Practice Proofs

1 Statements

1.1 Class Handout, Chapter 1.3, Implications.

Let a, b, and ¢ be integers, with a and b non-zero. If (ab)| (ac), then b]|c.

Proof 1.
Let a,b,c € Z with a # 0 and b # 0. Suppose (ab) | (ac). Then 3k € Z s.t. ac = (ab)k. Divide both
sides of the equation by a:

c = bk.

Since k € Z, by definition of divides, b | c.

1.2 Class Handout, Chapter 1.4, Contrapositive and Converse

Prove that for all real numbers a and b, if a € Q and ab ¢ Q, then n ¢ Q.

Proof 2.
Let a,b € Q. Assume for the sake of contradiction that if « € Q and ab ¢ Q, we have b € Q. Then,

m
Ip,g,m,ne€Zst.a=—andb= P Hence,
n q

ab =

m p _ mp
n o q ngq
Asmp,nq € Z,ab € Q.

x This contradicts with the fact that ab ¢ Q.

So, b must not be rational.

1.3 Chapter 1.1 #7(c)

Prove the square of an even integer is divisible by 4.

Proof 3.
Suppose = € Z is even. Then 3k € Zs.t. x = 2k. Then, 22 = (2k)? = 4k2. Since k? € Z, we have
4 | 4k2.
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Theorem 1.1 (Archimedean Principle) For every real number z, there is an integer n, such thatn > x.

1.4 Chapter1.1#11

1
For every positive real number &, there exists a positive integer N such that — <e¢
n

for all n> N.

Proof 4.

1
Suppose ¢ € R and € > 0. Since ¢ € R, we have — € R. Then, by Archimedean Principle, In €
n

1 1
Z s.t.n > —. Hence,ne > 1ore > —.

1 1 1 .1
Suppose N € Zs.t. N = [-‘, where {-‘ means the integer greater to — if — ¢ Z, and the integer
g e £ g

equalsto - if— € 7Z. Hence, N > —. Asn > —,we haven > N
€€ € €

1.5 Chapter1.1#12
Use the Archimedean Principle (Theorem [1.1) to prove if x is a real number, then

there exists a positive integer n such that —n <z <n.

Proof'5.

Suppose = € R.

Ifz > 0, then —x < 0 (i.e., —z < 0 < z). By the Archimedean Principle, In € Z s.t. n > x.
Multiply (—1) on both sides of the inequality:

-n < =T

As —x <0<z,

—n<—zr<0<x<n,

which means —n < = < n, and n is positive.
[Case 2|If z < 0, then —z > 0 (i.e., —z > 0 > z) Since z € R, we have —z € R. By the Archimedean
Principle, 3n € Z s.t. n > —z. Multiply (—1) on both sides of the inequality:

—n<zx

Asz <0< —z,

—n<zr<0<—z<n,
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which means —n < = < n, and n is positive. In all cases, we have proventhatz € R — In € Z, n >

0st. —n<zxz<n.

1.6 Chapter 1.1 #13

Prove that if x is a positive real number, then there exists a positive integer n

1
such that — <z <n.
n

Proof 6.

Supposezr € R, z > 0

IfO <z <1, then% > 1.Hence,z <1< %.Asx € R, % € R, then by the Archimedean
Principle (Theorem|[1.1):

1
dneZstn>—.
T

1 1 1 1
Hence,nz >lorxz > —. Asz < —,n > —,and x > —, we have
n X X n
1
— < x<n.

1 1
Case2|Ifx > 1,then0 < — < 1. Hence, — < 1 < z. As z € R, by the Archimedean Principle:
X xT

dneZstn>x>0

1 1 1 1 1
Hence, — < —. As — <z, — < —,and n > x, we have
n X xr n X

1
—<zr<n
n

1
In all cases, we proventhatz € R, 2 >0 = Ine€Z,n>0st — <z <n.
n

1.7 Handout Chapter 1.4-2 More Contradictions and Equivelance

There are no positive integer solutions to the equation z? —y2 =10.

Proof 7.
Assume for the sake of contradiction that there are positive integer solutions to the equation 22 —

y? = 10. Suppose Jz,y € Zand z > 0, y > 0s.t. 22 — y> = 10. Then, we have x> = 10 + y>. Since
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x>0, 22 > 0, we have 10 + y? > 0. Then, y?> > —10.
% This contradicts with the fact that 4> > 0if y € Z.

So, our assumption is wrong. There must be no positive integer solutions to the equation z? — y? = 10.

1.8 Handout Chapter 1.4-2 More Contradictions and Equivelance

Show that if a € Q and b€ Q’, then a+bc Q

Remark The notation Q means the set for rational numbers, and Q' means the set for irrational

numbers.

Proof 8.
Suppose a € Q and b € Q" Assume for the sake of contradiction that a + b € Q. Then, Im,n,p,q € Z

such thata = -~ and a +b= P Then,
n q

m mn —m
7:u€(@
n qn

n —1m
ue(@.
an

Since pn — mqg € Q and gn € Z, we have b =

x This contradicts with the fact that b € Q'.

So, a + b must be irrational.

1.9 Handout Chapter 1.4-2 More Contradictions and Equivalence

If n€N and 2" —1 is prime, then m is prime.

Proof 9.
We will prove the contrapositive: if n is not prime, then 2™ — 1 is not prime. Suppose n is not prime.
Then, 3a,b € Zwith1 < a,b < ns.t. n = ab. Then, 2" — 1 = 2% = (2“)b — 1. Notice that for 2 — 1, by

polynomial long division, have

J:w_ :(x_l)(xw—1+xw—2+_”_’_1)’
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Substitute z = 2% and w = b, we have
271 _ 1 — (2(1 _ 1) |:(2a)b—1 + (2(1)17—2 + .. + 1 .

Since (2* — 1) € Z and [(2“)’)_1 + @22t 1} € Z,we see that 2" — 1 is not prime.

1.10 Exam 1 Review 1-b-i

Prove that [PA(P = Q)] = Q.

Proof'10.
PlQ|P=Q|PAP=Q) |[PAN(P=Q)] = P
T[T T T T
T|F F F T
F|T T F T
F|F T F T

1.11 Exam 1 Review 1-b-ii

Prove that [QA (P = Q)] = P.

Proof'11.
PlQ|P=>Q|QNP=Q)|QNP=Q)] = @
T|T T T T
T|F F F T
F|T T T T
F | F T F T
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1.12 Exam 1 Review 2-a

Given statements P and (), prove —(PVQ)=-PA-Q.

Proof'12.
P|Q|PVvQ|—~(PVQ)|-P|-Q|-PAN-Q
T|T T F F F F
T|F T F F T F
F|T T F T | F F
F|F F T T | T T

1.13 Exam 1 Review 2-b

There is no smallest integer.

Proof'13.

Assume for the sake of contradiction that there exists a smallest integer n. Hence, Vx € Z, we have
x > n. Notice thatif n > 0, we have 0 € Z and 0 < n. Hence, n = 0 cannot be the smallest integer
(%) Therefore, n most be smaller than 0. Suppose m = —n. Sincen € Z, m = —n € Z € R By the
Archimedean Principle (Theorem|[L.1), 3k € Z s.t. k > m. Hence, k > —n. Multiply (—1) on both sides
of the inequality:

-k <n.
AskeZ,—ke€Z.Thend—k € Zs.t. —k <n.
s This contradicts with our assumption that » is the smallest integer.

Hence, our assumption must be wrong. There is no smallest integer.

1.14 Exam 1 Review 2-c

The number log,3 is irrational.

Proof 14.
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Assume for the sake of contradiction that log, 3 is irrational. By definition, 3p, ginZ, with ¢ #
0s.t. logy 3 = P Observe that log, 3 # 0. Then p # 0 as well. By definition of logarithm,
q

or/4 — 3
(2p)1/q -3
Raise two sides of the equation to the power of ¢:
2P = 34

Asp # 0and g # 0, 2P and 37 are not 1 Vp, g € Z. Hence, 2P is even Vp € Z and 37 is odd Vq € Z.
x This contradicts with the fact that an even number cannot equal to an odd number.

Hence, our assumption is wront. The number log, 3, then, must be irrational.

1.15 Exam 1 Review 2-d

b

There is a rational number ¢ and an irrational number b such that ¢’ is rational.

Proof'15.
Observe that 1 is a rational number and 7 is an irrational number. Suppose a = 1 and b = «, we

b

have ¢° = ™ = 1, which is irrational.

Proof'16.
Recall that we have proven in the previous proof, we have proven that log, 3 is an irrational number.

Recall the definition of logarithm and exponents, we have

2log2 3 _ 3

Hence, we find a pair of ¢ and b that satisfies the requirement.

1.16 Exam 1 Review 2-e

For all integers n, the number n+n%+n3+n' is even.
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Proof'17.
Suppose n € Z.

If n is even.Suppose n = 2k f.s. k € Z. Then,

n+n?+nd+nt = (2k) + (2k)? + (2k)% + (2k)*
= 2k + 4k* + 8k> + 16k*

= 2(k + 2k* + 4k> + 8k*)

Since (k + 2k? + 4k3 + 8k*) € Z, we have 2(k + 2k* + 4k3 + 8k*) is even. Hence, n + n? + n3 + n* is even

when n is even.

