
Practice Proofs

1 Statements

1.1 Class Handout, Chapter 1.3, Implications.

Let a, b, and c be integers, with a and b non-zero. If (ab) | (ac), then b | c.

Proof 1.

Let a, b, c ∈ Z with a ̸= 0 and b ̸= 0. Suppose (ab) | (ac). Then ∃k ∈ Z s.t. ac = (ab)k. Divide both

sides of the equation by a:

c = bk.

Since k ∈ Z, by definition of divides, b | c.

■

1.2 Class Handout, Chapter 1.4, Contrapositive and Converse

Prove that for all real numbers a and b, if a ∈ Q and ab /∈ Q, then n /∈ Q.

Proof 2.

Let a, b ∈ Q. Assume for the sake of contradiction that if a ∈ Q and ab /∈ Q, we have b ∈ Q. Then,

∃p, q,m, n ∈ Z s.t. a =
m

n
and b =

p

q
. Hence,

ab =
m

n
· p
q
=

mp

nq

As mp, nq ∈ Z, ab ∈ Q.

⋇ This contradicts with the fact that ab /∈ Q.

So, b must not be rational.

■

1.3 Chapter 1.1 # 7(c)

Prove the square of an even integer is divisible by 4.

Proof 3.

Suppose x ∈ Z is even. Then ∃k ∈ Z s.t. x = 2k. Then, x2 = (2k)2 = 4k2. Since k2 ∈ Z, we have

4 | 4k2.

■
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Theorem 1.1 (Archimedean Principle) For every real number x, there is an integer n, such that n > x.

1.4 Chapter 1.1 # 11

For every positive real number ε, there exists a positive integer N such that
1

n
< ε

for all n ≥ N.

Proof 4.

Suppose ε ∈ R and ε > 0. Since ε ∈ R, we have
1

n
∈ R. Then, by Archimedean Principle, ∃n ∈

Z s.t. n >
1

ε
. Hence, nε > 1 or ε >

1

n
.

Suppose N ∈ Z s.t. N =

⌈
1

ε

⌉
, where

⌈
1

ε

⌉
means the integer greater to

1

ε
if

1

ε
/∈ Z, and the integer

equals to
1

ε
if
1

ε
∈ Z. Hence, N ≥ 1

ε
. As n >

1

ε
, we have n ≥ N

■

1.5 Chapter 1.1 # 12

Use the Archimedean Principle (Theorem 1.1) to prove if x is a real number, then

there exists a positive integer n such that −n < x < n.

Proof 5.

Suppose x ∈ R.

Case 1 If x > 0, then −x < 0 (i.e., −x < 0 < x). By the Archimedean Principle, ∃n ∈ Z s.t. n > x.

Multiply (−1) on both sides of the inequality:

−n < −x

As −x < 0 < x,

−n < −x < 0 < x < n,

which means −n < x < n, and n is positive.

Case 2 If x < 0, then −x > 0 (i.e., −x > 0 > x) Since x ∈ R, we have −x ∈ R. By the Archimedean

Principle, ∃n ∈ Z s.t. n > −x. Multiply (−1) on both sides of the inequality:

−n < x

As x < 0 < −x,

−n < x < 0 < −x < n,
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which means −n < x < n, and n is positive. In all cases, we have proven that x ∈ R =⇒ ∃n ∈ Z, n >

0 s.t. − n < x < n.

■

1.6 Chapter 1.1 # 13

Prove that if x is a positive real number, then there exists a positive integer n

such that
1

n
< x < n.

Proof 6.

Suppose x ∈ R, x > 0

Case 1 If 0 < x ≤ 1, then
1

x
≥ 1. Hence, x ≤ 1 ≤ 1

x
. As x ∈ R,

1

x
∈ R, then by the Archimedean

Principle (Theorem 1.1):

∃n ∈ Z s.t. n >
1

x
.

Hence, nx > 1 or x >
1

n
. As x ≤ 1

x
, n >

1

x
, and x >

1

n
, we have

1

n
< x < n.

Case 2 If x > 1, then 0 <
1

x
< 1. Hence,

1

x
< 1 < x. As x ∈ R, by the Archimedean Principle:

∃n ∈ Z s.t. n > x > 0

Hence,
1

n
<

1

x
. As

1

x
< x,

1

n
<

1

x
, and n > x, we have

1

n
< x < n

In all cases, we proven that x ∈ R, x > 0 =⇒ ∃n ∈ Z, n > 0 s.t.
1

n
< x < n.

■

1.7 Handout Chapter 1.4-2 More Contradictions and Equivelance

There are no positive integer solutions to the equation x2 − y2 = 10.

Proof 7.

Assume for the sake of contradiction that there are positive integer solutions to the equation x2 −

y2 = 10. Suppose ∃x, y ∈ Z and x > 0, y > 0 s.t. x2 − y2 = 10. Then, we have x2 = 10 + y2. Since
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x > 0, x2 > 0, we have 10 + y2 > 0. Then, y2 > −10.

⋇ This contradicts with the fact that y2 ≥ 0 if y ∈ Z.

So, our assumption is wrong. There must be no positive integer solutions to the equation x2 − y2 = 10.

■

1.8 Handout Chapter 1.4-2 More Contradictions and Equivelance

Show that if a ∈ Q and b ∈ Q′, then a+ b ∈ Q′

Remark The notation Q means the set for rational numbers, and Q′ means the set for irrational

numbers.

Proof 8.

Suppose a ∈ Q and b ∈ Q′ Assume for the sake of contradiction that a+ b ∈ Q. Then, ∃m,n, p, q ∈ Z

such that a =
m

n
and a+ b =

p

q
. Then,

b =
p

q
− a =

p

q
− m

n
=

pn−mq

qn
∈ Q

Since pn−mq ∈ Q and qn ∈ Z, we have b =
pn−mq

qn
∈ Q.

⋇ This contradicts with the fact that b ∈ Q′.

So, a+ b must be irrational.

■

1.9 Handout Chapter 1.4-2 More Contradictions and Equivalence

If n ∈ N and 2n − 1 is prime, then n is prime.

Proof 9.

We will prove the contrapositive: if n is not prime, then 2n − 1 is not prime. Suppose n is not prime.

Then, ∃a, b ∈ Z with 1 < a, b < n s.t. n = ab. Then, 2n − 1 = 2ab = (2a)b − 1. Notice that for xw − 1, by

polynomial long division, have

xw − 1 = (x− 1)
(
xw−1 + xw−2 + · · ·+ 1

)
,
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Substitute x = 2a and w = b, we have

2n − 1 = (2a − 1)
[
(2a)b−1 + (2a)b−2 + · · ·+ 1

]
.

Since (2a − 1) ∈ Z and
[
(2a)b−1 + (2a)b−2 + · · ·+ 1

]
∈ Z, we see that 2n − 1 is not prime.

■

1.10 Exam 1 Review 1-b-i

Prove that [P ∧ (P =⇒ Q)] =⇒ Q.

Proof 10.

P Q P ⇒ Q P ∧ (P ⇒ Q) [P ∧ (P ⇒ Q)] =⇒ P

T T T T T

T F F F T

F T T F T

F F T F T

■

1.11 Exam 1 Review 1-b-ii

Prove that [Q ∧ (P =⇒ Q)] =⇒ P.

Proof 11.

P Q P ⇒ Q Q ∧ (P ⇒ Q) [Q ∧ (P ⇒ Q)] =⇒ Q

T T T T T

T F F F T

F T T T T

F F T F T

■
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1.12 Exam 1 Review 2-a

Given statements P and Q, prove ¬(P ∨Q) ≡ ¬P ∧ ¬Q.

Proof 12.

P Q P ∨Q ¬(P ∨Q) ¬P ¬Q ¬P ∧ ¬Q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

■

1.13 Exam 1 Review 2-b

There is no smallest integer.

Proof 13.

Assume for the sake of contradiction that there exists a smallest integer n. Hence, ∀x ∈ Z, we have

x ≥ n. Notice that if n > 0, we have 0 ∈ Z and 0 < n. Hence, n = 0 cannot be the smallest integer

(⋇) Therefore, n most be smaller than 0. Suppose m = −n. Since n ∈ Z, m = −n ∈ Z ∈ R By the

Archimedean Principle (Theorem 1.1), ∃k ∈ Z s.t. k > m. Hence, k > −n. Multiply (−1) on both sides

of the inequality:

−k < n.

As k ∈ Z, −k ∈ Z. Then ∃ − k ∈ Z s.t. − k < n.

⋇ This contradicts with our assumption that n is the smallest integer.

Hence, our assumption must be wrong. There is no smallest integer.

■

1.14 Exam 1 Review 2-c

The number log2 3 is irrational.

Proof 14.
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Assume for the sake of contradiction that log2 3 is irrational. By definition, ∃p, qinZ, with q ̸=

0 s.t. log2 3 =
p

q
. Observe that log2 3 ̸= 0. Then p ̸= 0 as well. By definition of logarithm,

2p/q = 3

(2p)1/q = 3

Raise two sides of the equation to the power of q:

2p = 3q

As p ̸= 0 and q ̸= 0, 2p and 3q are not 1 ∀p, q ∈ Z. Hence, 2p is even ∀p ∈ Z and 3q is odd ∀q ∈ Z.

⋇ This contradicts with the fact that an even number cannot equal to an odd number.

Hence, our assumption is wront. The number log2 3, then, must be irrational.

■

1.15 Exam 1 Review 2-d

There is a rational number a and an irrational number b such that ab is rational.

Proof 15.

Observe that 1 is a rational number and π is an irrational number. Suppose a = 1 and b = π, we

have ab = aπ = 1, which is irrational.

■

Proof 16.

Recall that we have proven in the previous proof, we have proven that log2 3 is an irrational number.

Recall the definition of logarithm and exponents, we have

2log2 3 = 3

Hence, we find a pair of a and b that satisfies the requirement.

■

1.16 Exam 1 Review 2-e

For all integers n, the number n+ n2 + n3 + n4 is even.
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Proof 17.

Suppose n ∈ Z.

Case 1 If n is even.Suppose n = 2k f.s. k ∈ Z. Then,

n+ n2 + n3 + n4 = (2k) + (2k)2 + (2k)3 + (2k)4

= 2k + 4k2 + 8k3 + 16k4

= 2(k + 2k2 + 4k3 + 8k4)

Since (k+ 2k2 + 4k3 + 8k4) ∈ Z, we have 2(k+ 2k2 + 4k3 + 8k4) is even. Hence, n+ n2 + n3 + n4 is even

when n is even.

