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1 PREREQUISITES

1 Prerequisites

Definition 1.0.1 (Geometric Series). A geometric series has the form

∞∑
n=1

arn−1 = a+ ar + ar2 + · · ·

If |r| < 1, then the series converges to
a

1− r
. Otherwise, it diverges.

Example 1.0.2 Does the series
∞∑
n=1

22n31−n converge or divers?

Solution 1.
Note that

22n31−n =
(
22
)n
31−n = 4n

(
1

3

)n−1

= 4 · 4n−1

(
1

3

)n−1

= 4

(
4

3

)n−1

.

So,
∞∑
n=1

22n31−n =
∞∑
n=1

4

(
4

3

)n−1

is a geometric series, with a = 4 and r =
4

3
.

Since |r| =
∣∣∣∣43
∣∣∣∣ = 4

3
> 1, the series diverges. □

Definition 1.0.3 (Taylor Series). The Taylor series expanded about a of a differentiable func-
tion f is

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · · .

Definition 1.0.4 (Maclaurin Series). The Taylor series expanded about a = 0.

Remark. The Maclurin Series of ex is given by ex =
∞∑
n=0

xn

n!
.
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1 PREREQUISITES

Theorem 1.0.5 Binomial Expansion

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k,

where
(
n

k

)
is read as “n choose k” and can also be written as nCk.

(
n

k

)
=

n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)

k!
.

Theorem 1.0.6 Integration by Parts∫
u dv = uv −

∫
v du.

Example 1.0.7 Evaluate
∫

xe−x dx.

Solution 2.
Let u = x, dv = e−x dx. So, du = dx and v =

∫
e−x dx = −e−x. Then,

∫
xe−x dx = −xe−x −

∫
−e−x dx = −xe−x − e−x + C.

□

Definition 1.0.8 (Type I Improper Integral). If
∫ t

a

f(x) dx exists for all t > 0, then

∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx.

Example 1.0.9 Evaluate
∫ ∞

0

xe−x dx.

Solution 3.∫ ∞

0

xe−x dx = lim
t→∞

∫ t

0

xe−x dx = lim
t→∞

[
−xe−x − e−x

]t
0

= lim
t→∞

(
−te−t − e−t + 1

)
= − lim

t→∞

(
t

et

)
− lim

t→∞
e−t + 1

= − lim
t→∞

(
1

et

)
− 0 + 1 = −0− 0 + 1 = 1.
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1 PREREQUISITES

□

Example 1.0.10 Double Integrals over Irregular Domains.
Consider ∫∫

D

4xy − y4 dA,

where D is the region bounded between y =
√
x and y = x3.

Evaluate this double integral over D.
Solution 4.
Firstly, we draw the diagram representing D as follows:

x

y

D
y =

√
x

y = x3

1

1

∫∫
D

4xy − y3 dA =

∫ 1

0

∫ √
x

x3

4xy − y3 dydx =

∫ 1

0

[
2xy2 − 1

4
y4
]√x

x3

dx

=

∫ 1

0

2x
(
x− x6

)
− 1

4

(
x2 − x12

)
dx

=

∫ 1

0

2x2 − 2x7 − 1

4
x2 +

1

4
x12 dx

=

[
2

3
x3 − 1

4
x8 − 1

12
x3 +

1

52
x13

]1
0

=
2

3
− 1

4
− 1

12
+

1

52
=

55

156
.

□
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2 PROBABILITY

2 Probability

2.1 Sample Space and Probability

Definition 2.1.1 (Experiment). An experiment is a procedure with well-defined outcome.
Definition 2.1.2 (Sample Space/S). The sample space, denoted as S is the set of all possible
outcomes of an experiment.
Definition 2.1.3 (Event). An event is a collection of outcomes.

Example 2.1.4 Consider flipping two coins. Use H to represent heads and T to represent
tails. Then, S = {HH,HT, TH, TT}. Event “one heads”= {HT, TH}, and the event “at
least one heads”= {HT, TH,HH}.

Definition 2.1.5 (Union/∪). A ∪ B is the union of A and B, meaning everything in A and
everything in B.

A BS

Definition 2.1.6 (Intersection/∩). A ∩ B is the intersection of A and B, everything in both A

and B

A BS

A ∩B

Definition 2.1.7 (Complement/Ac). Ac denotes the complement of A, meaning everything
inS that is not in A.

A

S Ac

Corollary 2.1.8 A ∩ Ac = {} = ∅.
Definition 2.1.9 (Mutually Exclusive). Two sets A and B over the same sample space are
mutually exclusive if they have no outcomes in common. i.e., A ∩B = ∅.

5



2 PROBABILITY 2.1 Sample Space and Probability

Remark. A and Ac are mutually exclusive, but not all sets mutually exclusive are complements
of each other.

Definition 2.1.10 (Probability Function). Let A be an event over a sample space S. Then,
P(A) denotes the probability of A and P is the probability function. The probability function
P assigns a number P(A) for each event A ⊆ S.
Axiom 2.1.11 Kolmogorov Axioms

1. Let A be an event in S, then P(A) ≥ 0.

2. P(S) = 1.

3. If A and B are mutually exclusive, then P(A ∪B) = P(A) +P(B).

4. If A1, . . . , An, . . . are mutually exclusive sets, then

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Proposition 2.1.12 P(Ac) = 1−P(A).
Proof 1. Note that P(S) = 1. Since Ac ∪ A = S, we have P(A ∩ Ac) = 1. Since A and Ac are

mutually exclusive, P(A ∪ Ac) = P(A) +P(Ac) = 1. So, P(Ac) = 1−P(A). ■

Proposition 2.1.13 P(∅) = 0.
Proof 2. Note that P(S) = 1. Then, P(Sc) = 1 − P(S). By definition, we know Sc = ∅. So,

P(∅) = 1−P(S) = 1− 1 = 0. ■

Proposition 2.1.14 P(A ∪B) = P(A) +P(B)−P(A ∩B)

Proof 3. Consider the following Venn diagram:

AS B

A ∩Bc Ac ∩B

A ∩B

Note that P(A) = P(A ∩B) +P(A ∩Bc) and P(B) = P(A ∩B) +P(Ac ∩B). So, we have

P(A) +P(B) = P(A ∩Bc) +P(Ac ∩B) +P(A ∩B) +P(A ∩B). (1)

From the Venn diagram, we notice that P(A∩Bc) +P(Ac ∩B) +P(A∩B) is exactly P(A∪B).
So, Eq. (1) becomes P(A) + P(B) = P(A ∪ B) + P(A ∩ B). That is exactly what is required:
P(A ∪B) = P(A) +P(B)−P(A ∩B). ■

6



2 PROBABILITY 2.1 Sample Space and Probability

Definition 2.1.15 (Classical Probability). In a discrete and finite case, S is finite and all out-
comes are equally likely, and the probability function is defined as

P(A) =
|A|
|S|

,

where |A| is the cardinality of A and |S| is the cardinality of S.

Example 2.1.16 Despite the definition of classical probability (probability function de-
fined for a discrete and finite case), there are other definitions of probability functions:

1. Discrete and Countably Infinite:

Let S = N be the set of natural numbers. Then,

P(k) =
1

2k
.

It can also be verified that

P(S) =
∞∑
k=1

1

2k
= 1.

2. Continuous and Uncountably Infinite:

Let S = [0, 1]. Suppose E is a subset of [0, 1] such that
∫
E

dx is defined. Then,

P(E) =

∫
E

dx,

and it can also be verified that P(S) = 1.
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2 PROBABILITY 2.2 Conditional Probability and Independence

2.2 Conditional Probability and Independence

Definition 2.2.1 (Conditional Probability). We read P(A|B) as the probability of A given
B. Knowing B occurs, we create a new sample space, in which the probability of A occurs
changes:

P(A|B) =
|A ∩B|
|B|

=
|A ∩B|
|B|

· 1/|S|
1/|S|

=
|A ∩B|/|S|
|B|/|S|

=
P(A ∩B)

P(B)
.

Corollary 2.2.2 P(A ∩B) = P(A|B)P(B)

Example 2.2.3 Find the probability of dealing A first, 2 second, and 3 third.
Solution 1.

P(dealing A, 2, 3) = P(A first)P(2 second|A first)P(3 third|A first ∩ 2 second)

=
4

52
· 4

51
· 4

50

□

Corollary 2.2.4 P(A1 ∩ A2 ∩ A3) = P(A1)P(A2|A1)P(A3|A2 ∩ A1).

Theorem 2.2.5 The Law of Total Probability
Suppose the sample space S = A1 ∪ A2 ∪ · · · ∪ An, with Ai ∩ Aj = ∅ ∀i ̸= j . Then,

P(B) = P(B ∩ A1) +P(B ∩ A2) + · · ·+P(B ∩ An).

Remark. This theorem gives us a nice way to partition the sample space.

Example 2.2.6

A1S B

A2

As represented in the diagram above, P(B) = P(B ∩ A1) +P(B ∩ A2).