Ifn is odd. Suppose n = 2k + 1 f.s. k € Z. Then,

n+n?4+nd+nt=2k+1)+ 2k +1)2+ 2k +1)3 + 2k +1)*
=2k + 1+ 4k + 4k + 1 + 8k + 12k% + 6k + 1 + 16k* + 32k + 24k + 8k + 1
= 16k* + 40k> + 40k + 20k + 4

= 2(8k* 4 20k3 + 20k? + 10k 4 2)

Since (8k* + 20k3 + 20k? + 10k + 2) € Z, we have 2(8k* + 20k® + 20k% + 10k + 2) is even. Hence,
n +n? 4+ n? + n* is even when n is odd.

Since integers can either be even or odd, and we have proven n + n? +n?® + n? is even in either case,
n 4+ n? + n? + n* is even for all integers.

Definition 1.1 (Perfect Square) A perfect square is an integer n for which there exists an integer m such

thatn = m2.

1.17  Exam I Review 2-f
If n is a positive integer such that n is in the form 4k +2 or 4k+3, then n is not

a perfect square.

Proof'18.
We will prove the contrapositive of the statement: “If n is a perfect square, then n is a positive

integer of the form 4k or 4k + 1 fs. k € Z.” Suppose n to be a perfect square, then 3m € Z s.t. n = m?.
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Suppose m is even, then m = 2t f.s. t € Z.
n=m?=(2t)> = 4> > 0.

Let k = t2. Since t? € Z, we have k € Z.Hence, n is positive and is in the form of 4k.

Supposemisodd, thenm =2t +1fs.t € Z.
2 2 _ 442 A2
n=m?= Q2+ 1) =4> + 4t +1=4(>+t)+1> 1

Let k = t> + t. Since (¢ + t) € Z, we have k € Z. Hence, n is in the form of 4k + 1. Hence, we prove the
contrapositive of the original statement to be true, which means our original statement is also true.

1.18 Exam 1 Review 2-g

For any integer n, 3 |n if and only if 3|n2.

Proof 19.
Suppose n € Z.
(=) Suppose 3 | n. Then, 3k € Z s.t. n = 3k. Then, n? = (3k)? = 9k = 3(3k?). Since 3k* € Z, by
definition, 3 | n2. O
(<) WTS: 3 | n2 = 3| n. We will prove the contrapositive: If 3 { n, then 3 { n? Suppose 3 { n.
Supposen = 3m+1 fis. m € Z. Then, n? = (3m+1)? = 9m? +6m + 1 Since 9m? + 6m + 1
cannot be written in the form of 3k fs. k € Z, by definition, 3 { n?.
Suppose n = 3m + 2 fis. m € ZThen, n?> = (3m + 2)2 = 9m? + 12m + 4Since 9Im? +
12m + 4 cannot be written in the form of 3% for some k € Z, by definition, 3 { n2. Hence, we proved the
contrapositive, and thus the original statement is true.

Therefore, n | n <= 3| n?.

1.19 Exam 1 Review 2-h

There exists an integer n such that 12 |n? but 12{n.

Proof 20.

Observe that if we take n = 6, we have n? = 36. Since n?> = 36 = 3 x 12, we know 12 | n?. However,
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12 1 6 since 6 cannot be written as 12k for all k£ € Z. Hence, there exists an integer n = 6 s.t. 12 | n? but

12 4 n.

1.20 Exam 1 Review 2-i

For every integer a, the numbers a and (a+ 1)(a — 1) have opposite parity.

Proof21.
Suppose a € Z.

Suppose a is even. Then a = 2k f.s. k € Z. Then,
(a+1D(a—1)=a*—1=(2k)*> -1 =4k* —1=2(2k%) — 1.

Since 2k? € Z, we have (a + 1)(a — 1) is odd. That is, a and (a + 1)(a — 1) have opposite parity.
Suppose a is odd. Then a = 2k + 1 fs. k € Z. Hence,

(a+D(a—1)=a*—1= 2k +1)* =1 =4k> + 4k + 1 — 1 = 2(2k* + 2k).

Since 2k? + 2k € Z, we have (a + 1)(a — 1) is even. As a result, a and (a + 1)(a — 1) have opposite parity.

In both cases, we've shown that e and (a + 1)(a — 1) have opposite parity.

1.21 Exam 1 Review 2-j

Suppose z € R. If r? is irrational, then x is irrational.

Proof 22.
We will prove the contrapositive: “If z is rational, then z? is rational.” Suppose z € Q, then z =

b f:s. p,q € Z,assuming p and 1 have no common factors and ¢ # 0. Then,
q

As p, q € Z, we have p?, ¢°> € Z. Hence, 2> = p—Q € Q. Therefore, if x is rational, so is z>.
q
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1.22 Exam 1 Review 2-k

For any integers a and b, if ab is even, then a is even or b is even.

Proof 23.
We will prove the contrapositive: “If a is odd and b is odd, then ab is odd.” Suppose a,b € Z and a
and b are both odd. Then, 3k,l € Z s.t.a=2k+1 and b= 2]+ 1.Then,

ab= (2k +1)(20 + 1) = 4kl + 2k + 20 + 1 = 2(2kl + k + ) + L.

Since 2kl + k + | € Z, we have ab is odd.

1.23 Exam 1 Review 2-1

For neN, n, n+2, and n+4 are all prime if and only if n =3.

Proof 24.
(=) WTS: n,n + 2, and n + 4 are all prime — n = 3. We will prove the contrapositive: n # 3 —-

n,n + 2, or n + 4 is not prime.

Suppose 0<n<3.

® Ifn =1, thenn = 1is nota prime.
@ Ifn = 2,thenn = 2is a prime number, butn + 2 =2 + 2 = 4 is not a prime.

Hence, if 0 < n < 3,n,n + 2, 0rn + 4 is not a prime.

Suppose n > 3.

® Ifn =3k fs. k € Z, then n is not a prime because 3 | n.

@Ifn=3k+1fs.keZ,thenn+2=3k+1+2=3k+3=3(k+1).Since k + 1 € Z, we have
3| n+ 2. Then, n + 2 is not a prime.

@ Ifn=3k+2fs.keZ,thenn+4=3k+2+4=3k+6 = 3(k+2).Since k + 2 € Z, we know that

3 | n + 4. Therefore, n + 4 is not a prime.

Hence, if n > 3, we also have n,n + 2, or n + 4 is not a prime.

In both cases, we have proven that if n # 3, then n,n + 2, or n + 4 is not a prime. O
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(<) Note that whenn = 3,wehaven +2=3+2=5andn +4 =3+4 = 7. Since 3,5, and 7 are all

primes, we have shown that when n = 3, n, n + 2, and n + 4 are all primes.

1.24 Exam 1 Review 3-a

Prove or disprove: Every real number is less than or equal to its square.

Disproof 25.
We will prove the negation: “Some real number is greater than its square.” Observe that when
x = 0.1, then 22 = (0.1)2 = 0.01. Since 0.01 < 0.1, we have » = 0.1 € R is greater than its square. Since

the negation is true, the original statement is then false.

1.25 Exam 1 Review 3-b

Prove or disprove: The sum of two integers is never equal to their product.

Disproof 26.

We will prove the negation: “The sum of some integers is equal to their product.” Suppose p, g € Z,
and their sum equals to their product. Then, p+ ¢ = pq. Divide p on both sides: ¢ = 1+ % Observe that
when p = 2, we have ¢ = 1+g.80,2q: 14+qg,org=2.Hence,p+q=2+2=4andpg =2 x 2 =4.
Therefore, we've found integers p = 2 and ¢ = 2 such that p + ¢ = pq.

[

1.26 Exam 1 Review 3-c

Prove or disprove: There exists a non-zero integer whose cube equals its negative.

Disproof 27.

We will prove the negation: “For all non-zero integers, their cubes do not equal their negations.”
Assume for the sake of contradiction that there exists a non-zero integer whose cube equals its nega-
tive. Suppose z € Zand x # 0s.t. 2> = —x. So we have 2> + z = 0, or z(2? + 1) = 0. Then, z = 0 or

22 +1=0.Asz #0,itmustbe that 2> + 1 =0, or 22 = —1.
x This contradicts with the fact thatVz € Z, 22 > 0 > —1.

So, our assumption is incorrect. For all non-zero integers, their cubes do not equal their negatives.
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1.27 Exam 1 Review 3-d

Prove or disprove: Fall all z€ R, z< 2 or 0<zx<1.

Proof 28.

Suppose z € R.

Suppose 0 < x < 1. Then, z satisfies the requirement.

Suppose x < 0, then 22 > 0. Therefore, z < 0 < 2.

Suppose = > 1. Multiply the inequality by z on both sides, we have: z - z > x or 22 > .
Hence, = < z2.

In all cases, we've proven thatVz € R,z < 22 or0 <z < 1.

1.28 Chapter 1.4 # 20-a

3

Let n be an integer. Prove that n is even if and only if n° is even.