Case 2 If n is odd. Suppose n = 2k + 1 f.s. k ∈ Z. Then,

n+ n2 + n3 + n4 = (2k + 1) + (2k + 1)2 + (2k + 1)3 + (2k + 1)4

= 2k + 1 + 4k2 + 4k + 1 + 8k3 + 12k2 + 6k + 1 + 16k4 + 32k3 + 24k2 + 8k + 1

= 16k4 + 40k3 + 40k2 + 20k + 4

= 2(8k4 + 20k3 + 20k2 + 10k + 2)

Since (8k4 + 20k3 + 20k2 + 10k + 2) ∈ Z, we have 2(8k4 + 20k3 + 20k2 + 10k + 2) is even. Hence,

n+ n2 + n3 + n4 is even when n is odd.

Since integers can either be even or odd, and we have proven n+n2+n3+n4 is even in either case,

n+ n2 + n3 + n4 is even for all integers.

■

Definition 1.1 (Perfect Square) A perfect square is an integer n for which there exists an integer m such

that n = m2.

1.17 Exam 1 Review 2-f

If n is a positive integer such that n is in the form 4k+ 2 or 4k+ 3, then n is not

a perfect square.

Proof 18.

We will prove the contrapositive of the statement: “If n is a perfect square, then n is a positive

integer of the form 4k or 4k + 1 f.s. k ∈ Z.” Suppose n to be a perfect square, then ∃m ∈ Z s.t. n = m2.
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Case 1 Suppose m is even, then m = 2t f.s. t ∈ Z.

n = m2 = (2t)2 = 4t2 > 0.

Let k = t2. Since t2 ∈ Z, we have k ∈ Z.Hence, n is positive and is in the form of 4k.

Case 2 Suppose m is odd, then m = 2t+ 1 f.s. t ∈ Z.

n = m2 = (2t+ 1)2 = 4t2 + 4t+ 1 = 4(t2 + t) + 1 > 1

Let k = t2 + t. Since (t2 + t) ∈ Z, we have k ∈ Z. Hence, n is in the form of 4k + 1. Hence, we prove the

contrapositive of the original statement to be true, which means our original statement is also true.

■

1.18 Exam 1 Review 2-g

For any integer n, 3 | n if and only if 3 | n2.

Proof 19.

Suppose n ∈ Z.

(⇒) Suppose 3 | n. Then, ∃k ∈ Z s.t. n = 3k. Then, n2 = (3k)2 = 9k2 = 3(3k2). Since 3k2 ∈ Z, by

definition, 3 | n2. □

(⇐) WTS: 3 | n2 =⇒ 3 | n. We will prove the contrapositive: If 3 ∤ n, then 3 ∤ n2 Suppose 3 ∤ n.

Case 1 Suppose n = 3m+1 f.s. m ∈ Z. Then, n2 = (3m+1)2 = 9m2+6m+1 Since 9m2+6m+1

cannot be written in the form of 3k f.s. k ∈ Z, by definition, 3 ∤ n2.

Case 2 Suppose n = 3m + 2 f.s. m ∈ ZThen, n2 = (3m + 2)2 = 9m2 + 12m + 4Since 9m2 +

12m+ 4 cannot be written in the form of 3k for some k ∈ Z, by definition, 3 ∤ n2. Hence, we proved the

contrapositive, and thus the original statement is true.

Therefore, n | n ⇐⇒ 3 | n2.

■

1.19 Exam 1 Review 2-h

There exists an integer n such that 12 | n2 but 12 ∤ n.

Proof 20.

Observe that if we take n = 6, we have n2 = 36. Since n2 = 36 = 3 × 12, we know 12 | n2. However,
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12 ∤ 6 since 6 cannot be written as 12k for all k ∈ Z. Hence, there exists an integer n = 6 s.t. 12 | n2 but

12 ∤ n.

■

1.20 Exam 1 Review 2-i

For every integer a, the numbers a and (a+ 1)(a− 1) have opposite parity.

Proof 21.

Suppose a ∈ Z.

Case 1 Suppose a is even. Then a = 2k f.s. k ∈ Z. Then,

(a+ 1)(a− 1) = a2 − 1 = (2k)2 − 1 = 4k2 − 1 = 2(2k2)− 1.

Since 2k2 ∈ Z, we have (a+ 1)(a− 1) is odd. That is, a and (a+ 1)(a− 1) have opposite parity.

Case 2 Suppose a is odd. Then a = 2k + 1 f.s. k ∈ Z. Hence,

(a+ 1)(a− 1) = a2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k + 1− 1 = 2(2k2 + 2k).

Since 2k2 + 2k ∈ Z, we have (a+ 1)(a− 1) is even. As a result, a and (a+ 1)(a− 1) have opposite parity.

In both cases, we’ve shown that a and (a+ 1)(a− 1) have opposite parity.

■

1.21 Exam 1 Review 2-j

Suppose x ∈ R. If x2 is irrational, then x is irrational.

Proof 22.

We will prove the contrapositive: “If x is rational, then x2 is rational.” Suppose x ∈ Q, then x =
p

q
f.s. p, q ∈ Z, assuming p and 1 have no common factors and q ̸= 0. Then,

x2 =

(
p

q

)2

=
p2

q2
.

As p, q ∈ Z, we have p2, q2 ∈ Z. Hence, x2 =
p2

q2
∈ Q. Therefore, if x is rational, so is x2.

■
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1.22 Exam 1 Review 2-k

For any integers a and b, if ab is even, then a is even or b is even.

Proof 23.

We will prove the contrapositive: “If a is odd and b is odd, then ab is odd.” Suppose a, b ∈ Z and a

and b are both odd. Then, ∃k, l ∈ Z s.t. a = 2k + 1 and b = 2l + 1. Then,

ab = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1.

Since 2kl + k + l ∈ Z, we have ab is odd.

■

1.23 Exam 1 Review 2-l

For n ∈ N, n, n+ 2, and n+ 4 are all prime if and only if n = 3.

Proof 24.

(⇒) WTS: n, n+ 2, and n+ 4 are all prime =⇒ n = 3. We will prove the contrapositive: n ̸= 3 =⇒

n, n+ 2, or n+ 4 is not prime.

Case 1 Suppose 0 < n < 3.

① If n = 1, then n = 1 is not a prime.

② If n = 2, then n = 2 is a prime number, but n+ 2 = 2 + 2 = 4 is not a prime.

Hence, if 0 < n < 3, n, n+ 2, or n+ 4 is not a prime.

Case 2 Suppose n > 3.

① If n = 3k f.s. k ∈ Z, then n is not a prime because 3 | n.

② If n = 3k + 1 f.s. k ∈ Z, then n + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1). Since k + 1 ∈ Z, we have

3 | n+ 2. Then, n+ 2 is not a prime.

③ If n = 3k+ 2 f.s. k ∈ Z, then n+ 4 = 3k+ 2+ 4 = 3k+ 6 = 3(k+ 2). Since k+ 2 ∈ Z, we know that

3 | n+ 4. Therefore, n+ 4 is not a prime.

Hence, if n > 3, we also have n, n+ 2, or n+ 4 is not a prime.

In both cases, we have proven that if n ̸= 3, then n, n+ 2, or n+ 4 is not a prime. □
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(⇐) Note that when n = 3, we have n+ 2 = 3 + 2 = 5 and n+ 4 = 3 + 4 = 7. Since 3, 5, and 7 are all

primes, we have shown that when n = 3, n, n+ 2, and n+ 4 are all primes.

■

1.24 Exam 1 Review 3-a

Prove or disprove: Every real number is less than or equal to its square.

Disproof 25.

We will prove the negation: “Some real number is greater than its square.” Observe that when

x = 0.1, then x2 = (0.1)2 = 0.01. Since 0.01 < 0.1, we have x = 0.1 ∈ R is greater than its square. Since

the negation is true, the original statement is then false.

■

1.25 Exam 1 Review 3-b

Prove or disprove: The sum of two integers is never equal to their product.

Disproof 26.

We will prove the negation: “The sum of some integers is equal to their product.” Suppose p, q ∈ Z,

and their sum equals to their product. Then, p+ q = pq. Divide p on both sides: q = 1+
q

p
. Observe that

when p = 2, we have q = 1 +
q

2
. So, 2q = 1 + q, or q = 2. Hence, p + q = 2 + 2 = 4 and pq = 2 × 2 = 4.

Therefore, we’ve found integers p = 2 and q = 2 such that p+ q = pq.

■

1.26 Exam 1 Review 3-c

Prove or disprove: There exists a non-zero integer whose cube equals its negative.

Disproof 27.

We will prove the negation: “For all non-zero integers, their cubes do not equal their negations.”

Assume for the sake of contradiction that there exists a non-zero integer whose cube equals its nega-

tive. Suppose x ∈ Z and x ̸= 0 s.t. x3 = −x. So we have x3 + x = 0, or x(x2 + 1) = 0. Then, x = 0 or

x2 + 1 = 0. As x ̸= 0, it must be that x2 + 1 = 0, or x2 = −1.

⋇ This contradicts with the fact that ∀x ∈ Z, x2 ≥ 0 > −1.

So, our assumption is incorrect. For all non-zero integers, their cubes do not equal their negatives.

■
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1.27 Exam 1 Review 3-d

Prove or disprove: Fall all x ∈ R, x ≤ x2 or 0 ≤ x < 1.

Proof 28.

Suppose x ∈ R.

Case 1 Suppose 0 ≤ x < 1. Then, x satisfies the requirement.

Case 2 Suppose x < 0, then x2 > 0. Therefore, x < 0 < x2.

Case 3 Suppose x ≥ 1. Multiply the inequality by x on both sides, we have: x · x ≥ x or x2 ≥ x.

Hence, x ≤ x2.

In all cases, we’ve proven that ∀x ∈ R, x ≤ x2 or 0 ≤ x < 1.

■

1.28 Chapter 1.4 # 20-a

Let n be an integer. Prove that n is even if and only if n3 is even.

Proof 29.

(⇒) WTS: n is even =⇒ n3 is even. Suppose n is even. Then n = 2k f.s. k ∈ Z. Then, n3 = (2k)3 =

8k3 = 2(4k3). Since 4k3 ∈ Z, n3 is even.

(⇐) WTS: n3 is even =⇒ n is even. We will prove the contrapositive: n is odd =⇒ n3 is odd.

Suppose n is odd. Then, n = 2k + 1 f.s. k ∈ Z. Then,

n3 = (2k + 1)3 = 8k3 + 12k2 + 8k + 1 = 2(4k3 + 6k2 + 4k) + 1.

Since 4k3 + 6k2 + 4k ∈ Z, n3 is odd.

■

1.29 Chapter 1.4 # 20-b

Let n be an integer. Prove that n is odd if and only if n3 is odd.

Proof 30.

(⇒) WTS: n is odd =⇒ n3 is odd. This statement is previously proven.

