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1 INTRODUCTION

1 Introduction

1.1 Ways to Study Differential Equations
¢ Qualitative: analyze the behavior of the solution
e Quantitative: find the solution

e Approximation: numerical solvers.

1.2 Review and Preview
e y = y(t) is a solution to an ODE.

1. y(t) is a one-variable function.
2. y(t,C) = y(t) + C defines a family of solutions, where C is a constant.
3. Order of ODE: highest order of derivative.

e Similar definitions apply to a PDE: u = u(t, ), where u(t, z) is a function of two or more
variables.

e Famous PDEs:

1. Heat equation in 1D:

Ut = Ugy

2. Heat equation in 2D:

Up = Ugg + Uyy
3. Laplace equation in polar coordinate:

1

Ut + — Uy + —2U99 =0
r r

4. Wave equation in 3D:

Ut = Ugy + Uy + U,

1.3 Classification of PDEs and Definitions
e Order: Highest derivative of the PDE.

e Linearity: The PDE can be written as

Lu

Il
T



1 INTRODUCTION 1.3 Classification of PDEs and Definitions

where L is some linear operator.

e Homogeneity (only for linear PDEs): f = 0 means homogenous; f # 0 means non-
homogenous.

e Number of variables: 2 or more.

e Kinds of Coefficients: Constant/Non-constant.

Definition 1.3.1 (Linear PDEs with 2 Variables). We can write
Atz + Bugy + Cuyy + Dug + Euy + Fu = G, (1)

where A, B,C, D, E, F, G are independent of « (but they can be dependent on z or y).
o IfG =0, (1) is homogenous. If G # 0, (1) is non-homogenous.

e Similar to determinants for quadratic equations, we also classify PDEs according
to the sign of B — 4AC"
1. Parabolic if B> — 4AC = 0,
2. Hyperbolic if B> — 4AC > 0, and
3. Ellipticif B> — 4AC < 0.

Definition 1.3.2 (Initial Value/Boundary Value Problems).
¢ Ifinitial conditions are provided, we have an Initial Value Problem (IVP).
¢ If boundary conditions are given, we have a Boundary Value Problem (BVP).

e If both initial conditions and boundary conditions are provided, we have an Ini-
tial Boundary Value Problem (IBVP).

Example 1.3.3 Example of an IBVP Problem

( ou  0*u )
[PDE] E_@_O’ with0 <z < 1,t> 0,
u(t,0) =0 , (2)
[BCs] with ¢ > 0,
u(t,1) = e,
| [IC] u(0,2) =z, with 0 <z < 1.
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INTRODUCTION 1.3 Classification of PDEs and Definitions

With an IBVP, we can
e Solve this IBVP, or

e Verify a function is a solution for the IBVP.

Example 1.3.4 Classification of PDEs
o ut =e tu,x +sint
2" order, 2 variables (¢, z), linear, non-homogenous.
® Uy, +u; =0
2" order, 2 variables (¢, z), nonlinear.
® Uyy + YUy, =0
2" order, 2 variables (z, y), linear, homogenous.
o ru, +yu, +u* =0
1%t order, 2 variables (z,y), nonlinear.

Classify the following second order PDE as parabolic, hyperbolic, or elliptic. (Only second
order linear PDE can be classified.)

& U = Upy —> Ugpy — U = 0.
A=1,B=0,C =0 = B?-4AC = (0 = parabolic.
® Uy = Uggy — u:c:t_uttzo-
A=1,B=0,C=-1 = B?—-4AC =4 >0 = hyperbolic.
o u, = 0.
A=0,B=1,C=0 = B?-4AC =1 >0 = hyperbolic.
® Uy, + Uy, = 0.
A=1,B=0,C =1 = B?-4AC = -4 < (0 = elliptic.
® YUy + Uyy = 0.
ellipticify > 0
A=y,B=0,C=1 = B?—-4AC = —4y = < parabolicify =0
hyperbolicify < 0
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Classify the following PDE. Classify them as parabolic, hyperbolic, or elliptic when appli-
cable.
® U = Upy + 22Uy + U = Upy + 2uyp — ur +u = 0.
2" order, 2 variables (¢, z), linear, homogenous.
A=1,B=0,C =0 = B?-4AC = (0 = parabolic.

b — gy —uy +et=0.

® Up = Ugy + €
ond grder, 2 variables (t,x), linear, non-homogenous.

A=1,B=0,C =0 = B?-4AC = (0 = parabolic.

® Uyy + SUgy + Uy, = Sinw
27 order, 2 variables (z, y), linear, non-homogenous.
A=1,B=3,C=1 = B?-4AC =9 —4 >0 = hyperbolic.

® Uy = Ulgyrs + e_t

4% order, 2 variables (¢, z), nonlinear, non-homogenous.




2 FIRST ORDER LINEAR PDES

2 First Order Linear PDEs

2.1 Principle of Superposition

Theorem 2.1.1 Principle of Superposition
If uy (2, y) and uy(z, y) are solutions of

Augy + Bugy + Cuyy + Duy + Euy + Fu =G, 3)

then u, (z, y) + us(z, y) is also a solution of the equation if and only if (3) is homogenous.

Proof 1. Let’s plug-in u, (x, y) + us(x, y) to the LHS:

Aty + ug)ze + B(ur + uz)ay + Cug + u2)yy + D(ug + u2)y + E(ur + us)y + Fug + us)
=AUy + Buigy + Curyy + Duiy + Euyy + Fuy + Atggy + Buggy + Cugyy + Dugy + Eugy + Flug
=G +G
=2G.

So, u; + ug is asolution <— G =2G <= G =0 <= (3) is homogenous. [

Example 2.1.2 Simple PDEs
Solve the following PDEs:
Ou(z,y)

ox
Solution 2.

=0.

u(z,y) = f(y), only a function of y. O

2
, Fulzy) _ o
0xdy
Solution 3.

There are two possible orders to take the derivatives:
0 (0Ou ou
. —|=— ) = —isaf i fy.
g <8y) 0 = 3y 1s a function of y
2. 8%; (%) =0 = g—z is a function of x.

Combing the two cases, we know: u(z,y) = f(z) + g(y). O




2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

2.2 Transport Equation and Method of Characteristics

Consider we have a bloodstream, and we want to model the oxygen level in it. Let u(¢,z) be
the concentration or density of oxygen, and ¢(¢, x, u) be the flux.

Then, the total mass of oxygen at time ¢ is given by

o(t) = /abu(t,x) da.

By the conservation law, we have

d
&[@(t)] = Q(ta a, U) - Q(t, ba u)
d b
G| [t ae] = att e - a0,
[ (t,b,u) — q(t, a,u)]
9q
/ dx [Fund. Thm. of Calculus]
b
% / —dx
" u dx = — ¢ o [Interchange derivative and integral)
. Ot v 8:1; & &
b ou aq
. Ot 8x dr=0
— @ + — & =0 (Transport Equation)
ot Ox

Now, assume ¢ is linear in . Then,
Q(ta z, U) =cC- U(t, 1}),

where c is the velocity which does not depend on u. Then, (Transport Equation) becomes

ou ou
N +c- 8_30_0 with IC u(0, z) = wug(z).



2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

The classification is: 1% order, 2 variables (¢, z), linear, and homogenous PDE.
To solve it, suppose we are moving on the stream, at the same velocity as the stream, to
make observations. Let z(¢) denote our trajectory. Let z(¢) be a function of ¢. Then,

u(t,x) = u(t, x(t)).

Then, the total derivative of ©w becomes

B ou Ou dz

D
Zut,alt) = 5+ 5 S

Dt

d . - . . .
where d—f = c is exactly the velocity in (Transport Equation). We form two differential equa-
tions to solve:

dx D
i and Htu(t, z(t)) =0
x(0) = xg u(0, 2(0) = ug(xo).

From the first system, we get z(¢) = ct+xz, ©. From the second system we know that u(¢, z())
is a constant since the total derivative is 0. By the IC, we know u(¢, z(t)) = IC = ug(z) @.
Now, jumping out from the stream, we want everything in (¢, z). From @:

xo(t,x) = x — ct.

Substitute this into @, we get

u(t, ) = uo(z — ct).

This method of solving the PDE is called the Method of Characteristics. Graphically,

t
T = ct + xg
characteristic lines
T _ X
«__ foot of characteristics
Example 2.2.1
0 0 . .
a—?; + 58—:; =0 withu(0,z) = e*sinz.
Solution 1.




2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

D ultafr)) = 04 91
J5) B AVA E T
So, we have two ODEs:

dx Du

— =5 — =0

@< dt @{ Dt

z(0) = xg u(0,2(0)) = ™ sin z.

From @, we have
T = 5t + x¢

To=x — 5t
From @, since D= 0, v is a constant. By the initial condition,

u(t,z(t)) = e™ sinxg

u(t, x) = @ sin(x — 5t).

2.2.1 What Happens when Velocity is not a Constant?

Fora,b € R,
ou ou .
En + (at + b)% =0 withu(0,2) = ug(x).
Solution 2.
D ultafry) = 04 90
[3)  T T
So, we have two ODEs:
% =at + b % —
ol da @) Dt ~
z(0) = zo u(0,2(0)) = ug(xo).

From @,

10



2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

D
From @, F;L = 0, so u is a constant. By the IC,

u(t, x(t)) = uo(o)
u(t, z) = ugp (a: - gt2 - bt).