Proof 29.

(=) WTS: n is even = n? is even. Suppose n is even. Thenn = 2k f.s. k € Z. Then, n3 = (2k)3 =
8k3 = 2(4k3). Since 4k3 € Z,n? is even.

(<) WTS: n? is even = n is even. We will prove the contrapositive: n is odd = n? is odd.

Suppose n is odd. Then, n = 2k + 1 fs. k € Z. Then,
n3 = (2k +1)% = 8k3 + 12k% 4 8k + 1 = 2(4k> + 6k* 4 4k) + 1.

Since 4k3 4 6k 4 4k € Z,n? is odd.

1.29 Chapter 1.4 #20-b

Let n be an integer. Prove that n is odd if and only if n® is odd.

Proof 30.
(=) WTS: nis odd = n?is odd. This statement is previously proven.

3

(<) WTS: n? is odd == n is odd. We will prove the contrapositive: n is even = n? is even. The

contrapositive is also previously proven.
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1.30 Chapter 1.4 #21

Prove that \5@ is irrational.

Proof 31.
Assume for the sake of contradiction that /2 is rational. Suppose /2 is rational. By definition,

Ip,q € Zs.t. 2 = B, assuming p and ¢ have no common factors and ¢ # 0. Raise the two sides of the
q

3
= (1) =&

=(=] =3
q q

Then, p? = 2¢3. Since ¢ € Z, we know p? is even. Then, p is also even (previously proven). Then,

equation to cube:

p =2k f.s. k € Z. Hence,
2¢° = p® = (2k)% = 8k*

¢ = 4k3 = 2(2k3)
Since 2k? € Z, we see ¢° is even. Then, q is also even.

x This contradicts with our assumption that p and ¢ have no common factors as p, ¢ being even

indicates they have 2 as their common factor.

So, our assumption is wrong, and /2 is irrational.
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2 Sets

2.1 Handout Chapter 2.1 - Sets and Subsets
Prove that {12a+4b|a,be Z} ={4c|ceZ}.

Proof 1.

(C) Suppose x € {12a +4b| a,b € Z}. Then, z = 12a + 4b f:s. a,b € Z. So, v = 12a + 4b = 4(3a + b).
As3a+ b € Z,we have z € {4c | c € Z}. By definition, {12a + 4b | a,b € Z} C {4c | c € Z}.

(D) Suppose x € {4c|ce€ Z}. Then, z = 4cfs.c € Z. Suppose ¢ = 3a + bfs. a,b € Z. Then,
x =4c = 4(3a + b) = 12a + 4b. By definition, {4c | c € Z} C {12a + 4b | a,b € Z}

Hence, we have proven {12a + 4b | a,b € Z} = {4c | c € Z}.

2.2 Exam 1 Review 2-m

If A={r|x=n*-1, n€Z} and B={x|x=m?—-1, m€Z}, then AC B.

Proof 2.
Suppose = € A. Then, z = n* — 1 fs.n € Z. Then, z = n* — 1 = (n?)? — 1. Since n? € Z, we have

xz € B. Therefore, A C B.

2.3 Exam 1 Review 2-n

If A, B, and C are sets, then AN(BUC)=(ANB)U(ANC).

Proof 3.

() Suppose z € AN(BUC). WIS: An(BUC) C (AN B)U (AN C). By definition, x € A and
xz € (BUC). By definition, z € Aandz € Borxz € Aand x € C. Therefore,z € (AN B)orxz € (ANC).
Thatis,z € (ANB)U(ANC).Hence, AN(BUC) C (ANB)U(ANCO). O

(D) Supposez € (ANB)U(ANC).WTS: (ANB)U(ANC) C AN(BUC). By definition, z € (AN B)
orz € (AN C). WLOG, consider x € (AN B). Then, x € A and = € B. Similarly, we know = € A and
z € Cfromz € (AN C). Therefore, r € Aandx € Borz € C. Thatis,z € Aandz € (BUC(C), or
r€e AN (BUC).Hence,( ANB)U(ANC)C AN(BUCQC).

AsAN(BUC) C(ANB)U(ANC)and (ANB)U(ANC) C An (B UC), we have shown that
AN(BUC)=(ANB)U(ANC).
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2.4 Exam 1 Review 2-0

For subsets A and B of a universal set U, AUB=ANB.

Proof 4.
(C) Suppose x € AU B. By definition, z ¢ AU B. Thatis,» ¢ Aandz ¢ B.Or,z € Aandz € B.
Thatis, z € AN B. Therefore, AUB C AN B. O
(D) Suppose x € ANB. By definition, z ¢ Aandx ¢ B. Thatis, » € AU B. Therefore, ANB C AU B.
Since AUBC AnBand ANBC AUB,wehave AUB = AN B.

2.5 Exam 1 Review 2-p
Suppose that A, B, and C are subsets of a universal set U. Let P and () be the
following statements:
P: ACB or ACC(C; and
Q: ACBNC.
Write the statement P — (), its converse, and its contrapositive. Prove the true

ones or give counterexamples.

Claim. P — Q:ACBorACC — ACBNC.

Proof'5.
Suppose z € A.
Suppose AC B.Thenz € B.Since BNC C B,z € BNC. Therefore, A C BNC.
Suppose A C C. Thenz € C.Since BNC C C,z € BN C. Therefore, A C BN C.
In both cases, we proven A C BorACC = AC BNC.

Claim. Converse:Q — P: ACBNC = ACBorACC.
Proof 6.

Suppose A C BN C. Suppose 2z € A. Then x € BN C. By definition, z € Band =z € C. Hence, A C B
and A C C. Since the “or” here is inclusive, A C Band A C Cis a true case for A C B or A C C. Hence,

ACBNC = ACBorACC.

Claim. Contrapositive: -Q = -P: A¢ BNC — A¢Z Band A ¢ C.
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Proof'7.
Since the original statement is true, its contrapositive is automatically true.
|
2.6 Handout Chapter 2.2 # 10-a-i
Let A={6a+4|r€Z} and B={18 —a|beZ}. Prove or disprove: AC B.
Disproof 8.
1 1 1 1
Suppose z € A. Then x = 6a + 3 f.s. a € Z. Notice that 6a + 4 = 18 <3a + 3) — 2. Since 3¢ + 3=

1 1
§(a +1) € Q, but g(a + 1) ¢ ZVa € Z,we have 6a + 4 ¢ {18b — 2 | b € Z}. By definition of subsets,

A¢B.

Remark We can also use proof by contradiction to disprove this statement.

2.7 Handout Chapter 2.2 # 10-a-ii
Let A={6a+4|z€Z} and B={180 —a|beZ}. Prove or disprove: B C A.

Proof 9.
Suppose x € B. Then, x = 180 — 2 f.s. b € Z. Notice that 180 — 2 = 6(3b— 1) +4. Since 3b — 1 € Z, we

have = € A. Hence, by definition of subsets, B C A.

2.8 Handout Chapter 2.2 # 10-b
If A and B are sets, then P(A) —P(B)=P(A- B).

Proof'10.

(Q) WTS: P(A) — P(B) € P(A — B). Suppose X € P(A) — P(B). By definition of set difference,
X € P(A) and X ¢ P(B). By definition of power sets, X C Aand X ¢ B. Hence, X C (A — B),
by definition of set difference. Therefore, X € P(A — B), and thus P(4) — P(B) € P(A — B) as
desired. O

(D) WTS: P(A — B) C P(A) — P(B). Suppose X € P(A— B). Then, X C A — B. By definition of
set difference, X C Aand X ¢ B. Then, X € P(A) and X ¢ P(B). By definition of set difference,
X € P(A) —P(B).Hence, P(A— B) C P(A) — P(B).
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2.9 Handout Chapter 2.2 # 10-c

If A, B, and C are sets, and A X B=B X (', then A= B.

Proof'11.

Suppose A, B, and C are sets. Suppose Ja,b € Zs.t. (a,c) € A x C. By definition of Cartesian
product, a € A and ¢ € C. Suppose 3b,c € Zs.t. (b,c) € B x C. So, we know that b € B. Suppose
AxC=BxC. ThennAxCCBxCandAxC2BxC(C.

(Q)IfAx CC BxC,wehave (a,c) € B x C.Then,a € B.Sincea € A, weknow A C B. O

(D) Similarly, since A x C' 2 B x C, we have (b,c¢) € A x C. Then, b € A. Since b € B, we see that
B C A.

By definition of set equality, A = B.

2.10 Chapter2.1#6

Let n € 7Z and let A=nZ. Prove that if xz,y € A, then x+y € Z and zy € A.

Proof12.

Suppose n € Z and A = nZ. Then, A = {nk | k € Z}. Suppose z,y € A. Then, 3k, s.t. xt = nk and
y=nl.Then,z +y =nk+nl =n(k+1).Since k + 1 € Z,z +y € A. Similarly, zy = (nk)(nl) = n(nkl).
Since nkl € Z,xy € A.

2.11 Chapter2.1#10
Let n and m be integers. Let A = nZ and B = mZ. Prove that if n is a multiplier

of m, then A C B.

