution x ∈ Q s.t. x2 = 2.

Q.E.D. ■

• Evidence 2 (Geometry POV): There is no rational representation of the diagonal of a square

of size 1.

Remark 1.5 (Informal Definition of Sequence Limit) A sequence is said to converge to a limit x if we

cna guarantee that the points in the sequence are as close as we wish to x by going far enough out in the

sequence.
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.2 Construction of R and Completeness of R

Definition 1.2.9 (Limit of a Sequence). A sequence {xn} is said to converge to x if ∀ ε > 0, ∃ integer

N s.t. |xn − x| < ε whenever n ≥ N . (Alternatively, n ≥ N =⇒ |xn − x| < ε). We denote the limit as

lim
x→∞

xn = x or, simply xn → x as n→∞.

Remark 1.6 N depends on ε, and the smaller the ε, the bigger the N .

Example 1.2.10 Show lim
n→∞

n+ 1

n+ 2
= 1.

Proof 3. Given ε > 0 [fix ε], we need to find N s.t. n ≥ N =⇒ |xn − 1| < ε, where xn =
n+ 1

n+ 2
.

Consider

|xn − 1| =
∣∣∣∣n+ 1

n+ 2
− 1

∣∣∣∣ = ∣∣∣∣n+ 1− n− 2

n+ 2

∣∣∣∣ = ∣∣∣∣ −1n+ 2

∣∣∣∣ = 1

n+ 2
.

Then, we want
1

n+ 2
< ε ⇐⇒ n+ 2 >

1

ε
⇐⇒ n >

1

ε
− 2.

By the Archimedean property, choose integer N >
1

ε
− 2. [N is fixed and is what we want to find]

Then, based on the arguments, when n ≥ N [n is changing], we have

|xn − 1| = 1

n+ 2
≤ 1

N + 2
< ε.

That is,

lim
n→∞

xn = 1.

Q.E.D. ■
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.2 Construction of R and Completeness of R

Theorem 1.2.11 Basic Properties of Limits

• Sandwich Lemma/Squeeze Theorem: Suppose xn → L, yn → L, and xn ≤ zn ≤ yn for all

n. Then, zn → L. It is also enough to assume that ∃N0 s.t. n > N0 =⇒ xn ≤ zn ≤ yn

• If a ≤ xn ≤ b for every n and xn → x, then a ≤ x ≤ b.

• Uniqueness: If xn is a sequence in an ordered field and xn → x and xn → y, then x = y.

• Boundedness: A convergent sequence is bounded.

• Arithmetic of Sequence and Limits: Suppose xn → x and yn → y. Then,

{xn}+ {yn} = {xn + yn} =⇒ xn + yn → x+ y

λ{xn} = {λxn} =⇒ λxn → λx

{xn}{yn} = {xnyn} =⇒ xnyn → xy

{xn}/{yn} = {xn/yn} =⇒ xn/yn → x/y

Definition 1.2.12 (Monotone Sequence Property/MSP). Every monotone increasing sequence that is

bounded (bdd) above converges.

Remark 1.7 “monotone increasing sequence” refers to a sequence where xn ≤ xn+1 ∀n; “bdd above”

refers to ∃x s.t. xn ≤ x ∀n, and we call this x an upper bound.

Definition 1.2.13 (Completeness). An ordered field F is said to be complete if it has the MSP.

Construction of R (from Q)

Consider set S of sequences,

S = {(x1, x2, . . . ) | xn ∈ Q, xn ↑ (monotone increasing), xn bdd above}.

Define equivalence relation (reflexive, transitive, symmetric)∼ on S:

{xn} ∼ {yn} ⇐⇒ xn and yn have the same upper bounds.

Then, each equivalence class defines a unique real number (as the limit of the representing se-

quence). Let

R = {x | x is an equivalence class in S}.

If r ∈ Q, then r is represented by the sequence r itself ({r}). So, Q ⊆ R.

Claim 1.2.14 R is a complete ordered field under the following operations: For x = [{xn}] and

y = [{yn}],

• Addition: x+ y = [{xn + yn}]

10



1 THE REAL LINE AND EUCLIDEAN SPACE 1.3 Another Approach: Least Upper Bound

• Multiplication: x · y = [{xn · yn}]

• Order: x ≤ y ⇐⇒ ∃ upper bd of {xn} that is≤ all upper bd of {yn}.

Theorem 1.2.15

R is the “unique” complete ordered field.

Remark 1.8 By unique, we mean isomorphism. That is, if ∃ another complete ordered field F , we can

put F and R into a one-to-one relationship.

Proposition 1.2.16 Properties of R:

• R is Archimedean: ∀x ∈ R, ∃ integer n > x.

• Q is dense in R:

– If x, y ∈ R and x < y =⇒ ∃r ∈ Q s.t. x < r < y.

– If x ∈ R and ε > 0 =⇒ ∃r ∈ Q s.t. |x− r| < ε.

• The interval (0, 1) is uncountable. (Hence, R is uncountable).

Proof 4. (of uncountability)

Assume (0, 1) is countable. Then, it can be put into a one-to-one relationship with N. Say the

following list exhauste elements of R:

x1 = 0.a11a12 · · · a1n · · · , x2 = 0.a21a22 · · · a2n · · · , . . . , xk = 0.ak1ak2 · · · akn · · · , . . .

[Goal: find a new number that is not in the list] Define a new number:

x = 0.x′1x
′
2 · · ·x′k · · · ,

where for each k, x′k =

4 if akk ̸= 4

3 if akk = 4.
[This construction ensures x′k ̸= akk] Then, x ∈ (0, 1) and

x ̸= xk ∀ k. ⋇ We have constructed a number that is not in the list. So, (0, 1) is not countable.

Q.E.D. ■

1.3 Another Approach: Least Upper Bound

Definition 1.3.1 (Upper Bound/Least Upper Bound). Let S ⊂ R.

• We say b is an upper bd for S if x ≤ b ∀x ∈ S.

• We say b is a least upper bd for S if b is an upper bd and≤ any upper bd of S.

We use lub(S) = sup(S) to denote the lease upper bd. (sup stands for supremum). For sets without an

upper bound, we define sup(S) = +∞.
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.3 Another Approach: Least Upper Bound

Remark 1.9 b = lub(S) ⇐⇒ (1) b is an upper bound, and (2) b ≤ any upper bound of S.

Example 1.3.2

Suppose S1 = (0, 2); S2 = [0, 2]; S3 = ∅; S4 = (0,∞). Then, lub(S1) = 2, lub(S2) =

2, lub(S3) = +∞, lub(S4) = +∞.

Definition 1.3.3 (Greatest Lower Bound). We use glb(S) = inf(S) to denote the greatest lower bound.

It is the largest lower bound of S. For sets without a lower bound, we define inf(S) = −∞.

Example 1.3.4

Example 1.3.2: inf(S1) = 0, inf(S2) = 0, inf(S3) = −∞, inf(S4) = 0, inf((−∞, 4)) = −∞.

Proposition 1.3.5 : Let S ⊂ R, S ̸= ∅, then

• b = lub(S) ⇐⇒ b is an upper bound and ∀ ε > 0, ∃x ∈ S s.t. x > b − ε. This implies that an

element slightly smaller than b is not an upper bound any more.

• a = inf(S) ⇐⇒ a is a lower bound and ∀ ε > 0, ∃x ∈ S s.t. x < a+ ε.

Proposition 1.3.6 : Suppose ∅ ̸= A ⊂ B ⊂ R. Then,

inf(B) ≤ inf(A) ≤ sup(A) ≤ sup(B).

Theorem 1.3.7 Equivalent Condition for Completeness: Least Upper Bound Condition

R has the following properties:

• LUB property: Every non-empty subset bounded above has the least upper bound.

• GLB property: Every non-empty subset bounded below has the greatest lower bound.

Proof 1. (of the LUB Property)

Set-up: Fix any S ∈ R that is bounded above and S ̸= ∅.

[WTS: the existence of lub(S) ⇐= Tool: MSP (but we need to construct monotone sequence first.)

Step 1 Construction of a Monotone Sequence

Fix an upper bound M for S. For each fixed integer n ≥ 1, consider ak = M − k

2n
, k = 1, 2, . . . . By

the well-ordering property, we can choose an integer kn who is the 1st integer k s.t. ak is not an upper

bound.

Let bn =M − kn
2n

. Then, bn is not an upper bound, but bn+
1

2n
is an upper bound (by construction).

Step 2 Apply MSP to {bn}

• bn is monotone increasing:

12



1 THE REAL LINE AND EUCLIDEAN SPACE 1.4 Cauchy Sequence and Cauchy Completeness

Note that

bn+1 − bn =

(
M − kn+1

2n+1

)
−
(
M − kn

2n

)
=

2kn − kn+1

2n+1

Suppose, for the sake of contradiction, that bn+1 − bn < 0. Then, bn+1 − bn ≤ −
1

2n+1
. That is,

bn ≥ bn+1 +
1

2n+1
.

⋇ However, by construction, bn is not an upper bound, but bn+1 +
1

2n+1
is an upper bound. So,

there is a contradiction, and thus bn+1 − bn > 0. This contradictions shows that bn is a monotone

increasing sequence.

• bn is bounded above:

Note that bn ≤M . So, bn is bounded above.

By MSP, suppose bn → b for some b ∈ R.

Step 3 Show b = lub(S)

• b is an upper bound:

Fix x ∈ S, we have x ≤ bn +
1

2n
∀n. When x→∞, x ≤ b+ 0. So, x ≤ b.

• b is the least upper bound: [WTS: ∀ ε > 0, ∃x ∈ S s.t. b− ε < x.]

As b is the limit, we can always find a bn s.t. |bn − b| < ε. That is, b− bn < ε, or bn > b− ε. Hence, b

is the least upper bound.

Q.E.D. ■

1.4 Cauchy Sequence and Cauchy Completeness

Definition 1.4.1 (Cauchy Sequence). A sequence xn ∈ R is a Cauchy Sequence if ∀ ε > 0, ∃N s.t. n,m ≥
N =⇒ |xn − xm| < ε.

Proposition 1.4.2 : Every convergent sequence is Cauchy.

Proof 1. Suppose xn → x ∈ R. Given ε < 0. Consider

|xn − xm| = |xn − x+ x− xm|

≤ |xn − x|+ |x− xm|

≤ ε

2
+
ε

2
.

Q.E.D. ■

Theorem 1.4.3 Cauchy Completeness

Every Cauchy sequence in R converges.

13



1 THE REAL LINE AND EUCLIDEAN SPACE 1.4 Cauchy Sequence and Cauchy Completeness

Remark 1.10 (Strategy of the Proof ) Cauchy Sequence Lemma 1.4.4
==========⇒Bounded Sequence Theorem 1.4.5

===========⇒

∃ convergent subsequence + Cauchy sequence Lemma 1.4.6
==========⇒ Sequence converges.

Lemma 1.4.4 : Every Cauchy sequence is Bounded.

Theorem 1.4.5

Every bounded sequence in R has a subsequence that converges to some point in R.

Proof 2. Let {xn} be a bounded sequence in R. Fix M s.t. −M < xn < M ∀n.

Divide [−M,M ] into subintervals [−M, 0] and [0,M ]. One of them, called I0, must contain infinitely

many terms of {xn}. Choose n0 s.t. xn0 ∈ I0.

Divide I0 into two equal subintervals. One of them, denoted I1, contains infinitely many elements.

Choose n1 > n0 s.t. xn1 ∈ I1.

Continuing this process, we obtain subintervals Ik = [ak, bk] for k = 0, 1, . . . , and includes nk with

the following properties:

• I0 ⊃ I1 ⊃ I2 ⊃ · · ·

• bk − ak =
M

2k

• xnk
∈ Ik

[To prove {xnk
} converges, we prove {ak} and {bk} converge, and apply the Squeeze Theorem.]

• Show {ak} converges: ak is monotone increasing and bounded. By MSP, ak → a ∈ R.

• Show {bk} converges: Note that bk = ak +
M

2k
. When k → 0,

ak +
M

2k
= a+ 0 = a.

So, bk → a when k →∞.

Hence, as ak ≤ xnk
≤ bk, ak → a, bk → a, it must be that xnk

→ a as well.

Q.E.D. ■

Lemma 1.4.6 : If a subsequence of a Cauchy sequence converges to x, then the sequence itself con-

verges to x.

Proof 3. Given {xn} is Cauchy and xnk
→ x, [WTS: xn → x]. Consider

|xn − x| = |xn − xnk
+ xnk

− x|

≤ |xn − xnk
|︸ ︷︷ ︸

Cauchy =⇒ small

+ |xnk
− x|︸ ︷︷ ︸

Convergent =⇒ small

Q.E.D. ■
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.4 Cauchy Sequence and Cauchy Completeness

Summary I: Completeness on Ordered Field

Let F be an ordered field.

Definitions

• Archimedean Property: ∀x ∈ F , ∃ integer N s.t. x < N .

(Equivalently, ∀ ε > 0, ∃ integer n s.t. 0 <
1

n
< ε).

• Monotone Sequence Property (MSP): Every monotone increasing sequence

bounded above converges.

• Completeness: We say F is complete if it has the MSP.

• LUB Property: Every set S ̸= ∅ bounded above has a least upper bound.

• Cauchy Property: Every Cauchy sequence converges.

Facts in any ordered field

• MSP =⇒ Archimedean Property

Remark 1.11 In general, the converse is not true. For example, Q has the Archimedean

property but not MSP.

• MSP ⇐⇒ LUB Property.

• MSP =⇒ Cauchy Property

Remark 1.12 The converse is true when Archimedean property is true.

Facts in R

• MSP ⇐⇒ LUB Property ⇐⇒ Cauchy Property

15



1 THE REAL LINE AND EUCLIDEAN SPACE 1.5 lim inf and lim sup

1.5 lim inf and lim sup

Example 1.5.1 Cluster Points of a Sequence

Consider the sequence

an = (−1)n + 1

n
.

Then, a1 = 0, a2 = 1+
1

2
, a3 = −1+

1

3
, a4 = 1+

1

4
, · · · . This sequence does not converge. However,

its terms seem to “cluster” around 1 and−1.

Definition 1.5.2 (Cluster Points). A point x is called a cluster point of a sequence {xn} if ∀ ε > 0, ∃
infinitely many values of n s.t. |xn − x| < ε.

Remark 1.13 This definition is weaker than that of limits.

Proposition 1.5.3 Relation Between Limits and Cluster Points: Suppose xn ∈ R and x ∈ R. Then,

1. x is a cluster point of {xn} ⇐⇒ ∀ ε > 0 and ∀ integer N , ∃n > N s.t. |xn − x| < ε.

2. x is a cluster point of {xn} ⇐⇒ ∃ subsequence xnk
→ x.

3. xn → x ⇐⇒ every subsequence converges to x.

4. xn → x ⇐⇒ the sequence is bounded and x is the only cluster point.

5. xn → x ⇐⇒ every subsequence has a further sequence that converges to x.

Proof 1. (of some claims)

1. Follows from Definition.

2. (⇒) Assume x is a cluster point. [WTS: ∃ subsequence xnk
→ x].

Given ε1 = 1 and N = 1, by (1), ∃n1 > 1 s.t. |xn1 − x| < ε = 1.

Given ε2 =
1

2
and N = n1, by (1), ∃n2 > n1 s.t. |xn2 − x| < ε =

1

2
.

So, in general, given εk =
1

k
and N = nk−1,

∃nk > nk−1 = Nk s.t. |xnk
− x| < εk =

1

k
.

Then, xnk
→ x as k →∞.

3. (⇐) [Prove by contrapositive/contradiction] Assume every subsequence converges. For the sake

of contradiction, assume xn does not converge to x. Then we need to construct a subsequence

xnk
s.t. xnk

̸→ x.

4. (⇐) [Prove by contrapositive/contradiction]

16



1 THE REAL LINE AND EUCLIDEAN SPACE 1.5 lim inf and lim sup

5. (⇐) Use (4). Every subsequence has its own subsequence that converges to x. So, x is a cluster

point of every subsequence. Then, we just need to show x is the only cluster point of {xn}.

Q.E.D. ■

Definition 1.5.4 (lim inf and lim sup). Given a sequence xn ∈ R. For each integer k ≥ 1, let

ak = inf {xk+1, xk+2, . . . }︸ ︷︷ ︸
Set Sk

and bk = sup {xk+1, xk+2, . . . } = supSk.

Then,

lim inf xn = sup {ak} and lim supxn = inf {bk}.

Remark 1.14

• ak ≤ bk, ak is monotone increasing sequence, and bk is monotone decreasing sequence. Thus,

lim inf xn = lim
k→∞

ak and lim supxn = lim
k→∞

bk.

Also, lim inf xn ≤ lim supxn.

• lim supxn = +∞ ⇐⇒ bk = +∞ ∀ k ⇐⇒ xn is not bounded above.

lim inf xn = −∞ ⇐⇒ ak = −∞ ∀ k ⇐⇒ xn is not bounded below.

Proposition 1.5.5 : lim supxn = b ∈ R ⇐⇒ ∀ ε > 0,

1. ∃N s.t. n ≥ N =⇒ xn < b+ ε, and

2. ∀M, ∃n ≥M s.t. xn > b− ε.

Proof 2. (of forward direction) By definition, we know lim
k→∞

bk = b, which implies ∀ε > 0, ∃N s.t. k ≥
N =⇒ |bk − b| < ε. That is, −ε < bk − b < ε. As be is monotone decreasing, bk − b ≥ 0. So,

0 ≤ bk − b < ε .

1. Note that bk = sup {xk+1, xk+2, . . . }. So, if n > k, xn ≤ bk < b+ ε ∀k ≥ N . Therefore,

n ≥ N + 1 =⇒ xn < b+ ε.

2. We have 0 ≤ bk − b, or bk ≥ b ∀ k. Given any integer M . [We need to find n ≥ M s.t. xn > b− ε]

Then,

bM = sup {xM+1, xM+2m, . . . } ≥ b.

So, by definition of supremum, we can find n > M s.t. xn > bM − ε ≥ b− ε.

Q.E.D. ■

Proposition 1.5.6 : lim supxn = b ∈ R =⇒ ∃ subsequence xnk
→ b.

17



1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space Rn and General Metric Space

Proof 3. We will construct a subsequence nk inductively such that

b− εk < xnk
< b+ εk, εk =

1

k
.

Given ε = 1, by Proposition 1.5.5(1), ∃N1 s.t. n ≥ N1 =⇒ xn < b + ε1. Further, by Proposition

1.5.5(2), for M = N1, ∃n1 > N1 s.t. xn1 > b− ε1. Therefore,

b− ε1 < xn1 < b+ ε1.

Claim Given kn, we can find nk+1 s.t. nk+1 > nk, and

b− 1

k + 1
< xnk+1

< b+
1

k + 1
.

After {xnk
} is constructed, use the sandwich lemma to prove xnk

→ b.

Q.E.D. ■

Remark 1.15 Similar arguments hold for lim inf xn = a.

Proposition 1.5.7 Relation Between Cluster Points and Limit: Let xn ∈ R be a given sequence.

1. If x is a cluster point =⇒ lim inf xn ≤ x ≤ lim supxn.

2. If a = lim inf xn is finite =⇒ a is the smallest cluster point.

3. If b = lim supxn is finite =⇒ b is the largest cluster point.

4. xn → x ∈ R ⇐⇒ lim inf xn = lim supxn = x.

Proof 4. (of (1)) Suppose x is a cluster point. Then, ∃ subsequence xnk
→ x as k →∞.

[WTS: an ≤ x ≤ bn ∀n]

For each n, bn = sup {xn+1, xn+2, . . . } ≥ xnk
for large enough k. Let k → ∞, we have bn ≥ x.

Similarly, an = inf {xn+1, xn+2, . . . } ≤ xnk
for large enough k. As k →∞, an ≤ x.

So, an ≤ x ≤ bn. Take the limit as n→∞:

lim
n→∞

an ≤ x ≤ lim
n→∞

bn =⇒ lim inf xn ≤ x ≤ lim supxn.

Q.E.D. ■

1.6 Euclidean Space Rn and General Metric Space

Notation 1.1. Rn = {(x1, x2, . . . , xn) | x1, . . . , xn ∈ R}.

18



1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space Rn and General Metric Space

Remark 1.16 (Rn is a Vector Space) We can write its standard bases as {e1, e2, . . . , en}, and the general

representation of x will be

x =
n∑
j=1

xjej .

Definition 1.6.2 (Norm and Metric). For x, y ∈ Rn, define norm (or length) as

∥x∥ =

√√√√ n∑
i=1

x2i

and the metric (distance) as

d(x, y) = ∥x− y∥ =

√√√√ n∑
i=1

(xi − yi)2.

Definition 1.6.3 (Inner Product). We define the inner product (or dot product) as

⟨x, y⟩ =
n∑
i=1

xiyi.

Geometrically, if θ is the angle between x and y, then

⟨x, y⟩ = ∥x∥ · ∥y∥ · cos θ.

So, if x ⊥ y, ⟨x, y⟩ = 0.

Proposition 1.6.4 Properties of Inner Product: Suppose ⟨·, ·⟩ is an inner product, then

• Positive definite: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇐⇒ x = 0.

• Linearity: ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩ and ⟨αx, y⟩ = α⟨x, y⟩.

• Symmetry: ⟨x, y⟩ = ⟨y, x⟩.

Proposition 1.6.5 Properties of Norm: Suppose ∥·∥ is a norm, then

• Positive definite: ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0.

• Linearity: ∥αx∥ = |α| · ∥x∥.

• Triangle Inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proposition 1.6.6 Properties of Metric: Suppose d(·, ·) is a metric, then

• Positive definite: d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y).

Remark 1.17 Inner product always induces a norm. Norm always induced a metric.
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space Rn and General Metric Space

Theorem 1.6.7 Cauchy-Schwarz Inequality

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥.

Example 1.6.8 Use Cauchy-Schwarz Inequality to Prove Triangle Inequality of Norms

Proof 1. Note that

∥x+ y∥2 = ⟨x+ y, x+ y⟩ [Definition]

= ⟨x+ y, x⟩+ ⟨x+ y, y⟩ [Distribution]

= ⟨x, x⟩+ ⟨y, x⟩+ ⟨x, y⟩+ ⟨y, y⟩ [Dsitributionl]

= ∥x∥2 + ∥y∥2 + 2⟨x, y⟩ [Symmetry]

≤ ∥x∥2 + ∥y∥2 + 2 · ∥x∥ · ∥y∥ [Cauchy-Schwarz]

= (∥x∥+ ∥y∥)2.

Q.E.D. ■

Definition 1.6.9 (General Metric Space). A metric space (M,d) is a set M and a function d : M ×m →
R s.t. ∀x, y, z ∈M , the following conditions hold:

• Positive definite: d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y).

Definition 1.6.10 (General Normed Space). A normed space (V, ∥·∥) is a vector space V together with

a function ∥·∥ : V → R s.t. ∀x, y ∈ V and ∀α ∈ R,

• Positive definite: ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0.

• Linearity: ∥αx∥ = |α| · ∥x∥

• Triangle Inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Definition 1.6.11 (General Inner Product Space). An inner product space (V, ⟨·, ·⟩) is a vector space V

and a function ⟨·, ·⟩ : V × V → R s.t. ∀x, y, z ∈ V and ∀α ∈ R:

• Positive definite: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇐⇒ x = 0.

• Symmetry: ⟨x, y⟩ = ⟨y, x⟩.

• Linearity: ⟨αx, y⟩ = α⟨x, y⟩ and ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.
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1 THE REAL LINE AND EUCLIDEAN SPACE 1.6 Euclidean Space Rn and General Metric Space

Example 1.6.12

• Rn is a metric space with d(x, y) = ∥x− y∥.

• Discrete Metric: Given any set M , define

d(x, y) =

0, x = y

1, x ̸= y.

• Bounded Metric: Given metric space (M,d), define ρ :M ×M → R:

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

Claim 1.6.13 (M,ρ) is also a metric space.

• R2 is a metric space under the taxicab metric d1 : R2 × R2 → R:

d1
(
(x1, y1), (x2, y2)

)
= |x2 − x1|+ |y2 − y1|.

• Let C([0, 1]) be the collection of all continuous function f : [0, 1]→ R. Define

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx.

Then, C is an inner product space.

Remark 1.18 (Relation Among Inner Product, Normed, and Metric Space)

Inner Product =⇒ Norm =⇒ Metric

• An inner product ⟨·, ·⟩ induces a norm:

∥x∥ =
√
⟨x, x⟩.

• A norm ∥·∥ always induces a metric:

d(x, y) = ∥x− y∥.
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Theorem 1.6.14 General Cauchy-Schwarz Inequality

In an inner product space (V, ⟨·, ·⟩), we have ∀ v, w ∈ V ,

|⟨v, w⟩| ≤ ⟨v, v⟩
1
2 · ⟨w,w⟩

1
2 .

Proof 2. If v = 0 or w = 0, it is trivial.

Assume v ̸= 0 and w ̸= 0. For any t ∈ R, consider

⟨tv + w, tv + w⟩

Then,

0 ≤ ⟨tv + w, tv + w⟩ = t2 ⟨v, v⟩︸ ︷︷ ︸
a

+2t ⟨v, w⟩︸ ︷︷ ︸
b

+ ⟨w,w⟩︸ ︷︷ ︸
c

Let f(t) = at2 + 2bt + c be a 2nd order polynomial of t. Note that f(t) ≥ 0 ∀ t ∈ R. On the other hand

(OTOH), since a = ⟨v, v⟩ > 0, f(t) has minimum where f ′(t) = 0.

f ′(t) = 2at+ 2b = 0

t = − b
a
.

So, f
(
− b
a

)
≥ 0, or

(
− b
a

)2

a+ 2b

(
− b
a

)
+ c ≥ 0

b2

a
− 2

b2

a
+ c ≥ 0

c ≥ b2

a

b2 ≤ ac

(⟨v, w⟩)2 ≤ ⟨v, v⟩ · ⟨w,w⟩

|⟨v, w⟩| ≤ ⟨v, v⟩
1
2 · ⟨w,w⟩

1
2 .

Q.E.D. ■
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2 TOPOLOGY OF EUCLIDEAN SPACE

2 Topology of Euclidean Space

2.1 Open Set

Definition 2.1.1 (Neighborhood & Open Set). Let (M,d) be a metric space. Fix x ∈M and ε > 0.

• Neighborhood (nbdd):

D(x, ε) = {y ∈M | y(x, y) < ε}.

It is also referred as ε-nbdd, ε-disk, or ε-ball.

• Open Set : A set A ⊂M is open if ∀x ∈ A, ∃ε > 0 s.t. D(x, ε) ⊂ A.

Example 2.1.2 Open Set

• The unit disk D =
{
(x, y) ∈ R2 | x2 + y2 > 1

}
is open in R2.

• The interval (0, 1) ⊂ R1 is open.

• Given any metric space (M,d) and x0 ∈M . The disk

D(x0, r) = {x ∈M | d(x, x0) < r}

is open ∀r > 0.

Proof 1. Fix x ∈ D(x0, r). [WTS: ∃ ε > 0 s.t. D(x, ε) ⊂ D(x0, r).]

Since x ∈ D(x0, r), by definition, d(x, x0) < r. Hence, ε = r − d(x, x0) > 0.

Claim 2.1.3 D(x, ε) ⊂ D(x0, r).

Proof. Let y ∈ D(x, ε). Then,

d(y, x) ≤ d(y, x0) + d(x0, x)

< ε+ d(x0, x)

= r −����d(x0, x) +����d(x0, x)

= r.

So, d(y, x) < r. By definition, y ∈ D(x0, r). □

So, D(x, ε) ⊂ D(x0, r). By definition, d(X0, r) is open.

Q.E.D. ■

• The set S =
{
(x, y) ∈ R2 | xy > 1

}
is open.

Proof 2. Givene (x, y) ∈ S. [WTS: ∃ ε > 0 s.t. D
(
(x, y), ε

)
⊂ S.]

Since xy > 1, λ =
1

2

(
1− 1

xy

)
> 0.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.1 Open Set

WLOG, assume x > 0 and y > 0.

Let ε = min {λx, λy}. Then, for (u, v ∈ D
(
(x, y), ε

)
, we have

d
(
(u, v), (x, y)

)
< ε√

(x− u)2 + (y − v)2 < ε.

So, |x− u| < ε and |y − v| < ε. Then,

x
∣∣∣q − u

x

∣∣∣ < ε

u

x
> 1− ε

x
≥ 1− λx

x
= 1− λ.

Similarly,
v

y
> 1− λ.

Then,

u · v =
u

x
· v
y
· (xy) > (1− λ)2(xy)

> (1− 2λ)(xy) = 1.

So, as uv > 1, (u, v) ∈ S. Hence, S is open.

Sketch. Given xy > 0; Want uv > 1. Note that

uv =
u

x︸︷︷︸
(1−λ)

· v

y︸︷︷︸
(1−λ)

·xy

= (1− λ)2(xy)

> (1− 2λ+ λ2)(xy)

> (1− 2λ)(xy)

≥ 1

=⇒ 1− 2λ ≥ 1

xy
.

Q.E.D. ■

Remark 2.1

• In the above definition, ε depends on the point x.

• The open set is defined w.r.t. the underline metric space.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.1 Open Set

Example 2.1.4

A = (0, 1). Then, A is an open set as a subset in R1. However, A is not open as a subset in R2.

Proposition 2.1.5 Properties of Open Set: Let (M,d) be a metric space. Then,

• The intersection of a finite number of open sets is open.

• The union of any number of open sets is open.

• ∅ and M are open.

Proof 3. (of ①) Suppose A =

n⋂
j=1

Aj . Fix x ∈ A. By definition, x ∈ Aj ∀ j = 1, . . . , n. Then, we can

find εj > 0 s.t. D(x, εj) ∈ Aj . As Aj is open. Take ε = min {ε1, ε2, . . . , εn}. We know

D(x, ε) ∈ Aj ∀ j = 1, . . . , n.

Hence, D(x, ε) ∈
n⋂
j=1

Aj . So, A is open.

Q.E.D. ■

Remark 2.2 The intersection of infinitely many number of open sets may not be open.

Definition 2.1.6 (Interior Point). Let A ⊂ M . A point x ∈ A is called an interior point of A if ∃ ε >
0 s.t. D(x, ε) ⊂ A. The interior of A is the collection of all interior points, denoted by int(A).

Example 2.1.7

• A = {x0} ⊂ Rn, int(A) = ∅ as there is no nbdd around the point x0.

• A = (0, 1) ⊂ R1, int(A) = A.

Remark 2.3 A set is open if every point in A is an interior point of A.

• B = [0, 1] ⊂ R1, int(B) = (0, 1).

Proposition 2.1.8 Properties of int(A):

• int(A) is open.

• int(A) is the union of all open subsets of A.

Remark 2.4 Or, int(A) is the largest open subset of A.

• A is open ⇐⇒ A = int(A).
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2.2 Closed Sets

Definition 2.2.1 (Closed Set). A set A ⊂M is closed if its complement, AC =M\A, is open.

Example 2.2.2

• A = [0, 1] ⊂ R1.

AC = (−∞, 0) ∪ (1,+∞).

AC is open =⇒ A is closed.

• B =
{
(x, y) ∈ R2 | 1 < x2 + y2 ≤ 4

}
.

BC =
{
(x, y) ∈ R2 | x2 + y2 ≤ 1 or x2 + y2 > 4

}
.

B is not open and not closed.

• A single point set is closed.

• B(x, ε) = {y ∈M | y(y, x) ≤ ε} is closed.

Proposition 2.2.3 Basic Properties of Closed Sets: Given (M,d), then

• Union of finite number of closed set is closed.

• Intersection of any number of closed set is closed.

• ∅ and M are always closed.

Remark 2.5 In property ①, one cannot replace “finite number” by “countably many.”