U
2.2.2 Presence of a Forcing Term
Ju  Ou .
En + o +yu(t,z) = f(t,z), withu(0,z) = up(x).
tv 0 0
u u .
% + o = f(t,z), withu(0,2) = uo(z).
Solution 3.
Two ODEs: d D
x u
2(0) = o u(0,2(0)) = uo(xo)
From @,
x(t) =ct+x9 = 19 =2 — Ct.
Solving @:
—dt / f(s,x(s
0
u(t, z(t)) — u(0,2(0 / f(s,x(s [Fund. Thm. of Calculus|
Note that 2(t) = ct + x¢. So, z(s) = ¢s + z,. Then,
t
u(t,x(t)) — up(zo) = / f(s,es+x9)ds [Use IC]
0
t
u(t, z(t)) = ug(xo) +/ f(s,cs 4+ x)ds
0
t
= up(z —ct) + / f(s,cs+x —ct)ds [zg =z — ct]
0
t
= ug(x — ct) +/ f(s,z—c(t—s))ds
0
U

11



FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

*I 0 0
u u .
o + o +yu(t,x) =0, withu(0,z) = ug(z).
Solution 4.
Two ODEs:
d_!)ﬁ — & + =0
olddat @l Dt "
z(0) = xg u(0,2(0)) = uo(xo).

From ®, z(t) = ct + v9 = x9 =z — ct.

From @: first-order, linear, homogenous ODE. Use integrating factor:

= e 1t = et

Then,

e"u(t, z(t)) — u(0,2(0)) =0
eu(t, z(t)) = u(0,2(0)) = uo(zo)
u(t, z(t)) = e " ug(wo)
)

e v#0and f # 0:

ou ou .
5 T T yu(t,z) = f(t,z), withu(0,2) = ue(x).
Solution 5.
Two ODEs: q D
xXr u
o5 =c o B + = Fltalt)
.I(O) =2y U(O, .’13(0)) = 'LL()(.’]?()).

From ®, z(t) = ct + ©¢ = x9 = — ct.

12



2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

From @: first-order, linear, non-homogenous ODE. Use integrating factor

o= ef'ydt _ e'yt.

Then,

D
e”tFTZ 4ty = (b))
—_————

/0 DES(GVSU) du = /0 e’ f(s,xz(s))ds
eMu(t, z(t)) — e u(0,2(0)) = /0 e’ f(s,cs +xp)ds
e u(t, z(t)) — ug(wo) = /0 e f(s,cs + xo) do
e"u(t, z(t)) = uo(xg) + /0 e”stf(s, cs + xg)ds
eTu(t, z(t)) = ug(z — ct) + /0 e f(s,cs +a —ct)ds
e u(t,x(t)) = ug(x — ct) + /0 e’ f(s,x—c(t—s))ds
u(t,x(t)) = e "ug(z —ct) + e /0 e’ f(s,x—c(t—s))ds

O

For the PDE
ou ou

{a + c(t,x)g + (@t z)u = f(¢,2)
u(0,z) = up(x),

we form two ODEs:

i {it —dta) {D“ At 2(t))u = F(t,2(0)

Dt
z(0) = xg u(0,2(0)) = uo(zo).

Equation @ is linear for sure. We use integrating factor to solve it.

Example 2.2.2

Ju ou . . 2
En +3% —2u =sin(z —t) withu(0,z) = 2=

13



2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

Solution 6.

Two ODEs:

dz Du )
® E—Zﬂ ® E—Za-sm(w—t)
z(0) = xg u(0,2(0)) = ug(xo).

®: x =3t+xy = x9 =2 — 3t. @: Integrating factor.

N(t) _ ef—?dt — o2t

Then,
D
Di [e7*'u] = e sin(x(t) — t)
"D 2 ! 2
— e “*u ds:/ e “*sin(z(s) — s)ds
[ Sletulas = [ e sina(s) - )

e u(t,z(t)) — u(0,2(0)) = /0 e *sin(3s + 29 — s) ds
e 2u(t, z(t)) = uo(xo) + /0 e~ sin(2s + x¢) ds

Lets solve this integral:

1 1
/6_25 sin(2s + zp) ds = —56_25 sin(2s + xg) — / (—56_25> 2 cos(2s + xg) ds
1
= —56_28 sin(2s + o) + /6_28 cos(2s + xg) ds

1
= —56_25 sin(2s + o) — 56_28 cos(2s + xg)

_ / (—%)e_Qs(—Q) sin(2s + zo) ds

1 1
e % sin(2s + x¢) ds = —56_28 sin(2s + xg) — 56_28 cos(2s + zp)

— /6_28 sin(2s + xg) ds

1
2 [ e *sin(2s + 7¢) ds = —ie_ZS[sin(Zs + o) + cos(2s + z)]

—_—— Y~

1
e~ sin(2s + 2¢) ds = —16_28 [sin(2s + zg) + cos(2s + x0)]

14



2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

So,
e 2u(t, x(t)) = ug(xo) — ie_% [sin(2t + o) + cos(2t + xg)] + %eo[sin(xo) + cos(zo)]
= (z —3t)* - ie%[sin(x —t) 4 cos(x — t)] + i[sin(a: — 3t) + cos(x — 3t)]

u(t,z) = e*(x — 3t)* — i[sin(:n —t) 4 cos(x — t)] + ie%[sin(:z: — 3t) + cos(z — 3t)].

]
Example 2.2.3
% +2(82 + 1)% =0 withu(0,2) = €.
Solution 7.
Two ODEs: 1 .
x u
— =2t +1 2 _0
ofa A0 @!{ Dt
z(0) = zo u(0,2(0)) = €&
@:
z(t) = /Q(t2 + 1) dt + zo
5+
=2|3t° + 1| + o
3
2
= ~t3 4+ 2t + 1
3
= 25 _ o
To=T 3
@: u(t, z(t)) is a constant. So,
u(t,z(t)) = e = u(t,z) = " 232
O

Example 2.2.4

ou 1 Ou .
54_@%%—2@6—75 with u(0, ) = u(x).

Solution 8.

15



2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

Two ODEs:

de _ 1 Du ., _,

@{ dt 322 @{ Dt B
x(0) = x¢ u(0,2(0)) = uo(zo).

@:
/ 3r?dr = / dt+C [first-order, separable|
3 1373 =t+C
7=
P =t+C.

Whent = 0, 2(0) = zy. So, z3 = 0+ C = C = z}. So,

2} =t +a
3 _ .3 _
Ty =1ax" —1

xo = (23 — )13,

D .
@: D + 2u = t. Integrating factor:

M(t) _ ef2dt _ 62t.

Then,
D
e2t71tb 1020y — 20

D
E[eztu} T
t t

/ eruds:/ e* - sds
0 0

eu(t, 2(t)) — €20u(0, 2(0)) = | Le2s - /t Logg—Lon o [La]
’ ’ 2 ]y Jo 2 2 4,
e*u(t, x(t)) — uo(xo) = le% t— le% + !
’ 0\+0 9 4 4
e*u(t, z(t)) = up(xg) + lth t le% + !
’ ’ 2 4 T4
1 1
2 3 1/3 2 2t
t = —1 — t— —
eult,z) = uo((z® — 1) )+26 1€t
1 1 1
2 3 13y L+, L1
u(t, ) = e *ug((z® — t) )+2t 4+4e

16



2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Example 2.2.5
ou ou . :
ta + T = 0 withu(l,z) =sinzx.
Solution 9.
Two ODEs:
dr _ @ Du _
@ dt ¢ @! Dt
z(l) =, u(l,z(1)) = sina;.
@:
Ccll—j - %x = [first-order, linear, homo|

g = Ce™ /71t — gl — O,

Att=1,2(1)=C =x,.S0,x = 11t = 21 = %
@: u(t,z(t)) is a constant.

u(t, x(t)) = sinxy

u(t,z) = sin(%).

0
2.3 System of First Order PDEs
ou ou nxn
S AT +Mu=f AMER
uo(0, ) = uo(x),
where
uy (t, x) Ouy /Ot Ouy /0x fi(t,x)
us(t, x) L Ou Oug /Ot . Ou Ouy /Ox . fa(t, x)
u(t,z) = : GR’E_ : ER,%— : eR”, f(t,z) = : :
up(t, ) ou,, /Ot ouy, /0x fu(t, )

Suppose n = 2. Then,

ailr Aaig
ag1 A22

17




2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Set M =0, f = 0. Then, we have a system of two PDEs:

( 3u1 8U1 8u2 .
o T T2y 7Y
[PDEs]
(9U2 8u1 8U2 .
< o gy Ty, =0

u1(0,2) = uyo(x)

us(0, ) = ug ().

[ICs]

\

But... we can’t solve them yet. If A is diagonal, then a2 = as; = 0, we are back to the transport
equation, and we just need to solve two transport equations. So, our job is to diagonalize A.
By diagonalization, we have

A=VDVH
where
|
A
V = ’Ul U2 and D - [ ! ]
2
|
Then,

ou ou

— +VDVi=—=0
ot + ox
ou ou

Vil 4 vyvlvpyTli=— =
ot + \_fl—’ ox 0
_,0u 4 0u , .
V>i—4+DV ' —=0 [Change of Variable: w =V~ u]

ot ox
ow ow

“— 4+ D— =0.
ot Por

This is easy to solve! After finding w, we have w = V~'u = u = Vw.

Definition 2.3.1 (Riemann Variable). The auxiliary variables w are called Riemann
variables or invariants.