(⇐) WTS: n3 is odd =⇒ n is odd. We will prove the contrapositive: n is even =⇒ n3 is even. The

contrapositive is also previously proven.

■
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1.30 Chapter 1.4 # 21

Prove that
3
√
2 is irrational.

Proof 31.

Assume for the sake of contradiction that 3
√
2 is rational. Suppose 3

√
2 is rational. By definition,

∃p, q ∈ Z s.t. 3
√
2 =

p

q
, assuming p and q have no common factors and q ̸= 0. Raise the two sides of the

equation to cube:

2 =

(
p

q

)3

=
p3

q3
.

Then, p3 = 2q3. Since q3 ∈ Z, we know p3 is even. Then, p is also even (previously proven). Then,

p = 2k f.s. k ∈ Z. Hence,

2q3 = p3 = (2k)3 = 8k3

q3 = 4k3 = 2(2k3)

Since 2k3 ∈ Z, we see q3 is even. Then, q is also even.

⋇ This contradicts with our assumption that p and q have no common factors as p, q being even

indicates they have 2 as their common factor.

So, our assumption is wrong, and 3
√
2 is irrational.

■
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2 Sets

2.1 Handout Chapter 2.1 - Sets and Subsets

Prove that {12a+ 4b | a, b ∈ Z} = {4c | c ∈ Z}.

Proof 1.

(⊆) Suppose x ∈ {12a+ 4b | a, b ∈ Z}. Then, x = 12a + 4b f.s. a, b ∈ Z. So, x = 12a + 4b = 4(3a + b).

As 3a+ b ∈ Z, we have x ∈ {4c | c ∈ Z}. By definition, {12a+ 4b | a, b ∈ Z} ⊆ {4c | c ∈ Z}.

(⊇) Suppose x ∈ {4c | c ∈ Z}. Then, x = 4c f.s. c ∈ Z. Suppose c = 3a + b f.s. a, b ∈ Z. Then,

x = 4c = 4(3a+ b) = 12a+ 4b. By definition, {4c | c ∈ Z} ⊆ {12a+ 4b | a, b ∈ Z}

Hence, we have proven {12a+ 4b | a, b ∈ Z} = {4c | c ∈ Z}.

■

2.2 Exam 1 Review 2-m

If A = {x | x = n4 − 1, n ∈ Z} and B = {x | x = m2 − 1, m ∈ Z}, then A ⊆ B.

Proof 2.

Suppose x ∈ A. Then, x = n4 − 1 f.s. n ∈ Z. Then, x = n4 − 1 = (n2)2 − 1. Since n2 ∈ Z, we have

x ∈ B. Therefore, A ⊆ B.

■

2.3 Exam 1 Review 2-n

If A, B, and C are sets, then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof 3.

(⊆) Suppose x ∈ A ∩ (B ∪ C). WTS: A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). By definition, x ∈ A and

x ∈ (B ∪ C). By definition, x ∈ A and x ∈ B or x ∈ A and x ∈ C. Therefore, x ∈ (A ∩B) or x ∈ (A ∩ C).

That is, x ∈ (A ∩B) ∪ (A ∩ C). Hence, A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C). □

(⊇) Suppose x ∈ (A∩B)∪ (A∩C). WTS: (A∩B)∪ (A∩C) ⊆ A∩ (B ∪C). By definition, x ∈ (A∩B)

or x ∈ (A ∩ C). WLOG, consider x ∈ (A ∩ B). Then, x ∈ A and x ∈ B. Similarly, we know x ∈ A and

x ∈ C from x ∈ (A ∩ C). Therefore, x ∈ A and x ∈ B or x ∈ C. That is, x ∈ A and x ∈ (B ∪ C), or

x ∈ A ∩ (B ∪ C). Hence, (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

As A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) and (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C), we have shown that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
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■

2.4 Exam 1 Review 2-o

For subsets A and B of a universal set U, A ∪B = A ∩B.

Proof 4.

(⊆) Suppose x ∈ A ∪B. By definition, x /∈ A ∪ B. That is, x /∈ A and x /∈ B. Or, x ∈ A and x ∈ B.

That is, x ∈ A ∩B. Therefore, A ∪B ⊆ A ∩B. □

(⊇) Suppose x ∈ A∩B. By definition, x /∈ A and x /∈ B. That is, x ∈ A ∪B. Therefore, A∩B ⊆ A ∪B.

Since A ∪B ⊆ A ∩B and A ∩B ⊆ A ∪B, we have A ∪B = A ∩B.

■

2.5 Exam 1 Review 2-p

Suppose that A, B, and C are subsets of a universal set U. Let P and Q be the

following statements:

P: A ⊆ B or A ⊆ C; and

Q: A ⊆ B ∩ C.

Write the statement P =⇒ Q, its converse, and its contrapositive. Prove the true

ones or give counterexamples.

Claim. P =⇒ Q :A ⊆ B or A ⊆ C =⇒ A ⊆ B ∩ C.

Proof 5.

Suppose x ∈ A.

Case 1 Suppose A ⊆ B. Then x ∈ B. Since B ∩ C ⊆ B, x ∈ B ∩ C. Therefore, A ⊆ B ∩ C.

Case 2 Suppose A ⊆ C. Then x ∈ C. Since B ∩ C ⊆ C, x ∈ B ∩ C. Therefore, A ⊆ B ∩ C.

In both cases, we proven A ⊆ B or A ⊆ C =⇒ A ⊆ B ∩ C.

■

Claim. Converse: Q =⇒ P : A ⊆ B ∩ C =⇒ A ⊆ B or A ⊆ C.

Proof 6.

Suppose A ⊆ B ∩C. Suppose x ∈ A. Then x ∈ B ∩C. By definition, x ∈ B and x ∈ C. Hence, A ⊆ B

and A ⊆ C. Since the “or” here is inclusive, A ⊆ B and A ⊆ C is a true case for A ⊆ B or A ⊆ C. Hence,

A ⊆ B ∩ C =⇒ A ⊆ B or A ⊆ C.

■

Claim. Contrapositive: ¬Q =⇒ ¬P : A ⊈ B ∩ C =⇒ A ⊈ B and A ⊈ C.
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Proof 7.

Since the original statement is true, its contrapositive is automatically true.

■

2.6 Handout Chapter 2.2 # 10-a-i

Let A = {6a+ 4 | x ∈ Z} and B = {18b− a | b ∈ Z}. Prove or disprove: A ⊆ B.

Disproof 8.

Suppose x ∈ A. Then x = 6a + 3 f.s. a ∈ Z. Notice that 6a + 4 = 18

(
1

3
a+

1

3

)
− 2. Since

1

3
a +

1

3
=

1

3
(a + 1) ∈ Q, but

1

3
(a + 1) /∈ Z∀a ∈ Z, we have 6a + 4 /∈ {18b− 2 | b ∈ Z}. By definition of subsets,

A ⊈ B.

Remark We can also use proof by contradiction to disprove this statement.

■

2.7 Handout Chapter 2.2 # 10-a-ii

Let A = {6a+ 4 | x ∈ Z} and B = {18b− a | b ∈ Z}. Prove or disprove: B ⊆ A.

Proof 9.

Suppose x ∈ B. Then, x = 18b− 2 f.s. b ∈ Z. Notice that 18b− 2 = 6(3b− 1) + 4. Since 3b− 1 ∈ Z, we

have x ∈ A. Hence, by definition of subsets, B ⊆ A.

■

2.8 Handout Chapter 2.2 # 10-b

If A and B are sets, then P(A)− P(B) = P(A−B).

Proof 10.

(⊆) WTS: P(A) − P(B) ⊆ P(A − B). Suppose X ∈ P(A) − P(B). By definition of set difference,

X ∈ P(A) and X /∈ P(B). By definition of power sets, X ⊆ A and X ⊈ B. Hence, X ⊆ (A − B),

by definition of set difference. Therefore, X ∈ P(A − B), and thus P(A) − P(B) ⊆ P(A − B) as

desired. □

(⊇) WTS: P(A − B) ⊆ P(A) − P(B). Suppose X ∈ P(A − B). Then, X ⊆ A − B. By definition of

set difference, X ⊆ A and X ⊈ B. Then, X ∈ P(A) and X /∈ P(B). By definition of set difference,

X ∈ P(A)− P(B). Hence, P(A−B) ⊆ P(A)− P(B).
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■

2.9 Handout Chapter 2.2 # 10-c

If A, B, and C are sets, and A×B = B × C, then A = B.

Proof 11.

Suppose A,B, and C are sets. Suppose ∃a, b ∈ Z s.t. (a, c) ∈ A × C. By definition of Cartesian

product, a ∈ A and c ∈ C. Suppose ∃b, c ∈ Z s.t. (b, c) ∈ B × C. So, we know that b ∈ B. Suppose

A× C = B × C. Then, A× C ⊆ B × C and A× C ⊇ B × C.

(⊆) If A× C ⊆ B × C, we have (a, c) ∈ B × C. Then, a ∈ B. Since a ∈ A, we know A ⊆ B. □

(⊇) Similarly, since A × C ⊇ B × C, we have (b, c) ∈ A × C. Then, b ∈ A. Since b ∈ B, we see that

B ⊆ A.

By definition of set equality, A = B.

■

2.10 Chapter 2.1 # 6

Let n ∈ Z and let A = nZ. Prove that if x, y ∈ A, then x+ y ∈ Z and xy ∈ A.

Proof 12.

Suppose n ∈ Z and A = nZ. Then, A = {nk | k ∈ Z}. Suppose x, y ∈ A. Then, ∃k, l s.t. x = nk and

y = nl. Then, x+ y = nk + nl = n(k + l). Since k + l ∈ Z, x+ y ∈ A. Similarly, xy = (nk)(nl) = n(nkl).

Since nkl ∈ Z, xy ∈ A.

■

2.11 Chapter 2.1 # 10

Let n and m be integers. Let A = nZ and B = mZ. Prove that if n is a multiplier

of m, then A ⊆ B.

Proof 13.

Let n and m be integers. Let A = nZ and B = mZ. Suppose x ∈ A. Then, by definition, ∃k ∈

Z s.t. x = nk. Since n is a multiplier of m, n = ml f.s. l ∈ Z. Then, x = nk = (ml)k = m(lk). Since lk ∈ Z,

x = m(lk) is a multiplier of m. That is, x ∈ mZ. Hence, A ⊆ B.

■
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2.12 Chapter 2.1 # 12

Let A = {n ∈ Z | n is a multiple of 4} and B =
{
n ∈ Z | n2 is a multiple of 4

}
. Prove

that A ⊆ B and B ⊈ A.

Proof 14.