Proof 13.
Let n and m be integers. Let A = nZ and B = mZ. Suppose x € A. Then, by definition, 3k €
Z s.t. v = nk. Since n is a multiplier of m, n = ml f.s. | € Z. Then, x = nk = (ml)k = m(lk). Since lk € Z,

x = m(lk) is a multiplier of m. That is, z € mZ. Hence, A C B.
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2.12 Chapter2.1#12
Let A={n€Z|n is a multiple of 4} and B = {n € Z|n® is a multiple of 4}. Prove
that A C B and B;(_A.

Proof 14.

WTS: A C B. Suppose = € A. Then, 3k € Z s.t. x = 4k. Consider z? = (4k)? = 16k? = 4(8k?). Since
8k% € Z, by definition of divides, 22 is a multiple of 4. Hence, by definition of set B, 2 € B. That is,
ACB.

Proof 15.
WTS: B ¢ A. Consider z = 2k fs. k € Z. Then, 2? = (2k)? = 4k%. Since k? € Z, 2? is a multiple of 4.
Hence, x € B. However, = = 2k is not a multiple of 4. That is, z ¢ A. Hence, we found an element of B

that is not an element of A. Then, by definition, B ;(_ A.

2.13 Chapter2.1#13

If A={n€Z|n+3 is odd}, then A is equal to the set of all even integers.

Proof'16.

Suppose B = {n € Z | nis even}. Then, B is the set of all even numbers.

(©) Suppose = € A. Then, by definition, = + 3 is odd. Thatis, 3k € Zs.t. v + 3 = 2k + 1. Then,
x=2k+1-3=2k—2=2(k—1).Sincek — 1 € Z, then z is even. Therefore, x € B,and A C B. O

(D) Suppose x € B. Then, z is even. So, 3k € Z s.t. x = 2k. Considerz +3 =2k +3=2k+2=1=
2(k+1)+1.Sincek + 1 € Z, then = + 3 is odd. Hence, xz € A, and B C A.

Collectively, we've proven A = B.

2.14 Chapter2.1#15
Let A = {n€Z|n=4t+1 for some tcZ} and B = {n€Z|n=4t+9 for some t € Z}.

Prove that A = B.

Proof 17.
(C) Supposez € A. Then,x =4t +1fs.t € Z. Notethatx =4t +9 -8 = (4t —8) + 9 =4(t — 2) + 9.
Since t — 2 € Z, by definition, z € B. Then, A C B. O

Page 19 of



Practice Proofs

(D) Suppose z € B.Then,z = 4t+9 fs.t € Z. Notethatx = 4t +9 =4t + 8+ 1 = 4(¢t + 2) + 1. Since
t + 2 € Z, by definition, z € A. Hence, B C A.

Collectively, we've proven A = B.

2.15 Chapter2.1#16
Let A = {n€Z|n=3t+1 for some tcZ} and B = {n€Z|n=3t+2 for some t € Z}.

Prove that A and B have no elements in common.

Proof 18.
Assume for the sake of contradiction that A and B have one element in common, and suppose that
element is z. By our assumption, z € A.So,x =3t + 1fs.t € Z.Also,x € B,sox = 3s+2fs.s € Z.

Then, we have x = 3t + 1 = 3s + 2. Solve for ¢, we have

3t=35s+2—-1=3s+1
3s+1_ 1

t= =s
3 3

1 1
Since s € Z’§ ¢ Z,wehavet = s+ 3 ¢ Z.
x This contradicts with the fact that ¢ € Z.

So, our assumption is wrong, and A and B have no elements in common.

2.16 Chapter2.3 #8

oo o
Let A;=(—i,i)={r€R|—i<z<i}. Prove that U(—i,i) =R and m(—i,i) =(—1,1).
i=1 i=1

Proof 19.
WTS: U (—i,i) =R
(@ Suppose for some k € Z and k> 1,2 € Ag. Thatis, x € (—k, k). Since k > 1, by definition of

union, A; C U —i,1). Hence, z € U ). Since A C R,z € R. Hence, U(—z‘,z‘) C R. .

i=1 i=1 i=1
(D) Suppose x E R. Consider the set (—k, k) = Ay, where k € Zand k > x. Then, x € (—k, k). Since

k € Z,then A, C U —1,1) by definition of union. Then, z € U —i,1). Thatis, R C U —1,1)
=1 =1
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Proof 20.
WTS: (\(—i,4) = (—1,1).

=1
00

(Q) Letx € m(—z’,i). So,z € A, Vi=1{1,2,3,---}. Specially, z € A; = (—1,1). Hence, ﬂ(—i,z’) -
i=1 i=1
(—1,1). O

(D) Letx € (—1,1). Letk € {1,2,3,---}. We will show =z € Aj. Since k£ > 1, then —k < —1. Form
€ (—1,1),weknow —1 < = < 1. Then, —k<—1<x<1<kThat1s —k <z <k, orxe( k,k) = Ag.

Since k is arbitrary, we've provenz € A, Vk > 1.So,z € ﬂ —i,7). Hence, (—1,1) C ﬂ(—z}i).
i=1 i=1

2.17 Chapter 2.3 #10

o0 o0
Let A; =1{1,2,3,---,i} for i € Z*. Compute UAi and mAi' Prove your answer.
=1 =1

Claim. | JA; =7Z".
i=1
Proof 21.

(Q) Letx € U A;. Then x € Ay fs. k € Z*. That is, by definition, = € {1,2,3,--- ,k}. Since k €
i=1
Z*t,{1,2,3,--- k} CZt,z e Zt. O

(D) Letx € Z+ Consider A1 ={1,2,3,--- ,x + 1}. Then, z € A, ;. By definition of union, 4, C

UA SO:EGUA

o
Hence, we've shown U A; =77,
im1

- |
Claim. (] 4; = {1}.
Proof22i.:1
(C) Suppose z € ﬁ A;. By definition of union, z € A, Vk > 1. Specially, z € 4; = {1}. O
(D) Suppose x eiﬁ}. Let k£ > 1. By definition, 4, = {1,2,3,--- .k}. Since {1} C {1,2,3,--- |k} =
Ap,x € Ag. As k was arbitrary, we've proven x € Ay, Vk > 1.So0,x € ﬁ A;. Hence, {1} C ﬁ A;.
i=1 i=1
|

2.18 Chapter2.3# 10

o0 oo
Let A, =[i,i+1)={z€eR|i<z<i+1} for i€ Z". Compute UAi and ﬂAi. Prove your

=1 =1
answer.
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Claim. DAi:{xeR\xz 1}.
Proof232»;.:1

(C) Suppose x € G A;. By definition of union, = € A fs. k € {1,2,--- }. By definition, A; = [k, k +
1),s0k <z < k:+1i.:18incek > 1,wehavel < k <z < k+ 1. Thatis,z € {z € R |z > 1}. Hence,
GAig{xeRle}. O
= (D) Suppose z € {x € R | x > 1}. Then, @ > 1. Consider A, = [z,z + 1) we have z € [z,z + 1). By

definition of union, A4, C UA Hence, z € UA“ or{reR|z>1}C UA
=1 =1 i=1

Claim. (] A4; =2
=1
Proof 24.

Note thatn + 1 € A, 1. However,n + 1 ¢ A, = [n,n + 1). That s, for everyn € Z*, n + 1 isnotin
oo

every A;. So, by definition of set intersection, [ A; = @.
=1

2.19 Chapter2.3#12

1 1 o oo
Let A; = (,z] = {x eR| - <m§7j} for ¢ > 2. Compute UAi and ﬂAi. Prove your
1 1

=1 =1
answer.

Claim. | | A4; = (0, 00).
=1
Proof 25.

(C) Suppose x € U A;. Then, x € Ajfs. k > 2. By definition of 4;, x € A, = (;,k} . Since
i=1
1
(k,k‘] C (0,00), we know z € (0, 00). O
(D) Suppose z € (0,00). Consider [z], the minimum integer greater than z. Suppose k£ = [z], then
A = <;, k] . Since k£ > z, by definition of the ceiling function, = € Aj. Since A, C U A;, we know
i=1

that x € fj A;.

i=1

l\.')\r—t

Claim. ﬂA _(

=1
Proof 26.

2.

~ 1
(©) Suppose x € ﬂ A;.Then, z € Ay, Vk > 2.Specially, z € Ay = < 2} . O
=1
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1 1 1 1 1
(D) Suppose z € (2,2] . Consider A, = (k,k} fs.k > 2. Since k > 2,5 < 3 Then, < 2} -

1 e, o]
(k’ k;] . Hence, x € Ay. Since k is arbitrary, we have proven that z € A, Vk > 2. Thatis, = € ﬂ A;.

i=1
|

2.20 Chapter2.3#13

1 o o
Let A; = {z’,l + ] for i € ZT. Compute UAi and ﬂAi. Prove your answer.
1

=1 i=1

Claim. | J 4; =[1,2].
=1
Proof 27.