Definition 2.2.4 (Accumulation Point). A point x ∈ M is an accumulation point of the set A if ∀ ε >
0, ∃ y ∈ A s.t. y ̸= x and y ∈ D(x, ε). The collection of accumulation points of A is denoted as ac(A).

Remark 2.6 x does not need to be in A.

Definition 2.2.5 (Closure/cl(A)).

cl(A) = intersection of all closed sets containing A

= A ∪ ac(A).

Definition 2.2.6 (Boundary ofA/∂A/bd(A)).

bd(A) = ∂A = cl(A) ∩ cl(M\A)

= cl(A)\ int(A).
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.2 Closed Sets

Theorem 2.2.7 Equivalent Conditions of Closed Sets

Let A ⊂M , the following are equivalent (TFAE):

• A is closed.

• ac(A) ⊂ A.

• A = cl(A).

• bd(A) ⊂ A.

Proof 1.

(① =⇒ ②): Let A ⊂ M be closed and x ∈ ac(A). [WTS: x ∈ A.] Assume x ̸∈ A. Then, x ∈ M\A.

[Proof by contradiction.]

Since A is closed, M\A is open, which means x ∈ int(M\A). That is, ∃ ε > 0 s.t. D(x, ε) ⊂ M\A.

Hence, D(x, ε)A = ∅. ⋇ This contradicts with the assumption that x ∈ ac(A). As D(x, ε) ∩ A = ∅,

∄ y ∈ A s.t. y ∈ D(x, ε). Hence, x ∈ A. □

(②⇐⇒ ③): We have cl(A) = A ∪ ac(A).

(⇒): If ② is true, ac(A) ⊂ A. Then, cl(A) = A.

(⇐): If ③ is true cl(A) = A. Then, A ∪ ac(A) = A, so ac(A) ⊂ A. □

(③ =⇒ ④): Note that bd(A) = cl(A) ∩ cl(M\A). Then, bd(A) ⊂ cl(A). If A = cl(A), then bd(A) ⊂
cl(A) = A. □

(④ =⇒ ①): Suppose bd(A) ⊂ A. AssumeA is not closed, thenM\A is not open. [Proof by contradic-

tion.] So, ∃x0 ∈M\A that is not an interior point. Hence, ∀ ε > 0,D(x0, ε) ̸⊂M\A. So,D(x0, ε)∩A ̸= ∅.

Hence, ∃ y ∈ D(x0, ε)∩A. Note that x0 ∈M\A but y ∈ D(x0, ε)∩A. So, x0 ̸= y. By definition, x0 ∈ ac(A).

⋇ As x0 ∈ ac(A) ⊂ bd(A), but x0 ̸∈ A, this contradicts with the assumption that bd(A) ⊂ A. Hence, A

must be closed.

Q.E.D. ■

Proposition 2.2.8 :

• cl(A) ∩A = A.

• If A is open, then bd(A) ⊂M\A.

Definition 2.2.9 (Limit Point of a Set). A point x ∈ M is called a limit point of A if U ∩ A ̸= for every

open set U containing x.

Proposition 2.2.10 :

• If x ∈ ac(A), then x is a limit point.

• If x is a limit point of A and x /∈ A, then x ∈ ac(A).

• If x is a limit point of A, ∃ a sequence xn ∈ A with xn → x.

• A is closed ⇐⇒ A contains all of its limit points.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.2 Closed Sets

Summary II: Definitions on Point Set Topology

Let M be a metric space and A ⊂M .

• x ∈ A is an interior point of A if ∃ ε > 0 with D(x, ε) ⊂ A.

• A is said to be open if every point of A is an interior point, or equivalently, int(A) = A.

• A neighborhood of a point x is any open set U containing x.

• A is closed if its complement M\A is open.

• A point x ∈M is an accumulation point of A is ∀ ε > 0, ∃ y ∈ A with y ̸= x and y ∈ D(x, ε).

• Closure of A: cl(A) = A ∪ ac(A).

• Boundary of A: ∂A = bd(A) = cl(A) ∩ cl(A\M) = cl(A)\ int(A).
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2.3 Convergence

Definition 2.3.1 (Convergence of a Sequence). Let (M,d) be a metric space. Let xk ∈M be a sequence

and x ∈M . We say that xk converges to x (write xk → x) if ∀ ε > 0, ∃N s.t. d(xk, x) < ε ∀k ≥ N .

Theorem 2.3.2 Equivalent Definitions of Convergence

• xk → x ⇐⇒ ∀ open set U containing x, ∃N s.t. xk ∈ U ∀ k ≥ N .

Remark 2.7 This definition replaces ε- neighborhood by an arbitrary neighborhood.

• xk → x ⇐⇒ d(xk, x)→ 0.

Theorem 2.3.3 Equivalent Definition of Convergence in Rn

In Rn, write

vk =
(
v
(1)
k , v

(2)
k , . . . , v

(n)
k

)
and v =

(
v(1), v(2), . . . , v(n)

)
.

Then,

d(vk, v)
2 = ∥vk − v∥2 =

n∑
i=1

∣∣∣v(i)k − v(i)∣∣∣2.
Thus, vk → v ⇐⇒ v

(1)
k → v(i) ∀ i = 1, . . . , n

Proposition 2.3.4 : Let vk, wk ∈ Rn and λk, λ ∈ R with vk → v, wk → w, λk → λ. Then,

• vk + wk → v + w

• λvk → λv

• λkvk → λv

Theorem 2.3.5 Convergence and Closedness

Let (M,d) be a metric space and A ⊂M .

• A is closed ⇐⇒ for every sequence xk ∈ A that converges in M , the limit lies in A.

• x ∈ cl(A) ⇐⇒ ∃xk ∈ A s.t. xk → x.

Proof 1. (of ①, sketch):

(⇒) Assume A ⊂ M is closed. Let xk ∈ A be a sequence with xk → x ∈ M . [WTS: x ∈ A.] Suppose

x /∈ A. Then, x ∈ M\A.A is closed =⇒ M\A is open =⇒ ∃ ε > 0 with D(x, ε) ⊂ M\A. As xk → x,

some xk ∈ D(x, ε) ⊂M\A. ⋇ This contradicts with our assumption that xk ∈ A. So, x ∈ A. □

(⇐): Suppose xk ∈ A with xk → x ∈ A. Assume A ⊂ M is not closed. Then, M\A is not open

=⇒ ∃x ∈ M\A s.t. ∀ ε > 0, D(x, ε) ̸⊂ M\A. For ε =
1

k
, ∃xk ∈ D

(
x,

1

k

)
∩ A. Then, ⋇ xk → x /∈ A,

contradicting with the assumption xk → x ∈ A. Hence, A must be closed.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.3 Convergence

Q.E.D. ■
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.4 Completeness

2.4 Completeness

Definition 2.4.1 (Cauchy Sequence). {xk} ∈ M is a Cauchy sequence if ∀ ε > 0, ∃N s.t. ∀m,n ≥ N ,

d(xn, xm) < ε.

Definition 2.4.2 (Bounded Sequence). A sequence {xk} ∈M is bounded if ∃x0 ∈M and ∃R > 0 s.t.

d(x0, xk) ≤ R ∀ k.

Or, xk ∈ B(x0, R) ∀k, where B(x0, R) denotes a closed call centered at x0 with radius R.

Definition 2.4.3 (Completeness). (M,d) is complete if every Cauchy sequence in M converges.

Example 2.4.4

• R1 and Rn are complete

• M = R1\{0} is not complete. For example, xk =
1

k
does not converge in R1\{0}.

• Q is not complete.

Proposition 2.4.5 Basic Properties of Cauchy Sequence:

• Cauchy sequence is always bounded.

• Any converging sequence is always Cauchy.

• If a subsequence of a Cauchy sequence converges, then the original sequence converges.

Proof 1. (of ①): Suppose {xk} is Cauchy sequence. [WTS: ∃x0 and ∃R s.t. xk ∈ B(x0, R) ∀ k.]

Then, fix ε = 1. By Cauchy sequence, ∃N s.t. m, n ≥ N =⇒ d(xm, xn) < ε = 1. Define

R = max {ε, d(xN , x1), d(xN , x2), . . . , d(xN , xN−1)}

= max {1, d(xN , xk) : k = 1, . . . , N − 1}

Then, we have d(xk, xN ) ≤ R ∀ k, which implies that Cauchy sequence is bounded.

Q.E.D. ■

Theorem 2.4.6 Closedness and Completeness

Let (M,d) be a metric space.

• N ⊂M is complete =⇒ N is closed. [Completeness is stronger than closedness]

• N ⊂M is closed and M is complete =⇒ N is complete.

Remark 2.8 If (M,d) is a metric space and N ⊂M , then (N, d) is also a metric space.
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2 TOPOLOGY OF EUCLIDEAN SPACE 2.4 Completeness

Proof 2.

• (of ①): Suppose N ⊂M is complete. [WTS: every sequence xk ∈ N that converges, the limit is in

N .]

Given {xk} ∈ N with xk → x ∈M . [WTS: x ∈ N .]

Since {xk} ∈M converges, it is Cauchy. Further, asN ⊂M is complete, by definition, xk → x ∈ N
as desired. □

• (of ②): Suppose N ⊂M is closed and M is complete. [WTS: Cauchy sequence xk → x ∈ N .]

Given xk ∈ N is a Cauchy sequence. Then, xk ∈ M as N ⊂ M . Since M is complete, we know

xk → x ∈ M . Further, as N is closed, we know xk → x ∈ N . Hence, every Cauchy sequence

converges in N . By definition, N is complete.

Q.E.D. ■

Definition 2.4.7 (Cluster Point). x is a cluster point of {xk} if ∀ ε > 0, ∃ infinitely many indices

k s.t. d(xk, x) < ε.

Proposition 2.4.8 Properties of Cluster Points:

• x is a cluster point ⇐⇒ ∀ ε > 0, ∀N, ∃ k > N s.t. d(xk, x) < ε.

• x is a cluster point ⇐⇒ ∃ subsequence xnk
→ x.

• xk → x ⇐⇒ each subsequence xnk
→ x.

• xk → x ⇐⇒ each subsequence has a further subsequence that converges to x.
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3 Compactness and Connectedness

3.1 Compactness

Definition 3.1.1 (Cover and Subcover). Let A ⊂M .

• A cover of a set A ⊂M is a collection {Ui} of sets Ui ⊂M such that⋃
i

Ui ⊃ A.

• We say {Ui} of A is an open cover if each Ui is open.

• A subcover of a given cover is a subcollection of {Ui}whose union contains A.

• We say a cover is a finite cover if the subcollection contains finite number of sets.

Example 3.1.2

Suppose A = [0, 1] ⊂ R1. Consider

U1 = (−1, 0.1), U2 = (0, 0.5), U3 = (0.5, 1).

U4 = (0.2, 0.6), U5 = (0.8, 2), U6 = (0, 1).

Then,

• {U1, . . . , U6} is a finite cover of A.

• It is also an open cover.

• {U1, U5, U6} is a subcover.

Definition 3.1.3 (Compactness). A set A ⊂ M is called compact if every open cover of A has a finite

subcover.

Definition 3.1.4 (Sequencially Compact). A set A ⊂M is sequencially compact if every sequence in A

has a subsequence that converges to a point in A.

Definition 3.1.5 (Totally Bounded). A setA ⊂M is totally bounded if ∀ ε > 0, ∃finite set {x1, x2, . . . , xN} ⊂
M s.t.

A ⊂
N⋃
i=1

D(xi, ε).

Remark 3.1

• A is sequencially compact =⇒ A is closed and bounded.

Proof 1. Suppose A is unbounded. Fix x0 ∈M . For any n ≥ 1, ∃xn ∈ A s.t.

d(xn, x0) ≥ n.
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3 COMPACTNESS AND CONNECTEDNESS 3.1 Compactness

By sequential compactness, ∃ subsequence xnk
→ x ∈ A such that

d(xnk
, x0) ≤ d(xnk

, x) + d(x, x0)

< ε+ d(x, x0).

Take ε = 1, d(xnk
, x0) < 1 + d(x, x0) is a finite number. However, d(xnk

, x0) ≥ nk. ⋇ As nk → ∞,

1 + d(x, x0) is a finite number, we reach a contradiction. Hence, A must be bounded.

Q.E.D. ■

• A is totally bounded =⇒ A is bounded.

Theorem 3.1.6 Bolzano-Weirstrass Theorem (B-W Thm.)

A ⊂M is compact ⇐⇒ A is sequentially compact.

Proof 2.

Lemma 3.1.7 : A ⊂M is compact =⇒ A is closed.

Proof. [WTS: M\A is open.]

Fix x ∈M\A. For n = 1, 2, . . . , let Un =

{
y | d(x, y) > 1

n

}
.

Claim {Un | n = 1, 2, . . . } is an open cover of A.

Proof. In fact, let a ∈ A. Then, d(a, x) > 0. By Archimedean, ∃n s.t.

1

n
< d(a, x).

This implies that a ∈ Un. So, a ∈
∞⋃
i=1

Ui. That is, A ⊂
∞⋃
i=1

Ui. □

By the compactness, ∃ finite subcover, say {U1, . . . , UN}. Thus,

A ⊂
N⋃
i=1

Ui = UN =

{
y | d(y, x) > 1

N

}
.

Therefore,

D

(
x,

1

N

)
=

{
y | d(y, x) < 1

N

}
⊂M\A.

Hence, by definition, M\A is open, and so A must be closed. □

Lemma 3.1.8 (When is the converse of Lemma 3.1.7 true?):

B ⊂M is closed and M is compact =⇒ B is compact.

Proof. Given an open cover {Vi | i ∈ I} of B. [WTS: ∃ a finite subcover of B. ]

Since B is closed, M\B is open. Then,

{Vi | i ∈ I} ∪ {M\B} is an open cover of M.
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3 COMPACTNESS AND CONNECTEDNESS 3.1 Compactness

Since M is compact, ∃ a finite subcover of M :

{V1, V2, . . . , VN} ∪ {M\B}.

Note that
N⋃
i=1

Vi ⊃ B,

we know

{V1, V2, . . . , VN} is a finite subcover of B.

Hence, by definition, B is compact. □

(⇒): Now, we prove the forward direction of the B-W Theorem. Let A ⊂M be compact. [WTS: A is

sequentially compact]

• Set Up: Given a sequence {xk} ∈ A. [WTS: ∃xnk
→ x ∈ A]

By Lemma 3.1.7, compactness =⇒ closedness. Since A is closed, all converging sequence con-

verges to some point in A. Hence, we only need to show ∃ converging subsequence.

• Reduction: To this end, we may assume that {xk} contains a subsequence of distinct terms. De-

note this subsequence by {yk}. [WTS: {yk} has a convergent subsequence]

If {xk} does not contain subsequence of distinct terms, then {xk} is a constant sequence after

sufficient terms. Therefore, it must converge and is trivial in this discussion.

• Suppose, for the sake of contradiction, {yk} does not have a convergent subsequence.

• Claim yk ’s are “isolated:” For each k = 1, 2, . . . ,∃ neighborhood Uk of yk s.t. yj /∈ Uk for any j ̸= k.

Proof. Suppose, for the sake of contradiction, that the claim does not hold. Then, ∃ k with the

property ∀ ε > 0, ∃ j ̸= k s.t. yj ∈ Uk = D(yk, k). Take ε =
1

m
. We obtain subsequence yjm ∈

D

(
yk,

1

m

)
, m = 1, 2, . . . . Hence, when m→∞, yjm → yk.

This implies {yk} has a convergent subsequence. ⋇ This contradicts with our assumption that

{yk} does not have a convergent subsequence. Hence, the claim must be true. □

• Now, proceed with the assumption that this claim is true.

Consider the set formed by elements in {yk}:

B = {y1, y2, . . . }

Since {yn} has no convergent subsequence, B has no accumulation point, and so cl(B) = B,

which implies B is closed.

By Lemma 3.1.8, B is compact.
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3 COMPACTNESS AND CONNECTEDNESS 3.1 Compactness

On the other hand, {Uk} is an open cover ofB. But by claim, ∃ no finite subcover. ⋇ This contra-

dicts with the fact thatB is compact. Thus, {yk} has a convergent subsequence, which converges

to a point because A is closed.

□

(⇐): Now, let’s consider the backward direction. Suppose A ⊂M is sequentially compact. [WTS: A

is compact]

Let {ui} be an open cover of A. [WTS: ∃ a finite subcover]

Claim (1) ∃ r > 0 s.t. for each y ∈ A, D(y, r) ⊂ Ui for some i. =⇒ Each point has a neighborhood of

fixed size that is contained in some Ui.

Proof. Suppose otherwise. Then,

∀ r = 1

n
> 0, ∃ yn ∈ A s.t. D

(
yn,

1

n

)
is not contained in any Ui.

By assumption, A is sequentially compact. Then, {yn} has a convergent subsequence zn → z ∈ A.

On the other hand, Ui is an open cover of A, then zn ∈ Ui0 for some i0. Further, since Ui0 is open,

∃ ε > 0 s.t. D(z, ε) ⊂ Ui0 .

Fix large N s.t.

d(zN , z) <
ε

2
.

So,

D
(
z,
ε

2

)
⊂ D(z, ε) ⊂ Ui0 .

⋇ This is a contradiction with our assumption that D
(
yn,

1

n

)
is not contained in any Ui. Hence, the

original claim is true. □

Claim (2) A is totally bounded.

Proof. Suppose otherwise. Then, ∃ ε > 0 s.t. A cannot be covered by finite number of balls of radius

ε. Choose y1 ∈ A and y2 ∈ A\D(y1, ε). Then, choose y3 ∈ A\
(
D(y1, ε) ∪D(y2, ε)

)
. This process can go

forever as A cannot be covered by finite number of balls of radius ε. So, we get sequence

yn ∈ A\
(
D(y1, ε) ∪ · · · ∪D(yn−1, ε)

)
.

We have a sequence {yn}with the property that

d(xn, xm) > ε ∀n ̸= m.

So, {yn} does not have a convergent subsequence.

Everything convergent must be Cauchy. d(xn, xm) > ε implies not Cauchy, so it must be non-

convergent. ⋇ This contradicts with the assumption that A is sequentially compact (has a subse-

quence converges to some point in A). Hence, this claim must be true. □
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Now, let r > 0 be as in Claim (1). By Claim (2), ∃ y1, y2, . . . , yN ∈ A s.t.

A ⊂
N⋃
j=1

D(yj , r).

Then, further by Claim (1), we get D(yj , r) ⊂ Uij . So,

A ⊂
N⋃
j=1

D(yj , r) ⊂
N⋃
j=1

Uij .

Therefore, A can be covered by a finite subcover. Hence, A is compact.

Q.E.D. ■

Theorem 3.1.9

A ⊂M is compact ⇐⇒ A is complete and totally bounded.

Remark 3.2 So, if a set is not bounded/totally bounded, it cannot be compact.

Proof 3. (⇒): Done when proving B-W Thm. □

(⇐): Assume A is complete and totally bounded. [WTS: A is compact/sequentially compact]

Let {yn} be a sequence in A. [WTS: ∃ subsequence ynk
converges in A]

WLOG, we may assume {yn} is formed by distinct terms. If we don’t get distinct terms, we will have

a constant sequence when n gets sufficiently large. Hence, it converges in A and is trivial to discuss.

Since A is totally bounded, for ε1 = 1, A is covered by finite number of balls:

D
(
x
(1)
1 , ε1

)
, . . . , D

(
x
(1)
L1
, ε1

)
.

We can choose a subsequence {y1n}∞n=1 of {yn} that is contained one of the balls.

Repeat that for ε2 =
1

2
, we have

A ⊂ D
(
x
(2)
1 , ε2

)
∪ · · · ∪

(
x
(2)
L2
, ε2

)
.

We can choose a subsequence {y2n}∞n=1 of {yn} that is contained in one of the balls.

Continuing this process with εm =
1

m
, m = 1, 2, . . . . We obtain a subsequence {ymn}

∞
n=1 that is

contained in a ball of radius εm =
1

m
. Then, we have the following subsequence:

y11, y12, y13, · · · , y1n, · · ·
y21, y22, y23, · · · , y2n, · · ·

...

ym1, ym2, ym3, · · · , ymn, · · ·
...
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Each subsequence is a subsubsequence of the proceeding subsequence.

Select y11, y22, y33, . . . , ynn, . . . to form a subsequence of {yn}.
Denote this subsequence as {zn} = {ynn}.
A is complete. To show zn converge in A, we only need to show zn is Cauchy.

Claim {zn} is Cauchy.

Proof. Assume n > m:

d(zn, zm) <
2

m
.

When m→∞, d(zn, zm)→ 0. So, {zn} is Cauchy. □

Since A is complete, {zn} is Cauchy, we have zn → z ∈ A. Hence, A is sequentially compact. By

B-W Theorem, A is compact.

Q.E.D. ■

3.2 Compactness in Rn

Theorem 3.2.1 Heine-Borel Theorem

A set A ⊂ Rn is compact ⇐⇒ A is bounded and closed.

Proof 1. (⇒): True in general metric space. □

(⇐): Assume A ⊂ Rn is closed and bounded. [WTS: A is sequentially compact]

Given sequence {xk} in A, write

xk =
(
x
(1)
k , x

(2)
k , . . . , x

(n)
k

)
∈ A ⊂ Rn.

A is bounded =⇒ {xk} is bounded =⇒
{
x
(1)
k

}
is bounded in R.

=⇒ ∃ converging subsequence
{
x
(1)
f1(k)

}∞

k=1
.

Similarly,
{
x
(2)
f1(k)

}∞

k=1
is bounded in R. =⇒ ∃ converging subsequence

{
x
(2)
f2(k)

}∞

k=1
.

In this way, we obtain subsequence

xfn(k) =
(
x
(1)
fn(k)

, x
(2)
fn(k)

, . . . , x
(n)
fn(k)

)
with x(i)fn(k)

k→∞−−−−−→ x(i) for i = 1, 2, . . . , n. Hence,

xfn(k) →
(
x(1), x(2), . . . , x(n)

)
∈ A.

Therefore, A is sequentially compact.

Q.E.D. ■

Remark 3.3 In Heine-Borel Theorem, (⇐) does not hold in general metric space. That is, A metric space

that is closed and bounded does not imply compactness. For example, let M = infinite set with discrete
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3 COMPACTNESS AND CONNECTEDNESS 3.3 Nested Set Property

metric

d(x, y) =

0, x = y

1, x ̸= y.

M is closed and bounded, but M is not compact.

Example 3.2.2

• A ⊂ Rn is bounded =⇒ cl(A) is compact.

• A = [0, 1] ⊂ R1 is compact.

• A = (0, 1] ⊂ R is not compact.

• R is not compact because it is not totally bounded.

3.3 Nested Set Property

Theorem 3.3.1 Nested Set Property

Let Fk be a set of non-empty compact sets in M s.t.

Fk+1 ⊂ Fk ∀k = 1, 2, . . . .

Then,
∞⋂
k=1

Fk ̸= ∅.

Proof 1. For each k = 1, 2, . . . , choose xk ∈ Fk. Then, {xk} ⊂ F1. Since F1 is compact, ∃ subse-

quence

xf(k)
k→∞−−−−−→ x ∈ F1.

Claim x ∈ Fn ∀n .

Proof. Fix n > 1. Then, for large k (∃N s.t. k ≥ N ), we have f(k) ≥ n. Then, Ff(k) ⊂ Fn. Recall that

xf(k) ∈ Ff(k) and xf(k)
k→∞−−−−−→ x, then

x ∈ Fn

as Fn is closed. □

Hence, x ∈
∞⋂
k=1

Fk ̸= ∅.

Q.E.D. ■

Remark 3.4 “Compact” cannot be replaced by “open,” “closed,” or “bounded open.”
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

3.4 Connectedness

Definition 3.4.1 (Path-Connected, Geometric Point of View). A set A ⊂ M is path-connected if each

pair of points x, y ∈ A can be joined by a continuous path given by a continuous map

φ : [0, 1]→ A s.t. φ(0) = x and φ(1) = y

x

y

0 1

φ

Example 3.4.2

• This is not path-connected:

x y
∪

• Let φ : [0, 1]→M be a continuous map. Then,C = φ([0, 1])] ⊂M (the image of this maaping)

is path-connected.

Definition 3.4.3 (Disconnected Set, Topological Point of View). A setA ⊂M is said to be disconnected

if ∃ open sets U, V ⊂M that separate A:

• U ∩ V ∩A = ∅

• U ∩A ̸= ∅ and V ∩A ̸== ∅

• A ⊂ U ∪ V
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

U

V

A

Definition 3.4.4 (Connected Set). If a set is not disconnected, then it is connected.

Remark 3.5 It is easy to prove disconnectedness since we only need to find one pair of open sets satisfying

the 4 conditions. To prove connectedness, we need to show ∀ open sets U, V ⊂ M , they cannot satisfy the

4 conditions at the same time.

Theorem 3.4.5

Path-connectedness =⇒ connectedness

Proof 1. We will start the proof with the following claim (The proof is trivial, and so we omit the

proof):

Claim 3.4.6 The interval [a, b] ⊂ R1 is connected.

Suppose, for the sake of contradiction, that A ⊂ M is path-connected but not connected. Then, ∃
open sets U, V that separates A as defined in Definition 3.4.3.

Fix x ∈ U ∩A and y ∈ V ∩A.

U

V

x ∈ U ∩A

y ∈ V ∩A

0 1

φ

Since A is path-connected, ∃ a continuous map φ : [0, 1]→ A with φ(0) = x and φ(1) = y. Let

C = φ−1(A ∩ U) ⊂ [0, 1]

:= {t ∈ [0, 1] | φ(t) ∈ A ∩ U}.
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

Similarly, we can define D = φ−1(A ∩ V ). Then, 0 ∈ C and 1 ∈ D.

Claim 3.4.7 C is closed.

Proof. Let tk ∈ C s.t. tk → t. Then, by continuity of φ, φ(tk) → φ(t) ∈ A. Suppose, for the sake of

contradiction, φ(t) /∈ U . Then, φ(t) ∈ V . Since V is open, φ(tk) ∈ V for large k. Hence,

φ(tk) ∈ A ∩ U ∩ V = ∅.

⋇ We reach a contradiction. So, φ(t) ∈ U , which implies t ∈ C. As tk → t ∈ C, we have shown that C is

closed. □

Corollary 3.4.8 : By symmetry of C and D, D is also closed.

To derive a contradiction with Claim 3.4.6, note that

A ∩ U ∩ V = ∅,

which implies C ∩ D = ∅. Therefore, the two open sets (R\C) and (R\D) separates [0, 1].⋇ This

contradicts with Claim 3.4.6 that [0, 1] is connected. Hence, our assumption was wrong, andAmust be

path-connected and connected. In other words, path-connectedness =⇒ connectedness.

Q.E.D. ■

Remark 3.6 The converse is not true.

Example 3.4.9

Suppose A =

{(
x, sin

1

x

)
| x > 0

}
︸ ︷︷ ︸

graph of f(x)=sin ( 1
x)

∪{(0, y) | −1 ≤ y ≤ 1}︸ ︷︷ ︸
segment of y-axis

⊂ R2.

Then, A is connected but not path-connected.

Proposition 3.4.10 : A ⊂ Rn open and connected =⇒ path-connected.

Proof 2. (Sketch) Fix a point x0 ∈ A s.t.

B = {y ∈ A | x0 and y can be joined by a continuous path ∈ A}.

Show:

• B ̸= ∅ [x0 ∈ B]

• B is open.

• B is closed in A.

Then, B = A. [If B ̸= A, then U = B and V = A\B separates A =⇒ A is disconnected =⇒
contradiction, it must be A = B.]

Q.E.D. ■
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3 COMPACTNESS AND CONNECTEDNESS 3.4 Connectedness

Theorem 3.4.11 Equivalent Ways to Describe Connectedness

• In Definition 3.4.3, one can replace “open sets” by “closed sets.”

A ⊂M is disconnected ⇐⇒ ∃ closed sets E,F s.t.

– E ∩ F ∩A = ∅

– E ∩A ̸= ∅ and F ∩A ̸= ∅

– A ⊂ E ∪ F

[Take complement of open sets, we get closed sets]

• In Definition 3.4.3, one can replace “U, V ” by “disjoint open sets.”

A ⊂M is disconnected ⇐⇒ ∃ disjoint open sets U1 and V1 s.t.

– U1 ∩ V1 ∩A = ∅

– U1 ∩A ̸= ∅ and V1 ∩A ̸= ∅

– A ⊂ U1 ∪ V1

Proof 3. (Hint of ②): Consider the distance function d(x,A ∩ V ) given fixed x ∈ U ∩A.

Claim ∀x ∈ A ∩ U , define d(x) = d(x,A ∩ V ) = inf {d(x, a) | a ∈ A ∩ V }. Then, d(x) > 0. Similarly,

∀ y ∈ A ∩ V , define d(x) = d(y,A ∩ U) = inf {d(y, a) | a ∈ A ∩ U}. Then, d(y) > 0.

Define open sets U1, V1 as follows:

U1 =

{
D

(
x,

1

2
d(x)

)
| x ∈ A ∩ U

}
and V1 =

{
D

(
y,

1

2
d(y)

)
| y ∈ A ∩ V

}
We have the desired disjoint U1 and V1.

Q.E.D. ■
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4 CONTINUOUS MAPPINGS

4 Continuous Mappings

4.1 Continuity

Definition 4.1.1 (Maps). Suppose (M,d) and (N, ρ) are metric spaces. Let A ⊂ M . Then, f : A → N is

a map (or a function)

M

N

A

f

Definition 4.1.2 (Continuous Maps). f is continuous at a point x0 ∈ A if

lim
x→x0
x∈A

f(x) = f(x0).

f is continuous in A if it is continuous at each point in A.

Definition 4.1.3 (Limit of a Function). b ∈ N is the limit of f(x) at x0, written as

lim
x→x0

f(x) = b,

if ∀ ε > 0, ∃ δ > 0 s.t. x ∈ A and d(x, x0) < δ =⇒ ρ(f(x), b) < ε.

x0

f

f(x0)ε

b

δ

Definition 4.1.4 (Isolated Points). x0 ∈ A is an isolated point in A if ∃ δ > 0 s.t. D(x0, δ) ∩A = {x0}.

Remark 4.1

• The continuous definition implies three things: the function is defined, the limit exists, and the

limit value equals the function value.

• A point is either an isolated point or an accumulation point.

• For the limit definition, x0 is not required to be in A. For example,

f(x) =
sin(x)

x
, x ∈ (0, 1) lim

x→0
f(x) = 0 /∈ (0, 1).
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4 CONTINUOUS MAPPINGS 4.1 Continuity

• If x0 is an isolated point in A, then lim
x→x0

f(x) = f(x0) is always true. Therefore, any function f(x)

is continuous at isolated points.

Example 4.1.5

• f(x) = x : Rn → Rn (identity function) is continuous

• g(x) =

x, 0 ≤ x ≤ 1

2x, 1 < x ≤ 3
: [0, 3]→ R1 is continuous at every point except for x = 1.

• h(x) =

x, x ̸= 1

3, x = 1
: R→ R is continuous at every point except x = 1.

Theorem 4.1.6 Equivalent Conditions for Continuity

Let f : A ⊂M → N . The following are equivalent:

• f is continuous on A.

• For each converging sequence xk → x ∈ A, f(xk)→ f(x).

Remark 4.2 Continuous map preserves the convergence of sequences

• For each open set U ⊂ N , the pre-image f−1(U) ⊂ A is open relative to A. That is

f−1(U) = {x ∈ A | f(x) ∈ U} = A ∩ V, where V ⊂M is open.

• For each close set F ⊂ N , the pre-image f−1(F ) ⊂ A is closed relative to A. That is,

f−1(F ) = A ∩ E, where E ⊂M is closed.