2.3.1 Review: How to find the diagonalization - Eigenvalue Problem

Find a pair (A, v) s.t. Av = Av with v # 0. Then,

Av= v = (M —A)v=0 = Bv=0
I

18



2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Since v # 0 by assumption, it must be that B is singular. That is,
det(B) = det(A\ — A) = 0.
This is equivalent to finding roots to the characteristic polynomial
BoA™ + BN 4+ B, = 0.

By Fundamental Theorem of Algebra, characteristic polynomial has exactly m roots (and they
can occur multiple times) € C. The number of times they occur is called multiplicity.

Forn = 2,
det(A — A) = a\* + b\ + ¢ = 0.
Solution formula is
\ —b+ \Vb? — dac
1,2 — .
’ 2a

Given ), », we can also find corresponding eigenvectors v, vo. Then,
A
V=|v v| and D=|"" .
Ao

For 2 x 2 matrix,

a b 1 d —b
V= | A .
1 d] det(V) |—¢ a ]
Example 2.3.2
- 3 -3
—4 -1
Solution 1.
N A= A0 B 3 -3 _ A—3 3 '
0 A -4 -1 4 A+1

det(M —A)=(A=3)(A+1)—12=0
M 20 -3-12=0
AN —20—15=0

A=5)(A+3)=0 = A\ =5 =—3.

19




2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs
e Consider Az = 5zx.
3z, — 319 = b1y 211 = —319 —3/214
— x = :
—41'1 — Ty = 5.’172 —41’1 = 6.’1'}2 )
. . . |—3/2
So, the eigenvector corresponding to \; = 5 is Ll
e Consider Az = —3x.
3r, — 3w = —31, 621 = 329 1/2x9
— = .
—4xy — 19 = =329 —4xy = —2x4 T2
So, the eigenvector corresponding to A\, = —3 is [2] .
Hence, the diagonalization of Ais A = VDV ~!, where
—-3/2 1
V= 3/ and D= > 0 .
0 -3
Then,
gL 2o o)1 2 4l
det(V) | -1 —3/2 —-3—-1|-1 -3/2
12 -1
C—4|-1 -3/2
=172 1/4
| 1/4 38
2.3.2 Worked Examples
Example 2.3.3
ou ou . x3 3 =3
En +A% =0 withu(0,z) = LQ] and A= B _1].

20




2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Solution 2.

1 -3
We have found: \; = -3, \y =5, v, = [2] ,and vy, = [ 5 ] Then,

1 -3
2 2|

oL 28] 12 3]
det(V)|—2 1| 8|-2 1
So,
112 3|23 1|22 + 322 wop ()
V Uo — = — = .
81-2 1||2?| 8|—22%+a? woa ()
Then, we have two PDEs
8w1 6’11}1 o
o Sop
[ )
Lo s 2
wor(z) = §(2x + 3z7%)
We have two ODEs:
dx Dw,
AT ot 0 X
z(0) = zg w1 (0, 2(0)) = §(2x81 + 322)).

Then, we have z(t) = —3t + 29y = 01 = x + 3t. Meanwhile,

wi(t,z(t)) = wor(zo1)

(2x01 =+ 33701)

oolb—\oolr—‘

= —(2(x + 3t)* + 3(x + 3t)?).

Owy | 0wy _

o or

1
woa () = é(—2x3 + 2%)

21



2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

We have two ODEs:
dx Dw, B
@ ot 0 X
7(0) = 02 woz(0,2(0)) = g(—Ql’%Q + x3y).

Then, we have z(t) = 5t + zgs = z02 = * — 5t. Meanwhile,

ws(t, 2(t)) = woz(zo2)
- g2t o)
wy(t, ) = %(—Q(x — 5t)° + (x — 5t)?)

Finally, the solution is

w=Vw — 1 -3 w1
2 2 Wo

wy — 3’[1)2
_2w1 + 2wsq
[1/8(2(x + 3t)3 + 3(z + 3t)%) — 3/8(—2(x — 5t)% + (x — 5t)?)
[ 1/4(2(x + 3t)° + 3(x + 3t)%) + 1/4(—2(x — 5t)* + (v — 5t)%) |

Example 2.3.4 Non-homogenous System, [ # 0

ou ou , x3
N +A% = f withu(0,2) = [332] and A=

3 =3 0
» _1] and f:L].

Solution 3.
Suppose A = VDV, Then,

ou ou
it DV 1= —
g VPV g =
ou ou
—1 -1 -1 _ -l . —1
1% N +V_1V DV 92 V= f [Multiply by V|
ou ou ow ow
-1 -1 _y-! _ -l w=TV"1y
V N + DV B V> f = wn +D—8x V= f [w=V""y]

22



2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Recall from previous example:

v—| _3, T 3, andD— | ° Y.
2 2 8|1-2 1 0 5

Then,

1
wor(x) = §(2x3 + 32%)

We have two ODEs:
dz 3 Dw, 3
at Dt 8 .
z(0) = xpn wo1(0,2(0)) = §(2x81 + 390(2)1).

Then, we have z(t) = =3t + x7y = z1 = = + 3t. Meanwhile,

Dw, 3 3
L= — wy(ta2) = §t+w01($01)

Dt 8
3 1 3 2
= gt + §(2x01 + 39501)
1
w(t, ) = gt +3 (2(x + 3t)* + 3(z + 3t)?).
6w2 8w2 . 1
o o T8
[ )
1
woa (1) = g(—2x3 + 22)
We have two ODEs:

dz . Dwy, 1

dt Dt 8 .

2(0) = 2oz woz(0,2(0)) = g(—2$32 + 2y).
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Then, we have z(t) = 5t + zgo = x92 = * — 5t. Meanwhile,

Dw 1 1
DtZ =g = walt.z(t) = ot + wor(w0n)
1 1
= §t + 3 (—23:82 + a:gz)
1 1
wsy(t, x) = gt + g(—Q(x — 5t)° + (x — 5t)?).
Finally, the solution is
L
u="Vw= 31w
_2 2 Wao
[ w, — 3'11}2 .
= [Plug-in w, and ws)
_2w1 + 2wsq
O
Now, consider the full system:
ou ou
— 4+ A— + Mu=
o T hge TMu=

u(0, ) = uo(z)

Recall: if A = VDV, then

g—? -I—VDV‘lg—Z + Mu=f
v—l% +V v DV‘l% +VIMu=V"f
=T
v—lg—;‘ + Dv—l% +V IMu=V"1f
X

e If M is the identity matrix, M = I. Then,

ou ou
-19% | py1 e 17y — -1
1% 5 + DV p + V>3 lu=V""f
ou ou
194 | py19e -1, _ /-1
\% 5 + DV Ep +V i iu=V""f
ow ow R R
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

e If M is a multiple of the identity matrix, M = «!. Then,

_,0u 18 R
ou au
et 1ou _ !
VIS DV o paV =V
ow ow Y 1
at D% + aw = f [U, =V lL]

e If M is diagonalized by V, (thatis, M = VMV !, where M is diagonal), then

v 2 pv 2y R = v
ot 0r  ~——
=1
_,0u _,0u vl
ow ow R
8t+D6—+Mw_V 'f [w=V""u]

e Other cases: Numerical Methods.

Example 2.3.5

ou ou
Fn Aa— = f withu(0,2) =

Solution 4.
Firstly, let’s verify V' MV is diagonal. Recall:

1 -3 112 3 -3 0
V= ., Vl=C , and D = .
2 2 81-2 1 0 5

Ty 123 [5/4 3/8] [1 —3]
8

Then,

-2 1) |1/2 7/4 2
C1f2 3]z -3
82 1|4 2
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Then, we aim to solve

ow ow —~ 4
where w = V~'u. Then, we have two PDEs to solve:
6w1 Bwl 3
3 4w = =
ot 3 ox + e 8

1
wo1(0, ) = §(2£E3 + 32%)

dv_ g
1. ¢ dt = Wegetuz(t) = -3t +x9y = z¢91 =+ 3t.
x(0) = z¢
le 3
2w, = —
Dt TFMT g

1
wo1 (0, 2(0)) = g(ngl + 32,).
Apply integrating factor:

Then,
[eQSwl(s,x(s))] = [e%gl
ey (1, 3(8)) — wy (0, 2(0)) = g(e% )
ey (£, 2(t)) = g(e% 1) 4 w1 (0, 2(0))
wi (¢, 2(t)) = 2(1 ) 4 %y (0, 2(0))
= (1) e (2 + 30
w(t,z) = g(l )+ —eH(2(x + 3t)° + 3(z + 3t)?)
821)2 8w2 1
W + 5@ + Wo = g

1
we2(0,2) = g(—2x3 + 2?)

dx
1. {E :>Wegeta:(t):5t+x02 = Ip2 = x — bt.
.CL'(O) = T2
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Dw2+
Wo = —
Dt 278

1
wo2(0,2(0)) = g(_2$g2 + x8y).