Theorem 2.2.7 Bayes Theorem

P(B|A) = P(A ∩B)

P(A)
=

P(A|B)P(B)

P(A|B)P(B) +P(A|Bc)P(Bc)
.
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2 PROBABILITY 2.2 Conditional Probability and Independence

Example 2.2.8 Coronary Artery Disease (CAD)
The probability of someone having CAD is 60%. In a study of 101 patients, 37 of them

are known to NOT have CAD and 64 are known to have CAD. Of the 37 patients without
CAD, 34 had negative tests while 3 had positive tests. Of the 64 with CAD, 54 had positive
tests and 10 had negative tests. Find the probability of a patient has CAD given positive
test.

Solution 2.
Let T+ be positive test, T− be negative test, D+ be presence of CAD, and D− be ab-

sence of CAD. Then, from the problem, we have

P(D+) = 0.6; P(D−) = 1−P(D+) = 0.4

and

P(T + |D+) =
54

64
≈ 0.84; P(T − |D−) =

34

37
≈ 0.92; P(T + |D−) =

3

37
≈ 0.08.

Then, by Bayes Theorem,

P(D + |T+) =
P(T + |D+)P(D+)

P(T + |D+)P(D+) +P(T + |D−)P(D−)

=
0.84× 0.6

0.84× 0.6 + 0.08× 0.4
≈ 0.94 .

□

Definition 2.2.9 (Independence). Events A and B are independent if P(A|B) = P(A), mean-
ing the occurrence of B does note affect the occurrence of A.
Corollary 2.2.10 If A and B are independent, then P(A ∩B) = P(A|B)P(B) = P(A)P(B).

Example 2.2.11Draw a card from 52 card deck
Let A: The card is an Ace and H: The card is a hearts. Then,

P(A ∩H) = P(The card is an Ace of hearts) =
1

52
=

1

4
· 1

13
= P(H)P(A).

So, ranks and suits are independent.

Example 2.2.12 Mutually Exclusive v.s. Independence
A coin is flipped twice: S = {HH,TH,HT, TT}. Let A = The first flip is H = {HH,HT}

and B = The second flip is T = {HT, TT}.

9



2 PROBABILITY 2.2 Conditional Probability and Independence

• A and B are independent: A ∩ B = {HT}. So, P(A ∩ B) =
1

4
. Since P(A ∩ B)

1

4
=

1

2
· 1
2
= P(A)P(B), we know A and B are independent.

• A and B are not mutually exclusive because P(A ∩B) =
1

4
̸= 0.

Definition 2.2.13 (Repeated Trials). A sequence of events A1, . . . , An is called independent if
for any combination

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P(Ai1)P(Ai2) · · ·P(Aik).

In this case, each individual event is called a trial.

Example 2.2.14 Roll a fair die repeatedly. What is the probability that the first 6 appears
on the roll k? If I win when 6 is rolled, what is the probability that I win?

Solution 3.
Let Aj = the first 6 is rolled on roll j.

j = 1 P(A1) =
1

6

j = 2 P(A2) =

(
5

6

)(
1

6

)

j = 3 P(A3) =

(
5

6

)(
5

6

)(
1

6

)
=

(
5

6

)2(
1

6

)

j = 4 P(A4) =

(
5

6

)3(
1

6

)
...

j = k P(Ak) =

(
5

6

)k−1(
1

6

)
So,

P(I win) = P(A1) +P(A2) + · · ·+P(Ak) + · · ·

=
1

6
+

(
5

6

)(
1

6

)
+ · · ·+

(
5

6

)k−1(
1

6

)
+ · · ·

=

(
1

6

)(
1 +

(
5

6

)
+ · · ·+

(
5

6

)k−1

+ · · ·

)

=

(
1

6

) ∞∑
i=0

(
5

6

)i

=
1

6
· 1

1− 5

6

=
1

6
· 6 = 1 .
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2 PROBABILITY 2.2 Conditional Probability and Independence

□

Example 2.2.15 Three people A,B and C take turn to flip a coin. Whoever gets a heads
wins. Find the probability of each individual winning.

Solution 4.
First consider the case when Player A wins. Let Aj = Player A wins on the j-th turn.

j = 1 P(A1) =
1

2

j = 2 P(A2) =

(
1

2
· 1
2
· 1
2

)(
1

2

)

j = 3 P(A3) =

(
1

2
· 1
2
· 1
2

)(
1

2
· 1
2
· 1
2

)(
1

2

)
=

(
1

2
· 1
2
· 1
2

)2(
1

6

)

j = 4 P(A4) =

(
1

2
· 1
2
· 1
2

)3(
1

2

)
...

j = k P(Ak) =

(
1

2
· 1
2
· 1
2

)k−1(
1

2

)
=

(
1

8

)k−1(
1

2

)
So,

P(A wins) =
∞∑
j=1

P(Aj) =
1

2
+

(
1

8

)(
1

2

)
+ · · ·+

(
1

8

)k−1(
1

2

)
+ · · ·

=
1

2

∞∑
i=0

(
1

8

)i

=
1

2
· 1

1− 1

8

=
1

2
· 8
7
=

4

7
.

Similarly, we can get the probability of player B wins to be P(B wins) =
2

7
. Finally, we can

compute the probability of player C wins by

P(C wins) = 1−P(A wins)−P(B wins) = 1− 4

7
− 2

7
=

1

7
.

□
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2 PROBABILITY 2.3 Combinatorics

2.3 Combinatorics

Theorem 2.3.1 Multiplication Rule
If operation A can be performed in n ways and operation B in m ways, then the se-
quence (operation A, operation B) can be performed in n×m ways.

Corollary 2.3.2 Ordered Sequence Consider a set A and |A| = n. Then, an ordered sequence
of A, (x1, x2, . . . , xk) s.t. xi ∈ A, is picked with replacement of elements. Then,

|(x1, x2, . . . , xk)| = nk.

Remark. In this situation, repetition is allowed.

Definition 2.3.3 (Permutation). Permutation is an ordered sequence without replacement of
elements. That is, (x1, x2, . . . , xk) s.t. xi ∈ A and xi ̸= xj∀i ̸= j. Then,

|(x1, x2, . . . , xk)| = n(n− 1) · · · (n− k + 1).

It is also written as nPk =
n!

(n− k)!
.

Definition 2.3.4 (Combination). Combination is an unordered permutation (no order, no
replacement of elements). So, we have

permutation = combination × orderings

nPk =n Ck × k!

nCk =
nPk

k!
=

n!

(n− k)!k!
=

(
n

k

)
Remark. People are always distinct. Letter or coins are not usually distinct.

Example 2.3.5 How many ways can we scramble the letters in STATISTICS?
Solution 1.
If the letter are distinct, then 10! ways to scramble the word. However, they are not

distinct:

Non-distinct Letters Ways to Scramble
S − 3 3!

T − 3 3!

I − 2 2!

12



2 PROBABILITY 2.4 Combinatorial Probabilities

So, ways to scramble the word N satisfies

10! = N · 3! · 3! · 2!

N =
10!

3! · 3! · 2!
Multinomial Coefficient

□

Definition 2.3.6 (Multinomial Coefficient). The multinomial coefficient is the number of
ways that n objects with nj of type j, where j = 1, . . . , r, can be distinctly ordered. So,

r∑
j=1

nj = n

and
Multinomial Coefficient =

n!

n1! · n2! · · · · · nr!

Remark. Tips for Counting:

1. Draw a picture of the structure

2. Construct a smaller problem when there are large numbers or variables.

3. If the structure of the problem falls into different categories, then add instead of multiple.

2.4 Combinatorial Probabilities

Remark. Probability Tips

1. Avoid multiplying probabilities. Always set up quotient.

2. Keep track of order. If we have order in the sample space, we will need order in the event.

3. Know some basic sample spaces:

• Rolling n fair die: |S| = 6n (ordered).

• Flipping n coins: |S| = 2n

• Dealing a hand of n cards:
(
52

n

)

Example 2.4.1 Roll 5 Fair Die. What is the size of the sample space? What is the probability
that the first three have one face and the last two another? What is the probability that two
faces show up exactly twice?

13



2 PROBABILITY 2.4 Combinatorial Probabilities

Solution 1.
Size of the sample space: |S| = 65.
Let A = the probability that the first three have one face and the last two another.

|A| = (6× 1× 1)× (5× 1) = 30. So, P(A) =
30

65
=

5

64
.

Let B = the probability that two faces show up exactly twice. Note that we use
(
6

2

)
to give the faces of the pairs.

(
4

1

)
to the last one.

5!

2! · 2! · 1!
ways to order the faces. So,

|B| =
(
6

2

)(
4

1

)
5!

2! · 2! · 1!
. Then, P(B) =

(
6
2

)(
4
1

)
5!

2!·2!·1!
65

. □
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3 RANDOM VARIABLES

3 Random Variables

3.1 Discrete RV: Binomial & Hypergeometric

Definition 3.1.1 (Random Variable). A random variable is a number determined by the out-
come of an experiment, X : S → R. Usually, we are not particularly interested in S but in
the distribution of the outcomes for X. We want to describe the probability associated with
different values of X.

Example 3.1.2 Flip three coins. Count the number of heads (H):

S = {HHH,HHT,HTH, TTHTTHTHT,HTT, TTT}

S̃ = {3H, 2H, 1H, 0H}.