WTS: A ⊆ B. Suppose x ∈ A. Then, ∃k ∈ Z s.t. x = 4k. Consider x2 = (4k)2 = 16k2 = 4(8k2). Since

8k2 ∈ Z, by definition of divides, x2 is a multiple of 4. Hence, by definition of set B, x ∈ B. That is,

A ⊆ B.

■

Proof 15.

WTS: B ⊈ A. Consider x = 2k f.s. k ∈ Z. Then, x2 = (2k)2 = 4k2. Since k2 ∈ Z, x2 is a multiple of 4.

Hence, x ∈ B. However, x = 2k is not a multiple of 4. That is, x /∈ A. Hence, we found an element of B

that is not an element of A. Then, by definition, B ⊈ A.

■

2.13 Chapter 2.1 # 13

If A = {n ∈ Z | n+ 3 is odd}, then A is equal to the set of all even integers.

Proof 16.

Suppose B = {n ∈ Z | n is even}. Then, B is the set of all even numbers.

(⊆) Suppose x ∈ A. Then, by definition, x + 3 is odd. That is, ∃k ∈ Z s.t. x + 3 = 2k + 1. Then,

x = 2k + 1− 3 = 2k − 2 = 2(k − 1). Since k − 1 ∈ Z, then x is even. Therefore, x ∈ B, and A ⊆ B. □

(⊇) Suppose x ∈ B. Then, x is even. So, ∃k ∈ Z s.t. x = 2k. Consider x+ 3 = 2k + 3 = 2k + 2 = 1 =

2(k + 1) + 1. Since k + 1 ∈ Z, then x+ 3 is odd. Hence, x ∈ A, and B ⊆ A.

Collectively, we’ve proven A = B.

■

2.14 Chapter 2.1 # 15

Let A = {n ∈ Z | n = 4t+ 1 for some t ∈ Z} and B = {n ∈ Z | n = 4t+ 9 for some t ∈ Z}.

Prove that A = B.

Proof 17.

(⊆) Suppose x ∈ A. Then, x = 4t+ 1 f.s. t ∈ Z. Note that x = 4t+ 9− 8 = (4t− 8) + 9 = 4(t− 2) + 9.

Since t− 2 ∈ Z, by definition, x ∈ B. Then, A ⊆ B. □
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(⊇) Suppose x ∈ B. Then, x = 4t+9 f.s. t ∈ Z. Note that x = 4t+9 = 4t+8+ 1 = 4(t+2)+ 1. Since

t+ 2 ∈ Z, by definition, x ∈ A. Hence, B ⊆ A.

Collectively, we’ve proven A = B.

■

2.15 Chapter 2.1 # 16

Let A = {n ∈ Z | n = 3t+ 1 for some t ∈ Z} and B = {n ∈ Z | n = 3t+ 2 for some t ∈ Z}.

Prove that A and B have no elements in common.

Proof 18.

Assume for the sake of contradiction that A and B have one element in common, and suppose that

element is x. By our assumption, x ∈ A. So, x = 3t + 1 f.s. t ∈ Z. Also, x ∈ B, so x = 3s + 2 f.s. s ∈ Z.

Then, we have x = 3t+ 1 = 3s+ 2. Solve for t, we have

3t = 3s+ 2− 1 = 3s+ 1

t =
3s+ 1

3
= s+

1

3

Since s ∈ Z,
1

3
/∈ Z, we have t = s+

1

3
/∈ Z.

⋇ This contradicts with the fact that t ∈ Z.

So, our assumption is wrong, and A and B have no elements in common.

■

2.16 Chapter 2.3 # 8

Let Ai = (−i, i) = {x ∈ R | −i < x < i}. Prove that

∞⋃
i=1

(−i, i) = R and

∞⋂
i=1

(−i, i) = (−1, 1).

Proof 19.

WTS:
∞⋃
i=1

(−i, i) = R

(⊆) Suppose for some k ∈ Z and k ≥ 1, x ∈ Ak. That is, x ∈ (−k, k). Since k ≥ 1, by definition of

union, Ak ⊆
∞⋃
i=1

(−i, i). Hence, x ∈
∞⋃
i=1

(−i, i). Since Ak ⊆ R, x ∈ R. Hence,
∞⋃
i=1

(−i, i) ⊆ R. □.

(⊇) Suppose x ∈ R. Consider the set (−k, k) = Ak, where k ∈ Z and k ≥ x. Then, x ∈ (−k, k). Since

k ∈ Z, then Ak ⊆
∞⋃
i=1

(−i, i) by definition of union. Then, x ∈
∞⋃
i=1

(−i, i). That is, R ⊆
∞⋃
i=1

(−i, i).

■

Page 20 of 43



Practice Proofs

Proof 20.

WTS:
∞⋂
i=1

(−i, i) = (−1, 1).

(⊆) Let x ∈
∞⋂
i=1

(−i, i). So, x ∈ Ai ∀i = {1, 2, 3, · · · }. Specially, x ∈ A1 = (−1, 1). Hence,
∞⋂
i=1

(−i, i) ⊆

(−1, 1). □

(⊇) Let x ∈ (−1, 1). Let k ∈ {1, 2, 3, · · · }. We will show x ∈ Ak. Since k ≥ 1, then −k ≤ −1. Form

x ∈ (−1, 1), we know −1 < x < 1. Then, −k ≤ −1 < x < 1 ≤ k. That is, −k < x < k, or x ∈ (−k, k) = Ak.

Since k is arbitrary, we’ve proven x ∈ Ak ∀k ≥ 1. So, x ∈
∞⋂
i=1

(−i, i). Hence, (−1, 1) ⊆
∞⋂
i=1

(−i, i).

■

2.17 Chapter 2.3 # 10

Let Ai = {1, 2, 3, · · · , i} for i ∈ Z+. Compute

∞⋃
i=1

Ai and

∞⋂
i=1

Ai. Prove your answer.

Claim.
∞⋃
i=1

Ai = Z+.

Proof 21.

(⊆) Let x ∈
∞⋃
i=1

Ai. Then x ∈ Ak f.s. k ∈ Z+. That is, by definition, x ∈ {1, 2, 3, · · · , k}. Since k ∈

Z+, {1, 2, 3, · · · , k} ⊆ Z+, x ∈ Z+. □

(⊇) Let x ∈ Z+. Consider Ax+1 = {1, 2, 3, · · · , x+ 1}. Then, x ∈ Ax+1. By definition of union, Ax+1 ⊆
∞⋃
i=1

Ai. So, x ∈
∞⋃
i=1

Ai.

Hence, we’ve shown
∞⋃
i=1

Ai = Z+.

■

Claim.
∞⋂
i=1

Ai = {1}.

Proof 22.

(⊆) Suppose x ∈
∞⋂
i=1

Ai. By definition of union, x ∈ Ak ∀k ≥ 1. Specially, x ∈ A1 = {1}. □

(⊇) Suppose x ∈ {1}. Let k ≥ 1. By definition, Ak = {1, 2, 3, · · · .k}. Since {1} ⊆ {1, 2, 3, · · · , k} =

Ak, x ∈ Ak. As k was arbitrary, we’ve proven x ∈ Ak ∀k ≥ 1. So, x ∈
∞⋂
i=1

Ai. Hence, {1} ⊆
∞⋂
i=1

Ai.

■

2.18 Chapter 2.3 # 10

Let Ai = [i, i+1) = {x ∈ R | i ≤ x < i+ 1} for i ∈ Z+. Compute

∞⋃
i=1

Ai and

∞⋂
i=1

Ai. Prove your

answer.
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Claim.
∞⋃
i=1

Ai = {x ∈ R | x ≥ 1}.

Proof 23.

(⊆) Suppose x ∈
∞⋃
i=1

Ai. By definition of union, x ∈ Ak f.s. k ∈ {1, 2, · · · }. By definition, Ak = [k, k +

1), so k ≤ x < k + 1. Since k ≥ 1, we have 1 ≤ k ≤ x < k + 1. That is, x ∈ {x ∈ R | x ≥ 1}. Hence,
∞⋃
i=1

Ai ⊆ {x ∈ R | x ≥ 1}. □

(⊇) Suppose x ∈ {x ∈ R | x ≥ 1}. Then, x ≥ 1. Consider Ax = [x, x + 1), we have x ∈ [x, x + 1). By

definition of union, Ax ⊆
∞⋃
i=1

Ai. Hence, x ∈
∞⋃
i=1

Ai, or {x ∈ R | x ≥ 1} ⊆
∞⋃
i=1

Ai.

■

Claim.
∞⋂
i=1

Ai = ∅.

Proof 24.

Note that n + 1 ∈ An+1. However, n + 1 /∈ An = [n, n + 1). That is, for every n ∈ Z+, n + 1 is not in

every Ai. So, by definition of set intersection,
∞⋂
i=1

Ai = ∅.

■

2.19 Chapter 2.3 # 12

Let Ai =

(
1

i
, i

]
=

{
x ∈ R | 1

i
< x ≤ i

}
for i ≥ 2. Compute

∞⋃
i=1

Ai and

∞⋂
i=1

Ai. Prove your

answer.

Claim.
∞⋃
i=1

Ai = (0,∞).

Proof 25.

(⊆) Suppose x ∈
∞⋃
i=1

Ai. Then, x ∈ Ak f.s. k ≥ 2. By definition of Ai, x ∈ Ak =

(
1

k
, k

]
. Since(

1

k
, k

]
⊆ (0,∞), we know x ∈ (0,∞). □

(⊇) Suppose x ∈ (0,∞). Consider ⌈x⌉, the minimum integer greater than x. Suppose k = ⌈x⌉, then

Ak =

(
1

k
, k

]
. Since k ≥ x, by definition of the ceiling function, x ∈ Ak. Since Ak ⊆

∞⋃
i=1

Ai, we know

that x ∈
∞⋃
i=1

Ai.

■

Claim.
∞⋂
i=1

Ai =

(
1

2
, 2

]
.

Proof 26.

(⊆) Suppose x ∈
∞⋂
i=1

Ai. Then, x ∈ Ak ∀k ≥ 2. Specially, x ∈ A2 =

(
1

2
, 2

]
. □
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(⊇) Suppose x ∈
(
1

2
, 2

]
. Consider Ak =

(
1

k
, k

]
f.s. k ≥ 2. Since k ≥ 2,

1

2
≤ 1

2
. Then,

(
1

2
, 2

]
⊆(

1

k
, k

]
. Hence, x ∈ Ak. Since k is arbitrary, we have proven that x ∈ Ak ∀k ≥ 2. That is, x ∈

∞⋂
i=1

Ai.

■

2.20 Chapter 2.3 # 13

Let Ai =

[
i, 1 +

1

i

]
for i ∈ Z+. Compute

∞⋃
i=1

Ai and

∞⋂
i=1

Ai. Prove your answer.