M

N

A

U

f−1(U)

f

Proof 1. We will prove equivalence by the following cycle: ① =⇒ ② =⇒ ④ =⇒ ③ =⇒ ①.

(① =⇒ ②): Given sequence xk ∈ A with xk → x ∈ A. [WTS: lim
k→∞

f(xk) = f(x)]
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4 CONTINUOUS MAPPINGS 4.2 Properties of Continuous Mappings

(② =⇒ ④): Fix closed set F ∈ N . [WTS: f−1(F ) = A ∩ cl
(
f−1(F )

)
] It is trivial that f−1(F ) ⊂

A ∩ cl
(
f−1(F )

)
. So, we only need to prove the “⊃” direction. Given x ∈ A ∩ cl

(
f−1(F )

)
, ∃ sequence

xn ∈ f−1(F ) ⊂ A s.t. xn → x. Then, yn = f(xn)→ f(x) ∈ F by ② and closedness. So, x ∈ f−1(F ). That

is, A ∩ cl
(
f−1(F )

)
⊃ f−1(F ). Hence, f−1(F ) = A ∩ cl

(
f−1(F )

)
, implying f−1(F ) is closed in A.

(④ =⇒ ③): [Use complement: U ⊂ N is open ⇐⇒ F = N\U is closed]

(③ =⇒ ①): Given x0 ∈ A. [WTS: lim
x→x0

f(x) = f(x0)] Fix any ε > 0. [WTS: ∃ δ > 0 s.t. d(x, x0) < δ =⇒

ρ(f(x), f(x0)) < ε] Let U = D(f(x0), ε) < r is open. By ③, f−1(U) is open in A. i.e.,

f−1(U) = A ∩ V, V ⊂M is open.

Note that x0 ∈ f−1(U) =⇒ x0 ∈ V . Since V is open, ∃ δ > 0 s.t. D(x, δ) ⊂ V . [WTS: x ∈ A, d(x, x0) <
δ =⇒ ρ(f(x), f(x0)) < ε] Suppose x ∈ A with d(x, x0) < δ. Then, x ∈ A and x ∈ V . That is,

x ∈ A ∩ V = f−1(U). Hence, f(x) ∈ U . By definition of U , we get ρ(f(x), f(x0)) < ε as desired.

Q.E.D. ■

4.2 Properties of Continuous Mappings

Theorem 4.2.1 Images of Compact and Connected Sets

Suppose f :M → N is continuous. Then,

• If K ⊂M is compact, then f(K) is also compact.

• If B ⊂M is connected, then f(B) is also connected.

Proof 1.

• Let xk be a sequence in K. Then, yk = f(xk) is a sequence in f(K). [WTS: f(K) is sequentially

compact.] Suppose K is compact, ∃xkj → x0 ∈ K when j → ∞. By continuity of f , f(xkj ) →
f(x0) ∈ f(K) when k →∞. So, for sequence yk = f(xk), we find a subsequence f(xkj )→ f(x0) ∈
f(K). So, f(K) is sequentially compact. □

• Given connected set B ⊂ M . Assume, for the sake of contradiction, that f(B) is disconnected.

Then, ∃ open sets U, V s.t. f(B) ∩ U ∩ V = ∅ and f(B) ∩ U ̸= ∅, f(B) ∩ V ̸= ∅, f(B) ⊂ U ∪ V .

[We can derive that B is also disconnected, which is a contradiction.] So, it must be that f(B) is

also connected.

Q.E.D. ■

Theorem 4.2.2 Operations on Continuous Mapping

Addition, multiplication, divisions, and compositions of continuous functions (if they are well-

defined) are also continuous.
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4 CONTINUOUS MAPPINGS 4.2 Properties of Continuous Mappings

Example 4.2.3

If f(x) = R→ R, g : R→ R are continuous, then, f(x)g(x) is also continuous.

Proof 2. Denote F (x) = f(x)g(x). Then,

|F (x)− F (x0)| = |f(x)g(x)− f(x0)g(x0)|

≤ |f(x)g(x)− f(x)g(x0)|+ |f(x)g(x0)− f(x0)g(x0)|

= |f(x)||g(x)− g(x0)|+ |g(x0)||f(x)− f(x0)|
...

< ε

Q.E.D. ■

Theorem 4.2.4 Maximum/Minimum Property

Let K ⊂M be compact and f : K → R be continuous. Then,

• f is bounded on K (i.e., f(K) is a bounded set)

• ∃x0, x1 ∈ K s.t.

f(x1) = max
x∈K

f(x) and f(x0) = min
x∈K

f(x).

That is, f(x0) ≤ f(x) ≤ f(x1) ∀x ∈ K.

Proof 3.

• Since K is compact and f is continuous, f(K) is compact. Since f(K) ⊂ R is compact, f(K) is

closed and bounded.

• Since f(K) is bounded, we know inf(f(K)) and sup(f(K)) exist and are finite. Further since f(K)

is closed, inf(f(K), sup(f(K) ∈ f(K). Hence, ∃x0 = inf(f(K)) and x1 = sup(f(K)) s.t.

f(x0) ≤ f(x) ≤ f(x1) ∀x ∈ K.

Q.E.D. ■

Remark 4.3

• The condition “compact” cannot be removed.

Example 4.2.5

f(x) =
1

x
: (0, 1)→ R is continuous but not bounded
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4 CONTINUOUS MAPPINGS 4.2 Properties of Continuous Mappings

f(x) = x : (0, 1)→ R is bounded, but does not have max/min values

• The condition “continuity” cannot be removed.

Example 4.2.6

Consider function f : [0, 1] → R by f(x) =


1

x
, x > 0

2, x = 0.
Although [0, 1] is compact, f(x) is

nto continuous, and f is not bounded and does not have max/min values on [0, 1].

• We don’t need differentiability here.

Theorem 4.2.7 Intermediate Value Theorem (IVT)

Let K ⊂ M be connected and f : K → R be continuous. Suppose x, y ∈ K with f(x) < f(y).

Then, for any intermediate value c s.t. f(x) < c < f(y), ∃ z ∈ K with x < z < y s.t. f(z) = c.

f(y)

f(x)

y yx x

c

z

Proof 4. Let K ⊂ M be connected and f : K → R be continuous. Suppose x, y ∈ K with f(x) <

f(y). Assume, for the sake of contradiction, ∃ c with f(x) < c < f(y) s.t. c /∈ f(K).

Since K is connected and f is continuous, f(K) is also connected. However, U = (−∞, c) and

V = (c,+∞) separate f(K), implying f(K) is not connected. ⋇ We reach a contradiction. So, such a c

does not exist.

Q.E.D. ■

Example 4.2.8 Application of IVT I

Let f(x) be a polynomial of odd degree. Then, f has at least one real root.

Proof 5. Suppose f(x) : R→ R is continuous. Write f(x) as

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,
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4 CONTINUOUS MAPPINGS 4.3 Uniform Continuity (UC)

where an ̸= 0 and n = 2k + 1 is odd.

WLOG, suppose an > 0. Then,

lim
x→−∞

f(x) = −∞ and lim
x→∞

f(x) =∞.

So, ∃x, y ∈ R s.t. f(x) < 0 and f(y) > 0. Therefore, by IVT, ∃x0 ∈ R s.t. f(x0) = c = 0.

Q.E.D. ■

Definition 4.2.9 (Fixed Point). x is a fixed point of f if f(x) = x.

Example 4.2.10 Application of IVT II

Let f : [1, 2]→ [0, 3] be continuous with f(1) = 0, f(2) = 3. Then, f has a fixed point.

Proof 6. Apply IVT to a new function: F (x) = f(x)− x. Take c = 0 as the intermediate value.

Q.E.D. ■

4.3 Uniform Continuity (UC)

Definition 4.3.1 (Uniform Continuity (UC)). A function f : A ⊂M → N is uniformly continuous on A

if ∀ ε > 0, ∃ δ > 0 s.t. x, y ∈ A and d(x, y) < δ =⇒ ρ(f(x), f(y)) < ε.

Remark 4.4

• For uniform continuity, the δ depends only on ε not on points.

• For continuity (at x0), the δ may depend on ε and the point x0.

Example 4.3.2

Consider f(x) =
1

x
: (0, 1)→ R. f is continuous at any point x0 ∈ (0, 1). But to satisfy

|x− x0| < δ =⇒ |f(x)− f(x0)| =
∣∣∣∣1x − 1

x0

∣∣∣∣ = |x− x0||x · x0|
< ε

we need to pick

|x− x0| = δ = min

{
1

2
x20ε,

1

2
x0

}
.

Theorem 4.3.3 Uniform Continuity on Compact Set

Let f : K ⊂M → N be continuous and K be compact. Then, f is uniformly continuous on K.

Proof 1. Fix ε > 0. For each x ∈ K, since f is continuous at x, ∃ δx s.t. for y ∈ K with d(x, y) < δx,

we have ρ(f(x), f(y)) <
ε

2
.
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4 CONTINUOUS MAPPINGS 4.3 Uniform Continuity (UC)

Consider the open cover of K:
{
D

(
x,
δx
2

)∣∣∣x ∈ K}. Since K is compact, ∃ subcover:

D

(
xi,

δxi
2

)
, i = 1, 2, . . . , L

Finally, let

δ = min
1≤i≤L

{
δxi
2

}
.

Claim x, y ∈ K with d(x, y) < δ =⇒ ρ(f(x), f(y)) < ε.

Proof. Note that

d(y, xi) ≤ d(y, x) + d(x, xi)

< δ +
δxi
2

< δxi .

One can continue to show that ρ(f(x), f(y)) < ε. □

Q.E.D. ■

Definition 4.3.4 (Lipschitz Continuity). A function f : A ⊂ M → N is called Lipschitz if ∃ constant

L s.t.

ρ(f(x), f(y)) ≤ L · d(x, y) ∀x, y ∈ A.

Theorem 4.3.5 Lipschitz and Uniform Continuity

If f : A ⊂M → N is Lipschitz, then f is uniformly continuous in A.

Corollary 4.3.6 : Suppose f : (a, b) → R is differentiable and ∃M > 0 s.t. |f ′(x)| ≤ M ∀x ∈ (a, b).

Then, f is Lipschitz.

Proof 2. Given x, y ∈ (a, b). Then,

|f(y)− f(x)| =
∣∣f ′(z)(y − x)∣∣ [Mean Value Theorem]

≤M |x− y|.

Q.E.D. ■

Example 4.3.7 Lipschitz Functions

f(x) = x and f(x) = sinx are Lipschitz functions.

Remark 4.5

• If f has bounded derivative (or slope), then f is uniformly continuous.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

• But if f is differentiable and uniformly continuous, f may not have bounded derivative.

• Open End-ed Questions:

– f : R→ R is bounded and continuous, f may not be uniformly continuous.

– f, g : R→ R are uniformly continuous, f · g is not uniformly continuous in general.

– But if f , or g, or both are bounded and uniformly continuous, is f · g uniformly continuous?

4.4 Differentiability

Remark 4.6 Starting from this section, we will only consider functions f : an interval → R.

Definition 4.4.1 (Differentiability). A function f is differentiable at a point x0 if it is defined in an open

interval that contains x0 and its derivative exists:

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

, (D)

or equivalently, set h = x− x0,

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

.

Remark 4.7 (Interpretation)

• Rewrite (D) as

lim
x→x0

[
f(x)− f(x0)− f ′(x0)(x− x0)

x− x0

]
= 0.

This implies the function y = f(x) can be approximated by the linear function

y = f(x0) + f ′(x0)(x− x0)

in a neighborhood of x0.

• Rewrite (D) as

lim
∆x→0

[
f(x0 +∆x)− f(x0)

∆x
− f ′(x0)

]
= 0.

this implies the slope of tangent line is the limit of the slope of secant lines.

Theorem 4.4.2 Continuity of Differentiable Functions

Suppose f : A ⊂M → N is differentiable at x0. Then, it is continuous at x0.

Proof 1. Given ε > 0. Since

lim
x→x0

f(x)− f(x0)
x− x0

= f ′(x0),

∃ δ1 > 0 s.t. |x− x0| < δ1 =⇒
∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ < |f ′(x)|+ 1. Choose

δ = min

{
ε

|f ′(x)|+ 1
, δ1

}
.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

So, when |x− x0| < δ, we have

|f(x)− f(x0)| =
|f(x)− f(x0)|
|x− x0|

· |x− x0|

<
(∣∣f ′(x)∣∣+ 1

)
· ε

|f ′(x)|+ 1

= ε.

Q.E.D. ■

Remark 4.8 The converse if not true: continuity ≠⇒ differentiability. Counterexample: f(x) = |x|.

Proof 2. (Another Approach) Note that

lim
x→x0

(f(x)− f(x0)) = lim
x→x0

[
f(x)− f(x0)

x− x0

]
(x− x0)

′ = lim
x→x0

[
f(x)− f(x0)

x− x0

]
lim
x→x0

(x− x0) [Product Rule of Limit]

= f ′(x) · 0

= 0.

So, the function is continuous.

Q.E.D. ■

Theorem 4.4.3 Rules of Differentiation

• Constant multiple rule:

(kf)′(x0) = k · f ′(x0).

• Sum rule:

(f + g)′(x0) = f ′(x0) + g′(x0)

• Product rule:

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

• Quotient rule: (
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)
(g(x0))

2

• Chain rule:

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).

Lemma 4.4.4 : If f : (a, b)→ R is differentiable and f has a max (or min) at c ∈ (a, b), then f ′(c) = 0.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

Proof 3. Assume f has a max at c ∈ (a, b). Then,

f ′(c) = lim
h→0

f(h+ c)− f(c)
h

.

[WTS: f ′(c) ≥ 0 and f ′(c) ≤ 0.]

As f has a max at c, f(h+ c) ≤ f(c), and so

f(h+ c)− f(c) ≤ 0.

Case I h > 0:

f ′(c) = lim
h+→0

f(h+ c)− f(c)
h

≤ 0.

Case II h < 0:

f ′(c) = lim
h−→0

f(h+ c)− f(c)
h

≥ 0.

As f ′(c) ≥ 0 and f ′(c) ≤ 0, it must be that f ′(c) = 0.

Q.E.D. ■

Theorem 4.4.5 Rolle’s Theorem

Let f : [a, b] → R be continuous and f be differentiable on (a, b). If f(a) = f(b) = 0, then

∃ c ∈ (a, b) s.t. f ′(c) = 0.

Proof 4. f has max and min on [a, b] as [a, b] is compact. [WTS: This max/min occur in (a, b).]

Since f(a) = f(b) = 0, then max and min cannot both occur at the endpoint (i.e., either max or min

occur in (a, b)) unless f is the constant function f(x) = 0.

Now, by Lemma 4.4.4, ∃ c ∈ (a, b) s.t. f ′(c) = 0, where c is either the max or min.

Q.E.D. ■

Theorem 4.4.6 Mean Value Theorem (MVT)

Suppose f is continuous on [a, b] and differentiable on (a, b). Then, ∃ c ∈ (a, b) s.t.

f(b)− f(a) = f ′(c)(b− a) or f ′(c) =
f(b)− f(a)

b− a
.

Remark 4.9 Rolle’s Theorem is a special case of MVT. We will use the special case to prove the general

case.

Proof 5.
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

a bx

y = f(x)

φ(x)

f(x)

Construct φ(x):

φ(x) = f(x)−
[
f(a) +

f(b)− f(a)
b− a

(x− a)
]
.

One can verify the following:

• φ(a) = 0;

• φ(b) = 0; and

• φ is continuous and differentiable.

Then, apply Rolle’s Theorem to φ(x): ∃ c ∈ (a, b) s.t.

φ′(c) = 0.

Note that φ′(c) = f ′(c)− f(b)− f(a)
b− a

= 0, we have

f ′(c) =
f(b)− f(a)

b− a
.

Q.E.D. ■

Remark 4.10 (Geometric Interpretation) There is at least one point where the instant change of rate is

the same as the average change of rate.

Definition 4.4.7 (Monotonecity).

• We say f(x) is increasing (or strictly increasing ) at a point x0 if ∃ open interval (a, b) containing x0
with:

– a < x < x0 =⇒ f(x) ≤ f(x0) (or f(x) < f(x0));

– x0 < x < b =⇒ f(x) ≥ f(x0) (or f(x) > f(x0)).

• Similar definition for decreasing (or strictly decreasing) at a point x0.

• f(x) is increasing (or strictly increasing) on an interval I if for x1, x2 ∈ I

x1 < x2 =⇒ f(x1) ≤ f(x2) (or f(x1) < f(x2)).
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

• Similar definition for decreasing (or strictly decreasing) on an interval.

Theorem 4.4.8 Local Monotonecity and Derivative

Let f be differentiable at x0. Then,

• f increasing at x0 =⇒ f ′(x0) ≥ 0; f decreasing at x0 =⇒ f ′(x0) ≤ 0.

• f ′(x0) > 0 =⇒ f strictly increasing at x0; f ′(x0) < 0 =⇒ f strictly decreasing at x0.

Proof 6. (of ①): Suppose f is increasing at x0. Then

f(x0 + h)− f(x0) ≥ 0 when h > 0

≤ 0 when h < 0.

Then,

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

≥ 0.

(of ②): Suppose f ′(x0) > 0. Then, for ε =
1

2
f ′(x0) > 0, ∃ δ > 0 s.t.

0 < |h| < δ =⇒
∣∣∣∣f(x0 + h)− f(x0)

h
− f ′(x0)

∣∣∣∣ < ε =
1

2
f ′(x0).

−1

2
f ′(x0) <

f(x0 + h)− f(x0)
h

− f ′(x0) <
1

2
f ′(x0) =⇒ 0 <

1

2
f ′(x0) <

f(x0 + h)− f(x0)
h

<
3

2
f ′(x0).

When x < x0, h = x− x0 < 0. As
f(x0 + h)− f(x0)

h
> 0,

f(x0 + h)− f(x0) = f(x)− f(x0) < 0 =⇒ f(x) < f(x0)

When x > x0, h = x− x0 > 0,

f(x0 + h)− f(x0) = f(x)− f(x0) > 0 =⇒ f(x) > f(x0).

Hence, f is strictly increasing.

Q.E.D. ■
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4 CONTINUOUS MAPPINGS 4.4 Differentiability

Theorem 4.4.9 Global Monotonecity and Derivative

Let f be continuous on [a, b] and differentiable on (a, b). Then,

• f ′(x) ≥ 0 ∀x ∈ (a, b) =⇒ f increasing on [a, b].

• f ′(x) ≤ 0 ∀x ∈ (a, b) =⇒ f decreasing on [a, b].

• f ′(x) > 0 ∀x ∈ (a, b) =⇒ f strictly increasing on [a, b].

• f ′(x) < 0 ∀x ∈ (a, b) =⇒ f strictly decreasing on [a, b].

Theorem 4.4.10 Local Max/Min and Derivatrive

Suppose f is continuous on [a, b] and twice differentiable on (a, b). Let x0 ∈ (a, b).

• f ′(x0) = 0 and f ′′(x0) > 0 =⇒ x0 is a strict local min of f .

• f ′(x0) = 0 and f ′′(x0) < 0 =⇒ x0 is a strict local max of f .

Proof 7. (of ①) By Theorem 3.3.8(2), f ′′(x0) > 0 =⇒ f ′(x) is strictly increasing at x0. Then,

• f ′(x) < f ′(x0) = 0 ∀x ∈ (x0 − δ, x0) =⇒ f(x) strictly decreasing on (x0 − δ, x0)

• f ′(x) > f ′(x0) = 0 ∀x ∈ (x0, x0 + δ) =⇒ f(x) strictly increasing on (x0, x0 + δ).

Q.E.D. ■

Theorem 4.4.11 Inverse Function Theorem (IFT)

Suppose f ′(x) > 0 ∀x ∈ (a, b) (or, f ′(x) < 0 ∀x ∈ (a, b)). Then,

• f : (a, b)→ R is a bijection onto its image

• Inverse f−1 is differentiable on its domain.

•
(
f−1

)′
(y) =

1

f ′(x)
, where y = f(x).

Proof 8. Assume f ′(x) > 0 ∀x ∈ (a, b). Then, f is strictly increasing. Then, f is 1-to-1 function

=⇒ f is a bijection =⇒ f−1 exists. [WTS: f−1 is continuous.]

Let U be an open set in (a, b). [WTS:
(
f−1

)−1
(U) = f(U) is open.]
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4 CONTINUOUS MAPPINGS 4.5 Integration

Finally, write y = f(x). Then, x = f−1(y). Let y0 = f(x0). Then,

(
f−1

)′
(y0) = lim

y→y0

f−1(y)− f−1(y0)

y − y0
= lim

y→y0

x− x0
f(x)− f(x0)

= lim
x→x0

1

f(x)− f(x0)
x− x0

=
1

lim
x→x0

f(x)− f(x0)
x− x0

=
1

f ′(x0)
.

Q.E.D. ■

4.5 Integration

Definition 4.5.1 (Riemann Integrable). Let A ⊂ R be bounded and f : A→ R be a bounded function.

[We want to make sense
∫
A
f(x)dx.]

• Partition the interval:

If interval [a, b] ⊃ A and extend function f(x) to [a, b] by letting f(x) = 0 ∀x /∈ A.

Partition the interval [a, b] by points: a = x0 < x1 < · · · < xn = b. Denote P by

P = {x0, x1, x2, · · · , xn}.

• Form Upper and Lower Sum of f .

xi−1 xi

f(x)

Lower sum

Upper sum

For any fixed partition, let

U(f, P ) =

n∑
i=1

sup {f(x) | x ∈ [xi−1, xi]} (xi − xi−1)
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4 CONTINUOUS MAPPINGS 4.5 Integration

is the upper sum, and

L(f, P ) =

n∑
i=1

inf {f(x) | x ∈ [xi−1, xi]} (xi − xi−1)

is the lower sum.

Claim Suppose m ≤ f(x) ≤M . Then,

m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).

• Upper integral and Lower integral are defined as∫
A
f = inf {U(f, P ) : P is a partition} (Upper Integral)

∫
A
f = sup {L(f, P ) : P os a partition} (Lower Integral)

• We say a function f is Riemann integrable if∫
A
f =

∫
A
f,

and we write ∫
A
f =

∫
A
f =

∫
A
f.

Example 4.5.2 Riemann Integrable

• Define f : [0, 1]→ R by

f(x) =

0 if x is rational

0 if x is irrational.

Then, for any partition P ,

U(f, P ) =

n∑
i=1

1 · (xi − xi−1) = 1

and

L(f, P ) =

n∑
i=1

0 · (xi − xi−1) = 0.

So, ∫
A
f ̸=

∫
A
f =⇒ f is not integrable

• Compute
∫ 1

0
x dx and

∫ 1

0
x dx.
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4 CONTINUOUS MAPPINGS 4.5 Integration

Hint: Consider partition Pn =

{
0 <

1

n
<

2

n
< · · · < n

n

}
.

Lemma 4.5.3 : Let f : [a, b] → R be bounded. If P, P ′ are partitions of [a, b] with P ⊂ P ′ (P ′ is a

refinement of P ), then

L(f.P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ).

Remark 4.11 In words, when the partition gets finer, lower sum increases but upper sum decreases.

xi−1 xi

f(x)

Original upper sum

xi+1

Proposition 4.5.4 : ∫ b

a
f ≤

∫ b

a
f

Proof 1. For any fixed partition P and Q. As P ⊂ P ∪Q and Q ⊂ P ∪Q, by Lemma 4.5.4, we have

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

Then, ∫ b

a
f = sup

P
L(f, P ) ≤ U(f,Q) for any Q

So, ∫ b

a
f ≤ inf

Q
U(f,Q) =

∫ b

a
f.

Q.E.D. ■

Theorem 4.5.5

• If f : [a, b] → R is bounded and is continuous at all but finite many points, then f is inte-

grable.

• If f is increasing or decreasing on [a, b], then f is integrable.

Proof 2.
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4 CONTINUOUS MAPPINGS 4.5 Integration

• (Proof of ①): Observe that ∀ partition P , L(f, P ) ≤
∫ b

a
f ≤

∫ b

a
≤ U(f, P ). [To prove a function is

integrable, it’s sufficient to show that ∀ ε > 0, ∃ partition P s.t. U(f, P )− L(f, P ) < ε.]

– Suppose f is continuous on [a, b] except at a1, a2, . . . , ak. Since f is bounded, ∃m,M s.t. m ≤
f(x) ≤ M ∀x ∈ [a, b]. Choose partition P1 s.t. each subinterval containing some ai has

length≤ ε

2
· 1

2k(M −m)
.

Let K be the union of the remaining subinterval in P1. Then, K is compact and f is contin-

uous on K. So, f is uniformly continuous on K. That is,

∃ δ > 0 s.t. x1, x2 ∈ K s.t. |x1 − x2| < δ =⇒ |f(x1 − f(x2)| <
ε

2(b− a)
.

– Construct the refinement P of P1 so that each subinterval in P not containing some ai has

length < δ. So,

P = {a = x0 < x1 < · · · < xn = b} and Ij − [xj−1, xj ].

Denote

Mj = sup
Ij

f(x) and mj = inf
Ij
f(x).

If Ij contains some ai, then m ≤ mj ≤Mj ≤M .

If Ij contains no discontinuous points, then Ij ⊂ K, and

Mj −mj = max−min <
ε

2(b− a)
.

– Finally, we have

U(f, P )− L(f, P ) =
n∑
j=1

(Mj −mj)(xj − xj−1)

=
∑
ai∈Ij

(Mj −mj)(xj − xj−1) +
∑
ai /∈Ij

(Mj −mj)(xj − xj−1)

<

worse case:
2k such intervals︷︸︸︷

��2k �����(M −m)︸ ︷︷ ︸
estimate of
Mj−mj

· ε
2
· 1

��2k�����(M −m)︸ ︷︷ ︸
length of Ij

+
ε

2����(b− a)︸ ︷︷ ︸
estimate of
Mj−mj

total length︷ ︸︸ ︷
����(b− a)

=
ε

2
+
ε

2

= ε.

Therefore, ∫ b

a
f =

∫ b

a
f =⇒ f is integrable.
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4 CONTINUOUS MAPPINGS 4.5 Integration

• (Proof of ②): Assume f is increasing. Given ε > 0. Consider an equal partition

Pn =

{
a = x0, x1 = x0 +

b− a
n

, x2, . . . , xn = b

}
.

Then, by equal partition and f is increasing, we have

U(f, Pn) =
n∑
j=1

f(xj)(xj − xj−1) =
b− a
n

n∑
j=1

f(xj)

and

L(f, Pn) =

n∑
j=1

f(xj−1)(xj − xj−1) =
b− a
n

n∑
j=1

f(xj−1).

So,

U(f, Pn)− L(f, Pn) =
b− a
n

n∑
j=1

f(xj)− f(xj−1)

=
b− a
n

(f(xn)− f(x1)) [Intermediate terms cancel]

=
b− a
n

(f(b)− f(a)).

When n→∞, U(f, Pn)− L(f, Pn) =
b− a
n

(f(b)− f(a))→ 0. Therefore,

U(f, Pn)− L(f, Pn) < ε for large n =⇒ f is integrable.

Q.E.D. ■

Remark 4.12 To prove a function f is integrable, it is sufficient to show that ∀ ε > 0, ∃ partition P s.t.

U(f, P ) = L(f, P ) < ε.
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Theorem 4.5.6 Rules of Integration

• k

∫ b

a
f(x) dx =

∫ b

a
kf(x) dx, k is a constant.

•
∫ b

a
(f(x)± g(x)) dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

•
∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx, for a ≤ b ≤ c.

• If f ≤ g, then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

In particular,−|f | ≤ f ≤ |f |, so

−
∫ b

a
|f | ≤

∫ b

a
f ≤

∫ b

a
|f |.

That is, ∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |.

Definition 4.5.7 (Antiderivative). Let f(x) : [a, b]→ R. An antiderivative of f is a continuous function

F (x) : [a, b]→ R s.t. F ′(x) = f(x) ∀x ∈ (a, b).

Remark 4.13 (Antiderivative is not Unique) Suppose F (x) is an antiderivative of f(x). If G is another

antiderivative, then

d

dx
[G(x)− F (x)] = G′(x)− F ′(x) = f(x)− f(x) = 0 ∀x ∈ (a, b).

So, by MVT, G(x)− F (x) = C, where C is some constant, or

G(x) = F (x) + C.

Theorem 4.5.8 Fundamental Theorem of Calculus (FTC)

Let f(x) : [a, b]→ R be continuous. Then, f has an antiderivative F , and

∫ b

a
f(x) dx = F (b)− F (a)

[
= F (x)

∣∣∣∣b
a

]
.

Proof 3. Define F (x) by

F (x) =

∫ x

a
f(t) dt

for x ∈ [a, b].

Claim F (x) is an antiderivative of f(x).
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4 CONTINUOUS MAPPINGS 4.5 Integration

Proof.

a x

f(x)

b

F (x)

( )

Fix x ∈ (a, b). Let h > 0 s.t. (x− h, x+ h) ⊂ (a, b). Then,

F (x+ h)− F (x)
h

=
1

h

(∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

)
=

1

h

(
���

���
∫ x

a
f(t) dt+

∫ x+h

x
f(t) dt−

���
���

∫ x

a
f(t) dt

)
=

1

h

∫ x+h

x
f(t) dt.

Note that

f(x) =
1

h

∫ x+h

x
f(x)︸︷︷︸

constantw.r.t. t

dt

So,

F (x+ h)− F (x)
h

− f(x) = 1

h

∫ x+h

x
f(t) dt− 1

h

∫ x+h

x
f(x) dt

=
1

h

∫ x+h

x
f(t)− f(x) dt

Given ε > 0, f is continuous at x. So, ∃ δ > 0 s.t.

|t− x| < δ =⇒ |f(t)− f(x)| < ε.

Then, when |h| < δ, we have∣∣∣∣F (x+ h)− F (x)
h

∣∣∣∣ ≤ ∣∣∣∣1h
∫ x+h

x
f(t)− f(x) dt

∣∣∣∣
≤ 1

|h|

∫ x+h

x
|f(t)− f(x)|dt

<
1

|h|

∫ x+h

x
εdt

=
1

��|h|
· ε ·��|h|

= ε.

So,

lim
h→0

F (x+ h)− F (x)
h

= f(x) i.e., F ′(x) = f(x).
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Furthermore, one can show that F (x) is continuous on [a, b]. [As F (x) is differentiable on (a, b), it is

continuous on (a, b). We only need to check for the endpoints.] □

Finally, by definition,

F (b) =

∫ b

a
f(t) dt and F (a) =

∫ b

a
f(t) dt = 0.

So, ∫ b

a
f(t) dt = F (b)− F (a).

Q.E.D. ■

Remark 4.14 In FTC, the continuity assumption of f(x) cannot be removed. More specifically, it cannot

be replaced by integrability. For example,

f(x) =

0, 0 ≤ x ≤ 1

1, 1 < x ≤ 2.

f is integrable, and its antiderivative

F (x) =

∫ x

0
f(t) dt is well-defined.

However, F ′(x) = f(x) for 1 < x ≤ x. When x = 1, F ′(x) does not even exist.
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5 Uniform Convergence

5.1 Definition of Convergence

Definition 5.1.1 (Pointwise Convergence). Given a sequence of functions fk(x) : A ⊂ M → N for

k = 1, 2, . . . . We say fk(x) → f(x) converges pointwise on A if ∀x ∈ A, the sequence of points {fk(x)}
converges to f(x). That is, ∀x, ∀ ε > 0, ∃K s.t. k ≥ K =⇒ ρ(fk(x), f(x)) < ε.

Definition 5.1.2 (Uniform Convergence). fk(x)→ f(x) converges uniformly onA if ∀ ε > 0, ∃K s.t. k ≥
K =⇒ ρ(fk(x), f(x)) < ε ∀x ∈ A. We write fk → f UC on A.