Note in S̃, not every outcome is equally likely. We would need to define a function for or a
list of the values for each outcome in S̃. This is an example of a discrete random variable.

Example 3.1.3 Pick a student. Let the random variable Y = height of the students in cm.
Then, Y is an example of a continuous random variable. Continuous random variables
can take on an interval of values.

Notation 3.1.4. X is a random variable and has a distribution (it is still abstract and unreal-
ized). x is a number and a realized random variable X.
Definition 3.1.5 (Discrete Random Variable). A discrete random variable is a random variable
whose range is finite of countable.
Definition 3.1.6 (Probability Density (Mass) Function / pdf ).

PX(x) = P(X = x) = P({s ∈ S | X(s) = x}).

Definition 3.1.7 (Cumulative Density Function / cdf ).

FX(x) = P(X ≤ x).

Remark. CDFs and PDFs can be represented by functions, graphs, or tables.

Example 3.1.8 Roll three fair die. Let X be the largest value of the three die. Find the pdf.
Solution 1.
Note the pdf

PX(x) = P(X = x) = P(X ≤ x)−P(X ≤ x− 1).

15



3 RANDOM VARIABLES 3.1 Discrete RV: Binomial & Hypergeometric

Find the cdf of x. The die that take on at most the value x, so each die have x possible
outcomes, and considering order, we know

FX(x) =
x3

63
.

Therefore,

PX(x) = P(X ≤ x)−P(X ≤ x− 1) = FX(x)− FX(x− 1) =
x3

63
− (x− 1)3

63
.

□

Definition 3.1.9 (Bernoulli Distribution). The Bernoulli distribution is the classic “flip one
coin,” where X is the number of heads. Let X ∼ Bernoulli(p), where p stands for the prob-
ability of success. x = 1 for success and x = 0 for failure. The pdf of Bernoulli distribution
is

PX(x) = px(1− p)1−x

So,
PX(1) = p; PX(0) = (1− p).

Definition 3.1.10 (Binomial Distribution). The binomial distribution is adding Bernoulli tri-
als together. Let Y = X1 + · · · + Xn be the number of success with X ∼ Bernoulli(p) and
Y ∼ Binomial(n, p). n is the number of trials and p is the probability of success. The pdf of
binomial distribution is

PY (y) =

(
n

y

)
py(1− p)y.

Definition 3.1.11 (Hypergeometric Distribution). Suppose we have a bag of red (r) and white
(w) chips and r + w = N . Let X = the number of red chips when choosing n chips without
replacement. Then, X ∼ Hypergeometric(r, w, n), and the pdf is given by

PX(x) = P(X = x) =

(
r

x

)(
w

n− x

)
(
r + w

n

) ,

where
(
r

x

)
is the number of ways to get x red,

(
w

n− x

)
is the number of ways to get n − x

white, and
(
r + w

n

)
is the total number of picking a size of x.

Remark. If we choose sequence (ordered choose without replacement), we should get the exact
same answer: rPx is the number of ways the red chips can be selected in order, wPn−x is the ways

to choose the white chips,
(
n

x

)
is the locations of the red chips, and NPn is the orders of n chips.

16



3 RANDOM VARIABLES 3.2 Continuous Random Variables

Then,

PX(x) = P(X = x) =

(rPx) · (wPn−x) ·
(
n

x

)
NPn

=

r!

(r − x)!
· w!

(w − (n− x))!
· n!

(n− x)!x!
N !

(N − n)!

=

r!

(r − x)!x!
· w!

(w − (n− x))!(n− x)!
N !

(N − n)!n!

=

(
r

x

)(
w

n− x

)
(
N

n

) .

3.2 Continuous Random Variables

Definition 3.2.1 (Random Variable). A random variable is an outcome of an experiment
mapped to a number: X : S → R. We are most interested describing the probability asso-
ciated with different values of X.

Example 3.2.2 In a chemistry experiment that depends on temperature. Let Y = the tem-
perature measured for experiment, then the unit of temperature will/may lead to different
“looking” results.

Definition 3.2.3 (Continuous Random Variables). A continuous random variable is a func-
tion from a sample space S to the real numbers s.t. for any values a, b with a < b, there exists
a function fY (y) s.t.

P(a < Y < b) =

∫ b

a

fY (y) dy,

where fY (y) is called the pdf (probability density function), and (1) fY (y) ≥ 0 ∀y ∈ R; (2)∫ ∞

−∞
fY (y) dy = 1. Meanwhile, the cdf (cumulative distribution function) is defined as

P(Y ≤ y) = FY (y) =

∫ y

−∞
fY (t) dt.

The q-th quantile c can be defined as F (c) = q ∀q ∈ (0, 1).

Remark. The probability for a < Y < b can be regarded as the area under fY (y) over the inter-
val (a, b). Therefore, P(Y = a) = 0.

Definition 3.2.4 (Uniform Distribution). Suppose Y is a continuous random variable, and

17



3 RANDOM VARIABLES 3.2 Continuous Random Variables

Y ∼ Uniform(a, b), then

fY (y) =


1

b− a
y ∈ [a, b];

0 otherwise.

Remark. Y is continuous does not imply fY (y) is also continuous.

Definition 3.2.5 (Exponential Distribution). Suppose Y is a continuous random variable,
and Y ∼ Exponential(λ) with λ > 0 is defined as

fY (y) = λe−λy, y ≥ 0.

Theorem 3.2.6 Fundamental Theorem of Calculus

•
d

dx

∫ x

a

f(t) dt = F (x); and

•
∫ b

a

f(x) dx = F (b)− F (a) s.t.
d

dx
F (x) = f(x).

Example 3.2.7 The Temperature Example - Cont’d.
Let X = temperature in ◦F and Y = temperature in ◦C. Given fX(x), FX(x), and Y =

5

9
(X − 32). Use the cdf→pdf method to find fY (y).

Solution 1.

FY (y) = P(Y ≤ y) = P

(
Y =

5

9
(X − 32) ≤ y

)
= P

(
X ≤ 9

5
y + 32

)
= FX

(
9

5
y + 32

)
.

The derivative of cdf gives pdf:

fY (y) =
d

dy
FY (y) =

d

dy
FX

(
9

5
y + 32

)
= fX

(
9

5
y + 32

)
d

dy

(
9

5
y + 32

) [
Chain Rule

]
=

9

5
fX

(
9

5
+ 32

)
.

□

18



3 RANDOM VARIABLES 3.3 Expected Values and Variances

3.3 Expected Values and Variances

Definition 3.3.1 (Expected Values). For discrete random variables,

E(X) =
∑

all values of x

xPX(x) =
∑

all values of x

xP(X = x).

For continuous random variables,

E(Y ) =

∫ ∞

−∞
yf(y) dy

Remark. E(X) = µX = µ is the balancing point of the distribution, also known as the first
moment. Another center of the distribution is the median, m, such that

P(X ≥ m) = P(X < m) =
1

2
.

Theorem 3.3.2 Properties of Expected Values

• Let Y = g(X). Then,

E(Y ) = E(g(X)) =



∑
all x

g(x)PX(x), discrete

∫ ∞

−∞
g(x)f(x) dx, continuous

• Special Case: Y = aX + b.

E(Y ) = E(aX + b) = aE(X) + b.

This special case also indicates that E(X) is linear.

Definition 3.3.3 (Variance). The width of a distribution can be described by the variance. The
variance is the second centered moment :

Var(X) = E
(
(X − µ)2

)
Another way to write variance is

Var(X) = E
(
X2
)
− E(X)2

19



3 RANDOM VARIABLES 3.4 Joint Densities

Theorem 3.3.4 Properties of Variance

• Variance is not linear.

• Variance is translation invariant:

Var(X + b) = Var(X).

Remark. Variance of a line:
Var(aX + b) = a2Var(X)

Proof 1.

Var(aX + b) = E
(
(aX + b)2

)
− E(aX + b)2

= E
(
a2X2 + b2 + 2abX

)
− (aE(X) + b)2

= a2E
(
X2
)
+ b2 + 2abE(X)− a2E(X)2 − b2 − 2abE(X)

= a2
(
E
(
X2
)
− E(X)2

)
= a2Var(X)

■

3.4 Joint Densities

Definition 3.4.1 (Joint pdf of X, Y ).

• Discrete: pX,Y (k1, k2) = P(X = k1, Y = k2).

• Continuous: fX,Y = P(X, Y ∈ R) =

∫∫
R

fx,Y (x, y) dA.

Definition 3.4.2 (Marginal pdf ). We can recover the single variable pdf from the joint pdf.
This is called the marginal pdf.

• Discrete: pX(x) = P(X = x, Y = anything).

• Continuous: P(a ≤ X ≤ b) =

∫ b

a

∫ ∞

−∞
fX,Y (x, y) dydx. =⇒ fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy.

Theorem 3.4.3 Independence
Two random variable X, Y are independent if

• Discrete: pX,Y (x, y) = P(X = x, Y = y) = P(X = x)P(Y = y) = pX(x)pY (y).