Apply integrating factor:
n=e J1de _ et

Then,
[esw2(s, x(s))] = [esél
ew(t, 2(t)) — ws (0, 2(0)) = %(et )
elwy(t, x(t)) = %(et — 1) 4 wy(0,2(0))
walt, 2(t)) = %(1 — )+ e 0, 2(0))
1 —t 1 3 2
= §(1 —e ) +e §(_2$02 +9:02)
wy(t, ) = %(1 —e )+ %e‘t(—Q(x —5t)% + (z — 5t)°)

Finally, the solution is

(1 -3
u=Vw= w
2 2 Wa

w1 — 3wy

Plug-in w, and w-
_2w1 + 2U}2 [ & ! 2]

Example 2.3.6 Connection with Wave Equation I

O 42% o with w(0,2) = || and 4 = -
ot Ox cos(z -2 0
Solution 5.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

-2 -1

det(A):det[ ]:A2—72:0:)\1:7’)\2:—7.

o\ =—
-1 (1) 1
72 v =O:>7v()—v(2)=0:>vl—
—2 oy | [v® ~y
e X =7y
— -1 (1) 1
72 U@) =0 = —'yv(l) —0?P =0 = Vg = .
- Y| |v -
So,
—v 0 1 1
D= 7 , and V = .
U i/
Since
1
det(V') = det = -2,
Y =
we know
vl 1 —y -1 :_i —y —1 :i'y 1 .
det(V) —y 1 2")/ —y 1 2’)/ vy —1

Then, The initial condition is

wn W1 :i v 1| |uo :i v 1 ||sinx :i ysinx + cosx
’ 29 |y =1 |uoe 2y |y —1||cosz 27 |ysinz — cosz |

Wo2
So, we have two PDEs to solve:

Owy 0w _
o ! Ot T ox,

wy(0,x) = 5(7 sinx + cos x)

dx
- = _f)/

1. ¢ dt = 2(t) = =yt + 291 = o1 = T + L.
.’13(0) = X1

28



2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

le
2. Dt
w1 (0,2(0)) = g(fy sin zg; + cos o)

=0

wi(t,z(t)) = w1 (0, zo1)

L,
= > (v sin g1 + cos zo1)

1
wi(t,x) = %(7 sin(x 4 yt) + cos(z + 7t))
(911)2 8w2 —0

oV on T
wy(0,x) = a(v sinx — cos x)

dx

1. dt — {L’(t):’yt—l—xog = Zgo =T — L.
QL'(O) = T2
DU)2 0

, ) Dt

w2(0,2(0)) = %(7 sin gy — €OS Tog)

wy(t, z(t)) = w2 (0, zo2)
1

= Z (7ysin zge — oS xg2)

wsy(t, x) = %(’y sin(x — yt) — cos(x — t))

So,

[uq] 1 [7 sin(z + yt) + cos(z + t)
w = =
2y

2y ysin(x — yt) — cos(x — t)

Wa

Then, the final solution is

1 1|1
v ]2

1 [ ysin(x + yt) + cos(x + yt) + ysin(x — yt) — cos(z — vt) ]
( :

u=Vw=

ysin(x + yt) + cos(x + )
ysin(x — t) — cos(z — t)

T2y |42 sin(z + t) + v cos(x + yt) — 2 sin(z — 7t) + v cos(x — t)
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2.3 System of First Order PDEs

FIRST ORDER LINEAR PDES
(z,1)
z — Ayt Range of r+t
T+t T —t Inference
Domain of Dependence v 0 o
O
Example 2.3.7 Connection with Wave Equation II
Ju Ju . sin(z) 0
— 4+ A— =0, with u(0,z)= , A= ,and f = .
ot ox (0,2) [cos(x —~? ] / [1]
Solution 6.
—y 0] 11
p=1|"" , and V = )
0 7] Y =
V—lzi v 1 ’ wo:i_ysinx—i-cosx .
27 |y —1_ 2y _’ysinx—cosx

- 1 1]fo] 11
F=vir=o1" = —
2y |y —1]]1 2y (-1
So, we have two PDEs to solve:

6’(1)1 8’(1)1 1

o or 2y

wy(0,2) = 5(7 sinz + cos x)

dz
1. dt ! — z(t) = =yt + 201 = w01 = + .
.T(O) = X1
le . 1
w1 (0,2(0)) = %(*y sin zg; + cos z1)
(t,2) = o—t + ——(ysin(@ + 1) + cos(z + 1))
wy(t,x) = —t + —(ysin(z cos(x
17, 2y 2y v v Y

1
= %(7 sin(x + yt) 4 cos(x + ~t) + t).
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

8w2 6’11)2 . 1

o o Ty

wy(0,x) = 5(7 sinx — cos x)

dz

1. dt_7 — z(t) =yt + xga = Ty = T — Yt.
1’(0) = 202
D’UJQ o 1

wy(0,2(0)) = %(7 sin xgy — €OS To2)

1 1
wy(t,x) = —%t + %(7 sin(x — yt) — cos(z — 7))

= %(7 sin(x — yt) — cos(xz — yt) — t).

So,

wy 1 |ysin(x +~t) + cos(z +t) + ¢
w = =— .
27 |ysin(x — yt) — cos(z — yt) — t

Then, the final solution is

1 11
v —7] 2y
1 ysin(x + yt) + cos(x + yt) + ysin(x — yt) — cos(z — vt)

T2 [72 sin(z + t) + v cos(x + yt) — 2 sin(z — yt) + ycos(x — Yt) + 2yt

ysin(x + yt) + cos(x +t) + ¢

u=Vw= ]
ysin(x — t) — cos(z — yt) — ¢
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION

3 Second Order PDE: Unbounded Wave Equation

3.1 Vibrate String

Problem Set-Up Consider a flexible String that is stretched tight between 2 points. The stretch-
ing creates a tension 7' that pulls in both directions at each point along its length. Any
other force is negligible. Write a PDE for this problem.

Solution 1.

e Step 1: Parametrize the String: = € [0, /], where ¢ is the length of the string.

Let u(t, z) be the vertical displacement.

14
Divide the total length 7 into segments: Az = -

Then, the mass of each segment is m = pAx.

u

xo =01 Ax r; = jAx \/ (=ux," T
e Zoom into a single point:

U(t, xj—l) t )
T Tj,j+1 u( ) x]+1)

]7]_1

Qj B;
u(t, x;)

AF(t, x;) = Tjj-1sin(a;) + Tjj41 sin(6;)
Assumptions
1. T is constant; and
2. aj and f; are small s.t. sin(o;) ~ tan(a;) and sin(8;) ~ tan(g;).

Then,

u(t,xj—1) — u(t, z;)
Az

(t7 xj-l—l) - u(tv x]’)
Az '

sin(a;) ~ tan(a;) =

sin(8;) ~ tan(p;) = Y
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION

3.1 Vibrate String

Therefore,

F(t’ ,’]j'j) — Tu(t’ xj—l) - 'U/(t, I'J) + Tu(t, .’I?j+1) — U(t, ‘,Ej)

=T

Az Az
w(t, i) +u(t,xj1) — 2ult, z;)
Az

Apply Newton’s Law: F' = ma, we get

P A
P x@(t,xj) = AF(t,x;)
mass
acceleration
0*u AF(t,x;)
= (t.ps) = —/— I
atg ( 71']) pAIE
T [ult,xj-1) + ult, xj01) — 2u(t, 7))
o Ax?

~
similar to second-order derivative

Take the limit Az — 0, i.e., n — +o00, we get

lim

Az—0

w(t,xj—1) +ult,xjz) — 2u(t,z;)  O%u
Ax? B

o2’

e Step 3: From discrete back to continuous:

Pu_ Tk
otz pox2

So, we get the 1D Wave Equation:

(

[ICs]

[BCs]

T 0%*u
p Ox?

0%*u

ot?

(1D Wave Equation)
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

3.2 D’Alembert’s Formula

Theorem 3.2.1 D’Alembert’s Formula

The IVP
Pu  ,0%u
oz ag2
u(0,x) = ug(x)
ou

E(O, x) = vo(z).

for ug € C*(R?), v € C'(R) has the unique solution

=0

1 AP A
u(t,z) = §[ug(x +9t) + up(z — yt)] + o / vo(k) dk.
T

3.2.1 Proof by Reducing to A System of First Order PDEs

Let’s first recall how we can solve a second order ODE using systems. Consider
y"' 4+ p(t)y' +q(t)y = 0.

Define

x
T = [ 1], where 7, := yand x5 == v/'.
o)

We aim to build 2’ = Az. The following will work:

<= [d]- 1y g I B RN
) y" —p(t)zs — q(t)z; —q(t) —p(t)]| |z

We will use a similar method to prove the D’Alembert’s formula by reducing the second order
PDE into a system of first order PDEs.
Consider the following IVP:

/

[ y
—p(t)y —q(t)y

Pu 0%
a2 ox?
u(0,x) = ug(x)
ou
i vo(z).
Denote
ou ou
Uy = . and wus = 5

) ou ou
Recall from exact equation: Once we know e and TR we can solve for u.
xXr
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

Let’s rewrite the PDE:

o (ouy L0 (o)
ot \ Ot (’93:8:6—

Quy _ 50m

T

We need another equation, and we obtain this equation from the requirement that v must be

of C?. That is,
o (ou\ _ 0 (on
dr\ot) Ot\ox

Quy _ O
ox Ot
Ou 0wy _,
ot or
So, the system is
(0w Ouz _
ot or
Ous 20U
AT
0
up(0,2) = %uo(x)
KUQ(O,:E) = vp(x).
ou ou 0 -1 ..
Then, in matrix form, we have — + A— = 0, where A = . This is exactly the
ot ox —72 0
problems we worked on in last section!
From previous work, we know u; and us:
up|  |Ou/0x
Uo B Ou /ot '

The remaining job is to find u(t, z):

ult,z) = / i (t, ) de + o(#)

/—dx+<p

/ 8u(+t)+(+t)+—
97 |y & T ol £ t) 4y

8'&0

e (x —t) —vo(x — 1) | dz + o(t)
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

That is,
1 0 Ouyg
u(t,x) = > [fy auo( T+ t) + a—(x —~t)dx + /vo(x +9t) — vz — yt) da | + ¢(t)
1 T+t
=3 [uo(a: +7t) + up(z — fyt)} + > /xﬂt vo(k) dr + p(t).
o ou(t, )
So, the final job is the find ¢(¢): compute 5 and compare against uy. [ug(z) is a sin-
gular variable function.]
ou(t,z) 1 , , 1 ,
5 = 3 ['yuo(-’r + 1) — yup(z — 'Vt)} + g[vvo(fﬂ +7t) = (=7)vo(z — )] + ¢'(1)
_ i 2,1 A2 . i _ /
=35 [v (@ +7t) = 7 up(z 'yt)] + o (@ +9) + yvo(z =98] + ¢ (¢)
= U9.