> 1 1
(C) Suppose z € U A;. Then,z € Ay, fs. k € Z*.Hence, x € A}, = [1, 1+ k].Thatis, 1<z < 1—|—%.
i=1

k k
(D) Suppose x € [1,2]. Note that A; = [1,2],s0x € A;. Since A; C U A;, by definition of set union,

=1
oo
WS U A;.
=1

1 1 1
Sil’lCekEZ—i_,*S1.Then,1+*§2.so,1§l‘§1+§S2,0I‘JJE[1,2}. O

Claim. (] 4; = {1}.
=1
Proof 28.

p 1
(C) Suppose = € ﬂ A;. Then, z € A, Vk € Z*. By definition of Ay, z € A, = [1, 1+ k] Note
i=1

1
hm(l—i—):1+0:1.So,Ak:[1,1]:{1},whenk—>oo. O
k—0 k

1 1
(D) Suppose = € {1}. Consider A, = [1, 1+ k] for some k € Z*. Since 1 € [1, 1+ k] , we have

1 oo
x € [1, 1+ k] = Ay. Since k is arbitrary, x € A;, Vk € Z*. Thatis, x € ﬂ A;.

i=1

2.21 Chapter2.3#14

1 o (o.¢]
Let A; = <i,1+ ) for i € ZT. Compute UAi and ﬂAi. Prove your answer.
7
i=1 i=1

Claim. | ] A; = (1,2),and ] A; = @.
=1 =1
Proof 29.

Similar proofs as done in the previous exercise.

Page 23 of|



Practice Proofs

2.22 Exam 2 Review 2
For sets A,B,C,D, prove that (Ax B)N(C x D)= (ANC) x (BND,).

Proof 30.

Let A, B, C, D be sets.

(Q) Suppose (z,y) € (A x B) N (C x D). By definition of set intersection, (z,y) € A x B and
(x,y) € C x D. Since (z,y) € A x B, by definition of Cartesian product, 2 € A and y € B. Similarly,
since (z,y) € C x D,z € Candy € D. Sincez € A and = € C, by definition of set intersection,
x € ANC. Similarly, sincey € Bandy € D,y € BN D. Hence, (z,y) € (ANC) x (BN D), by definition
of Cartesian product.

(D) Suppose (z,y) € (ANC) x (BN D). By definition of Cartesian product,z € AnNCandy € BN D.
Since x € ANC, by definition of set intersection, z € Aand x € C. Similarly, sincey € BND,y € B and
y € D.Notethatz € Aandy € B. Hence, (z,y) € Ax B. Further, sincex € Candy € D, (z,y) € Cx D.
Therefore, (x,y) € Ax Band (z,y) € C x D. By definition of set intersection, (z,y) € (Ax B)N(C x D).

[

2.23 Exam 2 Review 3

Given the indexed sets, compute the unions and intersections. Give full and

n n
careful proofs of each: A;=][i—1,i] for i=1,---,n. Compute Ljfh and r]44¢
=1 =1

Al, n=1
Claim. (A=A, NAy={1}, n=2

=1

%] n>3

)

Proof 31.

We will prove that if n > 3, ﬂ A; = @. Suppose z € A fs. k € {1,2,3,--- ,n}. Then, by definition,
i=1

k—1<ax <k.Consider Ay o =[k+ 1,k +2].Sincek < k+1, ¢ [k + 1,k + 2]. Hence, ﬂAi =g.
i=1
Proof 32.

Alternatively, we can use proof by contradiction. Suppose n > 3. Assume for the sake of contra-
n n

diction that ﬂ A; # @. Then, 3z € ﬂ A;.So,z € A; Vi€ {1,2,3,--- .n}. Since n > 3, specifically,
i=1 i=1
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r € Ay =[0,1] and x € A3 = [2, 3]. % But this is a contradiction because 4; N A3 = @. So, it must be
n

that ﬂ A =0.
i=1 ) =
Claim. | J 4; =[0,n].
Prooffié.:1
(©) Suppose z € LnJ A;.Then, z € Ay fs. k € {1,2,--- ,n}. Then, by definition of A4;, z € [k — 1, k], or
i=1

k—1<z <k Sincel<k<nand0<k—1<n—1,wehave0 <k—1<z<k<n.So,ze€[0,n] O

(D) Letx € [0, n].

x = 0. Note that z € [0,1] = A;. Then, z € U A;.

i=1
[Case2|When = > 0, set k = [«]. Then, k € Nand 1 < k < n. Then, k — 1 < z < k. That is,

v €[k—1,k = A So,z € | A
=1
|

2.24 Exam 2 Review 4

Here’s a mathematical statement:
(s): for all sets A and B, AC B implies that P(A) C P(B).

State the converse (s;) of (s), the contrapositive (s2) of (s), the negation (—s) of

(s). Which of the statements (s), (s1), (s2), (—s) are true?

Claim. (s) is true.
Proof 34.

Let A and B be sets. Suppose A C B. Suppose X C A. Since A C B, X C B.Because X C A,
X € P(A).Since X C B, X € P(B). Therefore, P(A) C P(B).

Claim. (s;): “forall sets A and B, P(A) C P(B) implies A C B” is true.
Proof 35.

Let A and B be sets. Suppose P(A) C P(B). Suppose X € P(A). Then, X C A. By definition of
subsets, X € P(B).So, X C B. Suppose x € X. Since X C A, x € A. Similarly, since X C B,z € B.

Therefore, A C B.
[ |

Claim. Since (s) is true, the contrapositive of it (s,), “for all sets A and B, P(A) € P(B) implies A ¢ B,”

will be true for sure.
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Claim. Since (s) is true, the negation of it (—s) “for all sets A and B, A C B and P(A) ¢ P(B),” will be

false.

2.25 Exam 2 Review 5
For all sets A and B, if P(A) =P(B), then A= B.

Proof 36.

To prove set equality, we will prove A C B and B C A. However, since A and B are symmetric,
WLOG, proving A C B is sufficient. Suppose X € P(A). Then, X C A. Since P(A) = P(B), X € P(B).
So, X C B. Suppose x € X. Since X C A, z € A. Similarly, since X C B, z € B. Therefore, for all
x € A, x € B. By definition of subset, A C B.

2.26 Exam 2 Review 7
Find ﬂ = nZ.

neN

Claim. (] =nZ = {0}.
neN
Proof 37.

(Q) WTS: 0 € nZ Vn € N. Letn € N. Consider nZ. Note that 0 = n(0). Since 0 € Z,0 € nZ.
Since we picked an arbitrary n € Z, we've shown that 0 € nZ Vn € N. By definition of intersection,

0€ () =nZSo{0}C(]=nZ O
neN neN
(D) Suppose for the sake of contradiction that an integer # 0 belongs to the intersection. Then,

Jr#0st.rxenZ VneNlN.
If z > 0, then z € N. So, 2z € N. Therefore, by our assumption, z € 2zZ. Then, 3k <

1
Z s.t.x = 2zk. So, we get k = ; =3 since x =# 0. % This contradicts with the fact that £ € Z.
X

Therefore, our assumption is wrong. Hence, flz # 0 s.t. x € nZ Vn € N.

If z+ < 0, then —z € N. So, —2z € N. Therefore, by our assumption, x € —2zZ. Then,

1 1
dk € Z s.t. x = —2zk. So, we get k = % =3 since x # 0. However, k = 3 ¢ Z. % This contradicts
— 4

with the fact that k € Z. Therefore, our assumption is wrong. fz # 0 s.t. z € nZ Vn € N.
|
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3 Integers and Induction

3.1 Handout Chapter 5.1-5.2-Axioms of Integers
Let a,b € Z. Then (—a)(—b) = ab.

Proof 1.
Notice that a - 0 = 0. Multiply (—1) on both sides:

(—a-0)=-0=0

(=a)-0=0

By additive identity, b 4+ (—b) = 0, so we know that

(—a)(b+ (=b)) = 0.

By distributivity,
(—a)b+ (—a)(=b) = 0.

Add the additive inverse of —ab to both sides:
—ab+ (—(—ab)) + (—a)(=b) = 0+ (—(—abd))

0+ (—a)(=b) =0+ab

(—a)(—b) = ab.

3.2 Chapter5.1#1-a

—(—a)=a for all a € Z.

Proof 2.
By additive inverse, we know a + (—a) = 0. Multiply (—1) on both sides:

(=D(a+(=a)) =0

(—=Da+ (—-1)(—a) =0  distributivity
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Add (a) on both sides, we get

(—)a+(-1)(—a)+a=0+a
(—)a+a+(-1)(—a)=a additive identity, commutativity
—a+a+(—1)(—a)=a
0+ (—=1)(—a) =a additive inverse
(=1)(—a)=a additive identity
—(—a)=a

3.3 Chapter5.1#1-c

a(b—c) =ab—ac for all a,b,c € Z.

Proof 3.
By distributivity,
(b+ (—c))a=ba+ (—c)a

=ab+ (—1)ac  commutativity

=ab—ac

3.4 Chapter5.1#2

Let a,b€Z. Prove that —(a+b)=—a—b.

Proof 4.

—(a+b)=(-1)(a+b)=(-Da+ (—=1)b  distributivity

= —a—0b.