• Continuous: fX,Y (x, y) = fX(x)fY (y).
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3 RANDOM VARIABLES 3.4 Joint Densities

Proof 1. We will prove the continuous case using the cdf → pdf method. If X and Y are
independent, the events X ∈ [a, b] and Y ∈ [c, d] are independent ∀a, b, c, d. Then,

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dtds

=

∫ x

−∞
fX(s)

∫ y

−∞
fY (t) dtds

[
Independence

]
So,

fx,y(x, y) =
∂2

∂x∂y
FX,Y (x, y) = fX(x)fY (y)

[
Fund. Thm. of Calculus

]
■

Corollary 3.4.4 Independent random variables must have a rectangle domain.

Example 3.4.5 Given X < 0, Y < 0, there’s a chance that they can be independent. How-
ever, given 0 < X ≤ Y ≤ 1, there is no chance that they will be independent.

Example 3.4.6 Suppose X and Y have the joint pdf

fX,Y (x, y) = 2 0 < x ≤ y ≤ 1

Find the pdf of Z =
Y

X
.

Solution 2.

y = x

y = zx

R

x

x

y
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3 RANDOM VARIABLES 3.5 Combining Independent Random Variables

PZ(z) = P(Z ≤ z) = P

(
Y

X
≤ z

)
= P(Y ≤ zX) =

∫∫
R

fX,Y (x, y) dxdy

=

∫ 1

0

∫ y

y/z

2 dxdy

=

∫ 1

0

2
(
y − y

z

)
dy

=

∫ 1

0

2

(
1− 1

z

)
y dy

= 2 ·
(
1− 1

z

)
· 1
2

[
y2
]1
0

= 1− 1

2

Therefore,

fZ(z) =
d

dz
FZ(z) =

d

dz

(
1− 1

z

)
= z−2, z > 1.

□

3.5 Combining Independent Random Variables

Remark. First check for dependencies of the domain: We need rectangular relationship be-
tween X and Y .

Theorem 3.5.1 Review

• Joint cdf: FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dtds

• If Y = aX + b, then

fY (y) =
1

|a|
fX

(
y − b

a

)
.

Theorem 3.5.2 Strategies for Finding New pdfs

• Discrete pdf: compute the probability directly

• Continuous pdf: use the cdf → pdf method.

Example 3.5.3 Let X ∼ Binomial(n, p) and Y ∼ Binomial(m, p). Let X and Y be indepen-
dent. Find the pdf for W = X + Y .

Solution 1.
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3 RANDOM VARIABLES 3.5 Combining Independent Random Variables

PX(x) =

(
n

x

)
px(1− p)n−x; PY (y) =

(
m

y

)
py(1− p)m−y

PW (w) = P(W = w) =
∑
x

PX(x)PY (w − x)︸ ︷︷ ︸
Joint pdfPX,Y (x,y), w=x+y

=
∑
x

(
n

x

)
px(1− p)n−x

(
m

w − x

)
pw−x(1− p)m−(w−x)

=
∑
x

(
n

x

)(
m

w − x

)
px+w−x(1− p)n−x+m−w+x

=
∑
x

(
n

x

)(
m

w − x

)
pw(1− p)n+m−w

= pw(1− p)n+m−w

(∑
x

(
n

x

)(
m

w − x

))

=

(
m+ n

w

)
pw(1− p)n+m−w

So, W = X + Y ∼ Binomial(n+m, p) □

Theorem 3.5.4 Sum of Continuous Independent Random Variable, W = X + Y

fW (w) =

∫ ∞

−∞
fX(x)fY (w − x) dx

Proof 2. By independence, we have

FW (w) = P(W ≤ w)

= P(X + Y ≤ w)

= P(Y ≤ w −X)

=

∫ ∞

−∞

∫ w−x

−∞
fX(x)fY (y) dydx

Then, by Fundamental Theorem of Calculus, we have

fW (w) =
d

dw

∫ ∞

−∞

∫ w−x

−∞
fX(x)fY (y) dydx

=

∫ ∞

−∞
fX(x)

d

dw

∫ w−x

−∞
fY (y) dy dx

convolution =

∫ ∞

−∞
fX(x)fY (w − x)(1) dx
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3 RANDOM VARIABLES 3.6 Further Properties of Mean and Variance

■

Theorem 3.5.5 Quotient of Continuous Independent Random Variables, W =
Y

X

fW (w) =

∫ ∞

−∞
|x|fX(x)fY (wx) dx;

d

dw
(wx) = |x|

Theorem 3.5.6 Product of Continuous Independent Random Variables, W = XY

fW (w) =

∫ ∞

−∞

1

|x|
fX(x)fY

(w
x

)
dx, x ̸= 0;

d

dw

(w
x

)
=

1

|x|
.

3.6 Further Properties of Mean and Variance

Lemma 3.6.1 Assume X, Y are continuous random variable with joint pdf fX,Y (x, y) and let
g(X, Y ) be a function of random variable X, Y , then

E(g(X, Y )) =

∫∫
R2

g(x, y)fX,Y (x, y) dxdy.

Theorem 3.6.2 Linearity of Expected Values

E(X + Y ) = E(X) + E(Y )

Proof 1. Suppose X and Y are two continuous random variables, we want to examine the
sum of their expected values.

E(X + Y ) =

∫∫
R2

(x+ y)fX,Y (x, y) dxdy

=

∫∫
R2

[
xfX,Y (x, y) + yfX,Y (x, y)

]
dxdy

=

∫∫
R2

xfX,Y (x, y) dydx+

∫∫
R2

yfX,Y (x, y) dxdy

=

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y) dy dx+ int∞−∞y

∫ ∞

−∞
fX,Y (x, y) dx dy

=

∫ ∞

−∞
xfX(x) dx+

∫ ∞

−∞
yfY (x) dy = E(X) + E(Y ).

■

Conjecture 3.6.3 We hope the expected value of a product to be E(XY ) = E(X)E(Y ).
Disproof 2. Take an urn with two chips numbered 1 and 2. Draw 2 chips without replace-
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3 RANDOM VARIABLES 3.6 Further Properties of Mean and Variance

ment. Let X1 = the value on draw 1 and X2 = the value on draw 2.

E(X1) =
2∑

i=1

iP(X = i) = 1

(
1

2

)
+ 2

(
1

2

)
=

3

2

P(X2 = 1) = P(X2 = 1 | X1 = 1)P(X1 = 1) +P(X2 = 1 | X1 = 2)P(X1 = 2) = 0 + 1

(
1

2

)
=

1

2

P(X2 = 2) = P(X2 = 2 | X1 = 1)P(X1 = 1) +P(X2 = 2 | X1 = 2)P(X1 = 2) = 1

(
1

2

)
+ 0 =

1

2

E(X2) =
2∑

i=1

iP(X = i) = 1

(
1

2

)
+ 2

(
1

2

)
=

3

2

E(X1)E(X2) =

(
3

2

)(
3

2

)
=

9

4
; E(X1X2) = E(2) = 2.

Therefore, E(X1)E(X2) ̸= E(X1X2). ■

Theorem 3.6.4 Expected Value of a Product
If X, Y are independent, then

E(XY ) = E(X)E(Y ).

Proof 3. Suppose X and Y are independent. Then,

E(X, Y ) =

∫∫
R2

xyfX,Y (x, y) dxdy

=

∫∫
R2

xyfX(x)fY (y) dxdy Independence

=

(∫ ∞

−∞
xfX(x) dx

)(∫ ∞

−∞
yfY (y) dy

)
= E(X)E(Y ).

■
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Theorem 3.6.5 Variance of a Sum

Var(X + Y ) = Var(X) +Var(Y ) + 2Cov(X, Y ),

where
Cov(X, Y ) = E(XY )− E(X)E(Y ).

Specially, if X and Y are independent,

Var(X + Y ) = Var(X) +Var(Y ),

and
Cov(X, Y ) = 0.

Proof 4. Recall Var(X) = E(X2)− E(X)2. Then,

Var(X + Y ) = E
(
(X + Y )2

)
− E(X + Y )2

= E
(
X2 + Y 2 + 2XY

)
− [E(X) + E(Y )]2

= E
(
X2
)
+ E

(
Y 2
)
+ 2E(XY )− E(X)2 − E(Y )2 − 2E(X)E(Y )

=
[
E
(
X2
)
− E(X)2

]
+
[
E
(
Y 2
)
− E(Y )2

]
+ 2[E(XY )− E(X)E(Y )]

= Var(X) +Var(Y ) + 2[E(XY )− E(X)E(Y )]

= Var(X) +Var(Y ) + 2Cov(X, Y )

When X and Y are independent, E(XY ) = E(X)E(Y ), so E(XY )− E(X)E(Y ) = 0. Then,

Var(X + Y ) = Var(X) +Var(Y ).

■

Remark. Cov(X, Y ) does not imply X and Y are independent. When E(X) or E(Y ) is 0, we
would have Cov(X, Y ) = 0 as well.