Remark 5.1 For pointwise convergence, the choice ofK depends both on ε and the point x. However, for

uniform convergence, K only depends on ε but not specific point x.

Definition 5.1.3 (Convergence of Series). Assume N is a normed space. Suppose gk : A ⊂ M → N .

Then,
∞∑
k=1

gk(x) converges to g(x) pointwise or uniformly. Using sequence of partial sums, we have

fn(x) =
n∑
k=1

gk(x).

Remark 5.2 UC is stronger: UC =⇒ pointwise convergence.

However, pointwise convergence ≠⇒ UC in general.

Example 5.1.4

Consider A = [0, 1] and

fk(x) =


0 if

1

k
≤ x ≤ 1

1 if 0 ≤ x ≤ 1

k

Note that fk(x)→ f(x) pointwise, where

f(x) =

0 x > 0

1 x = 0.

0 1

k

1

1

However, this convergence is not uniform: ∃ ε0 > 0 s.t. ∀K, ∃ k ≥ K s.t. ρ(fk(x), f(x)) >

ε0 for some x ∈ A. For example, take ε0 = and 0 < x <
1

k
.
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Theorem 5.1.5 Continuity of Uniform Limit

Let fk : A ⊂M → N be a sequence of continuous functions and fk → f uniformly converges on

A. Then, f is also continuous.

Proof 1. Fix x0 ∈ A. Given ε > 0. By UC, ∃K s.t. ρ(fK(x), f(x)) <
ε

3
∀x ∈ A. Since fK is

continuous, ∃ δ > 0 s.t.

x ∈ A, d(x, x0) < δ =⇒ ρ(fK(x), f(x0)) <
ε

3
.

Therefore, by triangle inequality, we have

ρ(f(x), f(x0)) ≤ ρ(f(x), fK(x)) + ρ(fK(x), fK(x0)) + ρ(fK(x0), f(x0))

<
ε

3
+
ε

3
+
ε

3

= ε.

So, f is continuous at x0.

Q.E.D. ■

Remark 5.3 This result can be used to show that a convergence is not uniform.

Example 5.1.6

• fn(x) =
xn

1 + xn
, with A = [0, 2].

– Find pointwise limit

fn(x)→ f(x) =


0, 0 ≤ x ≤ 1
1

2
, x = 0

1, 1 < x ≤ 2.

– Determine uniform convergence:

The convergence is not uniform because f is not continuous.

• Geometric Series: Counterexample to the converse of Theorem 5.1.5

∞∑
k=0

xk with A = (−1, 1).

– Converge pointwise to g(x) =
1

1− x
.

Find partial sum:

Sn(x) =
n∑
k=0

xk =
1− xn+1

1− x
.
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5 UNIFORM CONVERGENCE 5.1 Definition of Convergence

Since x ∈ (−1, 1), as n→∞, xn−1 → 0. So,

Sn(x) =
1− xn+1

1− x
n→∞−−−→ 1

1− x
for x ∈ (−1, 1).

– Uniform convergence on subinterval [−a, a] for any 0 < a < 1.

Estimate the error term:

|Sn(x)− g(x)| =
|x|n+1

|1− x|
.

When x → 1, |Sn(x)− g(x)| → ∞ as |1− x| → 0. However, if we restrict x ∈ [−a, a] for

some 0 < a < 1, then |1− x| ≥ 1− a, and we have

∀ ε > 0, ∃N s.t. n ≥ N =⇒ an+1

1− a
< ε.

=⇒ |Sn(x)− g(x)| ≤
an+1

1− a
< ε ∀x ∈ [−a, a].

– Convergence is not uniform on (−1, 1).

Observe that for any fixed N , we have
|x|N+1

|1− x|
x→1−−−−−→ ∞. Therefore,

∃x0 < 1 s.t.
|x0|N+1

|1− x0|
= |SN (x0)− g(x0)| ≥ 1 = ε0.

Definition 5.1.7 (Uniformly Cauchy Sequence). A sequence of functions fk : A ⊂M → N is uniformly

Cauchy sequence if ∀ ε > 0, ∃L > 0 s.t. j, k ≥ L =⇒ ρ(fk(x), fj(x)) < ε ∀x ∈ A.

Theorem 5.1.8 Cauchy Criterion

Let (N, ρ) be a complete metric space and fk : A ⊂M → N be a sequence of functions. Then, fk
converges uniformly on A ⇐⇒ ∀ ε > 0, ∃L > 0 s.t.

j, k ≥ L =⇒ ρ(fk(x), fj(x)) < ε ∀x ∈ A.

Proof 2. (⇒) Assume fk → f uniformly. [WTS: fk is uniformly Cauchy.]

ρ(fk(x), fj(x)) ≤ ρ(fk(x), f(x)) + ρ(f(x) + fj(x)). □

(⇐) Assume {fk} is uniformly Cauchy.

• Find the limit function (pointwise)

For each fixed x ∈ A, the sequence of points {fk(x)} is Cauchy inN . By completeness ofN , fk(x)

converges to some point in N . Denoted by f(x).
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5 UNIFORM CONVERGENCE 5.1 Definition of Convergence

• Show fk(x)→ f(x) UC

Given ε > 0, ∃L1 s.t. j, k ≥ L1 =⇒ ρ(fk(x), fj(x)) <
ε

2
∀x ∈ A. Furthermore, as fk(x) → f(x)

pointwise, for any x ∈ A, ∃Lx ≥ L1 s.t. j ≥ Lx =⇒ ρ(fj(x), f(x)) <
ε

2
.

Now, let K = L1. Then, when k ≥ K we have

ρ(fk(x), f(x)) ≤ ρ(fk(x), fLx(x)) + ρ(fLx(x), f(x))

<
ε

2
+
ε

2

= ε ∀x ∈ A.

Just pick j = Lx, we have different intermediate term for different x’s.

Q.E.D. ■

Corollary 5.1.9 Weiertrass M Test: Let N be a complete normed space and gk : A→ N be a sequence

of functions s.t. ∃ constants Mk with

• ∥gk(x)∥ ≤Mk for all x ∈ A, and

•
∞∑
k=1

Mk converges.

Then, the series
∞∑
k=1

gk(x) converge uniformly.

Proof 3. The sequence of partial sums {fn(x)} is uniformly Cauchy.

fn(x) =
n∑
k=1

gk(x).

Then, apply Cauchy criterion.

Q.E.D. ■

Example 5.1.10

•
∞∑
n=1

(sinnx)2

n2
, A = R.

Set gn(x) =
(sinnx)2

n2
. Then, |gn(x)| ≤

1

n2
.

As
∞∑
n=1

1

n2
converges, by M test,

∞∑
n=1

(sinnx)2

n2
converges uniformly.

•
∞∑
n=0

(
xn

n!

)2

→ f(x) on R pointwise

If we limit A = [−a, a], then
∞∑
n=0

(
xn

n!

)2

uniformly converges.
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5 UNIFORM CONVERGENCE 5.2 Integration and Differentiation of Series

5.2 Integration and Differentiation of Series

Theorem 5.2.1

Suppose fn : [a, b]→ R and integrable and fn → f uniformly on [a, b]. Then, f is integrable, and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞

fn(x) dx =

∫ b

a
f(x) dx.

Proof 1. Assume f is integrable. Then,∣∣∣∣∫ b

a
fn(x) dx−

∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|fn(x)− f(x)|︸ ︷︷ ︸
<ε ∀x, by UC

dx

<

∫ b

a
ε dx = ε(b− a).

Q.E.D. ■

Remark 5.4 One cannot replace uniform convergence by pointwise convergence.

Example 5.2.2

0 1k

has area of 1

Define fk(x) : [0, 1]→ R s.t. ∫ 1

0
fk(x) dx = 1.

Observe that fk(x)
pointwise−−−−−−→ f(x) ≡ 0 ∀x ∈ [0, 1]. So,∫ 1

0
fk(x) dx −̸→

∫ 1

0
f(x) dx

Remark 5.5 The same result is not true for differentiation. One cannot simply replace integrable with

differentiable. For example, consider

fn(x) =
xn+1

n+ 1
on [0, 1] =⇒ f ′n(x) = xn.
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5 UNIFORM CONVERGENCE 5.3 The Space of Continuous Functions

We have fn(x)
UC−−→ f(x) ≡ 0. However,

lim
n→∞

f ′n(x) ̸= lim
n→∞

f ′(x).

Theorem 5.2.3

Let fn : (a, b) → R be differentiable, converging pointwise to f(x) : (a, b) → R. If f ′n(x) are

continuous and converges uniformly to a function g, then f ′(x) = g(x). i.e.,

lim
n→∞

d

dx
(fn(x)) =

d

dx

(
lim
n→∞

fn(x)
)
=

d

dx
f(x) = g(x).

Proof 2.

( )
a b

x0 x

Use Fundamental Theorem of Calculus,

fn(x) = fn(x0) + fn(x)− fn(x0)

= fn(x0) +

∫ x

x0

f ′n(t) dt.

When n→∞, for fixed x ∈ A,

fn(x)→ f(x), fn(x0)→ f(x0),

∫ x

x0

f ′n(t) dt→
∫ x

x0

g(t) dt.

So,

f(x) = f(x0) +

∫ x

x0

g(t) dt

d

dx
(f(x)) =

d

dX
(f(x0)) +

d

dx

∫ x

x0

g(t) dt

lim
n→∞

f ′n(x) = f ′(x) = 0 + g(x) = g(x).

Q.E.D. ■

Example 5.2.4 One cannot replace UC with pointwise convergence

fn =
nx2

1 + nx2
, −1 ≤ x ≤ 1 =⇒ f ′n(x)

pointwise−−−−−−→ g(x)

However, f ′n(x) ̸= g(x).

5.3 The Space of Continuous Functions

Notation 5.1. Let A ⊂M be a metric space and N is a normal vector space. Then
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5 UNIFORM CONVERGENCE 5.3 The Space of Continuous Functions

• C = C(A,N) = {f | f A→ N continuous}: the collection of all continuous functions f : A→ N

• Cb = C(A,N) = {f ∈ C | f is bounded}: the collection of all bounded continuous functions

(∃M s.t. ∥f(x)∥N ≤M ∀x ∈ A)

Example 5.3.2

A = [0, 1] ⊂ R, N = R. Then,

Cb = C, the set of all continuous functions on [0, 1].

Remark 5.6

• Cb and C are vector spaces;

• Goal: Study Cb as a normed vector spaces as Rn.

Definition 5.3.3 (Norm on Cb). Given f ∈ Cb. Define ∥f∥ as follows:

∥f∥ = sup {∥f(x)∥N | x ∈ A}.

This is called the maximum absolute value norm.

Theorem 5.3.4

∥·∥ defined in Definition 5.3.3 is a norm in Cb. i.e.,

• Positive definiteness: ∥f∥ ≥ 0 and ∥f∥ = 0 ⇐⇒ f = 0;

• Scalar multiplicity: ∥αf∥ = |α|∥f∥ ∀α ∈ R

• Triangle inequality: ∥f + g∥ ≤ ∥f∥+ ∥g∥

Proof 1. (of ③) By definition, ∥f + g∥ = sup {∥f(x) + g(x)∥N | x ∈ A}. [WTS: ∥f∥ + ∥g∥ is an upper

bound.] Note that

∥f(x) + g(x)∥N ≤ ∥f(x)∥N + ∥g(x)∥N [triangle inequality in N ]

≤ ∥f∥+ ∥g∥ [definition]

So, ∥f + g∥ ≤ ∥f∥+ ∥g∥.
Q.E.D. ■

Definition 5.3.5 (Convergence in Cb). fk → f in Cb means that ∥fk − f∥ → 0 as k →∞.

Theorem 5.3.6

fk → f in Cb (convergence in norm as vectors) ⇐⇒ fk → f uniformly on A (convergence in

function)
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5 UNIFORM CONVERGENCE 5.3 The Space of Continuous Functions

Proof 2. (⇒): Assume ∥fk − f∥ → 0. Then, ∀ ε > 0, ∃K s.t. k ≥ K =⇒ ∥fk − f∥ ≤ ε. Thus, ∀x ∈ A,

by definition of norm, for k ≥ K,

∥fk(x)− f(x)∥N ≤ ∥fk − f∥ < ε.

So, fk(x)→ f(x) uniformly on A. □

(⇐): Assume fk(x)→ f(x) uniformly on A. Then, ∀ ε > 0, ∃K s.t. k ≥ K =⇒ ∥fk(x)− f(x)∥N < ε.

Then, ε is an upper bound. Note that

∥fk − f∥ = sup {∥fk(x)− f(x)∥N | x ∈}

is a least upper bound. So,

∥fk − f∥ = sup {∥fk(x)− f(x)∥N | x ∈ A} < ε

So, ∥fkf∥ → 0 as k →∞.

Q.E.D. ■

Theorem 5.3.7 Completeness of Cb
If N is complete, so is Cb(A,N).

Proof 3. Let {fk} be a Cauchy sequence in Cb. Then, ∀ ε > 0, ∃K s.t. j, k ≥ K =⇒ ∥fj − fk∥ < ε. By

definition, we have

∥fj(x)− fk(x)∥N ≤ ∥fj − fk∥ < ε ∀x ∈ A.

So, {fk(x)} is a uniform Cauchy sequence on A. By Cauchy criterion,

fk(x)→ f(x) uniformly on A.

f is also continuous since UC preserves continuity. By Theorem 5.3.6, we have fk → f in Cb. So, Cb is

complete.

Q.E.D. ■

Remark 5.7 (Comparison Between Cb and Rn) Let A ⊂M be compact and N = Rn.

Properties Rn Cb(A,N = Rn)
Normed Space ✓ ✓

Completeness ✓ ✓

Finite Dimension ✓ ✗

Compact Subset

Heine-Borel:

B ⊂ Rn is compact

⇐⇒ B is closed and bounded

Arzela-Ascoli: A ⊂M compact.

Then, B ⊂ Cb is compact

⇐⇒ B is closed, bounded, and

equicontinuous in A
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5 UNIFORM CONVERGENCE 5.4 The Contraction Mapping Principle (CMP)

Definition 5.3.8 (Equicontinuous). A family of function B is equicontinuous at a point x ∈ A if ∀ ε >
0, ∃ δ > 0 s.t. y ∈ D(x, δ) ∩A =⇒ ∥f(x)− f(y)∥N < ε ∀ f ∈ B.

Remark 5.8 δ is independent of f ∈ B.

Example 5.3.9

• B = {f ∈ Cb(R,R) | f(x) > 0 ∀x ∈ R}.

– Is B open? No.

Suppose f → 0 as x ∈ ∞. Then, no matter how small we take the δ, some part of D(f, δ)

will not be contained in B.

– What is cl(B)?
cl(B) = {f ∈ Cb(R,R) | f(x) ≥ 0 ∀x ∈ R}.

– What is int(B)?
int(B) = {f ∈ Cb(R,R) | inf(f(x)) > 0 ∀x ∈ R}.

Think of inf(f(x)) > 0 in this way: we need a buffer zone.

• B = {f ∈ Cb([0, 1],R) | f(x) > 0 ∀x ∈ [0, 1]}.

5.4 The Contraction Mapping Principle (CMP)

Theorem 5.4.1 CMP

Let (M,d) be a complete metric space, and Φ : M → M be a map. Suppose ∃ constant k s.t. 0 <

k < 1 s.t.

d(Φ(x),Φ(y)) ≤ k · d(x, y) ∀x, y ∈M.

Then,

• Φ has a unique fixed point in M . That is, ∃ !x∗ ∈M s.t. Φ(x∗) = x∗.

• The fixed point can be constructed (or approximated) as follows:

Fix any point x0 ∈M . Let x1 = Φ(x0), x2 = Φ(x1), . . . , xn+1 = Φ(xn), . . . . Then,

lim
n→∞

xn = x∗.

Remark 5.9 Φ is continuous. Further, Φ is Lipschitz =⇒ Φ is uniform continuous.

Proof 1. Fix x0 ∈M . Let xn+1 = Φ(xn) for n = 0, 1, 2, . . . .

Claim {xn} is Cauchy.
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5 UNIFORM CONVERGENCE 5.4 The Contraction Mapping Principle (CMP)

Note that ∀n ≥ 1,

d(xn, xn+1) = d(Φ(xn−1),Φ(xn)) ≤ kd(xn−1, xn)

≤ k2d(xn−1, xn−1)

...

≤ knd(x0, x1).

Thus, ∀ p ≥ 1,

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ knd(x0, x1) + kn+1d(x0, x1) + · · ·+ kn+p−1d(x0, x1)

=
(
kn + kn+1 + · · ·+ kn+p−1

)︸ ︷︷ ︸
geometric series

d(x0, x1)→ 0 as n→∞.

As the geometric series converges, {xn} is Cauchy.

Since M is complete, xn → x∗ ∈M .

Claim x∗ is a fixed point.

Since Φ is continuous,

lim
n→∞

Φ(xn) = Φ
(
lim
n→∞

xn

)
= Φ(x∗).

Meanwhile, Φ(xn) = xn+1, so

lim
n→∞

Φ(xn) = lim
n→∞

xn+1 = x∗.

Hence, x∗ = Φ(x∗), implying x∗ is a fixed point.

Claim The fixed point is unique.

Let y∗ ∈M be another fixed point. One can show

d(x∗, y∗) ≤ d(Φ(x∗),Φ(y∗)) [x∗, y∗ are fixed points]

≤ kd(x∗, y∗) [Φ is a contraction mapping]

=⇒ d(x∗, y∗) = 0.

Q.E.D. ■

Example 5.4.2 Application in ODE

Consider the following initial value problem (IVP):

dx

dt
= f(t, x) x(t0) = x0 (IVP)

• Basic Assumptions:
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5 UNIFORM CONVERGENCE 5.4 The Contraction Mapping Principle (CMP)

1. f(t, x) is continuous in a neighborhood U of (t0, x0) ∈ R2

2. f(t, x) is Lipschitz in x: ∃ constant K s.t.

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2| ∀(t1, x1), (t1, x2) ∈ U

• Apply CMP:

Theorem 5.4.3

If f(t, x) is continuous in U an Lipschitz in x, then (IVP) has a unique solution x = φ(t)

in the neighborhood of t0: (t0 − δ, t0 + δ). i.e.,

φ′(t) = f(t, φ(t)), φ(t0) = x0.

• Solving (IVP) is equivalent to finding a function φ(t) s.t.

φ′(t) = f(t, φ(t)).

Or, by integration:

φ′(t) = x0 +

∫ t

t0

f(s, φ(s)) ds [x0 comes from plugging in the initial condition]

This is just a fixed point for the following map (an integral operator):

Φ : g(t) 7−→ Φ(g) = x0 +

∫ t

t0

f(s, g(s)) ds

Theorem 5.4.4

We need to construct an appropriate metric spaceM ⊂ Cb s.t.Φ :M →M is a contrac-

tion mapping.

Algorithm 1: Iterative Method to Approximate the Solution to (IVP)

1 begin
2 φ0 ≡ x0;
3 for n = 0, 1, 2, . . . do

4 φn+1(t) = Φ(φn(t)) = x0 +

∫ t

t0

f(s, φn(s)) ds;
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5 UNIFORM CONVERGENCE 5.4 The Contraction Mapping Principle (CMP)

Example 5.4.5

Consider the IVP: f(t, x) = tx2 + x3, x(0) = 1.

Let φ0(t) = 1. Then,

φ1(t) = 1 +

∫ t

0
sφ0(s)

2 + φ0(s)
3 ds

= 1 +

∫ t

0
s+ 1ds

= 1 +

[
1

2
s2 + s

]t
0

= 1 +
1

2
t2 + t

φ2(t) = 1 +

∫ t

0
sφ1(s)

2 + φ1(s)
3 ds

= 1 +

∫ t

0
s

(
1 +

1

2
s2 + s

)2

+

(
1 +

1

2
s2 + s

)3

ds

...
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6 DIFFERENTIAL MAPPINGS

6 Differential Mappings

6.1 Definition and Matrix Representation of a Differential

Definition 6.1.1 (Linear Transformation). A function T : Rn → Rm is called a linear transformation if

∀x, y ∈ Rn and λ ∈ R, we have

• T (x+ y) = T (x) + T (y)

• T (λx) = λT (x)

These two properties can be combined and written equivalently as T (ax+by) = aT (x)+bT (y) ∀x, y ∈
Rn and ∀ a, b ∈ R.

6.1.2 Matrix Representation of T .

Observation: Given m× n matrix A, define function T : Rn → Rm by T (x) = A · x. Then, T is a linear

transformation.

Proof 1.

T (ax+ by) = A(ax+ by) = A(ax) +A(by) = aAx+ bAy = aT (x) + bT (y).

Q.E.D. ■

Example 6.1.3

Suppose A =


2 3

1 −1
0 4

. Then,

T (x) = A · x =


2 3

1 −1
0 4


[
x1

x2

]
=


2x1 + 3x2

x1 − x2
4x2

 ∈ R3.

Theorem 6.1.4 Fact

Every linear transformation T is determined by a matrix in such a way as above (via matrix mul-

tiplication).

Proof 2. Given T : Rn → Rm linear, we need to find a matrix A (m× n) such that

T (x) = A · x ∀x ∈ Rn.
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6 DIFFERENTIAL MAPPINGS 6.1 Definition and Matrix Representation of a Differential

To construct A, consider the standard basis for Rn : {e1, e2, . . . , en} and for Rm : {e′1, e′2 . . . , e′m}. Then,

T (ej) =
m∑
i=1

aije
′
i, ∀ j = 1, 2, . . . , n.

Let A =
(
aij

)
m×n

.

Claim T (x) = Ax ∀x ∈ Rn.

In fact, let x =


x1

x2
...

xn

 ∈ Rn. Then, we can rewrite x as a linear combination of standard basis:

x =
n∑
j=1

xjej .

So,

T (x) = x1T (e1) + x2T (e2) + · · ·+ xnT (en) =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn




x1

x2
...

xn

 = Ax. [T is Linear]

Q.E.D. ■

Remark 6.1 The collection of {linear transformation T : Rn → Rm} forms a 1-to-1 correspondence with

the collection of {m× n matrices A}.

Theorem 6.1.5 Continuity of T

If T : Rn → Rm is linear, then it is Lipschitz, and hence continuous.

Proof 3. Recall the definition of Lipschitz: |f(x)− f(y)| ≤ L · |x− y|.
Since T (x)− T (y) = T (x− y), we only need to show that

∥T (x)∥ ≤M · ∥x∥ for some M ∈ R.

Let x =
∑

xjej . Then, T (x) =
∑

xjT (ej). So, ∥T (x)∥ ≤
∑
j

|xj | · ∥T (ej)∥.
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6 DIFFERENTIAL MAPPINGS 6.1 Definition and Matrix Representation of a Differential

Recall that ∥x∥ =
√∑

j

x2j . So, |xj | ≤ ∥x∥. Hence,

∥T (x)∥ ≤
∑
j

∥x∥ · ∥T (ej)∥ =

 n∑
j=1

∥T (ej)∥


︸ ︷︷ ︸
M, independent of x

·∥x∥ =M · ∥x∥

Q.E.D. ■

6.1.6 Derivative (Differential) as a Linear Transformation.

• Recall one variable case: Let f : (a, b)→ R. Then, we can rewrite f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

as

lim
x→x0

[
f(x)− f(x0)− f ′(x0)(x− x0)

x− x0

]
= 0.

• Definition 6.1.7 (Generalization to Higher Dimensions).A map f : A ⊂ Rn → Rm is said to be

differentiable at x0 ∈ A if there is a linear map, denoted by Df(x0) : Rn → Rm with

lim
x→x0

∥f(x)− f(x0)− Df(x0)(x− x0)∥
∥x− x0∥

(⋆)

Remark 6.2 Interpretations of (⋆):

1. Rewrite (⋆): ∀ ε > 0, ∃ δ > 0 s.t. ∀x ∈ A,

∥x− x0∥ > δ =⇒ ∥f(x)− f(x0)− Df(x0)(x− x0)∥ < ε∥x− x0∥.

2. f(x) ≈ f(x0) + Df(x0) · (x− x0)︸ ︷︷ ︸
linear map

is called the affine map.

3. Geometric Interpretation: z = f(x) : Rn → R1. Then, z − f(x0) = Df(x0)(x − x0) represents

the tangent plane of the surface z = f(x).

4. For f : R1 → R1, Df(x) is the differential, representing a linear transformation, whereas f ′(x)

or
df

dx
is the derivative, which is just a number.

For example, f(x) = x2. Then, f ′(x) = 2x. However, Df(x) is a linear transformation R1 →
R1, defined as

Df(x)(h) = 2xh, ∀h ∈ R1.

• Uniqueness of Differential

Theorem 6.1.8

Let A ∈ Rn be open and f : A → Rm be differentiable at x0 ∈ A. Then, the differential

Df(x0) is uniquely determined by f .
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6 DIFFERENTIAL MAPPINGS 6.1 Definition and Matrix Representation of a Differential

Proof 4. Let L1 and L2 be two linear transformations such that

lim
x→x0

∥f(x)− f(x0)− L1(x− x0)∥
∥x− x0∥

= 0 = lim
x→x0

∥f(x)− f(x0)− L2(x− x0)∥
∥x− x0∥

.

We need to show that L1 = L2. i.e., L1(h) = L2(h) ∀h ∈ Rn.

Fix any unit vector e ∈ Rn. Let x = x0 + te, where t ∈ R and t ̸= 0 (This makes sense because A is

open by assumption). Then,

∥L1(e)− L2(e)∥ =
∥L1(te)− L2(te)∥

|t|

=
∥L1(x− x0)− L2(x− x0)∥

∥x− x0∥
[|t| = ∥x− x0∥]

=
∥L1(x− x0)− (f(x)− f(x0)) + (f(x)− f(x0))− L2(x− x0)∥

∥x− x0∥

≤ ∥L1(x− x0)− (f(x)− f(x0))∥+ ∥(f(x)− f(x0))− L2(x− x0)∥
∥x− x0∥

=
∥L1(x− x0)− (f(x)− f(x0))∥

∥x− x0∥
+
∥(f(x)− f(x0))− L2(x− x0)∥

∥x− x0∥
.

Note that both parts → 0 as x → x0. So, ∥L1(e)− L2(e)∥ = 0, and thus L1(e) = L2(e) ∀ unit

vector e. Using linear transformation, L1(h) = L2(h) ∀h ∈ Rn.

Q.E.D. ■

Remark 6.3 Theorem 6.1.8 is not true ifA is not open. A trivial example would be whenA = {x0},
the set of just one point. Then, any linear map satisfies the differential definition. That is,

lim
x→x0
x∈A

∥f(x)− f(x0)− T (x− x0)∥
∥x− x0∥

= 0 ∀ linear map T.

Or, equivalently, ∥f(x)− f(x0)− T (x− x0)∥ < ε∥x− x0∥.

6.1.9 Matrix Representation of the Differential Df(x).

Question: Given f , how do we find the linear transformation Df(x)?

Definition 6.1.10 (Partial Derivative). Write f(x) =
(
f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
∈

Rm. Then,
∂fj
∂xi

= lim
h→0

fj(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− fj(x1, . . . , xi, . . . , xn)
h

.
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6 DIFFERENTIAL MAPPINGS 6.1 Definition and Matrix Representation of a Differential

Theorem 6.1.11 Relation Between Differential Df(x) and Partial Derivatives

Suppose A ⊂ Rn is open and f : A → Rm is differentiable at x ∈ A. Then,
∂fj
∂xi

exists and the

matrix of the linear map Df(x) is given by
∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 ∈ Rm×n,

and we denotes this matrix as Jf (x), the Jacobian matrix of f at x.

Proof 5. Denote the matrix of Df(x) by B =
(
bji

)
m×n

. We need to show bji =
∂fj
∂xi

.

Recall: bji = j−th component of Df(x)(ei) =
∑m

j=1 bjie
′
j . Fix i, j and let y = x+ hei, h ∈ R. Then,

by definition of differential,

∥f(y)− f(x)− Df(x)(y − x)∥
∥y − x∥

→ 0 as y − x→ 0.

Taking the j-th component,

|fj(x1, . . . , xi + h, . . . , xn)− fj(x1, . . . , xn)− bji · h|
|h|

→ 0 as h→ 0.

So,

lim
h→0

fj(x1, . . . , xi + h, . . . , xn)− fj(x1, . . . , xn)
h

= bji.

Hence,
∂fj
∂xi

= bji ∀ i, j.

So, Df(x) is determined by the Jacobian matrix Jf (x).

Q.E.D. ■

Example 6.1.12

• f(x, y, z) = (x4y, xez) : R3 → R2.

Jf (x, y, z) =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

 =

[
4x3y x4 0

ez 0 xez

]
.
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

• Special Case: m = 1: f : Rn → R. Then,

Jf (x) =

[
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]
is a 1× n matrix.

Definition 6.1.13 (Gradient). The gradient, grad f or ∇f , is defined by the following vector:

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
.

Gradient points towards the direction of fastest growth.

• f(x, y, z) =
x sin y

z
. Computing Df and ∇f .

Solution 6.

Df(x) = Jf (x) =

[
sin y

z

x cos y

z
−x sin y

z2

]
.

∇f(x) =

(
sin y

z
,
x cos y

z
,−x sin y

z2

)
.

□

Remark 6.4 (Relation Between Df(x) and ∇f ) For any h ∈ Rn, we have

matrix multiplication← Df(x)h = ⟨∇f, h⟩ → inner product/dot product

• Special Case: n = 1. Consider x = c(t) : [a, b] ⊂ R→ Rm. Then,

Dx(t) = c′(t) =
(
c′1(t), c

′
2(t), . . . , c

′
m(t)

)
is the tangent vector.

6.2 Necessary and Sufficient Conditions for Differentiability

Definition 6.2.1 (Locally Lipschitz). f is locally Lipschitz at x0 if ∀x0 ∈ A, ∃ δ > 0 and M s.t.

∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)∥ < M · ∥x− x0∥.

Theorem 6.2.2 Necessary Condition for Differentiability I

Suppose A ⊂ Rn is open and f : A→ Rm is differentiable. Then, f is locally Lipschitz.

Remark 6.5 (Ideas to Prove this Theorem)
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

• Linear map Df(x) is Lipschitz;

• f(x) can be approximated by Df(x0) locally.

Proof 1. Fix x0 ∈ A. By definition,

lim
x→x0

∥∥f(x)− f(x0)− Df(x0)(x− x)
∥∥

∥x− x0∥
= 0.

For ε = 1, ∃ δ > 0 s.t.

∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)− Df(x0)(x− x0)∥ ≤ ε · ∥x− x0∥ = ∥x− x0∥.

By triangle inequality,

∥f(x)− f(x0)∥ ≤ ∥Df(x0)(x− x0)∥+ ∥x− x0∥.

Since Df(x0) is Lipschitz, ∃L s.t.

∥Df(x0)(x− x0)∥ ≤ L · ∥x− x0∥.

So, ∥x− x0∥ < δ =⇒

∥f(x)− f(x0)∥ ≤ L · ∥x− x0∥+ ∥x− x0∥

= (L+ 1)︸ ︷︷ ︸
M

·∥x− x0∥

=M · ∥x− x0∥.

Q.E.D. ■

Remark 6.6

• Continuity is not sufficient to guarantee differentiability. For instance, f(x) = |x|.

However, differentiability =⇒ continuity.

• Derivative of a differentiable function may not be continuous. For example, consider the function

f(x) =

x
2 sin

1

x
, x ̸= 0

0, x = 0.
; f : R1 → R1. Then, we have

f ′(0) = lim
x→0

f(x)− f(0)
x

= lim
x→0

x2 sin
1

x
x

= lim
x→0

x sin
1

x
= 0.

When x ̸= 0,

f ′(x) = 2x sin
1

x
+ x2 cos

1

x
(− 1

x2
) = 1x sin

1

x
− cos

1

x
.
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

Conclusion: f is differentiable in R1. However,

f ′(x) =

2x sin
1

x
− cos

1

x
, x ̸= 0

0, x = 0

is not continuous at x = 0.