So, it must be ¢'(t) = 0.
Since we are doing definite integrals, ¢'(t) = 0 = ¢(t) = 0. So, we recover the
D’Alembert’s formula:

T+t

u(t,z) = ; [uo(x + 7t) + uo(x — fyt)} > / vo(k) dk.

r—yt

3.2.2 Proof by Reducing to Two First Order Linear Conservation Laws

Again, consider the following IVP:

Pu  ,0Pu
oz~ 7 ag2
u(0, ) = uo(x)
ou

E(O’ x) = vo(z).

Apply algebra formulas on operators, we get

9L ON(9 9N, —
ot " Tox ) \or 'Yax

-~
=w

Then, we have two first-order linear conservation laws to solve.

ow N ow 0
1. ot Vaxa 9
(0’37) = E(Oax) - 7%(&1‘)
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION

3.2 D’Alembert’s Formula

Using the method of characteristics, we get

ar _
o { dt -7
x(0) = g

Dw
o 7Y
w(0,(0)) =
So,

Recall

So, we have the second first-order linear conservation law:

ow _ ou
2. {81& Tor T

u(0, ) = up(x).

= z(t) =yt+29 = x90=20— L.

ou ou

22(0,2(0)) = 75 0,2(0))

(9 9N _Ou
Y=\or T Vo )" T ot

Again, we use the method of characteristics. The characteristic line is z(t) = —~vt + z.

So, xqg = x + 7t.

Further,

Du
Dt

t

tx ———>/

ut, z(t)) = u(0,z(0))

t

t

u(t, x(t)) — uo(zo)

t

t

t

S— — S— o T —

37

w(s, z(s)) ds
w(s, z(s)) ds

w(s, z(s)) ds

w(s, —vs + x) ds
w(s, —ys+x +~t)ds

w(s,x +v(t—s))ds.



3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

Let’s work on the RHS first. Since w(t, x) = vo(x — 7t) — ’y%(z —t),

ws, 2+ (8 = 5)) =l +2(t = 5) = 79) = 7 p (o + 7t~ 5) — 75)

(:x +y(t — 2s)).

Ouyg
= vo(x +y(t —28)) —v—F— 5

So,
/0 w(s,x+y(t—s)) = /0 vo(x + y(t — 2s)) — ’y%(m +(t —2s))ds

1
Letk =2+ v(t — 2s). Thendk = —2yds = ds = ~5 dk.

Y
e Whens =0,k =z +~t
e Whens =1t k=x+~(t—2t) =z —t.
Further, since x(z) = x + v(t — 2s), we have
Ouy  Oug Ok Oug  Ouyg

or Ok Oz — or _ Or
<~

=1

[wtsatate-s)= o) = 512) (- )

1 ot auo

a 27 z—t

Then,

Eventually, we get

[t ate =) = g [ ) as = gfunte 20 = wala = 20
Hence,
ult o) = o) = = [onle +20) = wo(e = 0] + 5 /()d

u(t, z) = uo(x + ~t) — % [uo(x +t) — up(z — Vt)] + > /j:t vo(k) dr

1

1 x4+t
= - t — )|+ — d
5 [U0(33+7 ) + uo(x — 7 )} + 27/$ y vo(k) dK
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

3.2.3 Applying D’Alembert’s Formula

Example 3.2.2 Motion of a Simple Square Wave

Pu 0% : Lfor || <1 Ou
t x 0o/w, ¢

Find the solution using D’Alembert formula.
Solution 1.

0, o/w

L]z] <1
up(z) = { ,  vo(x) =0.

[Even though uy(z) € C*(R), we can still apply D’Alembert’s formula.]
By D’alembert’s formula, we have

1 1
u(t,z) = 5 [uo(x +t) + uo(r — yt)} +0= 3 [uo(az +7t) + up(x —t)|.
To visualize the solution, note that

1 1—vt<az<z—nt 1 1—vt<ax<1+nt
ug(x +t) = ! 7" and up(z —t) = ! K
0 o/w 0 o/w

Then, the snapshots of solutions are

o t =0
1
uo()
—1 1 X
1
o l4Vt<l—yt = M <2== t < —:
Y
1
1/2
—1—9t —14+9t1—~t 1+t Z
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

1
o —l4yt>1—nt = t>—:
ot

1/2

1=yt 14+t 1—~y 1+t z

Example 3.2.3

Find the solution using D’Alembert’s formula:

Pu 0% ) ou 1, for|z| <1
w—’)’ @—0 Wlthu(O,.’L‘)—O, E(O,x)—

0, o/w.

Solution 2.

From D’Alembert’s formula, we know

1 T+t
u(t,x) = Z/ vo(k) dk.
r—yt

Now, let’s discuss different cases (i.e., relationship among —1, 1, z — «¢, and = + 7t to solve
the integral.

e No overlapping:

lLz—yt<z+yt<—-1<liu; =0

2. —l<l<z—yt<z+ytius =0
e Partial overlapping:

lLz—yt<-1l<az4+yt <1t

2. —l<zrz—yt<l<z+nt:

Uy = — 1 d/‘i =
27 r—yt 27
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION

e Total overlapping:

. - 1<z —vyt<ax+t<l1:

1 £E+’7t t_ t
1d/<a::lg+’y Ty ={.

B 2’7 r—yt 27

Us

2.r—yt<-1<1l<x+nt:

1 [t 1+1 1
Ug = — 1d/<a:L:—.
2y J 4 2y 0

Combining all the situations, we can draw the solution:

—1—nt L —nt —1+~t 1+t
Ug

. 1
Let’s look at a more specific example. Suppose t = o Then,
v

3.2 D’Alembert’s Formula

1 1
raa(3) 41 s L () e
— — — t = — = == .
Uus 27 2/}/ y Us 273 Ug 2,7 2/}/
Visualizing it, we get
Us
us Uy
Uy U9 x
1
Further, when t = —, we get
v
U3 Uy
Uq U2 T
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

1
When t > —, we have
vy

Ug 1

us Uy

(751 (%) xz
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4 HEAT EQUATION

4 Heat Equation

4.1 Introduction

ou 0%
5 Yo/

is a one-dimensional diffusion equation, where « is called the diffusion coefficient.

To derive this equation, let’s consider Heat Conduction on a homogenous, isomorphic bar.
Let p be the constant mass density. Assume e¢ = e(t,z) models the thermal energy per unit
mass, then the total quantity of thermal energy is given by

b
/ epdx.

Hence, the change of thermal energy is

dd [° b Oe
n epdx:/ apdaz.

Let ¢ = ¢(t, ) model the heat flux, then the heat flux change is given by

qa —qb = — /aqu

So, by Law of Conservation of Energy,

/ 8q dx

b@e 8q

’ at 8 dx =20
Oe Jq

— o’ o ="

By Fourier Law of Heat Conduction, if u = u(t, x) is the absolute temperature and k£ > 0 is the

thermal conductivity, we have

ou
= —k%

Moreover, if ¢ is the specific heat of the material, then

€ = Cu
Hence, we get
ou  k0*u
ot  cpox?



4 HEAT EQUATION 4.1

Introduction

where K is called the thermal diffusivity.
cp

We also prescribe initial condition and boundary conditions:
e Initial condition: u(0, x) = ue(z) is the initial temperature profile, and
e Boundary conditions:

1. Dirichlet BCs:

2. Neumann BCs:
ou

%(t,o) = ho(t)
ou
“2(t. 1) =
2t 1) = (1)
3. Robin BCs: 3
8—Z(t, 0) + au(t,0) = ho(t)
0
So(t1) + Bult 1) = ha()
Definition 4.1.1 (Heat Equation).
ou  ,0%u .
a2 1
[PDE] 5 Y B2 0 with0 <z <1,t>0
(IC]  w(0,2) = up(z) with0 <z <1
Dirichlet
[BCs] Nuemann witht > 0
Robin
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4 HEAT EQUATION 4.2 Separation of Variables

4.2 Separation of Variables

Given the IBVP
ou  ,0%u .
[PDE] E—a@—o with0 <z <1, >0
u(t,0) =0 .
[BCs] with ¢ > 0
u(t,1) =0
[IC] (0, z) = sin(nmz) with 0 < z < 1,n integer

We can find solutions to the PDE in the form u(t,z) = T'(¢)X(x) by transforming the PDE to
ODEs. [This BCis called the Dirichlet homogenous BCs.]
Assume u(t,z) = T'(t)X (z). Then,

Ju ,
ou ' d%u _ "

Then, the PDE becomes
T' )X (z) — 2Tt X" (x) = 0.