Remark. Summary of Properties:

• Always true:

– E(aX + b) = aE(X) + b

– E(X + Y ) = E(X) + E(Y )

– Var(aX + b) = a2Var(X)

– Var(X) = E(X2)− E(X)2

• When X and Y are independent:

– E(XY ) = E(X)E(Y )

– Var(X + Y ) = Var(X) +Var(Y )
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3 RANDOM VARIABLES 3.7 Order Statistics

3.7 Order Statistics

Definition 3.7.1 (Median). The point where half data lies above and half below.

Example 3.7.2 When all the GPAs are ordered, a number is assigned by placement in the
list

Definition 3.7.3 (Max/Min). The largest and smallest values.
Definition 3.7.4 (Percentiles). A score that tells you the percent of people that you scored
better than.
Definition 3.7.5 (i-th Order Statistics). Let Y be a continuous random variable for which we
have drawn a random sample (independent and identically distributed/i.i.d.), say we have
y1, y2, . . . , yn. We re-order them from smallest to largest:

ymin = y′1 ≤ y′2 ≤ · · · ≤ y′n = ymax

Define a new random variable Y ′
i , and Y ′

i is called the i-th order statistics. Given a random
sample Y1, . . . , Yn, we define

Ymin = min (Y1, . . . , Yn); Ymax = max (Y1, . . . , Yn).

Definition 3.7.6 (Percentiles). For any value p between 0 and 1, the 100p-th percentile is the
observation such that np observations are less than that value, and n(1− p) are greater.

Example 3.7.7 Suppose a random sample y1 = 3.2, y2 = 4, y3 = 1.1, y4 = 0. Then,

0 ≤ 1.1 ≤ 3.2 ≤ 4.

So, Ymin = 0 = ymin, y′2 = 1.1, y′3 = 3.2, and ymax = 4 = Ymax.

Example 3.7.8 Let Y1, . . . , Yn be a random sample from Y ∼ Uniform(0, a) where are do
not know a. We can estimate a by different methods.

Method 1 Use the sample mean:

E(Y ) = µ =
a

2

So we solve for â ≈ 2µ ≈ 2Y . Then, we can estimate a with Y . However, we might have
ymax ≥ 2Y which leads to a better method.

Method 2 Use observed ymax. We know the following inequality must hold:

a ≥ Ymax.
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3 RANDOM VARIABLES 3.7 Order Statistics

To find E(Ymax), we first need to find the pdf of Ymax. We consider the cdf→pdf method:

FYmax(y) = P(Ymax ≤ y) = P(Y1 ≤ y1, Y2 ≤ y2, Y3 ≤ y3, . . . , Yn ≤ yn)

= P(Y1 ≤ y1)P(Y2 ≤ y2) · · ·P(Yn ≤ yn)

=
(y
a

)n
So, we know

fYmax(y) =
d

dy
FYmax(y) =

d

dy

[(y
a

)n]
=

n

a

(y
a

)n−1

.

So, we can find the expected value:

E(Ymax) =

∫ a

0

yfYmax(y) dy =

∫ a

0

y
n

a

(y
a

)n−1

dy

=
n

an

∫ a

0

yn dy

=
n

an

[
1

n+ 1
yn+1

]a
0

=
n

an
· 1

n+ 1
an+1

=
n

n+ 1
a

Therefore, we can estimate ymax =
n

n+ 1
a. So we get a ≈ n+ 1

n
ymax.

Theorem 3.7.9 Order Statistics

Ymax : FYmax(y) = Fy(y)
n =⇒ fYmax(y) = nFY (y)

n−1fY (y).

Ymin : FYmin(y) = 1− [1− Fy(y)]
n =⇒ fYmin(y) = n[1− FY (y)]

n−1fY (y).

Proof 1. The formula of Ymin will proven here.

FYmin(y) = P(Ymin ≤ y) = 1−P(Ymin > y)

= 1−P(Y1 > y, Y2 > y, . . . , Yn > y)

= 1−P(Y1 > y)P(Y2 > y) · · ·P(Yn > y)

= 1− [1− FY (y)][1− FY (y)] · · · [1− FY (y)]

= 1− [1− FY (y)]
n

So, we would also have fYmin(y) = n[1− FY (y)]
n−1fY (y). ■
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3 RANDOM VARIABLES 3.8 Conditional Densities

Theorem 3.7.10 i-th Order Statistics

Y ′
i : fY ′

i
(y) =

n!

(i− 1)!(n− i)!
[FY (y)]

i−1[1− FY (y)]
n−ifY (y), 1 ≤ i ≤ n.

3.8 Conditional Densities

Definition 3.8.1 (Conditional Probability). Let X, Y be discrete random variables with joint
pdf pX,Y (x, y), then the conditional probability

pY |X(y) = P(Y = y | X = x) =
pX,Y (x, y)

pX(x)
.

Example 3.8.2 A bag with 5 fair coins and one 2 headed coin. Choose a coin and flip it n

times. Let X =

1 if the coin is fiar

2 if the two headed coin is selected
and Y = the number of heads in

n tosses. Find PY (y).
Solution 1.
Our plan: find pX(x) =⇒ pY |X=1(y), pY |X=2(y) =⇒ pX,Y (x, y) = pY |X(y)pX(x) =⇒

sum over all values of x to get the pY (y).

pX(x) =


5

6
X = 1

1

6
X = 2

pY |1(y) =

(
n

y

)(
1

2

)y(
1− 1

2

)n−y

=

(
n

y

)(
1

2

)n

pY |2(y) =

0 y < n

1 y = n
.

Therefore, the joint pdf

Y = 0 Y = 1 Y = k Y = n

X = 1

(
1

2

)n(
5

6

) (
n

1

)(
1

2

)n(
5

6

) (
n

k

)(
1

2

)n(
5

6

)
1

(
1

2

)n(
5

6

)

X = 2 0 0 0 1

(
1

6

)

pY (y)

(
1

2

)n(
5

6

) (
n

1

)(
1

2

)n(
5

6

) (
n

k

)(
1

2

)n(
5

6

) (
1

2

)n(
5

6

)
+

(
1

6

)
29
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In other words,

pY (y) =



(
5

6

)(
n

y

)(
1

2

)n

0 ≤ y < n

(
1

2

)n(
5

6

)
+

(
1

6

)
y = n

□

Remark. If we define the conditional density in the same way as in the discrete case, we shall
have

P(X = x, Y = y)

P(X = x)
.

However, P(X = x) = 0 when X is continuous. Thus, we need an alternative definition when
X is continuous.

Definition 3.8.3 (Conditional Probability - Continuous). Let X and Y be two continuous
random variables. Then, the conditional probability

fY |X(y) =
fX,Y (x, y)

fX(x)
.

Proof 2. We will use the cdf→pdf method. Define the cdf of the conditional probability to
be

FY |X(y) = lim
h→0

P(Y ≤ y | X ∈ [x, x+ h])

= lim
h→0

∫ x+h

x

∫ y

−∞
PX,Y (s, t) dtds∫ x+h

x

fX(s) dx

0

0
=⇒ L′Hopitals′

= lim
h→0

d

dh

∫ x+h

x

∫ y

−∞
PX,Y (s, t) dtds

d

dh

∫ x+h

x

fX(s) ds

= lim
h→0

∫ y

−∞
PX,Y (x+ h, t) dt

fX(x+ h)

=

∫ y

−∞
PX,Y (x, t) dt

fX(x)
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3 RANDOM VARIABLES 3.8 Conditional Densities

So, we know

fY |X(y) =
d

dy

∫ y

−∞
PX,Y (x, t) dt

fX(x)

=
fX,Y (x, y)

fX(x)
.

■

Example 3.8.4 A stick of unit length, and break it at a random point. Let X = length of the
larger piece. Then, break the larger piece, and let Y = the length of the larger piece after
the second break. Find E(Y ).

Solution 3.
Find the pdf of X: let W = the breaking point. Assume W ∼ Uniform(0, 1). Then,

X = max(W, 1−W ). So we have

FX(x) = P(X ≤ x) = P(W ≤ x and 1− x ≤ W )

= P(W ∈ [1− x, x]) X ∈
[
1

2
, 1

]
=

∫ x

1−x

1 dw = 2x− 1

fX(x) =
d

dx
FX(x) =

d

dx
[2x− 1] = 2.

Find the joint pdf: repeat the same process for Y | X ∼ Uniform
(
X

2
, X

)
. We have

fY |X(y) =
1

x− x
2

=
2

x
y ∈

[x
2
, x
]

fX,Y (x, y) = fY |X(y)fX(x)

=
2

x
· 2 =

4

x
. x ∈

[
1

2
, 1

]
, y ∈

[x
2
, x
]
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3 RANDOM VARIABLES 3.9 Moment Generating Functions (mgf)

Now, we can find the expected value:

E(Y ) =

∫ 1

1/2

∫ x

x/2

yfX,Y (x, y) dydx

=

∫ 1

1/2

∫ x

x/2

y
4

x
dydx

=

∫ 1

1/2

4

x

[
1

2
y2
]x
x/2

dx

=

∫ 1

1/2

2

x

(
x2 − x2

4

)
dx

=

∫ 1

1/2

3

2
x dx

=
3

2

[
1

2
x2

]1
1/2

=
3

4

(
1− 1

4

)
=

9

16
.