3.5 Chapter5.1#3

Let a,b€ Z. Suppose that a < b. Prove that (—a) > (—b).
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Proof'5.
By definition, we know thata — b € Z". Sincea — b = a + (—b) = (=b) + a = (—b) — (—a), we know
(=b) — (—a) € Z*. By definition, (—b) < (—a). Thatis, (—a) > (-b).
|

Theorem 3.1 (Well Ordering Principle for N.) If X C N and X # @, then 329 € X s.t.Va € X and

a # xg, we havea — xog € Z+.

3.6 Exam 2 Review 6-a

Every non-empty subset of the rational numbers Q contains a minimum element.

Counterexample6.

Consider (—oo, 0) N Q. There will not be a minimum rational number in it.

Counterexample?.

Consider (0, 1) N Q. There will not be a minimum element in it.

Proof 8.

Suppose 3 s s.t. sp is the minimum element of (0,1) N Q. Since sy € Q,3I p,q € Zs.t. sy = b
q

T Since 1 € Z, ¢+ 1 € Z, then % € Q. Since sp € (0,1) and sq is the minimum element
q

Consider P
q—+

of (0,1) NQ, 0 < sg < 1 and there is no element between 0 and sy. Then, P 0. That means, p # 0. So,
q

P < paswell However, since ¢ + 1 > g, P P That is, P
+1 q+1

q qg+1 ¢
our assumption that there is no element in (0, sy). Hence, our assumption is incorrect. So, there is no

€ (0, sp). * This contradicts with

minimum element of (0,1) N Q.

3.7 Exam 2 Review 8

Prove that for all n € N,

1)(n +2
L2+2-&+&4+-~+nmn+1y:nm+'§”+).

Proof 9.

1 2
Let P(n) be the statementthat“1-2+2-34+3-44+---4+n(n+1) = nin+ 1)+ ).”

3
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1(14+1)(1+2 1(14+1)(1+42
Consider P(1) : 1-2 = (JF;H) Note that 1 - 2 = 2 and (Jr;(ﬂ —
12)(3) A+1+2)
3
’ Inductive Steps ‘ Suppose P(k) is true for some & € N. That is,

= 2. Therefore, 1 - 2 = . Thatis, P(1) is correct.

k(k + 1)(k +2)

3 @

12423434+ k(k+1) =

Add (k + 1)(k + 2) on both sides of equation @, we get

15242348 4ot k(1) 4 (k+ 1)k 4 2) = "EFDEED)

(k+1)(k +2)

k(e +1)(k+2) + 30k + 1)(k +2)
3
(k + 1)(k + 2)(k + 3)
. .

Therefore, P(k + 1) is true given P(k) is true.
Since we've proven that P(1) istrueand P(k) = P(k+1), by Principle of Mathematical Induction,

P(n)is true foralln € N.

Definition 3.1 (Fibonacci Sequence) The Fibonacci Sequence f,, is defined recursively as follows:

=1, fo=1, and f,= fau-1+ fn2forn>3.

3.8 Exam 2 Review 9

Prove that for all n € N,

fast = farrfa = fo = (=1)"

Proof'10.

Let P(n) be the statement that “f2, | — foy1fn — f2 = (-1)"."

[Base Case | Consider P(1) : f2, — fixifi — f2 = (1) Since f; = 1and fi;; = f» = 1, we
know that f2,, — fiq1fi — ff =12 = (1)(1) — (1)> = 1 — 1 — 1 = —1. Further since (—1)! = -1, so
fiq = fisfi — f2 = (—1)!, and thus P(1) is true.

Inductive Steps | Suppose P(k) is true for some k € N. Then, 2., — fii1fx — f2 = (—1)*. Consider
k+1 k

P(k+1): f21 0 — fesre1fesr — frn = firo — fere i1 — [y~ By definition of Fibonacci Sequence
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(Definition[3.1), we know fy12 = fi + fit1. So,

foro = fraofirr — foor = (fe + fre1)? = (Fe + fro + 1) (frt1) — fra
= fi + fipn  2ufons = fefoss — [ — fin
= f2+ fefer1 — i
= —(f;?H = Je1 S — fl?)
= —(-1)*
_ (_1)k+1.
Therefore, we get P(k) = P(k+1).

Since we've proven P(1) is true and P(k) — P(k + 1), by Principle of Mathematical Induction,

P(n)is true for alln € N.

3.9 Exam 2 Review 10
Let f:N — N be defined recursively by f(1) =1 and f(n+1)=+/2+ f(n) for all n € N.
Prove that f(n) <2 for all neN.

Proof11.

Let P(n) be the statement that “f(n) < 2, where f is a function from N to N defined recursively by
J(1) = land f(n+1) = VZ+ f(n).

Consider P(1). Note that, by definition of f, f(1) = 1and 1 < 2. So, f(1) = 1 < 2 and
P(1) is true.

’Inductive Steps‘ Suppose P(k) is true for some k£ > 1. Thatis, f(k) < 2. Consider f(k + 1) =

/2 + f(k). Since f(k) < 2, we have 2 + f(k) < 242 = 4. Hence, f(k + 1) = /2 + f(k) < V4 = 2. That
is, f(k+1) <2.S0, P(k) = P(k+1).

Since we've proven P(1) is true and P(k) = P(k + 1), by mathematical induction, we know P(n)

is true for all n € N.

3.10 Exam 2 Review 11
n%(n +1)2

Prove that 134+ 23+33+ ... 4+ nd3 = 1

Proof'12.
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5 ni(n+1)?
=

12(1+1)2 1222 4 12(1+ 1)?
ConsiderP(l).Since13:1and (I) = (4) :4:1,5013:(;)_

Hence, P(1) is true.

Let P(n)be13 +23+33+... +n

‘ Inductive Steps ‘ Suppose P(k) is true for some k£ > 1. Then,

k?(k + 1)
13+23+33+---+k3:(4+). )

Consider P(k + 1). Add (k + 1)3 to both sides of equation @, we get

3 _ kz(kz 1)? (k1)
K2 (k+1)% +4(k+1)3
4
(k2 +4(k + D] (k+1)°
4

(k+1)2(k* + 4k + 4)
4
(k+1)%(k +2)?
4
(k+1)2[(k+1)+1)?
4

P42 +3% -+ B 4 (k+1)

Hence, P(k) = P(k+1).
Since we've proven P(1) is true and P(k) — P(k + 1), by Principle of Mathematical Induction,

P(n)is true for alln € N.

3.11 Exam 2 Review 18
Let n € Z and let S CZ satisfy |S| > n. Then, at least two distinct members of S are

congruent mod n.

Proof'13.

WTS: Ja,b € Ss.t.a=b modn,orn | (a—0>).Vs € S, we can write s = nk + r, where k € Z and
r=1{0,1,2,--- ,n}. There are exactly n possibilities for r; however, since |s| > n, there are more than n
integers in S. So, by the Pigeonhole Principle, 3 a,b € S s.t. a = nk +rand b = nl + r, where k,l € Z
andr ={0,1,2,--- ,n}.So,a — b= (nk+r)— (nl —r) =nk —nl =n(k —1).Since k — | € Z, we know

n| (a—»5).S0,a =b mod n.
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4 Equivalence Relations

4.1 Exam 2 Review 6-b
Suppose that R is an equivalence relation on A and that a,b € A. Then, if [a]N[b] # &,

then [a] = [b].

Proof 1.
Since [a] N [b] # @, 3z € [a] N [b]. By definition of set intersection, = € [a] and = € [b]. Since =z €
la], zRa. Also, since = € [b], then zRb. Since R is an equivalence relation, by symmetry, aRx. Since aRx

and z Rb, by transitivity, aRb. Then, [a] = [b], by definition of equivalence class.

4.2 Exam 2 Review 12-a
Determine whether each of the following relations on R is an equivalence relation.
Justify your answer. If R is an equivalence relation, describe its equivalence

classes: xRy if x—y€Z.

Proof 2.

* Reflexive: Suppose a € R. Since a — a = 0 € Z, we have aRa. O

e Symmetric: Let a,b € R. Suppose aRb. Then, by definition, a —b € Z. Thatis, 3k € Z s.t. a—b = k.
Consider (b —a) = —(a —b) = —k.Since k € Z, —k € Z.So, b — a € Z. That s, bRa. O

 Transitive: Let a, b, c € R. Suppose aRb and aRc. Then, by definition, a —b € Zand b — ¢ € Z. That
is, 3k,l € Zs.t.a—b=kandb— ¢ = [. Add the two equations, we get (a — b) + (b—c¢) = k + L.
Simplify, we willgeta — c =k + 1. Since k,l € Z,k +1 € Z.So,a — ¢ € Z, or aRe.

Claim. [a] ={a—k | k € Z}.
Proof 3.

(C) Suppose z € [a]. Then, by definition, aRx. So, a — z € Z. Suppose a — z = m f.s. m € Z. Then,
—r=m—a,orx=a—m.Sincem €Z, x € {a—k |k e€Z}. O

(D) Suppose zz € {a—k|ke€Z}. Then,z = a — mfs.m € Z. Considera —x = a — (a — m) =

a—a+m=m.Sincem € Z, a — x € Z. Thatis, aRz, or = € [a], by definition of equivalence class.
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4.3 Exam 2 Review 12-b
Determine whether each of the following relations on R is an equivalence relation.
Justify your answer. If R is an equivalence relation, describe its equivalence

classes: xRy if x+y€Z.