Theorem 6.2.3 Necessary Condition for Differentiability II

Suppose f : A ⊂ Rn → Rm is differentiable. Then, the partial derivatives,
∂fj
∂xi

, exists ∀ i, j.

Example 6.2.4 The Converse is not True

The converse of Theorem 6.2.3 is, in general, not true. Here we will consider a counterexample.

Consider function f : R2 → R given by

f(x, y) =


xy√
x2 + y2

, (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)

Claim f is continuous at (0, 0).

In fact, we have (a− b)2 ≥ 0 =⇒ a2 − 2ab+ b2 ≥ 0. So,

ab ≤ a2 + b2

2
a, b ∈ R.

Then,

|xy| ≤ 1

2
(a2 + b2) =⇒ xy√

x2 + y2
→ 0 as (x, y)→ (0, 0).

Claim
∂f(0, 0)

∂x
= 0 and

∂f(0, 0)

∂y
= 0.

∂f(0, 0)

∂x
= lim

x→0

f(x, 0)− f(0, 0)
x− 0

= lim
x→0

0− 0

x
= 0.

Claim f is not differentiable at (0, 0).

If f were differentiable, the matrix of Df(0, 0) is given by

Jf (0, 0) =

(
∂f

∂x
,
∂f

∂y

)
=
(
0, 0
)
.
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

However, note that

∥f(x, y)− f(0, 0)− Df(x, y)∥
∥(x, y)− (0, 0)∥

=

|xy|√
x2 + y2√
x2 + y2

=
|xy|

x2 + y2
.

Since
|xy|

x2 + y2
does not→ 0 as (x, y)→ (0, 0), f is not differentiable at (0, 0).

Conclusion: Continuity + Existence of Partial Derivative
∂fj
∂xi

≠⇒ Differentiability.

Theorem 6.2.5 Sufficient Condition for Differentiability

Let A ⊂ Rn be open and f = (f1, . . . , fm) : A → Rm. If all the partials
∂fj
∂xi

exist and continuous

on A, then f is differentiable on A.

Proof 2. WTS: ∀x ∈ A,

lim
y→x

∥f(y)− f(x)− Jf (x)(y − x)∥
∥y − x∥

= 0.

It is sufficient to show that this is true for each component fj of f = (f1, f2, . . . , fm). Thus, we may

assume m = 1: f : A ⊂ Rn → R1. Then,

Jf (x) =

(
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

)
.

So,

Jf (y − x) =
n∑
i=1

∂f

∂xi
,

and

f(y)− f(x) = f(y1, y2, . . . , yn)− f(x1, x2, . . . , xn)

= f(y1, y2, . . . , yn)− f(x1, y2, . . . , yn)

+ f(x1, y2, . . . , yn)− f(x1, x2, . . . , yn)

+ f(x1, x2, . . . , yn)− · · · each time, we change one component

+ f(x1, x2, . . . , yn)− f(x1, x2, . . . , xn)

By MVT,

f(y1, y2, . . . , ym)− f(x1, y2, . . . , yn) =
∂f

∂x1
· (y1 − x1).
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

Applying MVT to other terms, we obtain

f(y)− f(x) = ∂f(z(1))

∂x1
+
∂f(z(2))

∂x2
+ · · ·+ ∂f(z(n))

∂xn
.

Thus,

∥f(y)− f(x)− Jf (x)(y − x)∥ =

∥∥∥∥∥
n∑
i=1

∂f(z(i))

∂xi
−

n∑
i=1

∂f(x)

∂xi

∥∥∥∥∥
≤

n∑
i=1

∣∣∣∣∣∂f(z(i))∂xi
− ∂f(x)

∂xi

∣∣∣∣∣ · ∥y − x∥ Triangle Inequality:
|yi−xi|≤∥y−x∥

By continuity of partial derivative, ∀ ε > 0, ∃ δ > 0 s.t.

∥y − x∥ < δ =⇒
n∑
i=1

∣∣∣∣∣∂f(z(i))∂xi
− ∂f(x)

∂xi

∣∣∣∣∣ < ε

Hence,

∥f(y)− f(x)− Jf (x)(y − x)∥ < ε∥y − x∥.

Q.E.D. ■

Definition 6.2.6 (Directional Derivative). Let f : Rn → R and e ∈ Rn be a unit vector. The directional

derivative of f at x0 in the direction e is given by

Def(x0) =
d

dt
f(x0 + te)

∣∣∣∣
t=0

= lim
t→0

f(x0 + te)− f(x0)
t

.

Claim 6.2.7 If f is differentiable at x0, then Def(x0) = Df(x0) · e
Proof 3.

lim
t→0

∥f(x0 + te)− f(x0)− Df(x0)(te)∥
∥te∥

= 0

lim
t→0

f(x0 + te)− f(x0)
t

= Df(x0)(e)

Def(x0) = Df(x0)(e).

Q.E.D. ■

Remark 6.7 Exitence of directional derivatives ≠⇒ differentiability

Example 6.2.8

Continuity of f + Existence of directional derivative ≠⇒ differentiability.
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6 DIFFERENTIAL MAPPINGS 6.2 Necessary and Sufficient Conditions for Differentiability

Consider function f : R2 → R given by

f(x, y) =


xy√
x2 + y2

, (x, y) ̸= (0, 0)

0, (x, y) = (0, 0).

Claim Def(0, 0) exists for any direction e ∈ R2.

lim
t→0

f((0, 0) + te)− f(0, 0)
t

exists ∀ e ∈ R2.

Definition 6.2.9 (Tangent Line/Plane).

• The tangent line to the curve y = f(x) at x0 is given by

y = f(x0) + f ′(x0)(x− x0).

• The tangent plane to the surface z = f(x) at x0 is given by

z = f(x0) + Df(x0)(x− x0).

Example 6.2.10

Find the tangent plane at (1, 2) to the surface z = x2 + y2.

Solution 4.

Jf (x) =

(
∂f

∂x

∂f

∂y

)
=
(
2x 2y

)
.

The tangent plane is given by

z = f(1, 2) + Df(1, 2)((x, y)− (1, 2))

= 12 + 22 +
[
2x 2y

]∣∣∣∣
(x,y)=(1,2)

[
x− 1

y − 2

]

= 5 +
[
2 4

][x− 1

y − 2

]
z = 5 + 2(x− 1) + 4(y − 2).

□
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6 DIFFERENTIAL MAPPINGS 6.3 Differentiation Rules

Summary III: Relations among Properties of f : Rn → Rm

Differentiability

=⇒ Existence of Directional Derivative

=⇒ Existence of Partial Derivative (moving in direction of the basis)

+ Theorem 6.2.5 =⇒ Differentiability

≠⇒ Continuity

=⇒ Continuity

≠⇒ Existence of Partial Derivative

6.3 Differentiation Rules

6.3.1 Chain Rule

Recall the one variable case: h = g(u), u = f(x). Then,

h = f ◦ f(x) = g(f(x)),

and
dh

dx
=

dh

du
· du
dx

= g′(f(x)) · f ′(x).

Theorem 6.3.1 General Case Chain Rule

Let f : A ⊂ Rn → Rm and g : B → Rp be differentiable with f(A) ⊂ B. Then, the composite

g ◦ f : A→ Rp is differentiable, and

D(g ◦ f)(x) = Dg(f(x)) ◦ Df(x),

a composition of linear mappings.

In matrix notation, define h = g(u) and u = f(x). Then, h = g ◦ f(x) = g(f(x)), and

Jh(x) = Jg(f(x)) · Jf (x) product of matrices

=


∂g1
∂u1

· · · ∂g1
∂um

...
. . .

...
∂gp
∂u1

· · · ∂gp
∂um

 ·

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn



Proof 1. (Sketch). We need to show: for fixed x ∈ A ⊂ Rn,

lim
y→x

∥h(y)− h(x)− Dh(x)(y − x)∥
∥y − x∥

= 0,
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6 DIFFERENTIAL MAPPINGS 6.3 Differentiation Rules

or

lim
y→x

∥g(f(y))− g(f(x))− Dg(f(x))[Df(x)(y − x)]∥
∥y − x∥

= 0.

Work with the numerator:

numerator = ∥g(f(y))− g(f(x))−Dg(f(x))(f(y)− f(x))

+Dg(f(x))(f(y)− f(x))− Dg(f(x))[Df(x)(y − x)]∥

≤ ∥g(f(y))− g(f(x))− Dg(f(x))[Df(x)(y − x)]∥ triangle inequality

+ ∥Dg(f(x))(f(y)− f(x))− Dg(f(x))[Df(x)(y − x)]∥

≤ ε1∥f(y)− f(x)∥+ ∥Dg(f(x))∥ · ∥f(y)− f(x)− Df(x)(y − x)∥

(ε1 : g is differentiable; dg(f(x)) : common factor)

≤ ε1 · L∥y − x∥+M · ε2∥y − x∥

(L : local Lipschitz; M : differential bounded; ε2 : f is differentiable)

= (Lε1 +Mε2) · ∥y − x∥.

Therefore,

lim
y→x

numerator
∥y − x∥

= lim
y→x

(Lε1 +Mε2)∥y − x∥
∥y − x∥

= lim
y→x

Lε1 +Mε2 = 0.

Q.E.D. ■

Example 6.3.2

• Change of Variable

(x, y, z)←→ (r, θ, z) :


x = r cos θ

y = r sin θ

z = z

(cylindrical coordinate)

Let h(r, θ, z) = f(x, y, z) = f(x(r, θ, z), y(r, θ, z), z(r, θ, z)). Then,

Dh =
∂h

∂(r, θ, z)
=

∂f

∂(x, y, z)
· ∂(x, y, z)
∂(r, θ, z)

= Jf ·


cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1
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6 DIFFERENTIAL MAPPINGS 6.4 Geometric Interpretation of Gradient

• Consider composition of the maps [0, 1]
γ−→ Rn f−→ R. Then, h(t) = f(γ(t)). By chain rule,

h′(t) = Df ◦ Dγ =

(
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

)

x′1(t)

x′2(t)
...

x′n(t)


=

n∑
i=1

∂f

∂xi
x′i(t) =

〈
∇f, γ′(t)

〉
.

6.3.2 Other Differentiation Rules

Theorem 6.3.3 Product Rule

Let f : A ⊂ Rn → Rm and g : A → R be differentiable. Then, the product gf : A → Rm is

differentiable, and

D(gf) = g(Df) + (Dg)f.

More precisely, for each x ∈ A and h ∈ Rn,

D(gf) · h = g(x)︸︷︷︸
scalar

·Df(x)(h)︸ ︷︷ ︸
∈Rm

+Dg(x)(h)︸ ︷︷ ︸
scalar

· f(x)︸︷︷︸
∈Rm

.

In particular,
∂g(fj)

∂xi
= g · ∂fj

∂xi
+
∂g

∂xi
· fj .

Theorem 6.3.4 Other Differentiation Rules

D(f + g) = Df + Dg

D(λf) = λDf

D
(
f

g

)
=
gDf − (Dg)f

g2

(
derived from product rule:

f

g
= f · 1

g

)

6.4 Geometric Interpretation of Gradient

Let f : A ⊂ Rn → R be differentiable.

Definition 6.4.1 (Df(x),∇f(x), Def(x)).
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6 DIFFERENTIAL MAPPINGS 6.4 Geometric Interpretation of Gradient

• Differential of f : a matrix/linear transformation

Df(x) =
[
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]

• Gradient of f : a vector

∇f(x) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
.

• Directional derivative of f in the direction e:

Def(x) = Df(x)e = ⟨∇f(x), e⟩ .

Geometric meaning of Def(x): Rate of change in the direction of e.

6.4.2 Geometric Meaning of Gradient.

Claim 6.4.3 ∇f is perpendicular to the level surface S defined by f(x) = constant.

f(x) = c

level surface

S

∇f

γ(t)

x0

Proof 1. Fix any curve γ(t) on S: γ : [a, b]→ S. Then, f(γ(t)) = c. By chain rule,

Df(γ(t)) · γ′(t) = 0 =⇒
〈
∇f(x0), γ

′(x0)
〉
= 0.

So, ∇f(x0) ⊥ γ′(x0). That is, ∇f ⊥ curve γ on S =⇒ ∇f ⊥ S.

Q.E.D. ■

Corollary 6.4.4 Tangent Plane: The tangent plane at x0 of the level surface is given by

⟨∇f(x0), x− x0⟩ = 0.

Example 6.4.5

Find the tangent plane at (1, 0, 1) to the surface x2 − y2 + xyz = 1.

Claim 6.4.6 The direction of ∇f is the direction in which f has the greatest rate of change, which is

given by ∥∇f∥.
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6 DIFFERENTIAL MAPPINGS 6.5 Mean Value Theorem (MVT)

Proof 2. Fix a direction e ∈ Rn. Then, the rate of change in direction e is given by

Def(x0) = ⟨∇f, e⟩ = ∥∇f∥∥e∥ cos θ,

where θ is the angle between ∇f(x0) and e. Then, the rate of change is maximized when cos θ = 1. So,

θ = 0. That is, e is in the direction of ∇f .

Q.E.D. ■

6.5 Mean Value Theorem (MVT)

Theorem 6.5.1 MVT in 1-D

Let f : [a, b]→ R1 be continuous and differentiable on (a, b). Then, ∃ c ∈ (a, b) s.t.

f ′(c) =
f(b)− f(a)

b− a
or f(b)− f(a) = f ′(c)(b− a).

Theorem 6.5.2 MVT in Higher Dimension

Let f : A ⊂ Rn → R be differentiable on an open set A. Then, for any pair of points x, y ∈ A s.t.

the line segment [x, y] joining x and y is contained in A, ∃ a point c ∈ [x, y] s.t.

f(y)− f(x) = Df(c)(y − x).

A

x

y

0 1

g(t)

c

x′

y′

Proof 1. Let g(t) = (1− t)x+ ty for 0 ≤ t ≤ 1 and

h(t) = f ◦ g(t) = f((1− t)x+ ty) : [0, 1]→ R.

Apply Theorem 6.5.1 to h, we know ∃t0 ∈ (0, 1) s.t.

h(1)− h(0) = h′(t0)(1− 0)

f(y)− f(x) = Df(g(t0)) · g′(t0) [Chain Rule]

= Df(g(t0)) · (y − x).

Denote g(t0) = c ∈ [x, y]. Then,

f(y)− f(x) = Df(c)(y − x).

Q.E.D. ■
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Definition 6.5.3 (Convex Set). A set A ⊂ Rn is convex if ∀x, y ∈ A, [x, y] ⊂ A.

Corollary 6.5.4 : Let A ⊂ Rn be open and convex, and f : A → Rm differentiable. If Df ≡ 0, then f is

constant in A.

Proof 2. (Sketch)

Apply MVT to each component of f = (f1, f2, . . . , fm).

Q.E.D. ■

6.6 Taylor’s Theorem & Higher Order Differentials

6.6.1 One Dimensional Case

Theorem 6.6.1 Taylor’s Formula

Let f : (a, b) → R be one of class Cr (i.e., f ′(x), f ′′(x), . . . , f (r)(x) are continuous). Then, for any

x0, x ∈ (a, b), we have

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+

f (r−1)(x0)

(r − 1)!
(x− x0)r−1

︸ ︷︷ ︸
Taylor’s polynomial of degree r−1

+

Remainder︷ ︸︸ ︷
Rr−1(x0),

where Rr−1 is the remainder at x0 and can be written as

Rr−1(x0) =
f (r)(c)

r!
(x− x0)r for some c between x and x0.

Remark 6.8 (Key Idea to Prove) Use integration by parts in a reversed way multiple times.

Proof 1. Write h = x− x0. Then, by Fundamental Theorem of Calculus,

f(x)− f(x0) = f(x0 + h)− f(x0) =
∫ 1

0

d

dt
f(x0 + th) dt.

Now, apply integration by parts. Taking u =
d

dt
f(x0 + th) = f ′(x0 + th)h and dv = dt =⇒ v = t− 1, we

have

f(x)− f(x0) =
∫ 1

0
udv

= uv

∣∣∣∣1
0

−
∫ 1

0
v du

= −(−1)f ′(x0)h−
∫ 1

0
(t− 1)f ′′(x0 + th)h2) dt

= f ′(x0)h−
∫ 1

0
f ′′(x0 + th)h2(t− 1) dt.
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Apply integration by parts again with

u = f ′′(x0 + th)h2 and dv = (t− 1) dt =⇒ v =
1

2
(t− 1)2.

Then, we obtain∫ 1

0
f ′′(x0 + th)h2(t− 1) dt = f ′′(x0 + th)h2

1

2
(t− 1)2

∣∣∣∣1
0

−
∫ 1

0

1

2
(t− 1)2f ′′(x0 + th)h3 dt

=
f ′′(x0)

2
h2 +

∫ 1

0
f (3)(x0 + th)h3 · 1

2
(t− 1)2 dt.

So,

f(x)− f(x0) = f ′(x0)h+
f ′′(x0)

2
h2 +

∫ 1

0
f (3)(x0 + th)h3 · 1

2
(t− 1)2 dt.

By induction, we obtain that

f(x)− f(x0) =

Taylor’s polynomial︷ ︸︸ ︷
f ′(x0)h+

f ′′(x0)

2
h2 +

f ′′′(x0)

3!
h3 + · · ·+ f (r−1)(x0)

(r − 1)!
hr−1

+ (−1)r−1

∫ 1

0
f (r)(x0 + th)hr

(t− 1)r−1

(r − 1)!
dt︸ ︷︷ ︸

Remainder

Lemma 6.6.2 2nd MVT for Integral: If g ≥ 0, then
∫ b

a
f(x)g(x) dx = f(λ)

∫ b

a
g(x) dx.

Apply 2nd MVT to the remainder, we have

Rr−1 = (−1)r−1f (r)(x0 + t0h)h
r

∫ 1

0

(t− 1)r−1

(r − 1)!
dt

= f (r)(x0 + t0h)h
r · 1
r

[
(−1)r−1 is absorbed when

evaluating the integral

]
=
f (r)(c)

r!
hr

[
Denote c=x0+t0h, a point

between x0 and x

]
Combining everything, we get exactly what we have claimed.

Q.E.D. ■

Summary IV: Taylor’s Formula & Taylor’s Approximation

• Taylor’s Formula:

f(x) = Pr−1(x) +Rr−1.

• Taylor’s Approximation:

f(x) ≈ Pr−1(x).
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6.6.2 Taylor Series

Definition 6.6.3 (Taylor Series). Let f ∈ C∞. Then, the Taylor series is defined as

∞∑
n=0

f (n)(x0)

n!
(x− x0)n = f(x0) + f ′(x0)(x− x0) +

f ′′(x0)

2
(x− x0)2 + · · · .

Definition 6.6.4 (Real Analytic). f is (real) analytic at x0 if its Taylor series converges to f(x) in a

neighborhood of x0. i.e.,

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n, |x− x0| < R.

Corollary 6.6.5 : If f ∈ C∞(R) and for each interval [a, b], ∃ constant M s.t.∣∣∣f (n)(x)∣∣∣ ≤Mn ∀n and x ∈ [a, b],

then, f is real analytic at each point x0 and it has Taylor series representation. Namely,

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n, |x− x0| <∞.

Proof 2. Fix x0 ∈ R. For any x ∈ R, choose b > 0 s.t. x0, x ∈ [−b, b]. By Taylor’s Formula,

f(x) = Pn−1(x)︸ ︷︷ ︸
partial sum
of the series

+Rn−1.

Recall:

Rn−1 =
f (n)(c)

n!
(x− x0)n for some c.

Then,

|Rn−1| ≤
Mn

n!
|x− x0|n ∀x ∈ [−b, b].

Since the series
∞∑
n=0

Mn

n!
|x− x0|n converges by ratio test, its n-th term,

Mn

n!
|x− x0|n → 0 as n→∞.

Hence, Rn−1 → 0 as n→∞. Then, Pn−1(x)→ f(x) as n→∞.

Q.E.D. ■

Example 6.6.6

• ex and sinx are real analytic in R. Find Taylor series at x0 = 0:
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Solution 3.

en =

∞∑
n=0

1

n!
xn, |x− x0| <∞.

□

• Is every C∞ real analytic? No.

Counterexample 6.7. Consider the function f(x):

f(x) =

0, x = 0

e−1/x2 , x ̸= 0.

Claim f(x) ∈ C∞.

Proof. At x = 0,

f ′(0) = lim
x→0

f(x)− f(0)
x− 0

= lim
x→0

e−1/x2

x
= 0 (by L.H.)

At x ̸= 0,

f ′(x) = e−1/x2
(

2

x3

)
=

2/x3

e1/x2
→ 0 as x→ 0 (by L.H.)

So, f ′(x) is continuous at x = 0, and

f ′(x) =


0, x = 0

e−1/x2
(

2

x3

)
x ̸= 0.

By induction, one can show that

– f (n)(0) = 0 ∀n

– f (n)(x)→ 0 as x→ 0.

So, f (n)(x) is continuous at x = 0. So, f ∈ C∞. □

Claim f(x) is not real analytic at x = 0.

Proof. Taylor series:

∞∑
n=0

f (n)(x0)

n!
(x− x0)n =

∞∑
n=0

f (n)(0)

n!
(x)n = 0.

So, the Taylor series does not converge to f(x) on any neighborhood of x = 0. □
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6.6.3 Higher Dimensional Case

Observation: Let f : A ⊂ Rn → R.

• Differential: Df(x) is a linear transformation Rn → R.

• Let g(x) = Df(x). Then, g : A ⊂ Rn → L(Rn,R) ≈ Rn, where L(M,N) is the space of linear

transformation from M to N .

• Dg(x) is a linear transformation Rn → Rn or L(Rn,R).

Notation 6.8.Higher Order Differential The second order differential of f at x is denoted as

D2f(x) = Dg(x) = D(Df(x)).

Definition 6.6.9 (Bilinear Maps). Given f and x ∈ A. Define a bilinear map, Rn × Rn → R by

D2f(x)(u, v) =
[
D2f(x)(u)

]
(v),

where u, v ∈ Rn and D2f(x)(u) ∈ L(Rn,R). In matrix notation,

uBv⊤,

where u is 1× n, B is n× n, and v⊤ is n× 1.

Definition 6.6.10 (Matrix Representation of the Bilinear Map). D2f(x) : Rn × Rn → R is given by
∂2f

∂x1∂x1

∂2f

∂x2∂x1
· · · ∂2f

∂xn∂x1
...

...
. . .

...
∂2f

∂x1∂xn

∂2f

∂x2∂xn
· · · ∂2f

∂xn∂xn


n×n

This matrix is denoted as Hx(f), the Hessian matrix of f at x. Then, in matrix form, we have that for

u = (u1, u2, . . . , un) ∈ Rn and v = (v1, v2, . . . , vn) ∈ Rn, and

D2f(x)(u, v) = u ·Hx(f) · v⊤ ∈ R.

Proof 4. Note that

g(x) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
: Rn → Rn.
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Then,

D2f(x) = Dg(x)

=


∂

∂x1

∂f

∂x1

∂

∂x2

∂f

∂x1
· · · ∂

∂xn

∂f

∂x1
...

...
. . .

...
∂

∂x1

∂f

∂xn

∂

∂x2

∂f

∂xn
· · · ∂

∂xn

∂f

∂xn

.

Q.E.D. ■

Lemma 6.6.11 Symmetry of the Partials and Differentials: Let f(x, y) : A ⊂ R2 → R be of class C2.

Then,
∂2f

∂x∂y
=

∂2f

∂y∂x
.

In general, for f : A ⊂ Rn → R in class C2,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
∀ i, j.

Extension 6.1 If f ∈ C(n), the order of taking n-th derivative does not matter.

Corollary 6.6.12 : If f is of class C2, then D2f(x) : Rn × Rn → R is symmetric. That is,

D2f(x)(u, v) = D2f(x)(v, u).

Proof 5.

D2f(x)(u, v) = u ·Hx(f) · v⊤

Since D2f(x)(u, v) ∈ R, we have

D2f(x)(u, v) =
[
D2f(x)(u, v)

]⊤
= (u ·Hx(f) · v⊤)⊤

= v ·Hx(f)
⊤ · u⊤

= v ·Hx(f) · u⊤ [by symmetry of Hx(f)]

= D2f(x)(u, v).

Q.E.D. ■

Example 6.6.13 Symmetry of Partials

Let f(x, y, z) = ex,y + xyz : R3 → R. Verify the symmetry of the partials.

Solution 6.

∂f

∂x
= yexy + yz;

∂f

∂y
= xexy + yz;

∂f

∂z
= xy.
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∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
= exy + xyexy + z;

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
= exy + xyexy + z.

□

Summary V: Higher Order Differentials

• 1-st Order Differential: Df(x0) : Rn → R: 1-linear form

Df(x0)(v) = Jf (x0) · v =
n∑
i=1

∂f

∂xi
vi.

• 2-nd Order Differential: D2f(x0) : Rn × Rn → R: bilinear form

D2f(x0)(v, w) = v ·Hf (x0) · w⊤ =

n∑
i,j=1

∂2f

∂xi∂xj
vi · wj .

• k-th Order Differential: Dkf(x0) : R×Rn × · · · × Rn → R: k-linear form

Dkf(x0)(v(1), v(2), . . . , v(k)) =
n∑

i1,i2,...,ik=1

∂2f

∂xi1∂xi2 · · · ∂xik
v
(1)
i1
v
(2)
i2
· · · v(k)ik

In particular, denote h = x− x0 ∈ Rn, then

Dkf(x0)(h, h, . . . , h) =
∑ ∂2f

∂xi1∂xi2∂xik
hi1hi2 · · ·hik .

• Speical case: n = 2: Write Dkf(x0)(h, h) =
(

∂
∂x1

+ ∂
∂x2

)k
f(x0) · (h, h). Then,

D1f =

(
∂

∂x1
+

∂

∂x2

)1

f =
∂f

∂x1
+

∂f

∂x2
; D2f =

(
∂

∂x1
+

∂

∂x2

)2

f =
∂2f

∂x21
+ 2

∂2f

∂x1∂x2
+
∂2f

∂x22
,

D3f(h, h, h) =
∂3f

∂x31
h31 + 3

∂3f

∂x21∂x2
h21h2 + 3

∂3f

∂x1∂x22
h1h

2
2 +

∂3f

∂x32
h32

99



6 DIFFERENTIAL MAPPINGS 6.6 Taylor’s Theorem & Higher Order Differentials

Theorem 6.6.14 Taylor’s Theorem

Let f : A ⊂ Rn → R be of class Cr. Suppose x, x0 ∈ A s.t. the line segment joining x and x0,

[x, x0] ⊂ A. Then, ∃ c ∈ [x, x0] s.t.

f(x) = f(x0) + Df(x0)(x− x0) +
1

2!
D2f(x0)(x− x0, x− x0) + · · ·

+
1

(r − 1)!
Dr−1f(x0)(x− x0, x− x0, . . . , x− x0) +Rr−1,

where Rr−1 is the remainder given by

Rr−1 =
1

r!
Drf(c)(x− x0, . . . , x− x0)

and satisfies
Rr−1(x0)

∥x− x0∥r−1 → 0 as x→ x0.

Proof 7. Consider 1-variable form, φ(t) = x0 + t(x− x0). Define

g(t) = f(x0 + t(x− x0))

for t ∈ (a, b) with [0, 1] ⊂ (a, b).

Apply Taylor’s Theorem in 1-D to g(t), we get

g(1) = g(0) + g′(0)(1− 0) +
g′′(0)

2!
(1− 0)2 + · · ·+ g(r−1)(0)

(r − 1)!
(1− 0)r−1 +Rr−1

f(x) = f(x0) +
r−1∑
k=1

g(k)(0)

k!
+

1

r!
g(r)(c̃), c̃ ∈ [0, 1].

By chain rule, one can get

g′(t) = Df(φ(t))φ′(t)

g′(0) = Df(x0)(x− x0)

g′′(t) = D2f(φ(t))φ′(t) · φ′(t)

g′′(0) = D2f(x0)(x− x0)2 = D2f(x0)(x− x0, x− x0).

So,

g(k)(0) = Dkf(x0)(x− x0, x− x0, . . . , x− x0).

Q.E.D. ■

Example 6.6.15 Polynomial Approximation using Taylor’s Theorem

Determine the 2-nd order Taylor’s formula for f(x, y) = e(x−1)2 cos y at (1, 0).
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Solution 8.

• Compute partials:

∂f

∂x
= 2(x− 1)e(x−1)2 cos y;

∂f

∂y
= −e(x−1)2 sin y.

∂2f

∂x2
= 2e(x−1)2 cos y + 4(x− 1)2e(x−1)2 cos y;

∂2f

∂y2
= −e(x−1)2 cos y.

∂2f

∂x∂y
= −2(x− 1)e(x−1)2 sin y

• Evaluate at base point (1, 0):

∂f

∂x

∣∣∣∣
(1,0)

= 0,
∂f

∂y

∣∣∣∣
(1,0)

= 0,
∂2f

∂x2

∣∣∣∣
(1,0)

= 2,
∂2f

∂x∂y

∣∣∣∣
(1,0)

= 0,
∂2f

∂y2

∣∣∣∣
(1,0)

= 1.

• Taylor’s Formula: h = x− x0 = (x, y)− (1, 0).

f(x, y) = f(1, 0) + Df(1, 0)(h) + D2f(1, 0)(h, h) +R2,

where f(1, 0) = 1, Df(1, 0) =
[
0 0

]
, and D2f(1, 0) =

[
2 0

0 −1

]
. So,

Df(1, 0)(h) = 0

D2f(1, 0(h, h) =
(
x− 1, y

)[2 0

0 −1

](
x− 1

y

)
= 2(x− 1)2 − y2.

Then,

f(x, y) = 1 +
1

2

[
2(x− 1)2 − y2

]
+R2,

where
R2

∥(x− 1, y)∥2
→ 0 as (x− 1, y)→ (1, 0).

□

6.7 Minima & Maxima in Rn

Question: Given function f : A ⊂ Rn → R, how do we find (local) maximum or minimum points for f

in A?

6.7.1 Optimization in 1-D. Suppose f : (a, b)→ R

• A local max/min point (or extreme point) x0 must be a critical point:

f ′(x0) = 0 or f ′(x0) D.N.E.
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• 2-nd Order Derivative Test (for critical points):

f ′′(x0) > 0 : local min; f ′′(x0) < 0 : local max.

Definition 6.7.2 (Extrema). Suppose f : A ⊂ Rn → R.

• Then, x0 ∈ A is a local minimum if ∃ δ > 0 s.t. x ∈ A and

|x− x0| < δ =⇒ f(x) ≥ f(x0).

• Similarly, x0 ∈ A is a local maximum if ∃ δ > 0 s.t. x ∈ A and

|x− x0| < δ =⇒ f(x) ≤ f(x0).

Theorem 6.7.3 Necessary Condition for Extreme Points

If f : A ⊂ Rn → R is differentiable and x0 ∈ A is an extreme point for f , then x0 is a critical point,

i.e., Df(x0) = 0.

Remark 6.9 This is only a necessary condition but not sufficient. For example, in R1, f(x) = x2 at (0, 0)

or in R2, f(x, y) = x2 − y2 at (0, 0).

For a critical point that is not an extreme point, we call it a saddle point.

Proof 1. (Sketch).

Assume Df(x0) ̸= 0. Then, WLOG, ∃ v ∈ Rn s.t. Df(x0)(v) = c > 0. By definition of differential,

choose δ > 0 s.t.

∥f(x0 + h)− f(x0)− Df(x0)(h)∥ <
c

2∥v∥︸ ︷︷ ︸
=ε

·∥h∥ ∀ ∥h∥ < δ.