Note that u(¢,z) = 0 is a trivial solution, and we are not interested in this trivial solution.
Assume u(t, z) # 0. Divide both sides by a?u(t, z):

") X(z) ( ) X" ()
2u(t, x) 2u(t, x)
T'(t) X4x) Q}WX”(ZU) _0
?T(t)XA7)  o2P()X (x)

=0

() X'
a?T(t) X(x)
()  X"(x)

2T(t)  X(x)'

The only possibility of a function of ¢ equals a function of z is that both of them equal to a

constant, say k. So, we have
T X))
2T (t)  X(z)

That is, we have two ODEs:

T'(t)
* 2T@)

=k = T'(t) = ka®T(t) = T'(t) — ka®T(t) = 0. This is a first-order linear
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4 HEAT EQUATION 4.2 Separation of Variables

homogenous ODE, and we have the general solution formula:
T(T) = Cek™,

[Recall that u(t,z) = T(t)X (z) is the temperature. So, we expect T(T) = C'e**’t — 0 when
t — o00. Sincea?® > 0 andt > 0, we need k < 0. We will also see this condition later in the
discussion of cases.]

Xl/(x)

X(x)
homogenous, constant coefficients ODE. We will solve using characteristic polynomial:

=k = X"(z) =kX(z) = X"(x) — kX(z) = 0. This is a second-order, linear,

: k > 0. Since r? = k, r1» = +V/k. Then, the Fundamental Set of Solutions (FSS)
is {e‘/h, e*‘/h}. Imposing BCs, we have

X(0)=0 and X(1)=0.
Let X (¢) = AeV*™ + Be=VF*_ Then,

X(0)=A+B=0
X(1) = AeVF + Be vk =0

0
ol
_ | det(A) # 0 = unique solution: X = 0

[Recall: AX =0 | Since
det(A) = 0 = infinitely many solutions

Write it in the matrix form:
A

B

1 1
eVE eV

1 1
kR
detL\/E e_\/E]_e eV" #£0 whenk >0,
0
ol

Hence, X (t) = 0- eV + 0. eVk* = 0 and u(t, z) = T(t)X () = 0. This is not interesting!
: k = 0. Then, we have X”(xz) = 0, which implies X (z) is a linear function.

we have a unique solution to the system

A
B
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4 HEAT EQUATION 4.2 Separation of Variables

Assume X (z) = Az + B. Imposing BCs, we have

X(0)=B=0 A=0
=
X1)=A+B=0 B=0
Then, X(z) =0 = u(t,z) = T(t)X(x) = 0. Not interesting!

CaseIlll|: k < 0. Let’s define £ = —)\2. So,

X"(z) = (=A\)X(x) =0
X"(z) + XX (z) =0
Solving the characteristic polynomial, we need
p(r) =+ A2 E
7,,2 — _)\2
T2 = +i.

So, FSS = {¢**, ¢7**}. By Euler’s formula, we have

e = cos(Ax) + isin(\z)

[Recall: = = a + ib and its conjugatez = a — ib. Then,

2+ 7 b+a—ib _ 2
z4+%Z a+ib+a D % i=Re(») R
2 2
y—% a+ibfa+1572ib
2i 21 o

Re(z) andIm(z) are linear combinations of = andz. By Principle of Superposition, if z and
Z are solutions, so do Re(z) and Im(z).]

So, by Principle of Superposition, Re (¢**) and Im(e**) are solutions to the ODE:

Xi(z) = Im (e™*) = sin(\z)
Xs(z) = Re (¢*) = cos(\z).

So, X (z) = AXy(x) + BXy(z) = Asin(A\x) + B cos(A\z).
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4 HEAT EQUATION 4.2 Separation of Variables

Imposing BCs:
X (0) = Asin(A-0) + Bcos(A-0) =0
X (1) = Asin(A-1) + Bcos(A-1) =0

B=0 Asin(A) =0
et et
Asin(\) + Bcos(A) =0 B=0

Then, we have two possibilities:

1. A= 0. Then, we are back into cases of X (z) = 0 and u(t, z) = 0. Not interesting!

2. sin(A) = 0. Then, A = 7, wherey = 1,2,.... Then, X(z) = Asin(yrz). This is the
interesting case.

Hence, the solution is
u(t,z) = T(t) X (z) = Ce*’ Asin(yma).

Recall that £ = —\? and \ = 7. So, kK = —(ym)%. Then,
u(t, z) = CAe” ™’ gin(yrz).
Finally, let’s impose IC:

u(0, z) = sin(nmz)
C Ae® sin(yrz) = sin(nmr)

CAsin(yrz) = sin(nmx)

So, CA = 1 and v = n. Therefore, our solution of the IBVP is

—(nm)?

u(t,x) =e “Lsin(nmz)|.

Example 4.2.1 Principle of Superposition

Given the IBVP
ou 0% ,
[PDE] E—a@_o withO <z <1,t>0
u(t,0) =0 .
[BCs] with¢ > 0
u(t,1) =0
[(IC] w(0,z) = 3sin(77x) + 12sin(107z) with 0 < z < 1, n integer
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4 HEAT EQUATION 4.3 Fourier Series

Solution 1.
The solution is
u(t,z) = CAe~ O™ gin(yrz).

Use the principle of superposition, we can split the ICs into 2:

u1(0,z) = 3sin(7mx)
u(0,2) = 12sin(107z).

Then, u(t,z) = ui(t, z) + us(t, ). So,

uy(0,7) = CAe” sin(ymrr) = 3sin(7rx)
CAsin(yrx) = 3sin(7rz)
— CA=3, =7

S0, u (t, x) = 3¢~ (™t gin(7rz). Similarly, uy(t, z) = 12e~ (197’ in(107z). So, the solution
to the IBVP is

u(t,z) = uy(t, ) + us(t, x)

= 3¢~ Tt gin(Trz) + 12¢~ 10 in(107z).

4.3 Fourier Series

We can represent a periodic function f = f(z) with period of 27 (i.e., f(z) = f(z + 27)) in
terms of weighted sums of sine and cosine functions:

—1
f(z) = Bycos(0 - x) +By cos(z) + Bycos(2z) + -+ - + By cos(Nx) + - - -
+ Apsin(0 - x) + Ay sin(z) + Ay sin(2z) + -+ - + Ay sin(Nz) + - - -
——

=0

Theorem 4.3.1 Summary of Integrals of Sine and Cosine Functions
Let’s consider the interval [—, 7.

) / sin(max) dz = 0.

—T
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4 HEAT EQUATION 4.3 Fourier Series

. / " cos(ma) dz = 0.

. / " sin(ma) cos(nz) dz = 0.

. / " sin(ma) sin(nz) dz = 0if m % n.
. / e T e ——
. / " cos(ma) cos(nz) dz = 0if m £ n.

o / cos(mx) cos(nx)dr = wif m = n.

Suppose we want to find B:

f(z) cos(z) = Bycos(x) + By cos(x) cos(x) + - - - + By cos(Nzx) cos(z) + - - -
+ A;sin(z) cos(x) + - - - + Ay sin(Nz) cos(x) + - - -

=0 =7 =0
/ f(z)cos(z)dx = BO/ cos(x)dz +B, / cos(x)cos(x)dr +--- + BN/ cos(Nz)cos(x)dx +---
+ A / sin(x) cos(x)dr +--- + An / sin(Nz) cos(x) dx
~ ;,O / ~ ;’O /
So, _ _
/ f(z)cos(z)de =B, = By = l/ f(z) cos(z) dz
- T J -z
In general,
1 ™
By = ;/ f(x) cos(kx) dx |.
To find By:
27 =0
s s ™ s =0
/ f(x)dx:Bo/ dx+Bl/ Cos(x)d:c+~~+BN/ cos(Nx)dx +---

. g
g

™

+A1/ sin(:v)dx+---+AN/ sin(Nz)dx+---
L—’o_/ Nl ~- .
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4 HEAT EQUATION 4.3 Fourier Series

So, we have
™ 1 T
/ f(x)dx =27By = |By = 2—/ flx)dx|.
—T T™J_x
Similarly,
Ay = l/ f(z)sin(kx) dx |
T J_x
Theorem 4.3.2
Denote
N
pn(x) = By + Z By, cos(kx) + Ay sin(kx).
k=1

If f(x) has a period of 2~ (i.e., f(z) = f(z + 27)) and is integrable on [—, pi], then

lim pn(2) = f(2).

N—+o00

Example 4.3.3

Consider the function f = f(z) = ¢* on (—m, ), replicated to be a periodic function on
R of period 27. Find its Fourier expansion.

Solution 1.

b - ——_ E,———_—— =

\'4

This function is periodic with a period of 27.

1 ™ T T
By = — e“dr = c ¢

2 J_. 2

[, er—e T k
Bk = ; /_ﬂ_e COS(]C.’IZ') dz = m(—l)

1 " T e"—e’" k+1
Ak = ;/_we Sln(kx) dx = mk(—l) +
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4 HEAT EQUATION 4.3 Fourier Series

Recall: hyperbolic sine:

h() —
sinh(x) 5
Then,
_ 2sinh(7) | 1 N k(—1)F*sin(kz) + (—1)F cos(kx)
pn(x) = - B + ; 21 .
0
Example 4.3.4
Write the following square wave in terms of Fourier Series:
5 if2km<x<(2k+1)m
xr) =
0 ifRk+D)r<zx<(2k+2)n
Solution 2.
c
—>
- =T 0 ® W ML UL Sh
[ d
By = — =2
0 277/_7rf($)d$ 5
1 K
By = —/ f(x)cos(kx)dx =0
T™J_n
1 [ 0, ifkiseven
Ay = —/ f(x)sin(kx)dz = ¢ 10
T Jx — if kis odd.
km
So,
LN/2]
) 10
= k+1
Pv=3 ; @kt 1) Sk + L)
5 10 0
=3 + — sin(x) + 3. sin(3z) +
0
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4 HEAT EQUATION 4.3 Fourier Series

How to make f(x) periodic with a period of 272

Jex)

e - —— o ——

>
0 1 A
e The zero option: Let f(z) = 0 for z € [—,0].
{o%) {0
{ I
| |
v v 2 >
y 0 T p5 3N %
e Even function: reflect w.r.t. y-axis.
L4 z )
e Odd function: reflect w.r.t. x-axis.
( (
] ]
| |
ETU ,\ Il
: >
9 2T 3R o
1
i
|

T e —
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4 HEAT EQUATION 4.3 Fourier Series

Properties

o / even(x)odd(z) dz =0
General Solution of Heat Equation with Dirichlet BCs

Ze (km)*a tA sin(kmx)].

k=1

So, we don’t want any B, or By, terms.