Disproof 4.
R is not an equivalence relation because it is not reflexive. Suppose a € R. Then, a + a = 2a € R,

but it does not always hold that 2a € Z. Therefore, a Ra, or R is not reflexive.

4.4 Exam 2 Review 13
Prove or disprove: R is an equivalence relation on Z. If R is an equivalence

relation, describe its equivalence classes: zRy if 4| (z+vy).

Disproof'5.
R is not an equivalence relation because it is not reflexive. Suppose a € Z. Consider a + a = 2a.

Since a € Z, 2a € Z, but 4 1 2a for all « € Z. Therefore, a /Ra, and so R is not reflexive.

4.5 Exam 2 Review 14
Prove or disprove: R is an equivalence relation on Z. If R is an equivalence

relation, describe its equivalence classes: =Ry if 4| (z+ 3y).

Proof 6.

* Reflexive: Suppose a € Z. Consider a + 3a = 4a. Since a € Z, 4 | 4a. Thatis, 4 | a + 3a, or
aRa. g

e Symmetric: Suppose a,b € Z. Then, a + 3b = 4k f.s. k € Z. So, a = 4k — 3b. Consider

b+3a = b+ 3(4k — 3b) = b+ 12k — 9b
= 12k — 8b

— 4(3k — 2b).
Since k,b € Z, 4k — 2b € Z.So, 4 | 4(3k — 2b), or 4 | b + 3a. Hence, bRa. O
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 Transitive: Let a,b,c € Z. Suppose aRb and bRc. Then, 4 | a + 3band 4 | b + 3c. Hence, 3 k,1 €
Z s.t. a + 3b = 4k and b + 3¢ = 4l. Hence, a = 4k — 3b and 3¢ = 4l — b. Consider

a+3c=4k—3b+4l—b=4k+ 41 —4b=4(k+1—b).

Since k,b,l € Z,k+1—be€ Z.So,4 | 4(k +1—b),0r4 | a + 3c. Therefore, aRc. O

Since R is symmetric, reflexive, and transitive, R is an equivalence relation.

Claim. [i]={4k+i|keZ} Vie{0,1,2,3}.
Proof 7.
(C) Suppose z € [i|. Then, zRi. By definition of R, 4 |  + 3i. So, = + 3i = 4k f.s. k € Z. Then,

v =4k —3i =4(k —i) — 3i + 4i = 4(k — i) + i.

Sincek € Zandi € {0,1,2,3}, weknowk —i € Z.Then,x =4(k — i) +ic {dk+i | k € Z}. O
(D) Suppose x € {4k +i | k € Z}. Then, x = 4k + i f.s. k € Z. Consider

T+ 3i = 4k +i + 3i = 4k + 4i = 4(k +9).

Since k € Zandi € {0,1,2,3}, weknow k +¢ € Z. Then, 4 | 4(k + i), or z |  + 3i. That is, x Ri, or = € [i].
|

4.6 Exam 2 Review 15

Define a relation R on R? as follows: for all (aj,by),(az,b2) € R2 (a1,b1)R(ag,by) if
(a1,b1) and (ag,bs) are on the same line through the origin. Decide whether R is an

equivalence relation - either show why or why not. If it is, what are the elements

of the equivalence class [(1,2)]?

Proof 8.

o Reflexive: Suppose (a,b) € R2. The line of (a, b) and the origin is y = éx Apparantly, (a,b) and
a
(a,b) is both on y — Sx So, (a,b)R(a,b). O

e Symmetric: Suppose (ai,b1) and (as, b2) € R2. Let (a1, b1) R(az, b2). The line between (a1, b;) and

C b . . b b b .
the origin is y = A Then, (a9, by) is on the same line: b, = . as. So, 2 — 2L That is,
a1 ai a2 ai
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b
72 -ap = b17 or (a17b1)
a2

we have (GQ, bz)R(al, bl). O

b b
is on the line y = —2 2. Since y = —2 2 is the line between (az2,b2) and (0, 0),
a a

o Transitive: Suppose (a1, b1), (a2, b2), and (a3, b3) € R2. Suppose (a1, b1)R(az, bo) and (as, b2) R(as, bs).

Then, h_b and b2 _ b—?’ So, b b—?’ Then, (a1,b1)R(as, b3).
al as as as al a2 az
|
Claim. [(1,2)] = {(z,y) | y = 22},
Proof 9.
2
(©) Suppose (z,y) € [(1,2)]. Then, (z,y)R(1,2). So, J_ T That is, y = 2z. Hence, (z,y) €
T

{(z,9) |y =22; 2,y eR}. O
2
(2) SUPPOSe (:E?y) S {(xyy) | Yy = 2$} Then, (.’,U,y) = (gj’ Zx) Since 2% — Ia we haVe (Q:,23§)R(172)

Therefore, (z,y) € [(1,2)].
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5 Functions

5.1 Exam 2 Review 17
Let A = {z,y,z}. Define functions f : P(A) by f(a) = {a} and g : A — P(A) by g(a) =
A —{a}. Find Im(f) and Im(g).

Claim. Im(f) = {{z},{y}, {z}}.
Proof'1.

(©) Suppose a € A. Then, we have f(a) = {a}. Since a € A, {a} € {{z},{y},{z}}. Therefore,

Im(f) € {{z}, {y}. {z}}. O
(D) Suppose a € {{z},{y},{z}}. WLOG, suppose a = {z}. Choose b = z. So, f(b) = {b} = {z} = a.
Therefore, a € Im(f). Thatis, {{z},{y}, {z}} C Im(f).

Claim. Tm(g) = {{y, =}, {z, =}, {z,y}}.
Proof 2.

(©) Suppose a € A. Then, a = x, or a = y, or a = z. WLOG, suppose a = x. Then,

fla) = A—A{a} ={z,y, 2} = {z} = {y, 2}.

Since {y, z} C {{y, 2}, {z, z},{z,y}}, weknow that f(a) € {{y, 2}, {z, 2}, {z, y}}. Therefore, we’ve proven

Im(f) € {{y, 2} {z, 2} {z, 0t} O
(D) Suppose a € {{y, z}, {z, 2}, {z,y}}. WLOG, suppose a = {y, z}. Note that

dre Ast f(z)=A—{z} ={y,z} =a.

So, a € Im(f). Thatis, {{y, z}, {z, 2}, {z,y}} C Im(f).

5.2 Exam 2 Review 17

Let f:R— R be given by f(z)=223+32%2 - 122+ 1. Let X =[-1,2]. Find f(X).

Answer 3.
Find f'(x) = 622 4+ 6z — 12. So, f(=) is not always increasing or decreasing. Find critical points by

setting f/(z) =0: 622+ 62— 12 =0,sowe get (z+2)(z—1) =0,0orz = —2, = 1. Since X = [-1,2], it
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must be x = 1. Check f"(z) =122 +6: f”(1) =12(1)+ 6 = 12+ 6 > 0. So, f(1) is the minimum value:
f(1) =2(1)3+3(1)2-12(1)+1 = —6. Then, maximum value will be found atx = —1orz = 2. Atz = —1,
f(=1) = 2(=1)2 +3(-1)2 = 12(—1) + 1 = 14. Atz = 2, we have f(2) = 2(2)3 + 3(2)? - 12(2) + 1 = 5.
Since 14 > 5, maximum value occurs at x = —1. So, f(X) = [-6, 14].

O

Definition 5.1 (¢ — § Definition of Continuity) Suppose f : R — R is defined by f(x), then f is contin-

uous at x = a when then following condition is satisfied:

Ve>0,30 eRst. |z —a| <0 = |f(z) — fla)| <e

5.3 Exam 3 Review 2

0, <0
Consider the function f(z) = . Rigorously prove that f is discontinuous at
1, >0

2 = 0. Your proof should involve ¢ and §.

Proof 4.
1 1 1 1

Choosee = 5 Then, we need |f(z) — f(0)| < §.Thatis, wewant |f(z) — 1] < 5 0r—5 < flx)—1<

%. That is, % < f(z) < % Note that Vz € (—6,0), f(z) = 0, by definition of (x). That is, f(x) ¢ (;, 2)

|

So, f is discontinuous at z = 0.

5.4 Exam 3 Review 3-a

Use the formal definition of continuity, prove that the function f(x)= v? +4x+3 is

continuous at x = —2.

Proof'5.

Let ¢ > 0 be given. Suppose 6 = \/c. Since ¢ > 0, we know 6 = /¢ > 0. Suppose |z — (=2)| =
|z 4+ 2| < 4. Then,

f(z) = f(=2)| = |2? + 42+ 3 — (-1)| = [2” + 42 + 3+ 1| = |27 + 4z + 4]
= |(z +2)?|
= |z + 2]z +2|
<66 =+le-Ve=c¢.
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Since ¢ was arbitrary, we've shown that

Ve >0,30=Ve>0st|x+2|>5 = |f(x) - f(-2)] <e.