Choose h = λv with λ > 0 and ∥h∥ < δ. Then, by triangle inequality,

f(x0 + λv)− f(x0) > 0 but f(x0 − λv)− f(x0) < 0.

Contradiction!

Q.E.D. ■

Definition 6.7.4 (Positive/Negative (Semi)definite). A bilinear form B : Rn × Rn → R is call positive

definite (or negative definite) if B(x, x) > 0 (or < 0) ∀x ∈ Rn, x ̸= 0. We say B is positive (or negative)

semidefinite if B(x, x) ≥ 0 (or≤ 0) ∀x ∈ Rn.
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Definition 6.7.5 (Major Diagonal Factors). Recall B is determined by a matrix H as follows:

B(x, x) = xHx⊤, where H =


a11 · · · a1n

...
. . .

...

an1 · · · ann


n×n

The major diagonal factors are given by

∆1 = det
(
a11

)
= a11

∆2 = det

(
a11 a21

a12 a22

)
...

∆n = det(H).

Lemma 6.7.6 :

• H is positive definitie ⇐⇒ ∆k > 0 ∀ k = 1, . . . .n

• H is positive semi-definite =⇒ ∆k ≥ 0 ∀ k = 1, . . . , n.

• H is negative definite ⇐⇒ (−H) is positive definite.

Example 6.7.7

H =

[
2 −1
−1 3

]
=⇒ ∆1 = 2, δ2 = 5 =⇒ H is positive definite.

Theorem 6.7.8 Second Order Sufficient Condition

Suppose f : A ⊂ Rn → R is of class C2 and x0 ∈ A is a critical point (i.e., Df(x) = 0).

• If Hf (x0) is negative (or positive) definite, then x0 is a local maximum (or minimum).

• If x0 is a local maximum (or minimum), then Hf (x0) is negative (or positive) semidefinite.

Remark 6.10

• Max of f ⇐⇒ Min of (−f)

• About minimum point:

– ∆k > 0 ∀k, Hf (x0) is positive definite =⇒ x0 is local minimum.

– x0 is a local minimum =⇒ Hf (x0) is positive semidefinite =⇒ ∆k ≥ 0 ∀ k.

– ∆k < 0 for some k =⇒ x0 is not a local minimum.
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• About maximum point:

– ∆k < 0 for odd k and ∆k > 0 for even k =⇒ (−Hf (x0)) is negative definite =⇒ Hf (x0) is

negative definite =⇒ x0 is local maximum.

– x0 is local maximum =⇒ Hf (x0) is negative semidefinite =⇒ ∆k ≤ 0 for odd k and ∆k ≥ 0

for even k.

– ∆k < 0 for some even k =⇒ x0 is not a local maximum =⇒ x0 is a saddle point.

Proof 2. (of ①)

• Set-up: Suppose Hf is negative definite. Need to show:

∃δ > 0 s.t. ∥y − x∥ < δ =⇒ f(y) ≤ f(x0). (⋆)

Scartch:

By Taylor’s Theorem

f(y) = f(x0) + Df(x0)︸ ︷︷ ︸
=0,critical point

(y − x) + 1

2
D2f(c)(y − x0, y − x0)

f(y)− f(x0) =
1

2
D2f(c)(y − x0, y − x0).

If D2f(c) is negative semidefinite, we are done with the proof. However, we only know defi-

niteness at x0. Let’s add and subtract D2f(x0):

f(y)− f(x0) =
1

2
D2f(x0)(y − x0, y − x0)︸ ︷︷ ︸

negative

+
1

2

[
D2f(c)− D2f(x0)

]
︸ ︷︷ ︸

make it small

(y − x0, y − x0)

• Consider the function

g(x) = D2f(x0)(x, x) : Rn → R.

DenoteD2f(x0) = H , then g(x) = H(x, x). g is continuous. Then, ∃x ∈ S = {x ∈ Rn | ∥x∥ = 1} s.t.

H(x, x) ≤ H(x, x).

Extreme Value Theorem: Continuous function on closed and bounded set attains its maximum

and minimum. Since H is negative definite, H(x, x) < 0. Let ε = −H(x, x) > 0. Then, for any

h ∈ Rn with h ̸= 0, we have

H(h, h) =
∥∥h2∥∥ ·H( h

∥h∥
,
h

∥h∥

)
≤
∥∥h2∥∥ ·H(δx, x).
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6 DIFFERENTIAL MAPPINGS 6.7 Minima & Maxima in Rn

So,

H(h, h) ≤ −ε
∥∥h2∥∥ (I)

• Prove (⋆) is true in a neighborhood.

By continuity of D2f at x0, ∃ δ > 0 s.t.

∥y − x0∥ < δ =⇒ y ∈ A,
∥∥D2f(y)− D2f(x0)

∥∥︸ ︷︷ ︸
operator norm

<
ε

2
(II)

Operator norm satisfies: ∥T (x, y)∥ ≤ ∥T∥ · ∥x∥ · ∥y∥.

By Taylor’s Formula, because Df(x0) = 0, we have

f(y)− f(x) = 1

2
D2f(c)(h, h),

where y ∈ B(x0, δ), h = y − x0, and c ∈ [x0, y]. Note that

D2f(c)(h, h) =
[
D2f(c)− D2f(x0)

]
(h, h) + D2f(x0)(h, h)

≤
∥∥D2f(c)− D2f(x0)

∥∥ · ∥h∥2 + (−ε)∥h∥2 By (I)

≤ 1

2
ε∥h∥2 + (−ε)∥h∥2 By (II)

= −ε
2
∥h∥2 ≤ 0.

Then, f(y) ≤ f(x) ∀ y ∈ B(x0, δ). So, x0 is the local maximum.

Q.E.D. ■

Example 6.7.9

Find and classify the critical points for f(x, yz) = cos 2x sin y + z2.

Solution 3.

• Find the critical point:

∂f

∂x
= −2 sin 2x sin y; ∂f

∂y
= cos 2x cos y;

∂f

∂z
= 2z.

Set
∂f

∂x
=
∂f

∂y
=
∂f

∂z
= 0.

Then, 
−2 sin 2x sin y = 0

cos 2x cos y = 0

2z = 0

=⇒


x =

kπ

2

y =
2j + 1

2
π

z = 0

or


x =

2k + 1

4
π

y = jπ

z = 0.
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6 DIFFERENTIAL MAPPINGS 6.7 Minima & Maxima in Rn

• Classify critical points:

Compute the Hessian

∂2f

∂x2
= −4 cos 2x sin y; ∂2f

∂y∂x
= −2 sin 2x cos y; ∂2f

∂z∂x
= 0

∂2f

∂y2
= − cos 2x sin y;

∂2f

∂z∂y
= 0;

∂2f

∂z2
= 2.

So,

Hf (x) =


−4 cos 2x sin y −2 sin 2x cos y 0

−2 sin 2x cos y − cos 2x sin y 0

0 0 2

.
Case I x =

kπ

2
, y =

2j + 1

2
π, z = 0. Then,

Hf

(
kπ

2
,
2j + 1

2
π, 0

)
=


−4(−1)k(−1)j 0 0

0 −1(−1)k(−1)j 0

0 0 2

.
Then, ∆1 = −4(−1)j+k, ∆2 = 4(−1)2k(−1)2j = 4 > 0, and ∆3 = 2 ·∆2 = 8 > 0.

– If j + k is odd, then ∆1 > 0. Then, Hf is positive definite, and the critical point is a local

minimum.

– If j + k is even, then ∆1 < 0. Then, the critical point is not a local minimum. But

∆3 = 0 > 0, so it cannot be a local maximum. Hence, it must be a saddle point.

Case II x =
2k + 1

4
π, y = jπ, z = 0. Then,

Hf

(
2k + 1

4
π, jπ, 0

)
=


0 (−2)(−1)k(−1)j 0

(−2)(−1)k(−1)j 0 0

0 0 2

.
Then, ∆1 = 0, ∆2 = −(−2)(−1)k+j · (−2)(−1)k+j = −4(−1)2(k+j) = −4 < 0, and ∆3 = 0. As

∆2 < 0, they are saddle points.

• Conclusion: (
kπ

2
,
2j + 1

2
π, 0

)local minimum when k + j is odd

saddle point when k + j is even.(
2k + 1

4
π, jπ, 0

)
: saddle point.

□
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7 Inverse and Implicit Function Theorem

7.1 Inverse Function Theorem

7.1.1 Linear Case.

• Consider a linear map: y = f(x) : Rn → Rn given by
y1 = a11x1 + a12x2 + · · ·+ a1nxn

...

yn = an1x1 + an2x2 + · · ·+ annxn.

Or, in matrix notation:

Ax = y (⋆)

• Given y ∈ Rn, (⋆) is a linear system of equations.

• Fact: (⋆) has unique solution x ⇐⇒ A is invertible. i.e., det(A) ̸= 0. In this case, the solution is

given by x = A−1y.

• x = A−1y is the inverse function of y = f(x).

7.1.2 When can we solve a nonlinear system?.

• Nonlinear System: 
f1(x1, x2, . . . , xn) = y1

...

fn(x1, x2, . . . , xn) = yn

, or f(x) = y.

In order to have inverse, dimension must match.

• Notation 7.3.

1. y = f(x) : A ⊂ Rn → Rn, where A is open and f is differentiable on A. Suppose y =

(y1, y2, . . . , yn), x = (x1, x2, . . . , xn), and f = (f1, f2, . . . , fn).

2. Df(x) =
(
∂fj
∂xi

)
ij

and Jf (x) = det(Df(x)) is the Jacobian determinant of f at x.

Theorem 7.1.4 Inverse Function Theorem

Let y = f(x) : A ⊂ Rn → Rn be of class C1. Suppose x0 ∈ A and Jf (x0) ̸= 0. Then, ∃ neighbor-

hoods U of x0 and W of y0 = f(x0) s.t.

1. f(U) =W and f : U →W has an inverse f−1 :W → U

2. f−1 :W → U is of class C1. Additionally, if f ∈ Cr, then f−1 ∈ Cr.

3. Df−1(y) = [Df(x)]−1 ∀ y ∈W and y = f(x).
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

▶ Proof 1 of Inverse Function Theorem

Theorem (Contraction Mapping Principle / CMP) Let X be a complete metric space and φ : X → X .

Suppose ∃0 < k < 1 s.t.

d(φ(x), φ(y)) ≤ k · d(x, y) ∀x, y ∈ X .

Then, ∃ unique fixed point x∗ s.t. φ(x∗) = x∗.

Step 1 Reductions

• We may assume that Df(x0) = I.

In fact, let T = Df(x0). Then, Jf (x0) ̸= 0 =⇒ T−1 exists. Consider a new map: T−1 ◦ f : A→ R.

Then,

D(T−1 ◦ f) = DT−1(f(x0)) ◦ Df(x0)

= T−1 ◦ T

= I.

If the inverse of T−1 ◦ f exists, then the inverse of f also exists. So, once the identity case is true,

we just multiply T−1 to f and we can get the general case is true.

• We may assume that x0 = 0 and f(x0) = 0.

To see this, let h(x) = f(x+ x0)− f(x0). Then, h(0) = 0 and Dh(0) = Df(x0). If the inverse of h(x)

exists, the n the equation f(x) = y can be solved:

f(x) = h(x− x0) + f(x0) = y

h(x− x0) = y − f(x0)

x− x0 = h−1(y − f(x0))

x = h−1(y − f(x0)) + x0.

Step 2 Existence of Inverse

• By reduction above, we have x0 = 0, y0 = f(x0) = 0, Df(x0) = Df(0) = I.

WTS: ∃ neighborhoods U,W of 0 s.t. the map y = f(x) : U → W has an inverse in W . i.e.,

∀ y ∈W , ∃ unique x ∈ U s.t. y = f(x).

For a fixed y ∈ Rn, define gy(x) := y + x− f(x) : A→ Rn.

If gy(x) has a fixed point: gy(x∗) = x∗ = y + x∗ − f(x∗) =⇒ y − f(x∗) = 0. So, we want to show

gy(x) has a unique fixed point.

• Construction of neighborhoods U and W .

Let g(x) = x− f(x). Then,

Dg(0) = I − Df(0) = I − I = 0.
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

Since f ∈ C1, g ∈ C1. Then, Dg(x) is continuous at 0. Then, ∀ ε = 1

2n
, ∃ δ > 0 s.t.

∥x− 0∥ < δ =⇒ ∥Dgi(x)− Dgi(0)∥ = ∥Dgi(x)− 0∥ = ∥Dgi(x)∥ <
1

2n
,

where g = (g1, g2, . . . , gn).

Apply MVT to each of gi, we obtain ∀x ∈ B(x0, δ), ∃ ci ∈ [0, x] s.t.

gi(x) = gi(x)− gi(0) = Dgi(ci)(x− 0).

So,

∥g(x)∥ ≤
n∑
i=1

∥gi(x)∥ =
n∑
i=1

|Dgi(ci) · x|

≤
n∑
i=1

∥Dgi(ci)∥ · ∥x∥ [operator norm]

≤
n∑
i=1

1

2n
∥x∥ [continuity of Dg]

=
1

2
∥x∥.

i.e., ∥g(x)∥ ≤ 1

2
∥x∥. Thus, g : B(0, δ)→ B(0,

1

2
δ) ⊂ B(0, δ) is a contraction map. LetW = B

(
0,
δ

2

)
and U = {x ∈ B(0, δ) : f(x) ∈W}. WTS: U and W are the desired neighborhoods.

• Show existence of f−1 :W → U .

Fix y ∈W . Then, ∀x ∈ B(0, δ),

∥gy(x)∥ = ∥y + g(x)∥ ≤ ∥y∥+ ∥g(x)∥

<
δ

2
+

1

2
δ = δ

[
y ∈W = B

(
0,
δ

2

)
, ∥g(x)∥ ≤ 1

2
∥x∥, x ∈ U = B(0, δ)

]

Then, gy(x) : B(0, δ) → B(0, δ) and gy is also a contraction map with k =
1

2
. Then, by CMP, ∃

unique x s.t. gy(x) = x. Then,

gy(x) = y + x− f(x) = x

y − f(x) = 0 =⇒ y = f(x).

So, for fixed y, ∃ unique x s.t. y = f(x). Then, f is a bijection, and thus the inverse exists.

Step 3 Continuity of f−1.

WTS: f−1 is Lipschitz continuous.
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

Fix y1, y2 ∈W . Let xi = f−1(yi) for i = 1, 2. Then,

∥∥f−1(y1)− f−1(y2)
∥∥ = ∥x1 − x2∥ = ∥g(x1) + f(x1)− g(x2)− f(x2)∥

≤ ∥g(x1)− g(x2)∥+ ∥f(x1)− f(x2)∥

= ∥g(x1)− g(x2)∥+ ∥y1 − y2∥.

Since ∥Dg(x)∥ ≤ 1

2
for x ∈ B(0, δ), by Mean Value Inequality,

∥g(x1)− g(x2)∥ ≤
1

2
∥x1 − x2∥.

Then,

∥x1 − x2∥ ≤
1

2
∥x1 − x2∥+ ∥y1 − y2∥.

So,
1

2
∥x1 − x2∥ ≤ ∥y1 − y2∥ =⇒ ∥x1 − x2∥ ≤ 2∥y1 − y2∥.

That is, ∥∥f−1(y1)− f−1(y2)
∥∥ ≤ 2∥y1 − y2∥ (⋆)

Thus, f−1 is Lipschitz and thus continuous.

Step 4 Differentiability of f−1

• Proposition [Df(0)]−1 exists and Df(x) is continuous at 0 =⇒ ∃ δ′ > 0 s.t. [Df(x)]−1 exists and

bounded by M :

∥Df(x) · (v)∥︸ ︷︷ ︸
operator norm

≤ ∥M∥ · ∥v∥ ∀ ∥x∥ < δ′ and v ∈ Rn.

• WTS: f−1(y) is differentiable at any fixed point y0 ∈W and

Df−1(y0) = [Df(x0)]−1 with y0 = f(x0).

Fix y0 ∈W . Then,∥∥f 1(y)− f−1(y0)− Df−1(y0) · (y − y0)
∥∥

∥y − y0∥

=

∥∥[Df(x0)]−1 · [Df(x0) · f−1(y)− Df(x0) · f−1(y0)− (y − y0)]
∥∥

∥y − y0∥
[factor out Df−1(y0) = [Df(x0)]−1]

=

∥∥[Df(x0)]−1 · [Df(x0)(x− x0)− (f(x)− f(x0))]
∥∥∥∥f(x)− f(x)∥∥ [y = f(x)]

=

∥∥[Df(x0)]−1 · [Df(x0)(x− x0)− (f(x)− f(x0))]
∥∥ · ∥x− x0∥

∥f(x)− f(x0)∥ · ∥x− x0∥
[Multiply by magic 1]

≤
2
∥∥[Df(x0)]−1[Df(x0)(x− x0)− (f(x)− f(x0))]

∥∥
∥x− x0∥

[Lipschitz continuity, Eq (⋆)]

→ 0 as x→ x0.
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.1 Inverse Function Theorem

So, f−1 is differentiable, and [
Df−1(y)

]
= [Df(x)]−1.

Q.E.D. ■

Example 7.1.5

Investigate the invertibility (both local and global) for the map W = (u, v) = f(x, y) : R2 → R2

given by u = ex cos y and v = ex sin y.

Solution 2.

Firstly, we know f ∈ C∞. Compute the Jacobian determinant:

Jf (x, y) = det(Df(x)) = det

([
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

])

= det

([
ex cos y −ex sin y
ex sin y ex cos y

])
= e2x cos2 y + e2x sin y2

= e2x > 1.

So, by the Inverse Function Theorem, f is invertible locally at any point, and the differentiable of

the inverse is given by

Df−1(u, v) = [Df(x, y)]−1 =

[
ex cos y −ex sin y
ex sin y ex cos y

]−1

.

Now, let’s examine if f is globally invertible (i.e., if f is a one-to-one function on R2). Note that

f(x0, y0) = ex0 cos y0

and

f(x0, y0 + 2π) = ex0 cos(y + 2π) = ex0 cos(y0) and f(x0, y0 − 2π) = ex0 cos(y0 − 2π) = ex0 cos(y0).

So, f is not globally invertible since f is not an injection.

□

Remark 7.1 f can be written in complex notation: f(z) = ez, where z = x+ iy ∈ C. Then,

f(z) = ez = ex+iy = ex(cosx+ i sin y).

Meanwhile, f−1(z) = ln(z).
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7.2 Implicit Function Thm and Applications

Motivation

• Given a function f : R → R. Consider an equation f(y) = x. If it can be solved for y

(uniquely in terms of x), then the solution y = g(x) is the inverse of f . That is, (f ◦ g)(x) = x.

• Reinterpretation of Inverse:

Rewrite f(y) = x as x− f(y) = 0 ①.

Then, f is invertible ⇐⇒ Equation ① is solvable for y.

• Question: When can we solve a general equation for y, F (x, y) = 0 (F : Rn × Rm → Rm)?

The solution of f(x, y) = 0, denoted by y = g(x), is called the implicit function determined

by F (x, y) = 0.

Example 7.2.1

Consider equation x2 + y2 − 1 = 0 to be F (x, y) : R1 × R1 → R1.

Given (x0, y0) s.t. F (x0, y0) = 0 with y0 ̸= 0. Then, ∃ a unique solution

y =


√
1− x2 if y0 > 0

−
√
1− x2 if y0 < 0.

in the neighborhood of x0.

Note that
∂F

∂y

∣∣∣∣
y=y0

= 2y0 ̸= 0 when y0 ̸= 0.

Theorem 7.2.2 Implicit Function Theorem

Let A ⊂ Rn × Rm and F (x, y) : A→ Rm be of class C1. Suppose (x0, y0) ∈ A with F (x0, y0) = 0. If

∆ = det

(
∂F

∂y

)
= det

(
∂(F1, . . . , Fm)

∂y1, . . . , ym

)

= det


∂F1

∂y1
· · · ∂F1

∂ym
...

. . .
...

∂Fm
∂y1

· · · ∂Fm
∂ym

 ̸= 0 at (x0, y0),

then ∃ neighborhoods U of x0, V of y0, and a unique function y = f(x) : U → V such that

F (x, f(x)) = 0 ∀x ∈ U . i.e., y = f(x) is the solution of F (x, y) = 0.

Furthermore, if F ∈ Cr, then f ∈ Cr.

Remark 7.2

• y = f(x) is called the implicit function determined by the equation F (x, y) = 0 based at the point

(x0, y0).
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• Differential of implicit function:

Suppose n = m = 1 and F (x, y) = 0. Then, by chain rule,

∂F

∂x
· dx
dx

+
∂F

∂y
· dy
dx

= 0

dy

dx
= −∂F/∂x

∂F/∂y
.

In the general case, let y = f(x) = (f1, . . . , fm) : Rn → Rm. Let f be the implicit function deter-

mined by F (x, y) = 0. Then,

Df = −
(
∂F

∂y

)−1

·
(
∂F

∂x

)
.

▶ Proof 1 of Implicit Function Theorem

Given F (x, y) = A ⊂ Rn × Rm → Rm. Consider the map G : A ⊂ Rn × Rm → Rn × Rm given by

G(x, y) = (x, F (x, y)).

We want to use Inverse Function Theorem. So, we need a map that maps to the same dimension.

Suppose G−1 exists in a neighborhood of (x0, y0). Write

G−1(x, 0) = (x, f(x)).

Then, y = f(x) is the solution of F (x, y) = 0 because

G(x, f(x)) = (x, 0)

= (x, F (x, f(x)).

So, F (x, f(x)) = 0.

It remains to show that G is invertible. This follows from the inverse function theorem. Consider

DG
∣∣∣∣
(x,y)=(x0,y0)

=



1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

∂F1

∂x1
· · · ∂F1

∂xn
...

. . .
...

∂Fm
∂x1

· · · ∂Fm
∂xn

∂F1

∂y1
· · · ∂F1

∂ym
...

. . .
...

∂Fm
∂y1

· · · ∂Fm
∂ym



.
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So,

JG(x0, y0) = det


∂F1/∂y1 · · · ∂F1/∂ym

...
. . .

...

∂Fm/∂y1 · · · ∂Fm/∂ym

 = ∆ ̸= 0,

as assued in implicit function theorem. Therefore, by the inverse function theorem, G is invertible.

Q.E.D. ■

Example 7.2.3

Discuss the solvability of

y + x+ uv = 0

uxy + v = 0
for u, v in terms of x, y near the point (0, 0, 0, 0) and

the point (1, 1,
√
2,−
√
2). If impossible, compute

∂u

∂x
and

∂v

∂x
if exists.

Solution 2.

F (x, y, u, v) = 0 and

F1 = y + x+ uv

F2 = uxy + v.
Let’s compute ∆:

∆ = det

(
∂(F1, F2)

∂(u, v)

)
= det

[
∂F1/∂u ∂F1/∂v

∂F2/∂u ∂F2/∂v

]

= det

[
v u

xy 1

]
= v − uxy.

Then, ∆(0, 0, 0, 0) = 0. So, Implicit Function Theorem does not apply. On the other hand,

∆(1, 1,
√
2,−
√
2) = −

√
2−
√
2 = −2

√
2 ̸= 0.

So, by Implicit Function Theorem, ∃ unique solution u = u(x, y) and v = v(x, y) in a neighborhood.

Furthermore, the differentiable is given by

∂(u, v)

∂(x, y)
= −

(
∂F

∂(u, v)

)−1( ∂F

∂(x, y)

)

= −

[
v u

xy 1

]−1[
1 1

uy ux

]
.

□
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Theorem 7.2.4 Application: Domain-Straightening Theorem

Let f : A ⊂ Rn → R. Suppose Df(x0) ̸= 0 and f(x0) = 0. Then, ∃ open sets U and V (with

x0 ∈ V ) and invertible map h : U → V s.t. f(h(x1, . . . , xn)) = x0.

Remark 7.3 Under change of variables h, one can flatten the level curves of function f(x).

Theorem 7.2.5 Application: Range-Straightening Theorem

Suppose f : A ⊂ Rp → Rn with p < n and rank of Df(x0) = p. Then, ∃ neighborhoods U , V , and

invertible map g : U → V s.t. g ◦ f(x1, . . . , xp) = (x1, . . . , xp, 0, . . . , 0).

7.3 Constrained Extrema

7.3.1 Morse Theory: Local Behavior Near a Critical Point

Let f(x) : A ⊂ Rn → R be of class C2 and x0 is a critical point. Then, one can use Hf (x0) to classify

critical point x0.

• Morse Theory makes this classification more prcise.

• Lemma 7.3.1 Morse Lemma: Let f(x) : A ⊂ Rn → R be of class C2 with critical point x0 ∈ A. If

Hf (x0) is nondegenerate (i.e., det(Hf (x0)) ̸= 0), then ∃ neighborhoods U for x0 and V for 0, and

invertible map g : V → U s.t. the function h = f ◦ g has the form

h(y) = f(x0)−
[
y162 + y22 + · · ·+ y2λ

]
+ [y2λ + · · ·+ y2n],

where λ is an integer called the index of f at x0.

• Interpretation/Application:

1. λ = 0: x0 is a local minimum. Paraboloid open up.

2. λ = n: x0 is a local maximum. Paraboloid open down.

3. 0 < λ < n: x0 is a saddle point. Hyperboloid.

• What is λ?

λ (the index of f at x0) is the number of negative eigenvalues of Hf (x0).

Example 7.3.2

Determine the shape of the surface given by z = x2 + 3xy − y2 near critical point (0, 0).

Solution 1.

Df =
(
2x+ 3y 3x− 2y

)
. Therefore,

Hf (x, y) =

[
2 3

3 −2

]
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.3 Constrained Extrema

The eigenvalues are t = ±
√
13. So, index λ = 1. As 0 < λ < n, (0, 0) is a saddle point. The shape is

thus a hyperboloid.

□

7.3.2 Constrained Extremal Problem

Goal: To maximum (or minimize) a function f(x) : Rn → R under the constraint g(x) = c.

Tool: Lagrange Multiplier Method.

Theorem 7.3.3 Necessary Condition

Let f, g : U ⊂ Rn → R be of class C1. Assume g(x0) = c0 with ∇g(x0) ̸= 0. If f restricted to the

surface S : g(x) = c0 has maximum or minimum at x0, then ∃λ ∈ R s.t.

∇f(x0) = λ∇g(x0).

Remark 7.4 (Geometric Meaning) ∇f(X0) is parallel to ∇g(x0).

Proof 2.

• Geometric proof: WTS: ∇f(x0) ⊥ S.

Fix curve c(t) at t0. So, c(t0) = x0. WTS: ∇f(x) ⊥ c′(t).

Since f restricted to S has a maximum at x0, h(t) = f(c(t)) has a maximum at t0. Then,

0 = h′(t0) = ∇f(x0) · c′(t0) =
〈
∇f(x0), c

′(t0)
〉
.

So, ∇f(x0) ⊥ c′(t0), and thus ∇f(x0) ⊥ S.

• Analytical proof: Substitute the condition g(x) = c0 into f(x)

Since

∇g(x0) =

(
∂g

∂x1
, . . . ,

∂g

∂xn

)
̸= 0⃗,

then ∃ ∂g
∂xi
̸= 0 for some i = 1, . . . , n. WLOG, assume

∂g

∂xn
̸= 0. By Implicit Function Theorem, the

equation

g(x1, . . . , xn) = c0

can be uniquely solve for x0:

xn = h(x1, . . . , xn−1).

Let k(x1, . . . , xn−1) = f(x1, . . . , xn−1, h(x1, . . . , xn−1)). Then, the maximum of f correspond to

maximum of k. Then,

0 =
∂k

∂xi
=

∂f

∂xi
+

∂f

∂xn
· ∂h
∂xi

for i = 1, . . . , n− 1. (1)
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7 INVERSE AND IMPLICIT FUNCTION THEOREM 7.3 Constrained Extrema

Furthermore, g(x) = c0. So, g(x1, . . . , xn−1, h(x1, . . . , xn−1)) = c0. Then,

∂g

∂xi
+

∂g

∂xn
· ∂h
∂xi

= 0 for i = 1, . . . , n− 1.

Then,
∂h

∂xi
= − ∂g/∂xi

∂g/∂xn
(2)

Substitute (2) into (1):

∂f

∂xi
= − ∂f

∂xn
· ∂h
∂xi

= − ∂f

∂xn
· −∂g/∂xi
∂g/∂xn

=
∂f/∂xn
∂g/∂xn︸ ︷︷ ︸

λ

· ∂g
∂xi

= λ
∂g

∂xi
.

So,
∂f

∂xi
= λ

∂g

∂xi
∀ i = 1, . . . , n.

That is,

∇f(x) = λ∇g(x).

Q.E.D. ■

Theorem 7.3.4 General Procedure to Solve an Extremal Problem

• Solve the equations for x ∈ Rn and λ ∈ R:g(x) = c0

∇f(x) = λ∇g(x)

• Compare values of f at these points.

Example 7.3.5

Find extrema for the function f(x, y) = x2 − y2 subject to the constraint x2 + y2 = 1.

Solution 3.

Solve the equations:

g(x) = c0

∇f(x) = λ∇g(x)
=⇒


x2 + y2 = 1 2x

−2y

 = λ

2x
2y

. =⇒


x2 + y2 = 1

2x = λ2x

−2y = λ2y.
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• If x = 0, y = ±1, and λ = −1.

• If y = 0, x = ±1, and λ = 1.

Possible candidates: (0, 1), (0,−1), (1, 0), and (−1, 0).

• At (0, 1), f(0, 1) = 02 − 12 = −1.

• At (0,−1), f(0,−1) = 02 − (−1)2 = −1.

• At (1, 0), f(1, 0) = 12 − 02 = 1.

• At (−1, 0), f(−1, 0) = (−1)2 − 0 = 1.

Then, (0, 1) and (0,−1) are local minimum, and (1, 0) and (−1, 0) are local maximum.

□

Theorem 7.3.6 Extremal Problem with Multiple Constraints

Maximize/Minimize f(x) with constraints g1(x) = c1, . . . , gm(x) = cm. Then, we solve

g1(x) = c1
...

gm(x) = cm

∇f(x) = λ1∇g1(x) + · · ·+ λm∇gm(x).
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8 Integration

8.1 Definition of Integration

8.1.1 Geometric Motivation. To compute the area of region under the curve y = f(x).

• Form the upper and lower approximation:

U(f,P) =
n∑
i=1

sup
Ii

f(x)ℓ(Ii)

L(f,P) =
n∑
i=1

inf
Ii
f(x)ℓ(Ii).

• Form the upper and lower integral: ∫
A
f = inf

P
U(f,P)

∫
A
f = sup

P
L(f,P).

8.1.2 General Formulation of Integral.

• Set-up: Let f : A ⊂ Rn → R be a bounded function on a bounded set A.

• Goal: define the volume of the region under the surface y = f(x) (or the integral
∫
A
f dx).

• Step 1: choose a rectangleB = [a1, b1]×[a2, b2]×· · ·×[an, bn] that containsA. Extend f s.t. f(x) = 0

when x /∈ A.

A

B

Then, the volume over A is the same as the volume over B. That is,∫
A
f(x) dx =

∫
B
f(x) dx.

• Step 2: partition B: divide slides of B into sub-intervals to obtain a partition P , collection of

smaller rectangles.
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8 INTEGRATION 8.1 Definition of Integration

• Step 3: Form upper and lower sums:

U(f,P) =
∑
R∈P

sup
R
f(x)︸ ︷︷ ︸

height

· v(R)︸︷︷︸
base

(Upper Sum of fw.r.t.P)

L(f,P) =
∑
R∈P

inf
R
f(x) · v(R) (Lower Sum of fw.r.t.P)

• Step 4: Form upper and lower integrals:∫
A
f = inf

P
(U,P) and

∫
A
f = sup

P
L(f,P).