□

3.9 Moment Generating Functions (mgf )

Definition 3.9.1 (Moment). The moments of the distribution of X are

E
(
Xk
)

for k = 1, 2, . . .

if they exists. The mean µ is the first moment.
Definition 3.9.2 (Moment Generating Functions/mgf ).

MX(t) = E
(
etX
)
=



∑
k

etkpX(k) if X is discrete

∫ ∞

−∞
etxfX(x) dx if X is continuous

Remark. Why we would use E
(
etX
)

?
Recall the Macluarin Series expansion for

etX =
∞∑
n=0

(tX)n

n!
= 1 + tX +

(tX)2

2!
+

(tX)3

3!
+ · · ·
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3 RANDOM VARIABLES 3.9 Moment Generating Functions (mgf)

Then, we have

MX(t) = E
(
etX
)
= E

(
∞∑
n=0

(tX)n

n!

)
=

∞∑
n=0

E

(
tnxn

n!

)
=

∞∑
n=0

tn

n!
E(Xn)

= 1 + tE(X) +
t2

2!
E
(
X2
)
+

t3

3!
E
(
X3
)
+ · · ·

= 1 + tm1 +
t2

2!
m2 +

t3

3!
m3 + · · ·

= 1 +m1t+
m2

2!
t2 +

m3

3!
t3 + · · ·

Example 3.9.3 Recover m1 from the moment generating function.
Step 1 Differentiate MX(t) with respect to t.

MX(t) = 1 +m1t+
m2

2!
t2 +

m3

3!
t3 + · · ·

M
(1)
X (t) = 0 +m1 +

2m2

2!
t+

3m3

3!
t2 + · · · = m1 +m2t+

m3

2!
t2 + · · ·

Step 2 Evaluate t = 0: Higher order terms drop out when t = 0.

M
(1)
X (0) = m1

Theorem 3.9.4

M
(n)
Y (0) = E(Y n) as long as E(Y n) < ∞.

Example 3.9.5 Recover m2:

M
(2)
X (t) = 0 +m2 +

2m3

2!
t+ · · · = m2 +m3t+ · · · =⇒ M

(2)
X (0) = m2.

Theorem 3.9.6
If Y1 and Y2 have MY1(t) = MY2(t) for an open interval of t about 0, then the pdf’s are
identical. i.e., fY1(y) = fY2(y).
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3 RANDOM VARIABLES 3.9 Moment Generating Functions (mgf)

Theorem 3.9.7 Properties of mgf

• If Y = aX + b, then
MY (t) = ebtMX(at)

• If W = X + Y and X, Y are independent, then

MW (t) = MX(t) ·MY (t).

This is much easier than computing fW (w) = fX · fY .

Example 3.9.8 Let Y ∼ N(0, 1) (Normal with µ = 0 and σ2 = 1). Find the mgf for W ∼
N(µ, σ2).

Solution 1.
We have that fY (y) =

1√
2π

e−y2/2, y ∈ (−∞,∞).

MY (t) = E
(
etY
)
=

∫ ∞

−∞
ety

1√
2π

e−y2/2 dy =
1√
2π

∫ ∞

−∞
ety−y2/2 dy

=
1√
2π

∫ ∞

−∞
e−

1
2
(y−t)2+t2/2 dy

=
1√
2π

∫ ∞

−∞
e−

1
2
(y−t)2et

2/2 dy

= et
2/2 1√

2π

∫ ∞

−∞
e−

1
2
(y−t)2 dy︸ ︷︷ ︸

pdf of Y shift by t unit=1

= et
2/2

W = σY + µ, then by the property of mgf, we have

MW (t) = eµtMY (σt) = eµte(σt)
2/2 = e

!
2
σ2t2+µt.

□
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4 SPECIAL DISTRIBUTIONS

4 Special Distributions

4.1 Poisson Distribution

Example 4.1.1 A publisher estimates that their books have an average 1 typo every 4 pages.
Let X = number of typos in a 20 page chapter. Assume: (1) the typos are equally likely to

occur anywhere, (2) different typos are independent, and (3) average rate of the typos is
1

4
per page.

a. Let Xj = # of typos on page j.

Solution 1.

Expect
1

4
per page =⇒ pX(k) =

1/4 k = 1

3/4 k = 0
.

Then, Xj ∼ Binomial
(
n = 20, p =

1

4

)
. So,

P(X = k) =

(
20

k

)(
1

4

)k(
3

4

)20−k

Therefore,

P(X = 5) =

(
20

5

)(
1

4

)5(
3

4

)15

≈ 20.2%

Problem: maximum # of typo is 20, but we can have more typos per page! □

b. Subdivide each page into 40 lines. =⇒ n = 800 total lines and p =
1/4

40
=

1

160
.

Solution 2.

Let Xj = # of typos on line j. Then, Xj ∼ Binomial
(
n = 800, p =

!

160

)
. So,

pXj
(k) =

(
800

k

)(
1

160

)k(
159

160

)800−k

, k = 0, . . . , 800

P(Xj = 5) = 17.6%

□

c. Subdivide each line into quarter lines. That is, n = 3200 quarter lines and p =
1

640
.

Solution 3.
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4 SPECIAL DISTRIBUTIONS 4.1 Poisson Distribution

Xj = a typo on quarter line j. So, Xj ∼ Binomial
(
3200,

1

640

)
.

pXj
(k) =

(
3200

k

)(
1

640

)k(
639

640

)3200−k

.

□

d. Does this approach a limit? Let λ = total # expected, n = # of subdivisions, p =
λ

n

probability within one division. Then, pX(k) =

(
n

k

)(
λ

n

)k(
1− λ

n

)n−k

. Fix k and λ.

Find lim
n→∞

pX(k).

Solution 4.

lim
n→∞

pX(k) = lim
n→∞

(
n

k

)(
λ

n

)k(
1− λ

n

)n−k

= lim
n→∞

n!

(n− k)!k!
· λ

k

nk

(
1− λ

n

)n(
1− λ

n

)−k

=
λk

k!
lim
n→∞

n!

(n− k)!
· 1

nk
(
1− λ

n

)k ·
(
1− λ

n

)n

=
λk

k!
lim
n→∞

n(n− 1) · · · (n− k + 1)(n− k)!

(n− k)!(n− λ)k
·
(
1− λ

n

)n

=
λk

k!
lim
n→∞

n(n− 1) · · · (n− k + 1)

(n− λ)k︸ ︷︷ ︸
∼limn→∞

nk

nk =1

(
1− λ

n

)n

︸ ︷︷ ︸
=limn→∞ e−λ

=
λk

k!
e−λ

□

Definition 4.1.2 (Poisson Distribution). For X ∈ N and λ > 0, the pdf of poisson distribution
is given by

pX(k) = P (X = k) = e−λλ
k

k!
, for k = 0, 1, 2, . . .

Definition 4.1.3 (Poisson Model). Assume the events occur with the following assumptions:

• Can subdivide into intervals small enough that P(2 events in one interval) = 0.

• Occurrences in different intervals are independent.

• Probability of event is constant.
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4 SPECIAL DISTRIBUTIONS 4.1 Poisson Distribution

Then, set λ = expected # of occurrence per unit and X = actual # of occurrence per unit.
Then, we have the poisson model:

P(X = k) = e−λλ
k

k!

Example 4.1.4 Application of Poisson Distribution

1. Radioactive decay (or other discrete reactions).

2. Errors/flaws/accidents injuries

3. Outbreaks of non-contagious disease.

Example 4.1.5 Wait time Between Poisson Distribution
Suppose we use a geiger counter to measure the radiation coming off a radioactive

sample. The number of ticks in 1 second of the counter has a poisson distribution, where
λ is the expected number of ticks, i.e., λ = average number of ticks per second. Let Y =

the time interval between two consecutive ticks. What is the distribution of Y ?
Solution 5.
The cdf of Y : FY (y) = P(Y ≤ y).

Let t = 0 be the time of the first click. Then, Y ≤ y can be interpreted as at least 1 click
in [0, y]. So, we have

FY (y) = 1−P(No clicks in [0, y]).

The expected number of clicks is λy =⇒ P(none) = e−λy. Thus,

FY (y) = 1− e−λy.