Claim.
∞⋃
i=1

Ai = [1, 2].

Proof 27.

(⊆) Suppose x ∈
∞⋃
i=1

Ai. Then, x ∈ Ak f.s. k ∈ Z+. Hence, x ∈ Ak =

[
1, 1 +

1

k

]
. That is, 1 ≤ x ≤ 1+

1

k
.

Since k ∈ Z+,
1

k
≤ 1. Then, 1 +

1

k
≤ 2. So, 1 ≤ x ≤ 1 +

1

2
≤ 2, or x ∈ [1, 2]. □

(⊇) Suppose x ∈ [1, 2]. Note that A1 = [1, 2], so x ∈ A1. Since A1 ⊆
∞⋃
i=1

Ai, by definition of set union,

x ∈
∞⋃
i=1

Ai.

■

Claim.
∞⋂
i=1

Ai = {1}.

Proof 28.

(⊆) Suppose x ∈
∞⋂
i=1

Ai. Then, x ∈ Ak ∀k ∈ Z+. By definition of Ak, x ∈ Ak =

[
1, 1 +

1

k

]
. Note

lim
k→0

(
1 +

1

k

)
= 1 + 0 = 1. So, Ak = [1, 1] = {1}, when k → ∞. □

(⊇) Suppose x ∈ {1}. Consider Ak =

[
1, 1 +

1

k

]
for some k ∈ Z+. Since 1 ∈

[
1, 1 +

1

k

]
, we have

x ∈
[
1, 1 +

1

k

]
= Ak. Since k is arbitrary, x ∈ Ak ∀k ∈ Z+. That is, x ∈

∞⋂
i=1

Ai.

■

2.21 Chapter 2.3 # 14

Let Ai =

(
i, 1 +

1

i

)
for i ∈ Z+. Compute

∞⋃
i=1

Ai and

∞⋂
i=1

Ai. Prove your answer.

Claim.
∞⋃
i=1

Ai = (1, 2), and
∞⋂
i=1

Ai = ∅.

Proof 29.

Similar proofs as done in the previous exercise.
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■

2.22 Exam 2 Review 2

For sets A,B,C,D, prove that (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).

Proof 30.

Let A,B,C,D be sets.

(⊆) Suppose (x, y) ∈ (A × B) ∩ (C × D). By definition of set intersection, (x, y) ∈ A × B and

(x, y) ∈ C × D. Since (x, y) ∈ A × B, by definition of Cartesian product, x ∈ A and y ∈ B. Similarly,

since (x, y) ∈ C × D, x ∈ C and y ∈ D. Since x ∈ A and x ∈ C, by definition of set intersection,

x ∈ A∩C. Similarly, since y ∈ B and y ∈ D, y ∈ B ∩D. Hence, (x, y) ∈ (A∩C)× (B ∩D), by definition

of Cartesian product.

(⊇) Suppose (x, y) ∈ (A∩C)× (B∩D). By definition of Cartesian product, x ∈ A∩C and y ∈ B∩D.

Since x ∈ A∩C, by definition of set intersection, x ∈ A and x ∈ C. Similarly, since y ∈ B∩D, y ∈ B and

y ∈ D. Note that x ∈ A and y ∈ B. Hence, (x, y) ∈ A×B. Further, since x ∈ C and y ∈ D, (x, y) ∈ C×D.

Therefore, (x, y) ∈ A×B and (x, y) ∈ C×D. By definition of set intersection, (x, y) ∈ (A×B)∩(C×D).

■

2.23 Exam 2 Review 3

Given the indexed sets, compute the unions and intersections. Give full and

careful proofs of each: Ai = [i− 1, i] for i = 1, · · · , n. Compute

n⋃
i=1

Ai and

n⋂
i=1

Ai.

Claim.
n⋂

i=1

Ai =


A1, n = 1

A1 ∩A2 = {1}, n = 2

∅, n ≥ 3

.

Proof 31.

We will prove that if n ≥ 3,

n⋂
i=1

Ai = ∅. Suppose x ∈ Ak f.s. k ∈ {1, 2, 3, · · · , n}. Then, by definition,

k − 1 ≤ x ≤ k. Consider Ak+2 = [k + 1, k + 2]. Since k < k + 1, x /∈ [k + 1, k + 2]. Hence,
n⋂

i=1

Ai = ∅.

■

Proof 32.

Alternatively, we can use proof by contradiction. Suppose n ≥ 3. Assume for the sake of contra-

diction that
n⋂

i=1

Ai ̸= ∅. Then, ∃ x ∈
n⋂

i=1

Ai. So, x ∈ Ai ∀i ∈ {1, 2, 3, · · · .n}. Since n ≥ 3, specifically,
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x ∈ A1 = [0, 1] and x ∈ A3 = [2, 3]. ⋇ But this is a contradiction because A1 ∩ A3 = ∅. So, it must be

that
n⋂

i=1

Ai = ∅.

■

Claim.
n⋃

i=1

Ai = [0, n].

Proof 33.

(⊆) Suppose x ∈
n⋃

i=1

Ai. Then, x ∈ Ak f.s. k ∈ {1, 2, · · · , n}. Then, by definition of Ai, x ∈ [k− 1, k], or

k−1 ≤ x ≤ k. Since 1 ≤ k ≤ n and 0 ≤ k−1 ≤ n−1, we have 0 ≤ k−1 ≤ x ≤ k ≤ n. So, x ∈ [0, n]. □

(⊇) Let x ∈ [0, n].

Case 1 x = 0. Note that x ∈ [0, 1] = A1. Then, x ∈
n⋃

i=1

Ai.

Case 2 When x > 0, set k = ⌈x⌉. Then, k ∈ N and 1 ≤ k ≤ n. Then, k − 1 ≤ x ≤ k. That is,

x ∈ [k − 1, k] = Ak. So, x ∈
n⋃

i=1

Ai.

■

2.24 Exam 2 Review 4

Here’s a mathematical statement:

(s): for all sets A and B, A ⊆ B implies that P(A) ⊆ P(B).

State the converse (s1) of (s), the contrapositive (s2) of (s), the negation (¬s) of

(s). Which of the statements (s), (s1), (s2), (¬s) are true?

Claim. (s) is true.

Proof 34.

Let A and B be sets. Suppose A ⊆ B. Suppose X ⊆ A. Since A ⊆ B,X ⊆ B. Because X ⊆ A,

X ∈ P(A). Since X ⊆ B,X ∈ P(B). Therefore, P(A) ⊆ P(B).

■

Claim. (s1): “for all sets A and B, P(A) ⊆ P(B) implies A ⊆ B” is true.

Proof 35.

Let A and B be sets. Suppose P(A) ⊆ P(B). Suppose X ∈ P(A). Then, X ⊆ A. By definition of

subsets, X ∈ P(B). So, X ⊆ B. Suppose x ∈ X. Since X ⊆ A, x ∈ A. Similarly, since X ⊆ B, x ∈ B.

Therefore, A ⊆ B.

■

Claim. Since (s) is true, the contrapositive of it (s2), “for all sets A and B, P(A) ⊈ P(B) implies A ⊈ B,”

will be true for sure.
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Claim. Since (s) is true, the negation of it (¬s) “for all sets A and B, A ⊆ B and P(A) ⊈ P(B),” will be

false.

2.25 Exam 2 Review 5

For all sets A and B, if P(A) = P(B), then A = B.

Proof 36.

To prove set equality, we will prove A ⊆ B and B ⊆ A. However, since A and B are symmetric,

WLOG, proving A ⊆ B is sufficient. Suppose X ∈ P(A). Then, X ⊆ A. Since P(A) = P(B), X ∈ P(B).

So, X ⊆ B. Suppose x ∈ X. Since X ⊆ A, x ∈ A. Similarly, since X ⊆ B, x ∈ B. Therefore, for all

x ∈ A, x ∈ B. By definition of subset, A ⊆ B.

■

2.26 Exam 2 Review 7

Find
⋂
n∈N

= nZ.

Claim.
⋂
n∈N

= nZ = {0}.

Proof 37.

(⊆) WTS: 0 ∈ nZ ∀n ∈ N. Let n ∈ N. Consider nZ. Note that 0 = n(0). Since 0 ∈ Z, 0 ∈ nZ.

Since we picked an arbitrary n ∈ Z, we’ve shown that 0 ∈ nZ ∀n ∈ N. By definition of intersection,

0 ∈
⋂
n∈N

= nZ. So, {0} ⊆
⋂
n∈N

= nZ. □

(⊇) Suppose for the sake of contradiction that an integer ̸= 0 belongs to the intersection. Then,

∃x ̸= 0 s.t. x ∈ nZ ∀n ∈ N.

Case 1 If x > 0, then x ∈ N. So, 2x ∈ N. Therefore, by our assumption, x ∈ 2xZ. Then, ∃k ∈

Z s.t. x = 2xk. So, we get k =
x

2x
=

1

2
since x ≠= 0. ⋇ This contradicts with the fact that k ∈ Z.

Therefore, our assumption is wrong. Hence, ∄x ̸= 0 s.t. x ∈ nZ ∀n ∈ N.

Case 2 If x < 0, then −x ∈ N. So, −2x ∈ N. Therefore, by our assumption, x ∈ −2xZ. Then,

∃k ∈ Z s.t. x = −2xk. So, we get k =
x

−2x
= −1

2
since x ̸= 0. However, k =

1

2
/∈ Z. ⋇ This contradicts

with the fact that k ∈ Z. Therefore, our assumption is wrong. ∄x ̸= 0 s.t. x ∈ nZ ∀n ∈ N.

■
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3 Integers and Induction

3.1 Handout Chapter 5.1-5.2-Axioms of Integers

Let a, b ∈ Z. Then (−a)(−b) = ab.

Proof 1.

Notice that a · 0 = 0. Multiply (−1) on both sides:

(−a · 0) = −0 = 0

(−a) · 0 = 0

By additive identity, b+ (−b) = 0, so we know that

(−a)(b+ (−b)) = 0.

By distributivity,

(−a)b+ (−a)(−b) = 0.

Add the additive inverse of −ab to both sides:

−ab+ (−(−ab)) + (−a)(−b) = 0 + (−(−ab))

0 + (−a)(−b) = 0 + ab

(−a)(−b) = ab.

■

3.2 Chapter 5.1 # 1-a

−(−a) = a for all a ∈ Z.

Proof 2.