Take f(z) = odd(z). Then,

/ f(z — 7Todd(:c)d:zczO
= ;/_W f(z)cos(kx)dx = ;/_:odd(x)&s(/l@ dz =0

even

= %/W f(x)sin(kzx) dx = %/OW odd(z) sin(kz) dx

Att = 0, compare u(t, z) against the IC uy(x):

Z e Ay, sin(krx) Z A sin(krz) = ug(z).

One more step: Change of variable — map from [0, 7] — [0, 1].
Let{ =nmx. Then,z =0 — ¢ =0andz =1 — £ = 7. Also, d¢ = ndx.
We are working on uy(¢) because the integrals were defined on [0, 7]. Convert from &

back to x, we get

Ay = 2 /7T 1o (&) sin(k&) d¢ [o(§) = g in terms of €.
T Jo
= ;% /0 1 up(z) sin(km)xdx |Change of Variable|

1
Ay = 2/ uo(x) sin(kmx) dz |.
0
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4 HEAT EQUATION 4.3 Fourier Series

4.3.1 Worked Examples

Example 4.3.5
Solve the IBVP
ou  ,0% :
u(t,0) =0 )
[BCs] with ¢t > 0
u(t,1) =0
[IC] u(0,z) =¢€" with) <z < 1
Solution 3.

condition, we can write the solution in the form

u(t,x) = Z (3_('”)2‘*2’5[/1;C sin(kmx)].

k=1

By imposing IC, we can find the coefficients A;:

u(0,x) = Z A sin(krz) = e”.

k=1
By Fourier Series of e*:
1
Ay = 2/ e’ sin(krz) dx
0
/e’” sin(knx))de = €® sin(kmx) — kn / e” cos(kmx) dx
= e"sin(kmx) — km [ex cos(kmx) + km / e’ sin(kmzx) dx]

= e*sin(krx) — kre® cos(krx) — (kr)? / e’ sin(krz) dx

(14 (km)?) /ez sin(kmx) de = €® sin(krx) — kme® cos(kmx)
1
/e’” sin(kmx) de = mer sin(kmx) — kme® cos(kmx)

By separation of variables ((t,z) = 7'(t) X (x)) and by imposing the Dirichlet boundary
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4 HEAT EQUATION

So,
! 1
/0 e’ sin(krz)de = m[—kwe cos(km) + k|
km
kﬂ' (1 — e)m lfk even
= m[l — @COS(]C’TF)] = k’ﬂ' )
(1 + e)m lfk Odd
Example 4.3.6
Solve the IBVP
ou ,0%u .
u(t,0) =0 )
[BCs] with ¢t > 0
u(t,1) =0
0 withz <1/2 )
(IC] u(0,z) = with0 <z < 1
1 withz > 1/2
Solution 4.

General solution of heat equation with Dirichlet BCs:

x) = Z e~ M’ A, sin(kma),

k=1

and

2/ uo(z) sin(krx) do
0

1
2/ up(z) sin(krx) dz + 2/ uo(z) sin(kmx) de
0 \/-/ /2\_/1-/

1
2 / sin(krz)d
1/2

— _k_7r [cos(kmf)hp

= _k:i [cos(lmr) — cos (kg)}

™
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4 HEAT EQUATION 4.3 Fourier Series

Since

k is multiple of 4

1
1 k is even T
cos(km) = and cos(kE) =40 kisodd ;

—1 kisodd
—1 kis even but not multiple of 4

we have

2 2
——(-1)=— k is odd
kir km
Ap = —g(o)zo 4|k
4 .
_E(lJrl):_E k is even but 4 1 k.
O
Example 4.3.7 Lifting Function
Solve the IBVP
ou  ,0%u .
[PDE] 5—7@—0 with0 <z <1, >0
u(t,0) = « )
[BCs] witht > 0,a,8 € R
u(t,1) =
[IC] u(0,z) = sin(nmx) with 0 < z < 1,n a given integer

Idea Write u(¢, ) as the sum of two functions. One function satisfy the problem with ho-
mogeneous Dirichlet condition, and the other function captures whatever is leftover.

u(t,z) = ult,z) + £(t, x),

where / is called the lifting function.

Solution 5.
We want /(t, x) to satisfy:

(t,0) =a and /((t,1)=p.

Then,
u(t,0) = u(t,0) + £(t,0)
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4 HEAT EQUATION 4.3

Fourier Series

So,

Assume /7 is linear w.r.t. z:

Imposing BCs:
((t,0)=Pt)- 0+ Q) =a = Q) =«,
((t,1)=P(t)-1+Q(t) =8 = Pt)=p0—«
So,
Ut,x) = (B —a)r + a.
Hence,

u(t,z) = u(t,z) + L(t, )
=u(t,z)+ (B — o)z + .

Rewrite the problem in u(¢, x):

ou_ou_ ot _ou

ot ot ot Ot
ot ou 0Of Ou
%=%+%=%+(ﬁ—a).
Pu  0*u 0 0*u
o o o P Y= 5

Also,

u(0,2) = u(0,z) + £(0, z)

—> u(0,z) = u(0,2) — £(0,z) = sin(nmx) — (f — a)r — .
So, the problem becomes:

du 0%
ot | or?

A(t,0) = a(t, 1) = 0

=0

u(0,z) = sin(nmzx) — (8 — a)r — a.
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4 HEAT EQUATION 4.3 Fourier Series

By separation of variable, imposing Dirichlet BCs, and principle of superposition, we have

u(t,x) = Z e~ M’ A, sin(kma),

k=1
where
1
A = 2/ to(z) sin(krx) dx
0
1
= 2/ [sin(nmz) — (6 — a)x — o sin(krz) dz
0
So,
u(t,z) = Z [e’('”)QD‘QtAk sin(kmc)] +(B—a)r+a.
k=1 _ 0(tar)
O
Example 4.3.8
Solve the IBVP
ou  ,0% :
u(t,0) =0 )
[BCs] with ¢t > 0
u(t,1) =t
[IC] u(0,z) = up(x) with0) <z <1
Solution 6.

Suppose u(t,z) = u(t,z) + ((t,x), where ¢(¢,0) = 0 and ¢(¢,1) = ¢.
Assume {(t,z) = P(t)x + Q(t). Imposing BCs, we have

0(t,0)=P(t) -0+ Q) =0 = Q(t) =0
Ut,1)=P(t) 1+ Q(t) =t = P(t) =t.

So, ((t,x) =te = u(t,z) =u(t,z) + tx. Then,

@—@+%—@+x and 82u_626+82€_8217
ot ot ot Ot or2  0x2 022 Oz
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4 HEAT EQUATION 4.3 Fourier Series

Also,

w(0,z) =u(0,2) + 0z =up(x) = u(0,z) = up(x).

Then, the problem becomes

ou , 0%
a +r—« @ =0
That is,
ot ox?
u(t,0) =wu(t,1) =0
u(0,z) = up(x).
This PDE is non-homogeneous, so we don’'t know how to solve it yet... O
Example 4.3.9
Solve the IBVP
ou 0*u
PDE] — —+*—— = ith 1t
[ ] 5 ) 92 0 with0 <z < 1,t>0
u(t,0) =1 :
[BCs] with ¢t > 0
u(t,1) =e
[(IC] u(0,z) =¢€" with0 <z <1
Solution 7.

Suppose u(t,z) = u(t,z) + ((t,x), where £(t,0) = 1 and ¢(¢,1) = e.
Assume ((t,z) = P(t)z + Q(t). Then,

So,
lt,z) =(e— Dz +1 = wu(t,z) =u(t,z) + (e — )x + 1.
Then,
8_u_@'+@_@ and 82u_8217+82€_82ﬂ
ot ot ot ot Ox2  0x2 022  Oa2’
Also,

u(0,z) =u(0,z)+ (e —x+1 = u(0,z2) =u(0,z) —(e— 1)z —1=¢€"—(e— 1)z — 1.
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

So, the problem becomes

ot~ " o
u(t,0) =u(t,1) =0

u(0,2) =¢e* — (e — 1)z — 1.

=0

The solution is

Z e~ (T2 4 sin(kma),
k=1
where )
Ay = 2/ (e — (e — 1)x — 1) sin(kwzx) dz.
0
Hence,

4.4 The Sturm-Liouville Eigenvalue Problem

Example 4.4.1
Solve the IBVP
ou 0%u
PDE] — —o*— =1 ith 1
[ ] T a&ﬁ withO<x < 1,t>0
9y 0y = 0 ,
[BCs] Oz with ¢ > 0
u(t,1) =
[(IC] u(0,z)=0 with) <z < 1
Solution 1.
Introducing a lifting function:
u(t,z) = u(t,z) + (L, x).
Write ((t, z) = P(t)z + Q(t), linear in .
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

Then,

ot
——(t.a) = P(t) = 0

Ut,z) = P() +Q(t) =t = Q(t) =L

So, {(t,x) = t. Then, the problem becomes

ou  ,0%u  du ol a2[32a 826}

o Yoz o oo
L
_ r
%—cﬁ%:O
BCs: o~
55 (1:0) =0,1(t, 1) =0
IC:

u(0,x) =
The solution is u(¢, z) = 0. So,

u(t,x) =u(t,x) +L(t,z) =0+t =t.