So, the pdf of Y is given by

fY (y) =
d

dy
FY (y) = λe−λy, y ≥ 0

□

Theorem 4.1.6 Wait Time Between Poisson Distribution
Suppose a series of events satisfying the poisson distribution model are occurring at the
rate of λ units per time. Let random variable Y denote the interval between consecutive
events. Then, Y has the exponential distribution: Y ∼ Exponential(λ), and

fY (y) = λe−λy, y > 0.
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4 SPECIAL DISTRIBUTIONS 4.2 Normal Distribution

4.2 Normal Distribution

Definition 4.2.1 (The Standard Normal). A continuous random variable Z ∼ N(0, 1) =

Normal(µ = 0, σ2 = 1) is defined to be the standard normal distribution with pdf

fZ(z) =
1√
2π

e−z2/2, z ∈ (−∞,∞)

and the moment generating function

MZ(t) = et
2/2, t ∈ R

The standard normal distribution is also known as the Gaussian distribution or the bell curve.
Definition 4.2.2 (The General Normal Distribution). We define the general normal distribu-
tion X ∼ N(µ, σ2) by using the transformation X = σZ+µ. Any normal distribution is a linear
transformation of the standard normal, and the pdf is given by

fX(x) =
1√
aπσ

e−
1

2σ2 (x−µ)2 , x ∈ R

Proof 1. Note that the cdf of X = σZ + µ is given by

FX(x) = P(X ≤ x) = P(σZ + µ ≤ x)

= P

(
Z ≤ x− µ

σ

)
= FZ

(
x− µ

σ

)
So, the pdf of X is

fX(x) =
d

dx
FX(x) =

d

dx
FZ

(
x− µ

σ

)
= fZ

(
x− µ

σ

)
· d

dx

(x
σ
− µ

σ

)
=

1√
2π

e−(
x−µ
σ )

2
· 1
2

(
1

σ

)
=

1√
2πσ

e−
1

2σ2 (x−µ)2 , x ∈ R

■

Remark. Using the MGF that if Normal + Normal = Normal.

Example 4.2.3 Applications of Normal Distribution

• Sample means

• Population features
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4 SPECIAL DISTRIBUTIONS 4.2 Normal Distribution

• Lab instrument measures

Example 4.2.4 Why
1√
2π

?

Solution 2.

We want to compute
∫ ∞

−∞
e−x2/2 dx. Instead of finding it directly, we can find

(∫ ∞

−∞
e−x2/2 dx

)2

=

∫ ∞

−∞
e−x2/2 dx

∫ ∞

−∞
e−y2/2 dy

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2 dxdy.

Use the polar coordinate: x = r cos θ and y = r sin θ. So, we have dxdy = rdrdθ. So,(∫ ∞

−∞
e−x2/2 dx

)2

=

∫ 2π

0

∫ ∞

0

e−(r
2 cos2 θ+r2 sin2 θ)/2r drdθ

=

∫ 2π

0

∫ ∞

0

e−
1
2
r2(cos2 θ+sin2 θ)r drdθ

=

∫ 2π

0

∫ ∞

0

re−
1
2
r2 drdθ u =

1

2
r2, du = rdr

=

∫ π

0

∫ ∞

0

e−u dudθ

=

∫ 2π

0

lim
t→∞

[
−e−u

]t
0
dθ

=

∫ 2π

0

lim
t→∞

(
−e−t + e−0

)
dθ

=

∫ 2π

0

dθ

=
[
θ
]2π
0

= 2π

Therefore,
∫ ∞

−∞
e−x2/2 dx =

√
2π. Thus, to ensure the area under the pdf goes to 1, we need

the factor
1√
2π

. □
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4 SPECIAL DISTRIBUTIONS 4.2 Normal Distribution

Theorem 4.2.5 Central Limit Theorem
Let Y1, . . . , Yn be a random sample with µ = E(Yi) and σ2 = Var(Yi), both finite. Then, if

Zn =
1√
nσ

(Y1 + · · ·+ Yn − nµ),

we have

P(a ≤ Zn ≤ b) =

∫ b

a

1√
2π

e−z2/2 dz as n → ∞

That is, Zn approaches the standard normal as n → ∞.

Proof 3. Tools used in this proof: MGF determines the distribution. If MZn(t) → MZ(t),
then P(a ≤ Zn ≤ b) → P(a ≤ Z ≤ b).

Given Y1, Y2, . . . , Yn a random sample as above. Let’s define

Wi =
1

σ
(Yi − µ).

Then,
E(Wi) = 0 and Var(Wi) = 1

Assume the MGF of Wi is well-defined. Without loss of generality, consider the MGF of Wi:

MWi
(t) = eφ(t)

MWi
(0) = eφ(0) = 1 by well defined

M′
Wi
(t) = eφ(t)φ′(t)

M′
Wi
(t) = eφ(0)φ′(0) = E(Wi) = 0

1 · φ′(0) = 0 =⇒ φ′(0) = 0

M′′
Wi
(t) =

d

dt

[
eφ(t)φ′(t)

]
= eφ(t)φ′(t)φ′(t) + eφ(t)φ′′(t)

= eφ(t)
[
(φ′(t))

2
+ φ′′(t)

]
M′′

Wi
(0) =φ(0)

[
(φ′(0))

2
+ φ′′(0)

]
= 1 · (0 + φ′′(0)) = φ′′(0)

So,
Var(Wi) = E

(
W 2

i

)
− E(Wi)

2 = E
(
W 2

i

)
− 0 = E

(
W 2

i

)
= M′′

Wi
(0) = 1

=⇒ φ′′(0) = 1.

Now, define

Zn =
1√
n
(W1 +W2 + · · ·+Wn).
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4 SPECIAL DISTRIBUTIONS 4.2 Normal Distribution

By the MGF property that if X and Y are independent, then

MaX(t) = MX(at) and MX+Y (t) = MX(t)MY (t)

We have

MZn(t) =
n∏

i=1

MWi

(
t/
√
n
)
=

n∏
i=1

eφ(t/
√
n) =

(
eφ(t/

√
n)
)n

= enφ(t/
√
n)

With x =
1√
n

, consider

lim
n→∞

nφ
(
t/
√
n
)
= lim

n→∞

φ(xt)

x2

(
=

0

0

)
= lim

n→∞

φ′(xt)t

2x

(
=

0

0

)
= lim

n→∞

φ′′(xt)t2

2
=

t2

2
.

That is lim
n→∞

MZn(t) = et
2/2 = MZ(t), the standard normal MGF. ■

Example 4.2.6 Binomial Distribution and the Central Limit Theorem
Consider X ∼ Binomial(n, p). Note that

X = X1 +X2 + · · ·+Xn, where Xi ∼ Bernoulli(p).

So,

Z =
X − np√
np(1− p)

∼ N(0, 1)

Example 4.2.7 Poisson Distribution and the Central Limit Theorem
Consider X ∼ Poisson(λ). Suppose

X = X1 +X2 + · · ·+Xn, where Xi ∼ Poisson
(
λ

n

)
Then,

Z =
X − λ√

λ
∼ N(0, 1).

Remark. What we are doing here is to approximate discrete distributions (e.g. binomial/pois-
son) with a continuous distribution (normal). There will be some errors. So we need continuity

correction, adding or subtracting
1

2
to account for approximations of a discrete distribution

with a continuous distribution.
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4 SPECIAL DISTRIBUTIONS 4.3 CDF Tricks

Example 4.2.8 Binomial Distribution Continuity Correction

Z =
X − np√
np(1− p)

∼ N(0, 1)

P(a ≤ Z ≤ b) ≈ P

(
a− 0.5− np√

np(1− p)
≤ Z ≤ b+ 0.5− np√

np(1− p)

)
.

4.3 CDF Tricks

Remark. (Key idea) The key idea here is that we can use a cdf to generate a random sample.

Example 4.3.1 We can let U ∼ Uniform(0, 1) and compute X = F−1
X (U). Here we note that

FU(u) = P (U ≤ u) = u.

Then, we have the following:

FX(x) = P (X ≤ x) = P
(
F−1
X (u) ≤ x

)
= P

(
FX

(
F−1
X (U)

)
≤ FX(x)

)
= P (U ≤ FX(x))

= FU(FX(x))

= FX(x)

Theorem 4.3.2
We can use a uniform random sample Uniform(0, 1) to simulate a random variable with
cdf FX(x) by setting X = F−1

X (U).

Example 4.3.3 Simulate from the density fY (y) =
2θ2

y3
, y ≥ θ.

Solution 1.
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Step 1 Find the cdf.

FY (y) = P (Y ≤ y) =

∫ y

θ

fY (t) dt =

∫ y

θ

2θ2

t3
dt = 2θ2

∫ y

θ

t−3 dt

= 2θ2
[
−1

2
t−2

]y
θ

= θ2
(
−y−2 + θ−2

)
= 1− θ2

y2
, y ≥ θ

Step 2 Find the inverse of the cdf:

u = FY (y) =⇒ u = 1− θ2

y2

θ2

y2
= 1− u

1

y2
=

1− u

θ2

y2 =
θ2

1− u

y =

√
θ2

1− u
=

θ√
1− u

Now, evaluating the above with a value of u will give us a value of y.
Step 3 Turn it into R code. □

4.4 Geometric and Negative Binomial Distributions

Definition 4.4.1 (Geometric Distribution). X = the trial on which the first success occurs.
X ∼ Geometric(p), and

pX(k) = (1− p)k−1︸ ︷︷ ︸
# of failure

p︸︷︷︸
success

, k ≥ 1

Definition 4.4.2 (Negative Binomial Distribution). X = the number of trials needed for r

success. X ∼ Negative Binomial(r, p), and

pX(k) =

(
k − 1

r − 1

)
︸ ︷︷ ︸

# of ways the successes can occur

pr︸︷︷︸
r successes

(1− p)k−r︸ ︷︷ ︸
k−r failure

, k ≥ r

Remark. Suppose X = trials for r successes. i.e., x ∼ Negative Binomial(r, p). Then, we have
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4 SPECIAL DISTRIBUTIONS 4.4 Geometric and Negative Binomial Distributions

X = X1 +X2 + · · ·+Xr, where Xj ’s are independent and each Xj ∼ Geometric(p).