By additive inverse, we know a+ (−a) = 0. Multiply (−1) on both sides:

(−1)(a+ (−a)) = 0

(−1)a+ (−1)(−a) = 0 distributivity
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Add (a) on both sides, we get

(−1)a+ (−1)(−a) + a = 0 + a

(−1)a+ a+ (−1)(−a) = a additive identity, commutativity

−a+ a+ (−1)(−a) = a

0 + (−1)(−a) = a additive inverse

(−1)(−a) = a additive identity

−(−a) = a

■

3.3 Chapter 5.1 # 1-c

a(b− c) = ab− ac for all a, b, c ∈ Z.

Proof 3.

By distributivity,

(b+ (−c))a = ba+ (−c)a

= ab+ (−1)ac commutativity

= ab− ac

■

3.4 Chapter 5.1 # 2

Let a, b ∈ Z. Prove that −(a+ b) = −a− b.

Proof 4.

−(a+ b) = (−1)(a+ b) = (−1)a+ (−1)b distributivity

= −a− b.

■

3.5 Chapter 5.1 # 3

Let a, b ∈ Z. Suppose that a < b. Prove that (−a) > (−b).
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Proof 5.

By definition, we know that a− b ∈ Z+. Since a− b = a+ (−b) = (−b) + a = (−b)− (−a), we know

(−b)− (−a) ∈ Z+. By definition, (−b) < (−a). That is, (−a) > (−b).

■

Theorem 3.1 (Well Ordering Principle for N.) If X ⊆ N and X ̸= ∅, then ∃x0 ∈ X s.t. ∀a ∈ X and

a ̸= x0, we have a− x0 ∈ Z+.

3.6 Exam 2 Review 6-a

Every non-empty subset of the rational numbers Q contains a minimum element.

Counterexample6.

Consider (−∞, 0) ∩Q. There will not be a minimum rational number in it.

□

Counterexample7.

Consider (0, 1) ∩Q. There will not be a minimum element in it.

□

Proof 8.

Suppose ∃ s0 s.t. s0 is the minimum element of (0, 1) ∩ Q. Since s0 ∈ Q,∃ p, q ∈ Z s.t. s0 =
p

q
.

Consider
p

q + 1
. Since 1 ∈ Z, q+1 ∈ Z, then

p

q + 1
∈ Q. Since s0 ∈ (0, 1) and s0 is the minimum element

of (0, 1) ∩Q, 0 < s0 < 1 and there is no element between 0 and s0. Then,
p

q
> 0. That means, p ̸= 0. So,

p

q + 1
> 0 as well. However, since q + 1 > q,

p

q + 1
<

p

q
. That is,

p

q + 1
∈ (0, s0).⋇ This contradicts with

our assumption that there is no element in (0, s0). Hence, our assumption is incorrect. So, there is no

minimum element of (0, 1) ∩Q.

■

3.7 Exam 2 Review 8

Prove that for all n ∈ N,

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3
.

Proof 9.

Let P (n) be the statement that “1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.”
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Base Case Consider P (1) : 1 · 2 =
1(1 + 1)(1 + 2)

3
. Note that 1 · 2 = 2 and

1(1 + 1)(1 + 2)

3
=

1(2)(3)

3
= 2. Therefore, 1 · 2 =

1(1 + 1)(1 + 2)

3
. That is, P (1) is correct.

Inductive Steps Suppose P (k) is true for some k ∈ N. That is,

1 · 2 + 2 · 3 + 3 · 4 · · ·+ k(k + 1) =
k(k + 1)(k + 2)

3
①

Add (k + 1)(k + 2) on both sides of equation ①, we get

1 · 2 + 2 · 3 + 3 · 4 · · ·+ k(k + 1) + (k + 1)(k + 2) =
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2)

=
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3

=
(k + 1)(k + 2)(k + 3)

3
.

Therefore, P (k + 1) is true given P (k) is true.

Since we’ve proven thatP (1) is true andP (k) =⇒ P (k+1),by Principle of Mathematical Induction,

P (n) is true for all n ∈ N.

■

Definition 3.1 (Fibonacci Sequence) The Fibonacci Sequence fn is defined recursively as follows:

f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3.

3.8 Exam 2 Review 9

Prove that for all n ∈ N,

f2
n+1 − fn+1fn − f2

n = (−1)n.

Proof 10.

Let P (n) be the statement that “f2
n+1 − fn+1fn − f2

n = (−1)n.”

Base Case Consider P (1) : f2
1+1 − f1+1f1 − f2

1 = (−1)1. Since f1 = 1 and f1+1 = f2 = 1, we

know that f2
1+1 − f1+1f1 − f2

1 = 12 − (1)(1) − (1)2 = 1 − 1 − 1 = −1. Further since (−1)1 = −1, so

f2
1+1 − f1+1f1 − f2

1 = (−1)1, and thus P (1) is true.

Inductive Steps Suppose P (k) is true for some k ∈ N. Then, f2
k+1 − fk+1fk − f2

k = (−1)k. Consider

P (k + 1) : f2
k+1+1 − fk+1+1fk+1 − f2

k+1 = f2
k+2 − fk+2fk+1 − f2

k+1. By definition of Fibonacci Sequence
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(Definition 3.1), we know fk+2 = fk + fk+1. So,

f2
k+2 − fk+2fk+1 − f2

k+1 = (fk + fk+1)
2 − (fk + fk + 1)(fk+1)− f2

k+1

= f2
k + f2

k+1 + 2fkfk+1 − fkfk+1 − f2
k+1 − f2

k+1

= f2
k + fkfk+1 − f2

k+1

= −(f2
k+1 − fk+1fk − f2

k )

= −(−1)k

= (−1)k+1.

Therefore, we get P (k) =⇒ P (k + 1).

Since we’ve proven P (1) is true and P (k) =⇒ P (k + 1), by Principle of Mathematical Induction,

P (n) is true for all n ∈ N.

■

3.9 Exam 2 Review 10

Let f : N → N be defined recursively by f(1) = 1 and f(n+1) =
√
2 + f(n) for all n ∈ N.

Prove that f(n) < 2 for all n ∈ N.

Proof 11.

Let P (n) be the statement that “f(n) < 2, where f is a function from N to N defined recursively by

f(1) = 1 and f(n+ 1) =
√
2 + f(n).”

Base Case Consider P (1). Note that, by definition of f , f(1) = 1 and 1 < 2. So, f(1) = 1 < 2 and

P (1) is true.

Inductive Steps Suppose P (k) is true for some k ≥ 1. That is, f(k) < 2. Consider f(k + 1) =√
2 + f(k). Since f(k) < 2, we have 2 + f(k) < 2 + 2 = 4. Hence, f(k + 1) =

√
2 + f(k) <

√
4 = 2. That

is, f(k + 1) < 2. So, P (k) =⇒ P (k + 1).

Since we’ve proven P (1) is true and P (k) =⇒ P (k+ 1), by mathematical induction, we know P (n)

is true for all n ∈ N.

■

3.10 Exam 2 Review 11

Prove that 13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.

Proof 12.
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Let P (n) be 13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.

Base Case Consider P (1). Since 13 = 1 and
12(1 + 1)2

4
=

12(2)2

4
=

4

4
= 1, so 13 =

12(1 + 1)2

4
.

Hence, P (1) is true.

Inductive Steps Suppose P (k) is true for some k ≥ 1. Then,

13 + 23 + 33 + · · ·+ k3 =
k2(k + 1)2

4
. ①

Consider P (k + 1). Add (k + 1)3 to both sides of equation ①, we get

13 + 23 + 33 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3

=
k2(k + 1)2 + 4(k + 1)3

4

=

[
k2 + 4(k + 1)

]
(k + 1)

2

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=
(k + 1)2[(k + 1) + 1]2

4

Hence, P (k) =⇒ P (k + 1).

Since we’ve proven P (1) is true and P (k) =⇒ P (k + 1), by Principle of Mathematical Induction,

P (n) is true for all n ∈ N.

■

3.11 Exam 2 Review 18

Let n ∈ Z and let S ⊆ Z satisfy |S| > n. Then, at least two distinct members of S are

congruent mod n.

Proof 13.

WTS: ∃ a, b ∈ S s.t. a ≡ b mod n, or n | (a − b). ∀s ∈ S, we can write s = nk + r, where k ∈ Z and

r = {0, 1, 2, · · · , n}. There are exactly n possibilities for r; however, since |s| > n, there are more than n

integers in S. So, by the Pigeonhole Principle, ∃ a, b ∈ S s.t. a = nk + r and b = nl + r, where k, l ∈ Z

and r = {0, 1, 2, · · · , n}. So, a − b = (nk + r) − (nl − r) = nk − nl = n(k − l). Since k − l ∈ Z, we know

n | (a− b). So, a ≡ b mod n.

■
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4 Equivalence Relations

4.1 Exam 2 Review 6-b

Suppose that R is an equivalence relation on A and that a, b ∈ A. Then, if [a]∩[b] ̸= ∅,

then [a] = [b].

Proof 1.

Since [a] ∩ [b] ̸= ∅, ∃x ∈ [a] ∩ [b]. By definition of set intersection, x ∈ [a] and x ∈ [b]. Since x ∈

[a], xRa. Also, since x ∈ [b], then xRb. Since R is an equivalence relation, by symmetry, aRx. Since aRx

and xRb, by transitivity, aRb. Then, [a] = [b], by definition of equivalence class.

■

4.2 Exam 2 Review 12-a

Determine whether each of the following relations on R is an equivalence relation.

Justify your answer. If R is an equivalence relation, describe its equivalence

classes: xRy if x− y ∈ Z.

Proof 2.

• Reflexive: Suppose a ∈ R. Since a− a = 0 ∈ Z, we have aRa. □

• Symmetric: Let a, b ∈ R. Suppose aRb. Then, by definition, a− b ∈ Z. That is, ∃k ∈ Z s.t. a− b = k.

Consider (b− a) = −(a− b) = −k. Since k ∈ Z, −k ∈ Z. So, b− a ∈ Z. That is, bRa. □

• Transitive: Let a, b, c ∈ R. Suppose aRb and aRc. Then, by definition, a− b ∈ Z and b− c ∈ Z. That

is, ∃ k, l ∈ Z s.t. a − b = k and b − c = l. Add the two equations, we get (a − b) + (b − c) = k + l.

Simplify, we will get a− c = k + l. Since k, l ∈ Z, k + l ∈ Z. So, a− c ∈ Z, or aRc.

■

Claim. [a] = {a− k | k ∈ Z}.

Proof 3.

(⊆) Suppose x ∈ [a]. Then, by definition, aRx. So, a − x ∈ Z. Suppose a − x = m f.s. m ∈ Z. Then,

−x = m− a, or x = a−m. Since m ∈ Z, x ∈ {a− k | k ∈ Z}. □

(⊇) Suppose x ∈ {a− k | k ∈ Z}. Then, x = a − m f.s. m ∈ Z. Consider a − x = a − (a − m) =

a− a+m = m. Since m ∈ Z, a− x ∈ Z. That is, aRx, or x ∈ [a], by definition of equivalence class.