• Observation:

L(f,P) ≤ real volume ≤ U(f,P) =⇒
∫
A
f ≤ real volume ≤

∫
A
f.

• Definition 8.1.3 (Integrable).We say f is Riemann integrable if∫
A
f =

∫
A
f.

The integral of f on the set A is defined as
∫
A
f(x) dx =

∫
A
f =

∫
A
f . Sometimes, the integral is

also written as
∫
A
f or

∫
A
f(x) dx1dx2 · · · dxn.

Theorem 8.1.4 Equivalent Conditions for Integrability

Suppose f : A ⊂ Rn → R is bounded and A and B are bounded. Let B be a rectangle in Rn.

Assume f(x) = 0 for x /∈ A. Then, the following are equivalent conditions for f to be integrable:

• (Riemann’s Condition): ∀ ε > 0, ∃ partition Pε (of B) s.t.

0 ≤ U(f,Pε)− L(f,Pε) < ε.

• (Darboux’s Condition): ∃ a number I s.t. ∀ ε > 0, ∃ δ > 0 s.t.

1. P is any partition of B into rectangles B1, B2, . . . , BN with side length less than δ, and

2. If x1 ∈ B1, x2 ∈ B2, . . . , xN ∈ BN , then we have∣∣∣∣∣
N∑
i=1

f(xi)v(Bi)− I

∣∣∣∣∣ < ε.

Remark 8.1 • The number I is the value of the integral
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8 INTEGRATION 8.1 Definition of Integration

•
N∑
i=1

f(xi)v(Bi) is called the Riemann sum of fw.r.t.P .

• Interpretation: Darboux’s condition says that when the partition is fine enough (side length < δ),

then the Riemann sum is a good approximation of the integral.

▶ Proof 1 of Equivalent Conditions for Integrability

Step 1 f integrable =⇒ Riemann’s Condition

Given ε > 0, need to find a partition Pε s.t. U(f,Pε)− L(f,Pε) < ε.

Since ∫
A
f = inf

P
U(f,P),

by definition of infimum,

∃P1 s.t. U(f,P1) <
∫
A
f +

ε

2
.

Similarly,

∃P2 s.t. L(f,P2) >
∫
A
f − ε

2
.

Let Pε = P1 ∪ P2 (partition refinement). Then, Pε is a refinement of P1 and P2. Therefore,

U(f,Pε) ≤ U(f,P1) <
∫
A
f +

ε

2
, and L(f,Pε) ≥ L(f,P2) >

∫
A
f − ε

2
.

Hence,

U(f,Pε)− L(f,Pε) ≤ U(f,P1)− L(f,P2)

<

∫
A
f +

ε

2
−
∫
A
f +

ε

2

=

∫
A
f −

∫
A
f + ε

= 0 + ε [f integrable]

= ε. □

Step 2 Riemann’s Condition =⇒ f integrable

By Assumption, ∀ ε > 0, ∃ partition Pε s.t.

U(f,Pε)− L(f,Pε) < ε.

Since
∫
A
f = inf

P
U(f,P), we have ∫

A
f ≤ U(f,Pε).
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8 INTEGRATION 8.1 Definition of Integration

Similarly, we have
∫
A
f ≥ L(f,Pε). Then,

0 ≤
∫
A
f −

∫
A
f ≤ U(f,Pe)− L(f,Pε) < ε.

Thus, ∫
A
f =

∫
A
f =⇒ f is integrable. □

Step 3 Darboux’s Condition =⇒ Integrability

Let I be the number in Darboux’s condition.

WTS:
∫
A
f = I =

∫
A
f.

Claim 8.1.5 ∀ ε > 0, ∃ partition P s.t.
|L(f,P)− I| < ε (⋆)

Scratch:

|L(f,P)− I| <

∣∣∣∣∣L(f,P)−
N∑
i=1

f(xi)v(Bi)

∣∣∣∣∣︸ ︷︷ ︸
=
∑N

i=1

∣∣∣∣∣infBi

f(xi)− f(xi)
∣∣∣∣∣v(Bi)

+

∣∣∣∣∣
N∑
i=1

f(xi)v(Bi)− I

∣∣∣∣∣︸ ︷︷ ︸
<
ε

2
, by Darboux

So, we will make ∣∣∣∣infBi

f(xi)− f(xi)
∣∣∣∣ < ε

2v(Bi)N

since we want
ε

2
eventually. Then,

|L(f,P)− I| < ε

2
+
ε

2
= ε.

Given ε > 0. By Darboux’s condition, ∃ δ > 0 s.t. ∀P = {B1, B2, . . . , BN}with sides < δ, we have∣∣∣∣∣
N∑
i=1

f(xi)v(Bi)− I

∣∣∣∣∣ < ε

2
.

for any xi ∈ Bi, where i = 1, . . . , N .

To prove (⋆), we can choose xi ∈ Bi s.t.

0 ≤ f(xi)− inf
Bi

f(xi) <
ε

2v(Bi)N
.
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8 INTEGRATION 8.1 Definition of Integration

Then, it follows that

|L(f,P)− I| <

∣∣∣∣∣L(f,P)−∑
i

f(xi)v(Bi)

∣∣∣∣∣+
∣∣∣∣∣∑
i

f(xi)v(xi)− I

∣∣∣∣∣
<

N∑
i=1

∣∣∣∣infBi

f(xi)− f(xi)
∣∣∣∣v(Bi) + ε

2

<
N∑
i=1

ε

2N ·���v(Bi)
·���v(Bi) +

ε

2

=��N ·
ε

2��N
+
ε

2

=
ε

2
+
ε

2
= ε =⇒ (⋆)

Furthermore, (⋆) =⇒ L(f,P) > I − ε ∀ ε > 0. So,∫
A
f = sup

P
L(f,P) ≥ I.

Similarly, ∀ ε > 0, ∃P s.t. |U(f,P)− I| < ε =⇒ U(f,P) < I + ε. Then,∫
A
f = inf

P
U(f,P) ≤ I.

So, it must be ∫
A
f =

∫
A
f = I.

Step 4 Integrability =⇒ Darboux’s Condition (Scratch)

• Given ε > 0, ∃P s.t.

I − ε

2
< L(f,P) ≤

∑
i

f(xi)v(Bi) ≤ U(f,P) < I +
ε

2
.

• Given partition P , ∃ δ > 0 s.t. for any partition P ′ with side length < δ, the sum of volumes of

sub-rectangles in P ′ that are not completely/entirely contained in a sub-rectangle in P is less

than ε.

< δ
P

P ′

Coarse rectangle in P

Fine rectangle in P ′

Not fully contained in P , total volume < ε/

Q.E.D. ■
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8 INTEGRATION 8.2 Criterion for Integrability

Example 8.1.6 An Exercise

Compute the upper and lower sums for
∫ 1
0 x dx over special partition P :

P =

{
0,

1

n
,
2

n
, . . . ,

n− 1

n

}
.

8.2 Criterion for Integrability

Question: When is f integrable? How can we tell from other properties?

Short Answer: f is integrable when the set of discontinuity is “small.”

8.2.1 Measure Zero: How to Measure the Size of a Set

Definition 8.2.1 (Volume ofA). Given a bounded set A ⊂ Rn, define characteristic function of A by

1A(x) =

1 if x ∈ A

0 if x /∈ A
.

We say that A has volume (or Jordan measurable) if 1A(x) is integrable on A. We write

v(A) =

∫
A
1A(x) dx.

Remark 8.2 When n = 1, v(A) is the length of A. When n = 2, v(A) is the area of A.

Fact: A set has volume 0 (i.e., v(A) = 0) ⇐⇒ ∀ ε > 0, ∃finite cover ofAby rectanglesS1, S2, . . . , SN s.t.

N∑
i=1

v(Si) < ε.

Proof 1. Suppose v(A) =
∫
A
1A(x) dx = 0. Then, ∀ ε > 0, ∃ partition P = {P1, . . . ,PN} of B s.t.

U(1A(x),P) < I + ε = ε.

=⇒
∑

Pj∩A ̸=
sup
P
1A(x)︸ ︷︷ ︸
=1

·v(Pi) =
∑

Pj∩A ̸=∅

v(Pi) < ε.

Note that {Pj | Pj ∩A ̸= ∅} is a finite cover of A.

Q.E.D. ■
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8 INTEGRATION 8.2 Criterion for Integrability

Definition 8.2.2 (Measure Zero Set). A set A ⊂ Rn (not necessarily bounded) is said to have measure

zero, m(A) = 0, if ∀ ε > 0, ∃ countable cover of A by rectangles {Si} s.t.

∞∑
i=1

v(Si) < ε.

Remark 8.3

• v(A) = 0 =⇒ m(A) = 0

• Any finite set has volume zero.

• Any countable set has measure zero. (use geometric sum: first point covered by
ε

2
, second point

covered by
ε

4
,. . . , N-th point covered by

ε

2N
)

Example 8.2.3

Let A be the x-axis (real line).

• If A is considered as a subset of R2, then m(A) = 0.

Proof 2. To cover the x-axis, we can cover it interval by interval. But the volumes of the

rectangles need to get smaller and smaller:

Sn = [n, n+ 1]×
[
− ε

2|n|+2
,

ε

2|n|+2

]
for n = 0,±1,±2, . . . .

Q.E.D. ■

• However, if A is considered as a subset of R1, then m(A) ̸= 0.

Theorem 8.2.4

Suppose Ai ⊂ Rn with m(Ai) = 0 ∀ i = 1, 2, . . . . Then,

A =

∞⋃
i=1

Ai

has measure zero.

Proof 3. Given ε > 0 for each i = 1, 2, . . . , m(Ai) = 0. So, ∃ rectangles
{
S
(i)
j

}∞

j=0
s.t. Ai ⊂

∞⋃
j=1

S
(i)
j

with
∞∑
j=1

v
(
S
(i)
j

)
<

ε

2i
. Then,

{
S
(i)
j

}∞

i,j=1
is a countable collection of rectangles with

• A =

∞⋃
i=1

Ai ⊂
∞⋃
i=1

∞⋃
j=1

S
(i)
j
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8 INTEGRATION 8.2 Criterion for Integrability

•
∞∑
i=1

∞∑
j=1

v
(
S
(i)
j

)
<

∞∑
i=1

ε

2i
= ε.

So, by definition, m(A) = 0.

Q.E.D. ■

Remark 8.4

• The above theorem is not true for volume zero sets. A counterexample if the rationals in [0, 1]. Each

rational is volume zero, but their union is not volume zero as 1A is not integrable.

• In Definition 8.2.2, we can replace “closed rectangles Si” by “open rectangles Si.”

8.2.2 Lebesgue’s Theorem

Theorem 8.2.5 Lebesgue’s Theorem

Let A be a bounded set in Rn and f be a bounded function on A. Extend f to Rn by letting

f(x) = 0 ∀x /∈ A. Then, f is integrable on A ⇐⇒ the points on which the extended function

f is discontinuous form a set of measure zero. That is, extended f has support on A, and if D

denotes the set of discontinuity of extended f , then m(D) = 0.

Example 8.2.6

• A = [0, 1] and

f(x) =

1 x rational

0 o/w.

Then, the set of discontinuity is D = [0, 1], and m(D) ̸= 0. By Lebesgue’s Theorem, f is not

integrable.

• A = {rationals ∈ [0, 1]} and f(x) : A → R by f(x) ≡ 1. Then, f is continuous on A, but it

is not integrable on A. The extended f has D = [0, 1], not measure zero. So, by Lebesgue’s

Theorem, f is not integrable.

• A =
{
(x, y) | x2 + y2 < 1

}
⊂ R2 and f(x) : A→ R by

f(x, y) =


x2 + sin

(
1

y

)
y ̸= 0

x2 y = 0.

Then, the set of discontinuity is D = [−1, 0] × [1, 0] + ∂A. Then, m(D) = 0 in R2. So, by

Lebesgue’s Theorem, f is integrable on A.

Corollary 8.2.7 of Lebesgue’s Theorem:

126



8 INTEGRATION 8.2 Criterion for Integrability

• A bounded set A ⊂ Rn has volume ⇐⇒ ∂A has measure 0.

Proof 4. Assume v(A) exists. Then, 1A(x) is integrable. So, the set of discontinuity of extended

1A(x) is D = ∂A. By Lebesgue’s Theorem, f = 1A(x) is integrable ⇐⇒ m(∂A) = 0.

Q.E.D. ■

• Let A ⊂ Rn be a bounded set with volume. If f : A → R is bounded and has only a (finite or)

countable number of discontinuity, then f is integrable.

Proof 5. Denote the set of discontinuity of f on A as M . The set of discontinuity of the extended

f will be D ⊂ ∂A ∪M . Since A has volume, by the previous Corollary, we know m(∂A) = 0. Since

M is countable, m(M) = 0. Then, m(∂A ∪M) = 0 =⇒ D ⊂ ∂A ∪M has measure zero. By

Lebesgue’s Theorem, f is integrable.

Q.E.D. ■

▶ Proof 6 of Lebesgue’s Theorem

Step 1 Preparation and Reduction

• The set-up: Fix a rectangle B ⊃ A (so cl(A) ⊂
∫
(B)) and define g : B → R by

g(x) =

f(x), x ∈ A

0, x /∈ A.

Let D denote the set of discontinuity of g(x). That is,

D = {x ∈ B | g(x) is not continuous at x}.

Need to show: f integrable on A ⇐⇒ m(D) = 0.

• How to quantify discontinuity?

1. Definition 8.2.8 (Oscillation).The oscillation of a function h(x) at a point x0 is

O(h, x0) = inf
{
sup

{
|h(x2)− h(x1)| : x1, x2 ∈ U

}
: U is a neighborhood of x0

}
,

where O(f, U) = sup
{
|h(x2)− h(x1)| : x1, x2 ∈ U

}
is the oscillation in a neighborhood U ,

and inf takes over all possible neighborhoods of x0.

2. Claim 8.2.9 h is continuous at x0 =⇒ O(h, x0) = 0.

Proof. h is continuous at x0 =⇒ ∀ ε > 0, ∃ δ > 0 s.t.

|x− x0| < δ =⇒ |h(x)− h(x0)| <
ε

2
.
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8 INTEGRATION 8.2 Criterion for Integrability

For U = {|x− x0| < δ} ∩A,

x1, x2 ∈ U =⇒ |h(x2)− h(x1)| ≤ |h(x2)− h(x0)|+ |h(x0)− h(x1)|

<
ε

2
+
ε

2
= ε.

Then,O(h, U) < ε =⇒ O(h, x0) = 0. □

x′

f(x)

O(h, x′) = 0

x0
[ ]

U

O(h, x0) = d > 0

Step 2 (⇐) Assumem(D) = 0. Prove g is integrable.

We will show: g satisfies Riemann condition.

• Set up:

Fix ε > 0. Let Dε = {x ∈ B | O(g, x) > ε}. Then, Dε ⊂ D. So, m(Dε) = 0.

By Definition, ∃ collection of open rectangles |Bi| s.t.

Dε ⊂
⋃
i

Bi and
∑
i

v(Bi) < ε.

Claim 8.2.10 Dε is closed (and hence compact).

Proof. (Sketch) Dε contains all its limits points. That is,

xn ∈ Dε, {xn} → x =⇒ x ∈ Dε.

Assume, for the sake of contradiction,

x /∈ Dε =⇒ O(g, x) < ε.

ButO(g, xn) ≥ ε, we can derive a contradiction from there. □

Since Dε is compact, it has a finite subcover:

{B1, B2, . . . , BN} s.t.
N∑
i=1

v(Bi) < ε.
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8 INTEGRATION 8.2 Criterion for Integrability

• Initial Partition of B:

Construct a partition P from {Bi}Ni=1 s.t. each rectangle S ∈ P is either:

1. disjoint form Dε, or

2. its interior is contained in one of the Bi’s.

B

A

Dε: discontinuities of g

Bi: open cover of Dε

Partition P

The way to construct P is to extend the sides of Bi to form a partition on B.

Let C1 = {S ∈ P : int(S) is contained in one of Bi} and C2 = {S ∈ P : S ∩Dε = ∅}.

• Refinement of P

Fix S ∈ C2, S ∩Dε = ∅ =⇒ O(g, x) < ε ∀x ∈ S. Then, ∀x ∈ S, ∃ neighborhood Ux s.t.

sup {|g(x1)− g(x2)| : x1, x2 ∈ Ux} < O(g, x) + δ,

where δ =
1

2
(ε−O(g, x)). Then,

sup
Ux

g − inf
Ux

g < O(g, x) + 2δ = ε.

Denote MUx(g) = sup
Ux

g and mUx(g) = inf
Ux

g. Then,

MUx(g)−mUx(g) < ε (⋆)

Since S is compact and S ⊂
⋃
x∈S

Ux.

=⇒ ∃ finite collection of neighborhoods {Uxi} that covers S. Partition S so that each rectangle

is contained in some Uxi . Do this partition for each S ∈ C2, ad we obtain a refinement of P ,

denoted by P ′.

• Verify Riemann’s condition for P ′:
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8 INTEGRATION 8.2 Criterion for Integrability

Note that

U(g,P ′)− L(g,P ′) =
∑
S′∈P ′

(MS(g)−mS(g))v(S)

=
∑

S′⊂S∈C1

(MS′(g)−mS′(g))v(S′) +
∑

S′⊂S∈C2

(MS′(g)−mS′(g))v(S′)

≤
∑

S′⊂S∈C1

2Mv(S′) +
∑

S′⊂S∈C2

εv(S′) [|g(x)| ≤M and (⋆)]

≤ 2M ⊂
∑
i

v(Bi) + εv(B) [C1 is covered by B′
is] < 2Mε+ εv(B) [B′

is cover Dε]

= ε(2M + v(B)).

In summary, given ε > 0, ∃ partition P ′ s.t.

U(g,P ′)− L(g,P ′) < ε(2M + v(B)).

So, we satisfy Riemann condition. □

Step 3 (⇒) f is integrable =⇒ m(D) = 0.

For n = 1, 2, . . . , let

D1/n =

{
x ∈ D | O(g, x) ≥ 1

n

}
.

Then,

D =
∞⋃
i=1

D1/n.

Need to show: m(D1/n) = 0 ∀n.

Fix n ≥ 1. For any partition P , write

D1/n = S1 ∪ S2,

where

S1 =
{
x ∈ D1/n | x is on the boundary of some S ∈ P

}
and

S2 =
{
x ∈ D1/n | x ∈ int(S) for some S ∈ P

}
.

Then, m(S1) = 0. We need to show m(S2) = 0.

Given ε > 0. By Riemann’s condition, ∃ partition P s.t.∑
S∈P

(MS(g)−mS(g))v(S) <
ε

n
.

Let C denote the collection of all S ∈ P s.t. D1/n ∩ int(S) ̸= ∅. Then, C covers S2 and for any S ∈ C,

MS(g)−mS(g) ≥ O(g, x) ≥
1

n
.
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8 INTEGRATION 8.2 Criterion for Integrability

Thus, ∑
S∈C

(MS(g)−mS(g))v(S) ≤
∑
S∈P

(MS(g)−mS(g))v(S) <
ε

n
.

Since ∑
S∈C

(MS(g)−mS(g))v(S) ≥
∑
S∈C

1

n
v(S) =

1

n

∑
S∈C

v(S),

we have
1

n

∑
S∈C

v(S) ≤
∑
S∈C

(MS(g)−mS(g))v(S) <
ε

n
.

That is,
1

n

∑
S∈C

v(S) <
ε

n
=⇒

∑
S∈C

v(S) < ε.

Therefore, m(S2) = 0 as well.

Since m(S1) = m(S2) = 0 and D1/n = S1 ∪ S2, m(D1/n) = 0 ∀n. Then,

m(D) = m

( ∞⋃
i=1

D1/n

)
= 0.

Q.E.D. ■

Theorem 8.2.11 Properties of Integration

Let A,B ⊂ Rn be bounded, c ∈ R, and f, g : A→ R be integrable. Then,

• f + g is integrable and
∫
a
(f + g) =

∫
A
f +

∫
A
g.

• cf is integrable and
∫
A
(cf) = c

∫
A
f .

• |f | is integrable and

∣∣∣∣∫
A
f

∣∣∣∣ ≤ ∫
A
|f |

• If f ≤ g, then
∫
A
f ≤

∫
A
g.

• If A has volume and |f | ≤M , then

∣∣∣∣∫
A
f

∣∣∣∣ ≤Mv(A).

• (Mean Value Theorem for Integrals): If f : A → R is continuous and A has volume and

is compact and connected, then ∃x0 ∈ A s.t.

∫
A
f(x) dx = f(x0)v(A). The quantitive

1

v(A)
·
∫
A
f is called the average of f over A.

• Let f : A∪B → R. If the setsA andB are such thatA∩B has measure zero and f | (A∩B),

f | A, and f | B are all integrable, then f is integrable on A ∪B and
∫
A∪B

=

∫
A
f +

∫
B
f .
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8 INTEGRATION 8.3 Improper Integrals

8.3 Improper Integrals

Goal: Study integral of the form
∫
A f(x), where f : A ⊂ Rn → R is an arbitrary function and A ⊂ Rn is

an arbitrary set.

Definition 8.3.1 (Integral).

• If A ⊂ Rn is bounded and f is bounded, then∫
A
f(x) =

∫
A
f(x) =

∫
A
f(x) (Riemann Condition)

• f(x) ≥ 0 bounded and A is arbitrary, then

∫
A
f(x) = lim

a→∞

∫
Aa

f(x)

A ⊂ Rn

Aa = [−a, a]n

• f(x) ≥ 0 unbounded and A is arbitrary.

For M > 0, define

fM (x) =

f(x) for f(x) ≤M

0 o/w.
M

f(x)

Then, ∫
A
f(x) = lim

M→∞

∫
A
fM (x).

• f is arbitrary and A is arbitrary.

Let

f+(x) =

f(x) f(x) ≥ 0

0 f(x) < 0,
and f−(x) =

0 f(x) ≥ 0

−f(x) f(x) < 0.

Remark 8.5 1. f+(x) is the positive part of f and f−(x) is the negative part of f .

2. f+, f− ≥ 0.

3. f(x) = f+(x)− f−(x). We can write any function as the difference of two non-negative func-

tions.
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8 INTEGRATION 8.3 Improper Integrals

4. |f(x)| = f+(x) + f−(x).

So, f is integrable on A if both f+ and f− are integrable on A. We write∫
A
f(x) =

∫
A
f+(x)−

∫
A
f−(x).

Remark 8.6 1. One can show this definition preserves linearity of integral from bounded case.

2. Observation: f integrable =⇒ f+ and f− integrable =⇒ |f | = f+ + f− is also integrable.

However, |f | integrable ≠⇒ f integrable. For counterexample,

f(x) =

1 x rational

−1 x irrational
on [0, 1].

|f(x)| ≡ 1 =⇒ integrable. But f+, f−, or f are not integrable.

Theorem 8.3.2 Comparison Principle

Suppose

• 0 ≤ g ≤ f on A and
∫
A
f converges (i.e., f is integrable on A)

• g is integrable on each finite rectangle [−a, a]n.

Then, g is also integrable on A, and
∫
A
g ≤

∫
A
f .

Remark 8.7 The second condition is crucial and cannot be removed.

Proof 1. Since g ≥ 0 and is integrable on [−a, a]n, define

G(a) =

∫
[−a,a]n

g(x).

Then, G(a) is an increasing function of a. Furthermore,

g ≤ f =⇒ G(a) =

∫
[−a,a]n

g(x) ≤
∫
[−a,a]n

f(x) ≤
∫
A
f(x).

So, ∫
A
g(x) = lim

a→∞
G(a) ≤

∫
A
f(x).

Q.E.D. ■

Question: When does an integrable
∫ b

a
f(x) (one-variable function) converge? If it converges, how to

compute?
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8 INTEGRATION 8.3 Improper Integrals

Theorem 8.3.3 Integral of Functions of One-Variable

• Suppose f : [a,∞]→ R is continuous with f(x) ≥ 0. Let F ′(x) = f(x). Then,∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx = lim

b→∞

[
F (b)− F (a)

]
.

• Suppose f : (a, b]→ R is continuous with f(x) ≥ 0. Then,∫ b

a
f(x) dx = lim

ε→0+

∫ b

a+ε
f(x) dx.

Example 8.3.4

• Consider
∫ ∞

1
xp dx.

Solution 2.

For b ≥ 1, ∫ b

1
xp dx =


ln b p = −1
1

p+ 1

(
bp+1 − 1

)
p ̸= −1.

When b→∞,
∫ b

1
xp dx diverges when p ≥ −1 and converges when p < −1. So,

∫ ∞

1
xp dx is divergent when p ≥ −1

and ∫ ∞

1
xp dx = − 1

p+ 1
is convergent when p < −1.

□

• Consider
∫ ∞

1
e−x

2
x3 dx.

Solution 3.

Converges by comparison.

□

Definition 8.3.5 (Conditional Convergence).∫ ∞

a
f(x) dx (conditional) = lim

b→∞

∫ b

a
f(x) dx.
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8 INTEGRATION 8.3 Improper Integrals

Remark 8.8 (Types of Convergence) For an improper integral
∫ ∞

a
f(x) dx, there are three types of con-

vergence:

• Absolute Convergence:
∫ ∞

a
|f(x)| dx exists.

• Conditional Convergence: lim
b→∞

∫ b

a
f(x) dx exists.

• Divergence.

For general function, absolute convergence ≠⇒ conditional convergence. For continuous function,

absolute convergence is stronger, and =⇒ conditional convergence.

Example 8.3.6

Determine whether the integral
∫ ∞

1

cosx

x
dx is absolute convergence, conditional conver-

gence, or neither (divergence).

Solution 4.

• First, consider absolute convergence.

Observe that ∫ ∞

0

∣∣∣cosx
x

∣∣∣ dx =

∫ ∞

1

|cosx|
x

dx ≥
∫ nπ/2

π/2

|cosx|
x

dx

=
n−1∑
k=1

∫ (k+1)π/2

kπ/2

|cosx|
x

dx

≥
n−1∑
k=1

1

(k + 1)
π

2︸ ︷︷ ︸
harmonic

∫ (k+1)π/2

kπ/2
|cosx|dx

→∞ as n→∞.

So,
∫ ∞

1

∣∣∣cosx
x

∣∣∣ dx diverges, and thus
∫ ∞

1

cosx

x
dx is not absolutely convergent.

• Conditional convergence:

∫ b

1

cosx

x
dx =

sinx

x

∣∣∣∣b
1

+

∫ b

1

sinx

x2
dx [Integration by Parts]

When b→∞,

lim
b→∞

sinx

x

∣∣∣∣b
1

=
sin 1

1
converges.

Further, ∣∣∣∣sinxx2
∣∣∣∣ ≤ ∣∣∣∣ 1x2

∣∣∣∣ = 1

x2
=⇒

∫ ∞

1

∣∣∣∣sinxx2
∣∣∣∣dx ≤ ∫ ∞

1

1

x2
dx.
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8 INTEGRATION 8.4 Lebesgue Convergence Theorem

So,
∫ ∞

1

sinx

x2
dx absolutely converges by comparison.

Then,
∫ b

1

cosx

x
dx is conditional convergence.

□

8.4 Lebesgue Convergence Theorem

Goal: When do we have

lim
n→∞

∫
A
f(x) dx =

∫
A

(
lim
n→∞

f(x)
)
dx? (⋆)

Theorem 8.4.1 Lebesgue Monotone Convergence Theorem (LMCT)

Let gn : [0, 1]→ R be a sequence of non-negative integrable function such that

• gn+1(x) ≤ gn(x) ∀x ∈ [0, 1] (decreasing sequence)

• lim
n→∞

gn(x) = 0 ∀x ∈ [0, 1].

Then,

lim
n→∞

∫ 1

0
gn(x) dx =

∫ 1

0
0 dx = 0.

Corollary 8.4.2 : Suppose fn(x), f(x) : [0, 1]→ R with

• fn ≤ fn+1(x) ≤ f(x) ∀x ∈ [0, 1]

• fn(x)→ f(x) ∀x.

Then,

lim
n→∞

∫ 1

0
fn(X) dx =

∫ 1

0
f(x) dx.

Proof 1. Apply LMCT to the sequence gn(x) = f(x)− fn(x) ≥ 0.

Q.E.D. ■

Remark 8.9

• For (⋆) to hold, we only need fn(x) ↑ f(x) (fn(x) is monotone increasing and the limit of fn(x) is

f(x))

• The assumption that A = [0, 1] ⊂ R is not essential. Result is true for any set A ⊂ Rn.

• The monotonicity assumption cannot be removed. For example:

gn(x) =

n, 0 < x <
1

n

0, o/w
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8 INTEGRATION 8.4 Lebesgue Convergence Theorem

Then, we have gn(x)→ 0 ∀x ∈ [0, 1]. However,∫ 1

0
gn(x) dx = 1 ∀n and

∫ 1

0
0 dx = 0.

So, ∫ 1

0
gn dx ̸=

∫ 1

0
0 dx,

and LMCT does not hold anymore.

▶ Proof 2 of Lebesgue Monotone Convergence Theorem

Lemma 8.4.3 : Suppose f : [0, 1]→ R be integrable with |f | ≤M and
∫ 1

0
f ≥ α > 0. Then, the set

E =
{
x ∈ [0, 1] | f(x) ≥ α

2

}
contains a finite union of disjoint open intervals of total length≥ α

4M
.

α

α

2

Proof. By definition of integral, ∃ partition P s.t.

0 ≤
∫ 1

0
f − L(f,P) < α

4
.

Then,

L(f,P) >
∫ 1

0
f − α

4
≥ α− α

4
=

3α

4
.

Let ℓ denote the total length of the intervals I in P with I ⊂ E. Then,

3α

4
< L(f,P) =

∑
I∈P

(
inf
I
f(x)

)
ℓ(I)

=
∑

I∈P∩E

(
inf
I
f(x)

)
ℓ(x) +

∑
I∈P\E

(
inf
I
f(x)

)
ℓ(I)

≤
∑

I∈P∩E
M · ℓ(I) +

∑
I∈P\E

α

2
ℓ(I)

≤ ℓM +
α

2
· 1

[
If I /∈ E, f(x) ≤ α

2

]
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8 INTEGRATION 8.4 Lebesgue Convergence Theorem

So, ℓ ·M ≥ α

4
=⇒ ℓ ≥ α

4M
. Remove endpoints from I, we get open intervals. □

• Step 1 Set up and Reduction:

0 ≤ gn+1 ≤ gn =⇒
∫ 1

0
gn+1(x) dx ≤

∫ 1

0
gn(x) dx.

Then, the limit exists:

lim
n→∞

∫ 1

0
gn(x) dx =: λ ≥ 0.

Need to show: λ = 0.

Assume λ > 0, and we will derive a contradiction (with the assumption gn(x)→ 0 ∀x ∈ [0, 1]).

• Step 2 Apply the above Lemma 8.4.3 to the cut-off function (gn)M , where M > 0.

(gn(x))M :=

gn(x), gn(x) ≤M

M, gn(x) > M.

Then, ∫ 1

0
gn(x) dx = lim

M→∞

∫ 1

0
(gn)M .

Choose M =
2λ

5
s.t.

0 ≤
∫ 1

0
(gn − (gn)M ) ≤

∫ 1

0
(g1 − (g1)M ) ≤ λ

5
.

Let En =

{
x ∈ [0, 1] | gn(x) ≥

2λ

5

}
. Then,

1. En+1 ⊂ En by monotonicity

2.
{
x ∈ [0, 1] | (gn)M (x) ≥ α

2

}
⊂ En. Choose α s.t.

2λ

5
=
α

2
to apply the Lemma. =⇒ α =

4λ

5
.

Apply Lemma 8.4.3 to (gn)M and α =
4λ

5
. Then, En contains a finite union of disjoint open

intervals of total length

ℓ ≥ α

4M
=

4λ

5
· 1

4M
=

λ

5M

• Step 3 Show that
∞⋂
n=1

En ̸= ∅.