Theorem 4.4.3 Geometric Expectation
If X ∼ Geometric(p), then

E(x) =
1

p.

Proof 1. Recall
∞∑
k=1

kak =
a

(1− a)2
and

∞∑
k=1

k2ak =
a+ a2

(1− a)3
. So,

E(X) =
∞∑
k=1

kpX(k) =
∞∑
k=1

k(1− p)k−1p.

Redefine X̃ = the failures needed to obtain 1 success. Then X̃ = X − 1. Then,

E(X̃) =
∞∑
k=0

kpX(k) =
∞∑
k=0

k(1− p)kp = 0︸︷︷︸
k=0

+
∞∑
k=1

k(1− p)k · p = p
∞∑
k=1

k (1− p)k︸ ︷︷ ︸
a

= p · (1− p)

(1− (1− p))2

=
p(1− p)

(1− 1 + p)2
=

1− p

p
.

So,
1− p

p
= E(X)− 1 =⇒ E(X) =

1− p

p
+ 1 =

1− p+ p

p
=

1

p
.

■

Theorem 4.4.4 Geometric Variance
If X ∼ Geometric(p), then

Var(X) =
1− p

p2
.

Proof 2. Use the same definition of X̃ as above. Then,

E(X̃2) =
∞∑
k=0

k2pX(k) =
∞∑
k=1

k2(1− p)k · p = p

∞∑
k=1

k2(1− p)k

= p
(1− p+ (1− p)2)

(1− (1− p))3

=
p(1− p+ 1 + p2 − 2p)

(1− 1 + p)3

=
2− 3p+ p2

p3
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Then,

Var(X̃) = E(X̃2)− E(X̃)2 =
2− 3p+ p2

p3
− (1− p)2

p2

=
2− 3p+ p2 − 1− p2 + 2p

p3

=
1− p

p2
.

As shifting from X to X̃ = X − 1 does not change the value of variance,

Var(X) =
1− p

p2
.

■

Theorem 4.4.5 Negative Binomial Expectation and Variance
If X ∼ Negative Binomial(r, p), then

E(X) =
r

p
and Var(X) =

r(1− p)

p2
.

Proof 3. As we have shown X = X1 + X2 + · · · + Xr, where Xj’s are independent and
Xj ∼ Geometric(p). Then,

E(X) = E

(
r∑

j=1

Xj

)
=

r∑
j=1

E(Xj) =
r∑

j=1

1

p
=

r

p
,

and

Var(X) = Var

(
r∑

j=1

Xj

)
=

r∑
j=1

Var(Xj) =
r∑

j=1

1− p

p2
=

r(1− p)

p2
.

■

Theorem 4.4.6 The MGF of Geometric Distribution
If X ∼ Geometric(p), then

MX(t) =
p

e−t − 1 + p
.
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4 SPECIAL DISTRIBUTIONS 4.5 Gamma Distribution & Gamma Function

Proof 4.

MX(t) = E
(
etX
)
=

∞∑
k=1

ekt(1− p)k−1p

=
∞∑
k=1

etet(k−1)(1− p)k−1p

= etp
∞∑
k=1

(
et(1− p)

)k−1

=
etp

1− et(1− p)
· e

−t

e−t

=
e−tetp

e−t − e−tet(1− p)

=
p

e−t − 1 + p
.

■

Theorem 4.4.7 The MGF of Negative Binomial Distribution
If X ∼ Negative Binomial(r, p), then

MX(t) = M∑
Xj
(t) =

r∏
j=1

MXj
(t) =

(
p

e−t − 1 + p

)r

4.5 Gamma Distribution & Gamma Function

Definition 4.5.1 (Gamma Distribution). Let Y be a random variable that denotes the time
between consecutive Poisson events (X ∼ Poission(λ)). So, Y ∼ Exponential(λ), and

fY (y) = λe−λy, y > 0.

Also, though of as the waiting time until the 1st Poisson event. Now, let’s consider Y as the
waiting time to the n−th event, where we have Poisson event occurring at a rate of λ. In order
to find the pdf of the random variable Y , we will use the cdf → pdf method. Let’s consider the
following distirbution.

FY (y) = P(Y ≤ y)

= P(at least n events occur in [0, y])

= 1−P(fewer than n events occur in [0, y])

= 1−
n−1∑
k=0

e−λy (λy)
k

k!
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Remark. We expect λy events in [0, y] since Poisson(λ) events.

So,

fY (y) =
d

dy
FY (y) =

d

dy

[
1−

n−1∑
k=0

e−λy (λy)
k

k!

]

= 0−

(
n−1∑
k=0

−λe−λy · (λy)
k

k!
+

n−1∑
k=1

e−λyλk(λy)
k−1

k(k − 1)!

)

= λe−λy

[
n−1∑
k=0

(λy)k

k!
−

n−1∑
k=1

(λy)k−1

(k − 1)!

]

= λe−λy

[
n−1∑
k=0

(λy)k

k!
−

n−2∑
k=0

(λy)k

k!

]

= λe−λy (λy)
n−1

(n− 1)!

=
λn

(n− 1)!
yn−1e−λy.

The pdf fY (y) =
λn

(n− 1)!
yn−1e−λy is the pdf for the Gamma Distribution with Y ∼ Gamma(n, λ).

Remark. Interpretation:

Poisson(λ)︸ ︷︷ ︸
countable evenets “per unit”

−→ Exponential(λ)︸ ︷︷ ︸
Wait time between two events (one time interval)

−→ Gamma(r, λ)︸ ︷︷ ︸
wait time for r events (r time invertval)

Theorem 4.5.2 Relationship between Exponential(λ) and Gamma(r, λ)
Suppose Yi ∼ Exponential(λ) are independent. If

Y = Y1 + Y2 + · · ·+ Yr,

then Y ∼ Gamma(r, λ).

Definition 4.5.3 (Gamma Function). For x ≥ 0, the gamma function of x, Γ(x) is defined as

Γ(x) =

∫ ∞

0

tx−1e−t dt.
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4 SPECIAL DISTRIBUTIONS 4.5 Gamma Distribution & Gamma Function

Theorem 4.5.4 Properties of Gamma Function

•
sin(πx) =

π

Γ(x)Γ(1− x)
.

• Recursive Relationship:

Γ(1) =

∫ ∞

0

e−t dt = 1; Γ(2) =

∫ ∞

0

te−t dt = 1 =⇒ Γ(x+ 1) = xΓ(x) for x ≥ 2.

Theorem 4.5.5 Alternative Definition of Γ(n) for n ∈ N and Y ∼ Gamma(n, λ)

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)(n− 2)Γ(n− 2)

= (n− 1)(n− 2) · · · 2Γ(2)
= (n− 1)(n− 2) · · · 2 · 1 · 1
= (n− 1)!

So, suppose Y ∼ Gamma(n, λ), we then have

fY (y) =
λn

(n− 1)!
yn−1e−λy =

λn

Γ(n)
yn−1e−λy.

Theorem 4.5.6 Γ-Integral∫ ∞

0

tα−1e−βt dt
x=βt−−−−→

dx=β dt
βα

∫ ∞

0

xα−1e−x dx︸ ︷︷ ︸
Γ(α)

=
Γ(α)

βα
.

Theorem 4.5.7 Expectation of Y ∼ Gamma(r, λ)
If Y ∼ Gamma(r, λ), then

E(Y ) =
r

x
.
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4 SPECIAL DISTRIBUTIONS 4.5 Gamma Distribution & Gamma Function

Proof 1.

E(Y ) =

∫ ∞

0

yfY (y) dy =
λr

Γ(r)

∫ ∞

0

y · yr−1e−λy dy

=
λr

Γ(r)

∫ ∞

0

yr+1−1e−λy dy [x = λy]

=
λr

Γ(r)

∫ ∞

0

λ−(r+1)xr+1−1e−x dx

=
λr

Γ(r)λr+1

∫ ∞

0

x(r+1)−1e−x dx︸ ︷︷ ︸
Γ(r+1)

=
λr

Γ(r)λr · λ
· Γ(r + 1)

=
rΓ(r)

Γ(r) · λ
=

r

λ
.

■

Theorem 4.5.8 Higher Moments of Y ∼ Gamma(r, λ)
In general,

E(Y n) =

∫ ∞

0

ynfY (y) dy = λnΓ(r + n)

Γ(r)
.

Definition 4.5.9 (χ2, Chi-Squared Distribution). Given Z ∼ N(0, 1), then Z2 ∼ χ2. Let Y =

Zn, then

FY (y) =
2√
2π

∫ √
y

0

e−z2/2 dz

and thus
fY (y) =

d

dy
FY (y) =

1√
2π

y−1/2e−y/2︸ ︷︷ ︸
basis of Gamma pdf

.

So, in fact, χ2 ∼ Gamma
(
1

2
,
1

2

)
.

Remark. We have
λr

Γ(r)
=

1√
2π

=

(
1
2

)1/2
√
π

=⇒ Γ(r) =
√
π.
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