■
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4.3 Exam 2 Review 12-b

Determine whether each of the following relations on R is an equivalence relation.

Justify your answer. If R is an equivalence relation, describe its equivalence

classes: xRy if x+ y ∈ Z.

Disproof 4.

R is not an equivalence relation because it is not reflexive. Suppose a ∈ R. Then, a + a = 2a ∈ R,

but it does not always hold that 2a ∈ Z. Therefore, a ̸ Ra, or R is not reflexive.

■

4.4 Exam 2 Review 13

Prove or disprove: R is an equivalence relation on Z. If R is an equivalence

relation, describe its equivalence classes: xRy if 4 | (x+ y).

Disproof 5.

R is not an equivalence relation because it is not reflexive. Suppose a ∈ Z. Consider a + a = 2a.

Since a ∈ Z, 2a ∈ Z, but 4 ∤ 2a for all a ∈ Z. Therefore, a ̸ Ra, and so R is not reflexive.

■

4.5 Exam 2 Review 14

Prove or disprove: R is an equivalence relation on Z. If R is an equivalence

relation, describe its equivalence classes: xRy if 4 | (x+ 3y).

Proof 6.

• Reflexive: Suppose a ∈ Z. Consider a + 3a = 4a. Since a ∈ Z, 4 | 4a. That is, 4 | a + 3a, or

aRa. □

• Symmetric: Suppose a, b ∈ Z. Then, a+ 3b = 4k f.s. k ∈ Z. So, a = 4k − 3b. Consider

b+ 3a = b+ 3(4k − 3b) = b+ 12k − 9b

= 12k − 8b

= 4(3k − 2b).

Since k, b ∈ Z, 4k − 2b ∈ Z. So, 4 | 4(3k − 2b), or 4 | b+ 3a. Hence, bRa. □
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• Transitive: Let a, b, c ∈ Z. Suppose aRb and bRc. Then, 4 | a + 3b and 4 | b + 3c. Hence, ∃ k, l ∈

Z s.t. a+ 3b = 4k and b+ 3c = 4l. Hence, a = 4k − 3b and 3c = 4l − b. Consider

a+ 3c = 4k − 3b+ 4l − b = 4k + 4l − 4b = 4(k + l − b).

Since k, b, l ∈ Z, k + l − b ∈ Z. So, 4 | 4(k + l − b), or 4 | a+ 3c. Therefore, aRc. □

Since R is symmetric, reflexive, and transitive, R is an equivalence relation.

■

Claim. [i] = {4k + i | k ∈ Z} ∀i ∈ {0, 1, 2, 3}.

Proof 7.

(⊆) Suppose x ∈ [i]. Then, xRi. By definition of R, 4 | x+ 3i. So, x+ 3i = 4k f.s. k ∈ Z. Then,

x = 4k − 3i = 4(k − i)− 3i+ 4i = 4(k − i) + i.

Since k ∈ Z and i ∈ {0, 1, 2, 3}, we know k − i ∈ Z. Then, x = 4(k − i) + i ∈ {4k + i | k ∈ Z}. □

(⊇) Suppose x ∈ {4k + i | k ∈ Z}. Then, x = 4k + i f.s. k ∈ Z. Consider

x+ 3i = 4k + i+ 3i = 4k + 4i = 4(k + i).

Since k ∈ Z and i ∈ {0, 1, 2, 3}, we know k+ i ∈ Z. Then, 4 | 4(k+ i), or x | x+3i. That is, xRi, or x ∈ [i].

■

4.6 Exam 2 Review 15

Define a relation R on R2 as follows: for all (a1, b1), (a2, b2) ∈ R2, (a1, b1)R(a2, b2) if

(a1, b1) and (a2, b2) are on the same line through the origin. Decide whether R is an

equivalence relation - either show why or why not. If it is, what are the elements

of the equivalence class [(1, 2)]?

Proof 8.

• Reflexive: Suppose (a, b) ∈ R2. The line of (a, b) and the origin is y =
b

a
x. Apparantly, (a, b) and

(a, b) is both on y =
b

a
x. So, (a, b)R(a, b). □

• Symmetric: Suppose (a1, b1) and (a2, b2) ∈ R2. Let (a1, b1)R(a2, b2). The line between (a1, b1) and

the origin is y =
b1
a1

x. Then, (a2, b2) is on the same line: b2 =
b1
a1

· a2. So,
b2
a2

=
b1
a1

. That is,
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b2
a2

· a1 = b1, or (a1, b1) is on the line y =
b2
a2

x. Since y =
b2
a2

x is the line between (a2, b2) and (0, 0),

we have (a2, b2)R(a1, b1). □

• Transitive: Suppose (a1, b1), (a2, b2), and (a3, b3) ∈ R2. Suppose (a1, b1)R(a2, b2) and (a2, b2)R(a3, b3).

Then,
b1
a1

=
b2
a2

and
b2
a2

=
b3
a3

. So,
b1
a1

=
b2
a2

=
b3
a3

. Then, (a1, b1)R(a3, b3).

■

Claim. [(1, 2)] = {(x, y) | y = 2x}.

Proof 9.

(⊆) Suppose (x, y) ∈ [(1, 2)]. Then, (x, y)R(1, 2). So,
y

x
=

2

1
. That is, y = 2x. Hence, (x, y) ∈

{(x, y) | y = 2x; x, y ∈ R}. □

(⊇) Suppose (x, y) ∈ {(x, y) | y = 2x}. Then, (x, y) = (x, 2x). Since
2x

x
=

2

1
, we have (x, 2x)R(1, 2).

Therefore, (x, y) ∈ [(1, 2)].

■
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5 Functions

5.1 Exam 2 Review 17

Let A = {x, y, z}. Define functions f : P(A) by f(a) = {a} and g : A → P(A) by g(a) =

A− {a}. Find Im(f) and Im(g).

Claim. Im(f) = {{x}, {y}, {z}}.

Proof 1.

(⊆) Suppose a ∈ A. Then, we have f(a) = {a}. Since a ∈ A, {a} ∈ {{x}, {y}, {z}}. Therefore,

Im(f) ⊆ {{x}, {y}, {z}}. □

(⊇) Suppose a ∈ {{x}, {y}, {z}}. WLOG, suppose a = {x}. Choose b = x. So, f(b) = {b} = {x} = a.

Therefore, a ∈ Im(f). That is, {{x}, {y}, {z}} ⊆ Im(f).

■

Claim. Im(g) = {{y, z}, {x, z}, {x, y}}.

Proof 2.

(⊆) Suppose a ∈ A. Then, a = x, or a = y, or a = z. WLOG, suppose a = x. Then,

f(a) = A− {a} = {x, y, z} − {x} = {y, z}.

Since {y, z} ⊆ {{y, z}, {x, z}, {x, y}},we know that f(a) ∈ {{y, z}, {x, z}, {x, y}}.Therefore, we’ve proven

Im(f) ⊆ {{y, z}, {x, z}, {x, y}}. □

(⊇) Suppose a ∈ {{y, z}, {x, z}, {x, y}}. WLOG, suppose a = {y, z}. Note that

∃x ∈ A s.t. f(x) = A− {x} = {y, z} = a.

So, a ∈ Im(f). That is, {{y, z}, {x, z}, {x, y}} ⊆ Im(f).

■

5.2 Exam 2 Review 17

Let f : R → R be given by f(x) = 2x3 + 3x2 − 12x+ 1. Let X = [−1, 2]. Find f(X).

Answer 3.

Find f ′(x) = 6x2 + 6x − 12. So, f(x) is not always increasing or decreasing. Find critical points by

setting f ′(x) = 0 : 6x2+6x− 12 = 0, so we get (x+2)(x− 1) = 0, or x = −2, x = 1. Since X = [−1, 2], it
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must be x = 1. Check f ′′(x) = 12x+ 6 : f ′′(1) = 12(1) + 6 = 12 + 6 > 0. So, f(1) is the minimum value:

f(1) = 2(1)3+3(1)2−12(1)+1 = −6. Then, maximum value will be found at x = −1 or x = 2. At x = −1,

f(−1) = 2(−1)3 + 3(−1)2 − 12(−1) + 1 = 14. At x = 2, we have f(2) = 2(2)3 + 3(2)2 − 12(2) + 1 = 5.

Since 14 > 5, maximum value occurs at x = −1. So, f(X) = [−6, 14].

□

Definition 5.1 (ε − δ Definition of Continuity) Suppose f : R → R is defined by f(x), then f is contin-

uous at x = a when then following condition is satisfied:

∀ε > 0, ∃δ ∈ R s.t. |x− a| < δ =⇒ |f(x)− f(a)| < ε

5.3 Exam 3 Review 2

Consider the function f(x) =


0, x < 0

1, x ≥ 0

. Rigorously prove that f is discontinuous at

x = 0. Your proof should involve ε and δ.

Proof 4.

Choose ε =
1

2
. Then, we need |f(x)− f(0)| < 1

2
. That is, we want |f(x)− 1| < 1

2
, or −1

2
< f(x)−1 <

1

2
. That is,

1

2
< f(x) <

3

2
. Note that ∀x ∈ (−δ, 0), f(x) = 0, by definition of (x). That is, f(x) /∈

(
1

2
,
3

2

)
.

So, f is discontinuous at x = 0.

■

5.4 Exam 3 Review 3-a

Use the formal definition of continuity, prove that the function f(x) = x2 + 4x+ 3 is

continuous at x = −2.

Proof 5.

Let ε > 0 be given. Suppose δ =
√
ε. Since ε > 0, we know δ =

√
ε > 0. Suppose |x− (−2)| =

|x+ 2| < δ. Then,

|f(x)− f(−2)| =
∣∣x2 + 4x+ 3− (−1)

∣∣ = ∣∣x2 + 4x+ 3 + 1
∣∣ = ∣∣x2 + 4x+ 4

∣∣
=
∣∣(x+ 2)2

∣∣
= |x+ 2||x+ 2|

< δ · δ =
√
ε ·

√
ε = ε.
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Since ε was arbitrary, we’ve shown that

∀ε > 0, ∃ δ =
√
ε > 0 s.t. |x+ 2| > δ =⇒ |f(x)− f(−2)| < ε.

So, f is continuous at x = −2.

■

5.5 Exam 3 Review 3-b

Use the formal definition of continuity, prove that the function f(x) = x2 + 4x+ 3 is

continuous at x = 2.

Proof 6.

Let ε > 0 be given. Suppose δ = min
{
1,

ε

9

}
. Then, δ ≤ 1 and δ ≤ ε

9
. Suppose x ∈ R and |x− 2| < δ.