Let

D =

∞⋃
n=1

{x ∈ [0, 1] | gn not continuous at x} =
∞⋃
n=1

Dn.

Since gn is integrable, we have m(Dn) = 0. So,

m(D) = m

( ∞⋃
n=1

Dn

)
= 0.
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8 INTEGRATION 8.4 Lebesgue Convergence Theorem

That is, D is covered by U , a countable union of open intervals of total length < ε =
λ

5M
.

By Step 2, En ̸⊂ U .

Claim 8.4.4 cl(En) ⊂ En ∪ U .

Proof. In fact, if x0 ∈ cl(En)\En, then [WTS: x0 ∈ U ]

gn(x0) <
2λ

5
=⇒ gn is not continuous at x0.

Suppose x0 ∈ cl(En) =⇒ ∃xk ∈ En s.t. xk → x0 as k → ∞. Also, gn(xk) ≥
2λ

5
, but gn(x0) <

2λ

5
=⇒ gn(xk) ̸= gn(x0) =⇒ discontinuous

So, x0 ∈ Dn, and thus x0 ∈ U . So, this Claim 8.4.4 is true. □

Note, let Fn = cl(En)\U . Then,

1. Fn is compact

2. Fn ⊂ En (by Clam 8.4.4)

So, by the nested set property:
∞⋂
n=1

Fn ̸= ∅. As Fn ⊂ En, we further have
∞⋂
n=1

En ̸= ∅.

Let x0 ∈
∞⋂
n=1

En, then gn(x0) ≥
2λ

5
. Then, lim

n→∞
gn(x0) ̸= 0. ⋇This derives a contradiction with the

second assumption in LMCT (i.e., gn(x)→ 0). So, λ > 0 is impossible, and it must be that λ = 0.

Q.E.D. ■

Corollary 8.4.5 : Let gn : A→ R be integrable and non-negative. Assume

g(x) =
∞∑
n=1

gn(x)

is also integrable. Then, ∫
A
g(x) =

∫
A

∞∑
n=1

gn(x) =

∞∑
n=1

∫
A
gn(x).

Proof 3. Let fn(x) =
n∑
k=1

gk(x), the partial sum.

Then, ∫
A
fn(x) =

∫
A

n∑
k=1

gk(x) =

n∑
k=1

∫
A
gk(x) [property of integral]

As n→∞, fn → g(x), and fn+1 ≥ fn (gn is non-negative). Then, apply Corollary 8.4.2, we have

∫
A
g(x) =

∞∑
n=1

∫
A
gn(x).

Q.E.D. ■
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9 COMPUTING INTEGRALS

9 Computing Integrals

Question: In practice, how do we compute the integral
∫
A
f(x) dx?

• In R1: Fundamental Theorem of Calculus.∫ b

a
f(x) dx = F (x)

∣∣∣∣b
a

= F (b)− F (a).

• In Rn: Reduce to R1 case by Fubini’s Theorem. Or, use change of variable (substitution first),

and then use Fubini’s Theorem.

9.1 Fubini’s Theorem

Theorem 9.1.1 Fubini’s Theorem

LetA = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d} be a rectangle in R2 and f : A→ R be integrable. Suppose

for each fixed x ∈ [a, b], the following integral exists:

g(x) =

∫ d

c
f(x, y) dy.

Then, g(x) is integrable on [a, b], and∫
A
f(x, y) =

∫ b

a
g(x) dx =

∫ b

a

(∫ d

c
f(x, y) dy

)
dx.

Corollary 9.1.2 : If f : A→ R is continuous, then∫
A
f(x, y) =

∫ b

a

(∫ d

c
f(x, y) dy

)
dx

symmetry
======

∫ d

c

(∫ b

a
f(x, y) dx

)
dy.

Corollary 9.1.3 Generalization: Let A be a region given by A = {(x, y) | a ≤ x ≤ b, φ(x) ≤ y ≤ ψ(x)},
where φ and ψ are continuous. If f : A→ R is continuous, then

∫
A
f(x, y) =

∫ b

a

(∫ ψ(x)

φ(x)
f(x, y) dy

)
dx.

Remark 9.1

• The roles of x and y can be interchanged.

• Results are true in higher dimensions. For example, let C = A × B ⊂ Rn+m, where A ⊂ Rn and

B ⊂ Rm. Fix x ∈ A and y ∈ B. Then,∫
A×B

f =

∫
A

(∫
B
f(x, y) dy

)
dx.
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Example 9.1.4 Computing Integral

Compute
∫
A
(x+ y) dxdy, where A is the following region:

1

1

A

Solution 1.

∫
A
(x+ y) dxdy =

∫ 1

0

(∫ x

0
(x+ y) dy

)
dx

=

∫ 1

0

(
xy +

1

2
y2
)∣∣∣∣1

0

dx

=

∫ 1

0
x2 +

1

2
x2 dx

=
3

2
· 1
3
x3
∣∣∣∣1
0

=
1

2
.

□

▶ Proof 2 of Fubini’s Theorem

• Let g(x) =
∫ d

c
f(x, y) dy. WTS: (1) g is integrable on [a, b], and (2)

∫ b

a
g dx =

∫
A
f . We will compute

the upper and lower sums of f and g.

• Fix any partition PA ofA, where PA = {Si,j}i,j , where Si,j = vi×wj . Then, PA induces a partition

of [a, b], where P[a,b] = {vi}i and a partition of [c, d], P[c,d] = {wj}j .

• Next, estimate the lower sum L(f,PA):

L(f,PA) =
∑
i,j

inf
x∈Si,j

f(x)︸ ︷︷ ︸
denote asmi,j(f)

v(Si,j)

=
∑
i,j

mi,j(f)v(vi × wj)

=
∑
i,j

mi,j(f)v(vi) · v(wj).
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Key Observation:

inf {f(x, y) | (x, y) ∈ vi × wj} ≤ inf {f(x, y) : y ∈ wj}︸ ︷︷ ︸
fix x, allow y to vary

∀x ∈ vi.

Denote inf {f(x, y) | y ∈ wj} = mj(f, x). Then, for any fixed x ∈ [a, b],

mi,j(f) ≤ mj(f, x)

mi,j(f)v(wj) ≤ mj(f, x)v(wj)∑
j

mi,j(f)v(wj) ≤
∑
j

mj(f, x) · v(wj)︸ ︷︷ ︸
lower sum of f(x,y) in the

variable y w.r.t. partition P[c,d]

= L
(
f(x, y),P[c,d]

)
≤
∫ d

c
f(x, y) dy = g(x) ∀x.

Thus, ∑
j

mi,j(f)v(wj) ≤ inf
vi
g(x)

∑
j

mi,j(f)v(wj)v(vi) ≤ inf
vi
g(x)v(vi)∑

i

∑
j

mi,j(f)v(wj)v(vi) ≤
∑
i

inf
vi
g(x)v(vi)∑

i,j

mi,j(f)v(wj)v(vi)︸ ︷︷ ︸
L(f,PA)

≤
∑
i

inf
vi
g(x)v(vi)︸ ︷︷ ︸

L(g,P[a,b])

So,

L(f,PA) ≤ L
(
g,P[a,b]

)
.

• Similarly, we have

U(f,PA) ≥ U
(
g,P[a,b]

)
.

• Therefore, we have

L(f,PA) ≤ L
(
g,P[a,b]

)
≤ U

(
g,P[a,b]

)
≤ U(f,PA).

Since f is integrable, by Riemann’s condition,

0 ≤ U(f,PA)− L(f,PA) < ε.

Then,

0 ≤ U
(
g,P[a,b]

)
− L

(
g,P[a,b]

)
< ε.
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9 COMPUTING INTEGRALS 9.2 Change of Variable

So, g is integrable as well. Moreover, ∫ b

a
g(x) dx =

∫
A
f.

Q.E.D. ■

Example 9.1.5

Compute the volume of the region

A = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 1}

by integration.

Solution 3.

v(A)

∫
A
1A =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
1 dzdydx.

□

9.2 Change of Variable

General Setting: f : B → R bounded is an integrable function

A ⊂ Rn

B ⊂ Rnchange of variable

y = g(x)

Goal: Transform integral
∫
B
f(y) to an integral on A.

Example 9.2.1 1D Case ∫
f(y) dy =

∫
f(g(x)) g′(x) dx︸ ︷︷ ︸

dy

.
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9 COMPUTING INTEGRALS 9.2 Change of Variable

Theorem 9.2.2 Change of Variable Formula in Higher Dimension

Assume Jg(x) ̸= 0 ∀x ∈ A. If f : B → R is bounded and integrable on B = g(A), then

f ◦ g(x) · (Jg(x)) is integrable on A, and∫
B
f(y) dy =

∫
A
f(g(x)) · |Jg(x)| dx︸ ︷︷ ︸

dy

.

Proof 1. (Sketch)

• Change of volume under linear map:

Let L : R2 → R2 be a linear map given by

L

(
x1

x2

)
=

[
a b

c d

](
x1

x2

)
.

Denote y = Lx. Then,

v(L(s)) =

∣∣∣∣∣det
[
a b

c d

]∣∣∣∣∣ · v(S).
• Linear approximation of g : A→ B:

Fix x0 ∈ A. Then, in a neighborhood of x0, g can be approximated by a linear map:

g(x) = g(x0) + Dg(x0)(x− x0) + error.

• Conversion into integral formula:

Fix small rectangles S in A. Then, g(S) is “1nearly” parallelogram. So,

v(g(S)) ≈ |Jg(x0)|v(S).

Do this for each rectangle Sij in a partition:

v(g(Sij) ≈ |Jg(xij)|v(Sij).

Then,

f(yij)v(g(Sij)) ≈ f(g(xij))|Jg(xij)|v(Sij)∑
f(yij)v(g(Sij)) ≈

∑
f(g(xij))|Jg(xij)|v(Sij)

Through the summation and limit process:∫
B
f(y) dy =

∫
A
f(g(x))|Jg(x)| dx.
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9 COMPUTING INTEGRALS 9.2 Change of Variable

Q.E.D. ■

Example 9.2.3

Evaluate the integral using the change of variables u = x2 − y2 and v = 2xy.∫ 1

0

∫ 1

0
(x2 + y2) sin

(
x2 − y2

)
dxdy.

1. Sketch the regions in xy-plane and uv-plane:

1

1

1−1

g(u, v)→ (x, y)

u =
1

4
v2 − 1 u = 1− 1

4
v2

x

y

u

v

u = x2 − y2

v = 2xy
and g : (u, v)→ (x, y) =⇒ u = x2 − v2

4x2
.

2. Compute the determinant: g−1 : (u, v)→ (x, y).

Jg−1(x, y) =

∣∣∣∣∣∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

∣∣∣∣∣ =
∣∣∣∣∣2x −2y
2y 2x

∣∣∣∣∣ = 4x2 + 4y2.

So,

Jg =
1

Jg−1(x, y)
=

1

4(x2 + y2)

3. Apply the change of variable formula:

∫ 1

0

∫ 1

0
(x2 + y2) sin

(
x2 − y2

)
dxdy =

∫ 2

0

∫ 1−(1/4)·v2

(1/4)·v2−1
(x2 + y2) sin

(
x2 − y2

)
|Jg(x)| dudv

=

∫ 2

0

∫ 1−(1/4)·v2

(1/4)·v2−1
�����(x2 + y2) sin(u)

1

4�����(x2 + y2)
dudv

=
1

4

∫ 2

0

∫ 1−(1/4)·v2

(1/4)·v2−1
sin(u) dudv.

Remark 9.2 (Special Coordinate Systems)
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9 COMPUTING INTEGRALS 9.2 Change of Variable

• Polar Coordinate in R2: x = r cos θ

y = r sin θ
Jg(r, θ) = r,

=⇒
∫
B
f(x, y) dxdy =

∫
A
f(r cos θ, r sin θ)r drdθ.

• Spherical Coordinate in R3:
x = r sinφ cos θ

y = r sinφ sin θ

z = r cosφ

Jg(r, θ, φ) = r2 sinφ

=⇒
∫
B
f(x, y, z) dxdydz =

∫
A
f(r sinφ cos θ, r sinφ sin θ, r cosφ)r2 sinφdrdθdφ.

(x, y, z)

θ

φ r

• Cylindrical Coordinate in R3: 
x = r cos θ

y = r sin θ

z = z

Jg(r, θ, z) = r

=⇒
∫
B
f(x, y, z) dxdydz =

∫
A
f(r cos θ, r sin θ, z)r drdθdz.

Example 9.2.4

• Evaluate
∫ ∞

−∞
e−x

2
dx

Solution 2.

Step 1 Evaluate integral ∫
R2

e−x
2−y2 dxdy
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9 COMPUTING INTEGRALS 9.2 Change of Variable

by polar coordinate (x = r cos θ and y = r sin θ). Let DR denote the circle centered at origin

with radius R Then,∫
DR

e−x
2−y2 dxdy =

∫ 2π

0

∫ R

0
e−r

2
r drdθ =

∫ 2π

0

(
−1

2
e−r

2

)∣∣∣∣R
0

dθ

= 2π

(
−1

2
e−R

2
+

1

2

)
= −πe−R2

+ π.

So, ∫
R2

e−x
2−y2 dxdy = lim

R→∞

∫
DR

e−x
2−y2 dxdy

= lim
R→∞

(
−πe−R2

+ π
)

= π.

Step 2 Evaluate ∫
R2

e−x
2−y2 dxdy

by Fubini’s Theorem.

Let Sb = [−b, b]× [−b, b] ⊂ R2. Then,∫
R2

e−x
2−y2 dxdy = lim

b→∞

∫
Sb

e−x
2−y2 dxdy

= lim
b→∞

∫ b

−b

∫ b

−b
e−x

2 · e−y2 dxdy

= lim
b→∞

(∫ b

−b
e−x

2
dx

)
·
(∫ b

−b
e−y

2
dy

)
=

(∫ ∞

−∞
e−x

2
dx

)2

Step 3 Combine Steps 1 and 2:

π =

∫
R2

e−x
2−y2 dxdy =

(∫ ∞

−∞
e−x

2
dx

)2

So, ∫ ∞

−∞
e−x

2
dx =

√
π.

□

• Evaluate
∫
R3

1

x2 + y2 + x2
dxdydz

• Evaluate
∫
R
2ex

2−y2 dxdydz, where R =
{
(x, y, z) | x2 + y2 ≤ 1, 1 ≤ x ≤ 2

}
.
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10 FOURIER ANALYSIS

10 Fourier Analysis

10.1 Introduction

General Idea: Try to decompose certain objects into simpler components.

• Algebraic Model: Rn

x =
n∑
i=1

xiei,

where ei’s are the standard basis.

• Calculus Model: Taylor Series

f(x) =
∞∑
n=0

cn(x− a)n.

• Fourier Analysis: Theory of infinite dimensional inner product space of functions.

Goal: Decompose a function f(x) into a “linear combination of basis:”

f(x) =
∞∑

n=−∞
cnφn(x).

Physics Motivation: Decompose complicated waves into harmonies.

10.2 Inner Product Space of Functions

10.2.1 Basic Concepts

Definition 10.2.1 (Inner Product). Let V be a complex vector space. Then, an inner product on V is a

map ⟨·, ·⟩ : V × V → C s.t. ∀ f, g, h ∈ V and a, b,∈ C, we have

• Linearity:

⟨af + bg, h⟩ = a ⟨f, h⟩+ b ⟨g, h⟩ .

• Conjugate Symmetry:

⟨f, g⟩ = ⟨g, f⟩.

• Positive Definiteness:

⟨f, f⟩ ≥ 0 and ⟨f, f⟩ = 0 ⇐⇒ f = 0.

Example 10.2.2

C is an inner product space under the inner product:

⟨z1, z2⟩ = z1z2.
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10 FOURIER ANALYSIS 10.2 Inner Product Space of Functions

Corollary 10.2.3 Conjugate Linearity in the Second Component:

⟨h, af + bg⟩ = a ⟨h, f⟩+ b ⟨h, g⟩ .

Proof 1.

⟨h, af + bg⟩ = ⟨af + bg, h⟩ [Conjugate symmetry]

= a ⟨f, g⟩+ b ⟨g, h⟩ [Linearity]

= a ⟨h, f⟩+ b ⟨h, g⟩ . [Conjugate symmetry]

Q.E.D. ■

Definition 10.2.4 (Norm and Distance Induced by Inner Product).

• Norm:

∥f∥ :=
√
⟨f, f⟩.

• Distance from f to g:

d(f, g) := ∥f − g∥.

Corollary 10.2.5 Facts:

• (V, ∥·∥) is a normed space.

• (V, d) is a metric space.

Lemma 10.2.6 Cauchy-Schwarz Inequality:

|⟨f, g⟩| ≤ ∥f∥ · ∥g∥

Proof 2.

f

g ⟨f, g⟩ · g

f − ⟨f, g⟩ · g

The projection should have the smallest length:

0 ≤ ∥f − ⟨f, g⟩ g∥2 = ⟨f, ⟨f, g⟩ g, f − ⟨f, g⟩ g⟩

= ⟨f, f − ⟨f, g⟩ g⟩ − ⟨f, g⟩ ⟨g, f − ⟨f, g⟩ g⟩

= ⟨f, f⟩ − ⟨f, g⟩ ⟨f, g⟩ − ⟨f, g⟩ ⟨g, f⟩+ ⟨f, g⟩ ⟨f, g⟩ ⟨g, g⟩

= ∥f∥2 − |⟨f, g⟩|2 − |⟨f, g⟩|2 + |⟨f, g⟩|2∥g∥2.
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10 FOURIER ANALYSIS 10.2 Inner Product Space of Functions

Normalize: let ∥g∥ = 1. Then,

0 ≤ ∥f∥2 − |⟨f, g⟩|2

|⟨f, g⟩|2 ≤ ∥f∥2

|⟨f, g⟩| ≤ ∥f∥ = ∥f∥ · ∥g∥.

Q.E.D. ■

Definition 10.2.7 (Convergence). Suppose fn, f ∈ V . Then, fn → f in V if ∥fn − f∥ → 0 as n→∞. We

call this convergence in norm.

10.2.2 The Space C and L2

Definition 10.2.8 (Integral of Complex Valued Functions). Suppose f(x) = f1(x) + if2(x) : [a, b] → C
be a complex-valued function, where f1, f2 : [a, b]→ R. Then,∫ b

a
f(x) dx :=

∫ b

a
f1(x) dx+ i

∫ b

a
f2(x) dx.

Definition 10.2.9 (The Space C and L2). Fix an interval [a, b].

• C := {f(x) | f : [a, b]→ C is continuous}.

• L2 :=

{
f : [a, b]→ C |

∫ b

a
|f(x)|2 dx <∞

}
.

The condition
∫ b

a
|f(x)|2 dx <∞ is called L2 integrable.

Corollary 10.2.10 Facts:

• C and L2 are vectors spaces. C is a subspace of L2.

• Zero vector in C: f(x) ≡ 0.

• Zero vector in L2: f(x) = 0 a. e. (almost everywhere).

That is, m({x ∈ [a, b] | f(x) ̸= 0}) = 0.

• f1 = f2︸ ︷︷ ︸
vectors

in L2 ⇐⇒ f1(x) = f2(x)︸ ︷︷ ︸
function

a. e.

• Inner Product:

⟨f, g⟩ =
∫ b

a
f(x)g(x) dx.

Claim 10.2.11 With the above definition of inner product, C and L2 are inner product spaces.
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10 FOURIER ANALYSIS 10.3 Fourier Analysis on Inner Product Space

10.3 Fourier Analysis on Inner Product Space

10.3.1 Geometry of an Inner Product Space

Definition 10.3.1 (Orthogonality). f, g ∈ V are orthogonal (denoted as f ⊥ g) if ⟨f, g⟩ = 0.

Definition 10.3.2 (Orthonormal Family). A family {φ1, φ2, . . . , } ⊂ V is called an orthonormal family

if

• ⟨φi, φj⟩ = 0 ∀ i ̸= j

• normφi = 1 ∀ i.

Or equivalently,

⟨φi, φj⟩ = δij =

1, if i = j

0, if i ̸= j.

Example 10.3.3

In Rn: {e1, e2, . . . , en}, the standard basis, is an orthonormal basis.

Theorem 10.3.4 Gram-Schmidt Process: Generate Orthonormal Family from Linear Indepen-

dent Family

{g0, g1, . . . }︸ ︷︷ ︸
linear independent

→ {φ0, . . . , φ1, . . . }︸ ︷︷ ︸
orthonormal

1. Orthogonal projection:

x =
∑
i

ciei,

where ci = ⟨x, ei⟩. Then, we have

⟨x− ⟨x, ei⟩ ei, ei⟩ = 0.

2. Inductive Process:

φ0 =
g0
∥g0∥

f1 = g1 − ⟨g1, φ0⟩φ0, =⇒ φ1 =
f1
∥f1∥

...

fn = gn −
n−1∑
i=0

⟨gn, φi⟩φi, =⇒ φn =
fn
∥fn∥

.
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10 FOURIER ANALYSIS 10.3 Fourier Analysis on Inner Product Space

10.3.2 Fourier Series and Complete Family

Definition 10.3.5 (Complete Orthonormal Family). An orthonormal family {φ0, φ1, . . . } (countable)

is called complete if each f ∈ V can be written as

f =

∞∑
k=0

ckφk (⋆)

Remark 10.1

• The meaning of (⋆): ∥∥∥∥∥f −
n∑
k=0

ckφk

∥∥∥∥∥→ 0 as n→∞.

• (⋆) is called the Fourier series of f w.r.t. {φ0, φ1, . . . }.

• If {φ0, φ1, . . . } is complete, then it is an orthonormal basis of V .

Objective: Find suitable complete orthonormal family and expand f ∈ V into Fourier series.

Theorem 10.3.6

If f has Fourier series expansion:

f =
∞∑
k=0

ckφk,

then,

ck = ⟨f, φk⟩ for k = 0, 1, . . . .

ck’s are called the Fourier coefficients of f .

Proof 1. Let

Sn =
n∑
k=0

ckφj .

Then,

∥f − Sn∥ → 0 ans n→∞.

Fix m ≥ 0. Then, for any n ≥ m,

cm
want
=== ⟨f, φm⟩ = ⟨f − Sn + Sn, φm⟩

= ⟨f − Sn, φm⟩+ ⟨sn, φm⟩

= ⟨f − Sn, φm⟩+ cm [orthogonality]

= 0 + cm as n→∞ [Cauchy-Schwarz
∥f−Sn∥→0 ]

So, ⟨f, φm⟩ = cm.

Q.E.D. ■
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10 FOURIER ANALYSIS 10.3 Fourier Analysis on Inner Product Space

Question: Given f and {φ1, φ2, . . . }, does the series

∞∑
k=0

⟨f, φk⟩φk

converge to f?

Theorem 10.3.7 Properties of Fourier Coefficients

Assume {φ0, φ1, . . . } is an orthonormal family in V .

• Bessel’s Inequality:
∞∑
k=0

|⟨f, φk⟩|2 ≤ ∥f∥2.

• Parseval’s Equality (One can View this as the Pythagorean Theorem):

If

f =
∞∑
k=0

⟨f, φk⟩φk,

then
∞∑
k=0

|⟨f, φj⟩|2 = ∥f∥2.

Proof 2. Let Sn =

n∑
k=0

⟨f, φk⟩φk. Denote ck = ⟨f, φk⟩.

∥f∥2 = ∥f − Sn + Sn∥2

= ⟨f − Sn + Sn, f − Sn + Sn⟩ [definition]

= ∥f − Sn∥2 + ∥Sn∥2 [Linearity, f − Sn ⊥ Sn]

∥Sn∥ = ⟨Sn, Sn⟩ =
n∑
k=0

|ck|2.

Then,

∥f∥2 = ∥f − Sn∥2︸ ︷︷ ︸
≥0

+
n∑
k=0

|ck|2 =⇒ ∥f∥2 ≥
n∑
k=0

|ck|2 =
n∑
k=0

|⟨f, φk⟩|2

true for any n. So, we get ① by letting n→∞.

Under the assumption of ②, when n→∞, we have ∥f − Sn∥2 → 0. So,

∥f∥2 =
∞∑
k=0

|ck|2 =
∞∑
k=0

|⟨f, φk⟩|2.

Q.E.D. ■
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10 FOURIER ANALYSIS 10.3 Fourier Analysis on Inner Product Space

Theorem 10.3.8 Best mean Approximation Theorem (BMAT)

Assume {φ0, φ1, . . . } is an orthonormal family in V . For any scalars t0, t1, . . . , tn ∈ C, we have∥∥∥∥∥f −
n∑
k=0

tkφk

∥∥∥∥∥ ≥
∥∥∥∥∥f −

n∑
k=0

⟨f, φk⟩φk

∥∥∥∥∥.
• The first sum is an arbitrary element in the plane formed by {φ0, . . . , φn}.

• The second sum is the orthogonal projection of f onto the plane.

Remark 10.2 (Geometric Inpterpretation)

f ∈ V

φn

φ0

φn+1

n∑
k=0

⟨f, φk⟩φk
n∑
k=0

tkφk

orhotongal projection

arbitrary eleent

on the plane

LHS ≤ RHS: the shortest distance from a point f to the plane is achieved by the orthogonal projection

(or, the perpendicular line).

Proof 3. Let hn =

n∑
k=0

tkφk. Then,

∥f − hn∥2 = ⟨f − hn, f − hn⟩

= ⟨f, f⟩ − ⟨hn, f⟩ − ⟨f, hn⟩+ ⟨hn, hn⟩

= ∥f∥2 −
n∑
k=0

tkck −
n∑
k=0

tkck +

n∑
k=0

|tk|2

... linearity

= ∥f∥2 −
n∑
k=0

|ck|2 +
n∑
k=0

|tk − ck|2

= ∥f − fn∥2 +
n∑
k=0

|tk − ck|2︸ ︷︷ ︸
≥0

.

So, BMAT is proven.

Q.E.D. ■
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10.4 Completeness and Convergence in L2

Theorem 10.4.1 Orthogonal Functions in L2

Let V = L2([a, b]), where [a, b] = [0, 2π].

• Exponential family:

φn(x) =
einx√
2π
, n = 0,±1,±2, . . .

• Trig. family:
1√
2π
,
cosmx√

2π
,
sinnx√

2π
, n,m = 1, 2, . . .

Claim 10.4.2 Both families are orthogonal.

Proof 1. (of exponential family)

WTS:

⟨φn, φm⟩ = δn,m =

1, n = m

0, n ̸= m

⟨φn, φm⟩ =
∫ 2π

0
φn(x)φm(x) dx

=
1

2π

∫ 2π

0
einx · e−imx dx

=
1

2π

∫ 2π

0
ei(n−m)x dx

=


1, n = m

1

2π
· 1

i(n−m)
ei(n−m)x

∣∣∣∣2π
0

= 0, n ̸= m.

Q.E.D. ■

Theorem 10.4.3 Mean Convergence Property/Completeness

The exponential family {φn}∞n=−∞ is complete in L2

Remark 10.3 To prove this Theorem, we aim to show: any function f(x) ∈ L2 can be represented by its

Fourier series:

f(x) =

∞∑
n=−∞

⟨f, φn⟩φn.

i.e.,. ∥∥∥∥∥f(x)−
n∑

k=−n
⟨f, φk⟩φk

∥∥∥∥∥
L2

(n→∞)−−−−−→ 0.

Lemma 10.4.4 Stone-Weierstrass Theorem: Continuous functions can be approximated by polyno-

mials of eix and e−ix. More precisely, given f : [0, 2π]→ C continuous with f(0) = f(2π). Then, ∀ ε > 0,
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10 FOURIER ANALYSIS 10.4 Completeness and Convergence in L2

∃n ≥ 1 and ck, k = 0,±1, . . . s.t.

|f(x)− pn(x)| < ε ∀x ∈ [0, 2π],

where

pn(x) =
n∑

k=−n
cke

ikx,

a polynomial in eix and e−ix.

Lemma 10.4.5 : Integrable functions can be approximated by continuous functions. That is, let f ∈ L2

and ε > 0 be given, ∃ continuous function g : [0, 2π]→ C with g(0) = g(2π) s.t.

∥f − g∥ < ε.

▶ Proof 2 of Mean Convergence Property

• Step 1 Special Case:

Let f be continuous with f(0) = f(2π). Write

Sn =
n∑

k=−n
⟨f, φk⟩φk, where φk(x) =

eikx√
2π

WTS: ∥f − Sn∥ → 0 as n→∞.

Fix ε > 0. By Lemma 10.4.4, we can choose pN (x) s.t.

|f(x)− pN (x)| <
ε√
2π

∀x ∈ [0, 2π].

Then,

∥f − pN∥ ≤

(∫ 2π

0

(
ε√
2π

)2
)1/2

= ε.

Thus, ∀n ≥ N , we have

∥f − Sn∥ ≤ ∥f − SN∥ [BMAT. LN ⊂ Ln =⇒ SN ∈ Ln.]

≤ ∥f − pN∥ [BMAT. pN ∈ LN ]

≤ ε.

So, ∥f − Sn∥ → 0 as n→∞.

• Step 2 General Case:

Fix f ∈ L2. WTS: f =

∞∑
k=−∞

⟨f, φk⟩φk.
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By Lemma 10.4.5, ∃ sequence of continuous functions gn : [0, 2π]→ C with g(0) = g(2π) s.t.

∥f − gn∥ → 0 as n→∞.

By Step 1, for each gn, we have

gn =
∞∑

k=−∞
⟨gn, φk⟩φk.

WTS: ∥f − Sn∥ → 0.

Fix ε > 0. Choose N s.t.

∥f − gN∥ <
ε

3
.

Then, choose M s.t.

n ≥M =⇒ ∥gN − Sn(gN )∥ <
ε

3
,

where Sn(gN ) denotes the partial sum of Fourier series of gN .

Sn(gN ) =
n∑

k=−n
⟨gN , φk⟩φk.

Thus, ∀n ≥M , we have

∥f − Sn∥ = ∥Sn − Sn(gN ) + Sn(gN )− gN + gN − f∥

≤ ∥Sn − Sn(gN )∥+ ∥Sn(gN )− gN∥+ ∥gN − f∥

∥Sn − Sn(gN )∥ =

∥∥∥∥∥
n∑

k=−n
⟨f, φk⟩φk −

n∑
k=−n

⟨gN , φk⟩φk

∥∥∥∥∥
=

∥∥∥∥∥
n∑

k=−n
⟨f − gN , φk⟩φk

∥∥∥∥∥
=

〈
n∑

k=−n
⟨f − gN , φk⟩φk,

n∑
k=−n

⟨f − gN , φk⟩φk

〉1/2

=

(
n∑

k=−n
|⟨f − gN , φk⟩|2

)1/2

[Pythagorean Theorem]

≤ ∥f − gN∥ <
ε

3
.

So,

n ≥M =⇒ ∥f − Sn∥ <
ε

3
+
ε

3
+
ε

3
= ε.

Therefore,

∥f − Sn∥ → 0 as n→∞.

Q.E.D. ■
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With that, these notes mark the end of a journey through the rigorous landscapes

of Real Analysis. From the foundational structure of R to the elegance of Fourier

series in L2, this document reflects not only the theorems and proofs, but also the

quiet persistence of curiosity.

I would like to express my sincere gratitude to:

Professor Shanshuang Yang

for his guidance, clarity, and intellectual generosity throughout MATH 411 & 412.

Jerrold E. Marsden and Michael J. Hoffman

whose text Elementary Classical Analysis served as a source of inspiration,

challenge, and reflection.

My peers and friends

for the many shared ideas, problem-solving moments, and philosophical tangents.

Myself

for persistence, patience, and the willingness to wrestle with the abstract.

End of Notes
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