So, f is continuous at x = —2.

5.5 Exam 3 Review 3-b

Use the formal definition of continuity, prove that the function f(z)= 22 +4r+3 is

continuous at x = 2.

Proof 6.

Let ¢ > 0 be given. Suppose § = min {1, %} Then,§d < landé < g Suppose z € Rand |z — 2| < 4.

Since |z —2| <0 <1,wehavel <z < 3.S0,7 < z+6 <9.Thatis, |z + 6] < 9. Then,

|f(x) = f(2)] = |2® + 4z + 3 — 15| = |2® + 42 — 12|

= |(z — 2)(x +6)|
= |z — 2||x + 6]
< 9|z — 2|

<9-90
§9-g:5.

Since ¢ was arbitrary, we've proven that

Vs>0,§|5:min{1,g} S0st |z —2 <6 = [f(2)— f(2)| <e.

So, by the definition of continuity, f is continuous at x = 2.

5.6 Exam 3 Review 6

Prove or disprove: Every injective map form R — R is bijective.

Disproof'7.
Consider f : R — R defined as f(x) = e®. For z,y € R, if f(z) = f(y), we have e* = eY. Take

logarithm with base e, we have Ine” = Inev. So, x = y. Hence, f is injective. Consider b = —1 € R. Set
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f(z) = —1. Thatis, e* = —1. % This contradicts with the fact that f(z) > 0. Therefore, our assumption

is wrong, and f(z) cannot be —1. Hence, by definition, f is not surjective.

5.7 Exam 3 Review 7

x
Show that the function f : R — {0} — R defined by f(z) = is injective but not

surjective. How could we change the codomain so that f is surjective?

Proof 8.

* Injective: Suppose z,y € R — {0} s.t. f(x) = f(y). Then, we get

z+1 y+1

@ y
(z+1y=(y+ Dz

ryty=xy+z
Yy =x.
So, f(z) = f(y) = =z =y. Thatis, f is injective. O

1
* Not Surjective: Set f(x) = 1. So we should have T

=1.S0,z+1 = z,or1l = 0. This is not

possible, so f(x) # 1. Therefore, f is not surjective.

Answer 9.

We can change the codomain to R — {1}. So that our function will become surjective.

5.8 Exam 3 Review 11-a

Let f: A— B for a function and X C A. Prove or disprove: [~ !(f(X))=X.

Disproof 10.

Consider A = {1,2,3} and B = {a,b}. Define f(1) = a and f(2) = f(3) = b. Set X = {2}, then
F(X) = £({2}) = {b}. Therefore, f~1(f(X)) = f~1({b}) = {2.3}. Since 3 € f~L(f(X)) but3 ¢ X,
FHFX) # X
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5.9 Exam 3 Review 11-b
Let f:A— B for a function and X C A. Prove or disprove: f(f 1(f(X)))= f(X).

Proof'11.

Let f: A — Bbeafunctionand X C A.

(C) Suppose = € f(f~1(f(X))). Then, Ja € f~1(f(X))s.t. f(a) = z. Since a € f1(f(X)), f(a) €
f(X). Note f(a) =z,s0x € f(X). O

(D) Suppose = € f(X). Then, Ja € X s.t. f(a) = z. Since f(a) = z € f(X), we have f(a) € f(X).
Then, a € f~1(f(X)). Therefore, f(a) € f(f~1(f(X))). Thatis, z € f(f~*(f(X))).

5.10 Exam 3 Review 12
Let f: A— B and g: B — C, and assume that f is surjective. Prove that go f is

injective if and only if ¢ and f are both injective.

Proof'12.

(=) Suppose g o f is injective.

» finjective: Letz,y € As.t. f(x) = f(y). Apply g on both sides, we get g(f(x)) = g(f(y)). That is,

(go f)(z) = (go f)(y). Since (g o f) is injective, we have = = y. Hence, f is injective.

* ginjective: Let x,y € B s.t. g(x) = g(y). Since f is surjective from A — B, 3 a,b € As.t. f(a) ==
and f(b) = y. Then, g(z) = g(f(a)) = (g9 f)(a) and g(y) = g(f(b)) = (g o f)(b). Therefore,
(go f)(a) = (go f)(b). Since g o f is injective, we have a = b. Since f is injective (proven above),
we have f(a) = f(b). Since f(a) = z and f(b) = y, we know =z = y, and hence g is also injective.

O

(«<) Suppose g and f are injective. Let z,y € A s.t. (go f)(z) = (go f)(y). Since (go f)(z) = g(f(z)) and
(go f)(y) = g(f(y)),wehave g(f(x)) = g(f(y)). Since g is injective, we know f(z) = f(y). Further since

f is also injective, we have = = y. Then, g o f is injective.

5.11 Exam 3 Review 13
Suppose that f: A — B is a function. Prove that f is injective if and only if for
all subsets C,D of A, f(CND)=f(C)nf(D).
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Proof'13.
Let f : A — B be aninjective function. Let C, D C A.
(=)Suppose f is injective. WTS: f(C N D) = f(C) N f(D).
(©) Letz e f(CND). Then,3a € CNDs.t f(a) =x.Sincea € CND,wehavea € Canda € D.
Since a € C, f(a) € f(C) Thatis, z € f(C). Similarly, since a € D, f(a) € f(D), and thus z € f(D).
Since z € f(C) and x € f(D), by definition of set intersection, = € f(C) N f(D). O
(D) Letz € f(C)Nn f(D). Then, z € f(C)and x € f(D).So,d¢c € Cs.t. f(¢) = rand I d €
D s.t. f(d) = z. Therefore, we know f(c) = f(d) = x. Since f is injective, we have ¢ = d. Hence, ¢ € C
and c € D, and thatis,c € CN D.So, f(c) =z € f(CND). O
(<) Suppose f(C' N D) = f(C) N f(D). Suppose z,y € As.t f(x) = f(y). Say f(z) = f(y) =
m. Suppose C = {z} € Aand D = {y} C A. Then, by assumption, f(C) = f({z}) = {m} and
fD) = f{y}) = {m}. So, f(CN D) = f(C) N f(D) = {m} N {m} = {m}. fCND = &, then
f(CnD)=f(@)=9+# {m}.Hence, C N D # @. Thatis, {z} N {y} # @. The only way for intersection

of two single-element sets being non-empty is that the two elements are identical. So, z = y.

5.12 Exam 3 Review 14
Let A, B be sets, and let F(A, B) denote the set of all functions from A to B. Let
g: A — A be a bijection. Define a new function A, : F(A,B) — F(A,B) as follows:

f+ fog. Prove that A, is a bijection.

Proof 14.

* Injective: Suppose f,h € F(A, B) s.t. Ay(f) = Ay(h). Since g is a bijection, g is also invertible.
Denote the inverse of g as g~ !. By definition, Ay(f) = f o g and A, (k) = h o g. So, by assumption,
fog=mhog Apply fogandho gtog !, respectively, we have (f o g)og~' = (hog)og~'. So,
we know that f o (gog™!) = ho(gog™').Since go g~ = is, we have f ois = hoi,. Thatis,

f=h O

* Surjective: Suppose h € F(A, B). Choose f = ho g~ € F(A, B). Then,
Ag(f) = fog= (hog_l)OQZhO(g_log):hoz'A:h_

Therefore, 3f = hog~! € F(A, B) s.t. Ay(f) =h Vh € F(A, B). Thatis, A, is surjective.
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5.13 Exam 3 Review 15-a
Let A,B be sets, and let f : A — B be a function. Let I be an index, and let
{Oi}iel be a collection of subsets such that for all ¢ € I,C; C  B. Prove that

By

el el

Proof 15.

(C) Supposea € f~! (ﬂ Ci> So, by definition of inverse image, f(a ﬂ C;.Thatis, Vi € I, f(a) €

i€l ’LEI
C;. By definition of inverse image, a € f~1(C;) Vi € I. Thatis, a € ﬂ f71(Cy), by definition of set
i€l

intersection. 0

(2) Suppose a € ﬂ f71(Cy). By definition of set intersection, a € f~!(C;) Vi € I. By definition of

i€l
inverse image, f(a) € C; Vi € I. Thatis, f(a ﬂ(] So,a € f~ <ﬂ CZ).
i€l i€l .

5.14 Exam 3 Review 15-a
Let A,B be sets, and let f : A — DB be a function. Let [ be an index, and let
{Ci}icr be a collection of subsets such that for all i € [,C; C B. Prove that

ACRS

el i€l

Proof'16.

(C) Suppose a € f! (U CZ-) By definition of inverse image, f U C;. Hence, by definition

iel zEI
of set union, f(a) € Cy fs.k € I.S0,a € f~1(Cy) fs. k € I. Since f~! Uf , we have
el

ac|Jf(C). O

i€l

(D) Suppose a € U f71(C;). Then, by definition of set union, a € f~(C},) f.s. k € I. By definition of

el
inverse image, f(a) € Cy f.s. k € I.So, f(a UC Thatis,a € f~ <U C,»).
i€l el
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