Since |x− 2| < δ ≤ 1, we have 1 < x < 3. So, 7 < x+ 6 < 9. That is, |x+ 6| < 9. Then,

|f(x)− f(2)| =
∣∣x2 + 4x+ 3− 15

∣∣ = ∣∣x2 + 4x− 12
∣∣

= |(x− 2)(x+ 6)|

= |x− 2||x+ 6|

< 9|x− 2|

< 9 · δ

≤ 9 · ε
9
= ε.

Since ε was arbitrary, we’ve proven that

∀ε > 0,∃ δ = min
{
1,

ε

9

}
> 0 s.t. |x− 2| < δ =⇒ |f(2)− f(x)| < ε.

So, by the definition of continuity, f is continuous at x = 2.

■

5.6 Exam 3 Review 6

Prove or disprove: Every injective map form R → R is bijective.

Disproof 7.

Consider f : R → R defined as f(x) = ex. For x, y ∈ R, if f(x) = f(y), we have ex = ey. Take

logarithm with base e, we have ln ex = ln ey. So, x = y. Hence, f is injective. Consider b = −1 ∈ R. Set
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f(x) = −1. That is, ex = −1. ⋇ This contradicts with the fact that f(x) > 0. Therefore, our assumption

is wrong, and f(x) cannot be −1. Hence, by definition, f is not surjective.

■

5.7 Exam 3 Review 7

Show that the function f : R − {0} → R defined by f(x) =
x+ 1

x
is injective but not

surjective. How could we change the codomain so that f is surjective?

Proof 8.

• Injective: Suppose x, y ∈ R− {0} s.t. f(x) = f(y). Then, we get

x+ 1

x
=

y + 1

y

(x+ 1)y = (y + 1)x

xy + y = xy + x

y = x.

So, f(x) = f(y) =⇒ x = y. That is, f is injective. □

• Not Surjective: Set f(x) = 1. So we should have
x+ 1

x
= 1. So, x + 1 = x, or 1 = 0. This is not

possible, so f(x) ̸= 1. Therefore, f is not surjective.

■

Answer 9.

We can change the codomain to R− {1}. So that our function will become surjective.

□

5.8 Exam 3 Review 11-a

Let f : A → B for a function and X ⊆ A. Prove or disprove: f−1(f(X)) = X.

Disproof 10.

Consider A = {1, 2, 3} and B = {a, b}. Define f(1) = a and f(2) = f(3) = b. Set X = {2}, then

f(X) = f({2}) = {b}. Therefore, f−1(f(X)) = f−1({b}) = {2, 3}. Since 3 ∈ f−1(f(X)) but 3 /∈ X,

f−1(f(X)) ̸= X.

■
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5.9 Exam 3 Review 11-b

Let f : A → B for a function and X ⊆ A. Prove or disprove: f(f−1(f(X))) = f(X).

Proof 11.

Let f : A → B be a function and X ⊆ A.

(⊆) Suppose x ∈ f(f−1(f(X))). Then, ∃a ∈ f−1(f(X)) s.t. f(a) = x. Since a ∈ f−1(f(X)), f(a) ∈

f(X). Note f(a) = x, so x ∈ f(X). □

(⊇) Suppose x ∈ f(X). Then, ∃a ∈ X s.t. f(a) = x. Since f(a) = x ∈ f(X), we have f(a) ∈ f(X).

Then, a ∈ f−1(f(X)). Therefore, f(a) ∈ f(f−1(f(X))). That is, x ∈ f(f−1(f(X))).

■

5.10 Exam 3 Review 12

Let f : A → B and g : B → C, and assume that f is surjective. Prove that g ◦ f is

injective if and only if g and f are both injective.

Proof 12.

(⇒) Suppose g ◦ f is injective.

• f injective: Let x, y ∈ A s.t. f(x) = f(y). Apply g on both sides, we get g(f(x)) = g(f(y)). That is,

(g ◦ f)(x) = (g ◦ f)(y). Since (g ◦ f) is injective, we have x = y. Hence, f is injective.

• g injective: Let x, y ∈ B s.t. g(x) = g(y). Since f is surjective from A → B, ∃ a, b ∈ A s.t. f(a) = x

and f(b) = y. Then, g(x) = g(f(a)) = (g ◦ f)(a) and g(y) = g(f(b)) = (g ◦ f)(b). Therefore,

(g ◦ f)(a) = (g ◦ f)(b). Since g ◦ f is injective, we have a = b. Since f is injective (proven above),

we have f(a) = f(b). Since f(a) = x and f(b) = y, we know x = y, and hence g is also injective.

□

(⇐) Suppose g and f are injective. Let x, y ∈ A s.t. (g ◦ f)(x) = (g ◦ f)(y). Since (g ◦ f)(x) = g(f(x)) and

(g ◦ f)(y) = g(f(y)), we have g(f(x)) = g(f(y)). Since g is injective, we know f(x) = f(y). Further since

f is also injective, we have x = y. Then, g ◦ f is injective.

■

5.11 Exam 3 Review 13

Suppose that f : A → B is a function. Prove that f is injective if and only if for

all subsets C,D of A, f(C ∩D) = f(C) ∩ f(D).

Page 41 of 43



Practice Proofs

Proof 13.

Let f : A → B be an injective function. Let C,D ⊆ A.

(⇒)Suppose f is injective. WTS: f(C ∩D) = f(C) ∩ f(D).

(⊆) Let x ∈ f(C ∩D). Then, ∃ a ∈ C ∩D s.t. f(a) = x. Since a ∈ C ∩D, we have a ∈ C and a ∈ D.

Since a ∈ C, f(a) ∈ f(C) That is, x ∈ f(C). Similarly, since a ∈ D, f(a) ∈ f(D), and thus x ∈ f(D).

Since x ∈ f(C) and x ∈ f(D), by definition of set intersection, x ∈ f(C) ∩ f(D). □

(⊇) Let x ∈ f(C) ∩ f(D). Then, x ∈ f(C) and x ∈ f(D). So, ∃ c ∈ C s.t. f(c) = x and ∃ d ∈

D s.t. f(d) = x. Therefore, we know f(c) = f(d) = x. Since f is injective, we have c = d. Hence, c ∈ C

and c ∈ D, and that is, c ∈ C ∩D. So, f(c) = x ∈ f(C ∩D). □

(⇐) Suppose f(C ∩ D) = f(C) ∩ f(D). Suppose x, y ∈ A s.t. f(x) = f(y). Say f(x) = f(y) =

m. Suppose C = {x} ⊆ A and D = {y} ⊆ A. Then, by assumption, f(C) = f({x}) = {m} and

f(D) = f({y}) = {m}. So, f(C ∩ D) = f(C) ∩ f(D) = {m} ∩ {m} = {m}. If C ∩ D = ∅, then

f(C ∩D) = f(∅) = ∅ ̸= {m}. Hence, C ∩D ̸= ∅. That is, {x} ∩ {y} ≠ ∅. The only way for intersection

of two single-element sets being non-empty is that the two elements are identical. So, x = y.

■

5.12 Exam 3 Review 14

Let A,B be sets, and let F (A,B) denote the set of all functions from A to B. Let

g : A → A be a bijection. Define a new function ∆g : F (A,B) → F (A,B) as follows:

f 7→ f ◦ g. Prove that ∆g is a bijection.

Proof 14.

• Injective: Suppose f, h ∈ F (A,B) s.t. ∆g(f) = ∆g(h). Since g is a bijection, g is also invertible.

Denote the inverse of g as g−1. By definition, ∆g(f) = f ◦ g and ∆g(h) = h ◦ g. So, by assumption,

f ◦ g = h ◦ g. Apply f ◦ g and h ◦ g to g−1, respectively, we have (f ◦ g) ◦ g−1 = (h ◦ g) ◦ g−1. So,

we know that f ◦ (g ◦ g−1) = h ◦ (g ◦ g−1). Since g ◦ g−1 = iA, we have f ◦ iA = h ◦ iA. That is,

f = h. □

• Surjective: Suppose h ∈ F (A,B). Choose f = h ◦ g−1 ∈ F (A,B). Then,

∆g(f) = f ◦ g = (h ◦ g−1) ◦ g = h ◦ (g−1 ◦ g) = h ◦ iA = h.

Therefore, ∃f = h ◦ g−1 ∈ F (A,B) s.t. ∆g(f) = h ∀h ∈ F (A,B). That is, ∆g is surjective.

■
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5.13 Exam 3 Review 15-a

Let A,B be sets, and let f : A → B be a function. Let I be an index, and let

{Ci}i∈I be a collection of subsets such that for all i ∈ I, Ci ⊆ B. Prove that

f−1

(⋂
i∈I

Ci

)
=
⋂
i∈I

f−1(Ci).

Proof 15.

(⊆) Suppose a ∈ f−1

(⋂
i∈I

Ci

)
. So, by definition of inverse image, f(a) ∈

⋂
i∈I

Ci.That is, ∀i ∈ I, f(a) ∈

Ci. By definition of inverse image, a ∈ f−1(Ci) ∀i ∈ I. That is, a ∈
⋂
i∈I

f−1(Ci), by definition of set

intersection. □

(⊇) Suppose a ∈
⋂
i∈I

f−1(Ci). By definition of set intersection, a ∈ f−1(Ci) ∀i ∈ I. By definition of

inverse image, f(a) ∈ Ci ∀i ∈ I. That is, f(a) ∈
⋂
i∈I

Ci. So, a ∈ f−1

(⋂
i∈I

Ci

)
.

■

5.14 Exam 3 Review 15-a

Let A,B be sets, and let f : A → B be a function. Let I be an index, and let

{Ci}i∈I be a collection of subsets such that for all i ∈ I, Ci ⊆ B. Prove that

f−1

(⋃
i∈I

Ci

)
=
⋃
i∈I

f−1(Ci).

Proof 16.

(⊆) Suppose a ∈ f−1

(⋃
i∈I

Ci

)
. By definition of inverse image, f(a) ∈

⋃
i∈I

Ci. Hence, by definition

of set union, f(a) ∈ Ck f.s. k ∈ I. So, a ∈ f−1(Ck) f.s. k ∈ I. Since f−1(Ck) ⊆
⋃
i∈I

f−1(Ci), we have

a ∈
⋃
i∈I

f−1(Ci). □

(⊇) Suppose a ∈
⋃
i∈I

f−1(Ci). Then, by definition of set union, a ∈ f−1(Ck) f.s. k ∈ I. By definition of

inverse image, f(a) ∈ Ck f.s. k ∈ I. So, f(a) ∈
⋃
i∈I

Ci. That is, a ∈ f−1

(⋃
i∈I

Ci

)
.

■
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