Let’s verify our solution. Solve using separation of variables.

ou o,
ot “orz

ou

\u(O,x) =0.

Assume u(t,xz) = T'(t)X (z). Then, BCs are X’(0) = 0 and X (1) = 0. Since

X(z) = Asin(Az) + B cos(Az),

we have that
X'(x) = AXcos(A\x) — BAsin(\x)
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

So, we have

X'(0) = AX cos(0) —BAsin(0)
=1 =0

=AN=0 = A=0
X(1)=_A sin(\) + Bcos(A) =0

=0

Bcos(A) =0
cos(A) =0
N BEEDT 04

2 Y

So, X (z) = By, cos(A\xx). Then, the solution should look like
Ze Neox tBk cos(Apx).
k=0

Imposing IC:

= Z By, cos(A\px) = 0
k=0

B, =0.
Recall how we solved B, using Fourier Series:
1
By = 2/ up(z) cos(\gz)dz, VEk=0,1,2,...
0

=0.

Generally speaking, we apply separation of variable to solve the heat equation:
u(t,z) =T ()X (z).
We have
X(x) = Asin(A\z) + B cos(A\x)

X'(x)AX cos(Az) — BAsin(Az)
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

Note that,
X"(z) = —AN*sin(\z) — BA? cos(\x)
= —\?[Asin(\z) + B cos(\z)]
X(2)
= -\ X(z).
So, we have

X"(x) = =\2X ()

This is an eigenvalue problem. [Recall what we have with matrix and vectors: We want to find
A\ and x such that Ax = \x. Moreover, if A = A" is a symmetric matrix, then eigenvalues of A
are orthogonal to each other: (x;,x;) = 0 fori # j.] In this case, the second order derivative is

"d2X; "dX; dX,
a symmetric operator. [Why? Think of integration by parts / (1 2 X de = — / (1 J (1_’v dz].
ar- ar ax

So, the eigenfunctions are orthogonal:
(X;, X;) =0 ifi#j,

1
where (X;, X;) = / X;X;dx and \? is called the eigenvalue.
0

Example 4.4.2 Orthogonal Functions
Xy = Agsin(kmz) for k = 0,1, ... are orthogonal.
Proof 2.
1 0 ifi#y
(Xi, Xj) = / A;sin(irx)A;sin(jre)de = ¢
0 — ifi=y
2
|
Example 4.4.3
Solve the IBVP
ou , 0% .
u(t,0) =0
[BCs] o with¢ >0
—(t,1) =0
Ox
(IC] u(0,2) ==z with0 <z <1
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

Solution 3.

Apply separation of variable: u(¢,z) = T'(t) X (z). Then,

© T+ N T(t)=0

—k

. X"(z) + \2X(z) = 0
X(0) =0, X'(1) = 0.

For @, the solution looks like

X(z) = Asin(Az) + B cos(A\x)
X'(z) = A\cos(Az) — BAsin(\r)

Imposing the BCs:

X (0) = AXsin(0) +Bcos(0) =0 = B =0
—— ——

=0 =1
X'(1) = AXcos(\) —\_B’O/sin()\) =0
AXcos(A) =0
cos(A) =0 [A = 0 is not interesting]
e = (2k + 1)7r7 k=012,

So, the solution takes in the form

(2k+ )7

u(t,x) = Z e~ MRt A sin(A\rx), where \; = 5

k=1

Imposing IC:

u(0,x) = Z Agsin(A\px) =

k=1

1
Ay = 2/ xsin(Agz) do
0

/xsin()\kx) = —/\i cos(\gz)x + / /\i cos(A\x) dx
k k

1 1
= —— cos(\px)x + 5 sin(A\gz) + C
Ak Ak
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

Therefore,

1

! 1 1
Ap =2 [ xsin(\px)dr = 2| -+ cos(Aex)z + 5 sin(Agx)
0 Ak )‘k 0

1 I
= 2<—/\—k cos(Ag) + v sm()\k))

:Eﬂm<Qk+Uw>

A2 2
A\
0
Theorem 4.4.4 Sturm-Liouville (SL) Eigenvalue Problem
Let’s consider the following problem
[ODE]  (p(x)y') — q(z)y + kr(z)y =0
[BCs]  aoy(0) + Boy'(0) = 0
ary(1) + By’ (1) =0.
Let’s assume:
o p7p/q7r € C([Oa 1])’ and
e p(z) >0,r(z) >0 Ve l0,1] (regularity).
Then,
1. All eigenvalues k,, are real,
2. If ¢; and ¢; are two eigenfunctions corresponding to k; # k;, then
1
(@i, Pj)r = / ro;p; dw = 0, (Orthogonal condition)
0

where r is a weight (constant)

3. To each eigenvalue corresponds ONLY one eigenfunction. Eigenfunctions are lin-
early independent, eigenvalues are real, and they form a ordered sequence

ki <kyg<- oo <ky<---.
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

In general, we write

uo(z) = ) wXu(x),

where ~, = % The 3™ conclusion ensures the infinite sum in the Fourier series will
ky <Nk
converge.

Extension 4.1 (Not a Boundary Condition) What if we don’t have a boundary condition?

2
[PDE] 2—?—%:0 with) <z < 1,6 >0
u(t,0) =0
[BCs] ou tl L witht > 0
ax\ 2]
[IC] u(0,z) =2 with) <z <1

. . . ; 1
With our typical separation of variable, we can solve the problem for( < z < 5 but how about
the rest? We need to use data assimilation framework. That is, we want to find X,,(1) that

dXsol 1 de ].
de \2 dr \2
with X,,(0) =0, X,,,(1), and the PDE constraints.
This is a constraint optimization, and we need Lagrangian multiplier to solve.

minimizes )

’

Example 4.4.5 SL Eigenvalue Problems

ou  0%u )
[BCs] wu(t,0) =0, Ou +u(t,1)=0 witht >0
ox 1)
(IC] (0, x) = up(x) with0 <z <1

[The physical interpretation of the second BC is that: the flux of heat is proportional to the
temperature at the endpoint.]
Solution 4.
Use separation of variables:
T —kT =0
X"—kX =0.
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

The BCs become

T()X(0) =0 = X(0)=0

THX'(1)+THX(1)=0 = X'(1)+X(1)=0

X(x) = Asin(AX) + B cos(Az)

X (0) = Asin(0 )+Bcos( )=0 = B=0

T
X'(1) + X(1) = AXxcos(\) — BAsin(\) + A
= AXcos(A\) + Asin(A) =0
in( 0 [Since A # 0|

Then, we can use numerical approaches to find \’s, and

(o, Pr)

= ,  Where~, =
) Z%@k(x) Tk (s 08)

and ¢y, = sin(A\x).

Meanwhile, T'(t) = Tye *’#*. Then,

Z e gy (2

Uo k) —22ut .
%) e it gsin(Apx).
1 SDkaSDk

Mg

4.5 Nonhomogeneous Heat Equation

Consider the following IBVP:

ou 0% :
[PDE] E_a@_f(t’x) with0 <2 <1,t>0
ou
a%(t,O) + Bu(t,0) = 0
[BCs] witht > 0
72 (t,1) + ou(t,1) =0

[(IC] w(0,z) = ug(x) with0 <z <1
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

Assumption: u(t,z) = Z Ty (t) Xk (z). Compute the partial derivatives and plug-in:
k

SITHONi) —0* L T(OX] ) = 1)
Z [TL(6) Xe(2) — 2 Ty(H) X(2)] = f(t,2).

k

(f(t,x), Xi(x)) :
Expresse f(t,z) = ; fr(t) Xk (x), where fi(t) = ;C 7 : (z) . The equation becomes

S [T Xu(2) — T XY ()] = 3 fult) Xla).
k

k

From Separation of Variable on the homogeneous equation and the SL Eigenvalue Problem,
X!(x) = =N X (2).
Substitute:
S Tit) Xi(x) + o® X Ti(1) Z Fr(t) Xi(x
k
37T + 2T () Z fi(t) Xi(z

ko ~

Comparing terms, we get a nonhomogeneous first-order ODE to solve:
Ti(t) + & X (t) = fu(t)

Apply integrating factors, we have
pu(t) = el o?Aidt _ ARt

So, the general solution is

t

Ti(t) = e~ X! [ / e NS fi(s) ds + T3, (0)
0

t

e~ NN L (5) ds + e ML (0)

e @M1 £ (s) ds + e T (0)

S— 5—
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

Therefore,

ZT

—a2)\2 t—s) S e—azx\it T
Z[ f<)d+w]xk<>

7

solution to the
addltlonal term for homogeneous
the nonhomogeneous part part

Finally, impose the initial condition:

u(0,2) = [

0
/ e A (0=5)fk(s)ds | o—a?XR0T () ] X (z)

& J 0 P D Y e—
\6 =T(0)
= Z T3:(0) Xy (x) = uo(x).
o (uo(z). X,()
ug(x), Xp(x
T:(0) =
O X X))
Example 4.5.1
ou 0% :
u(t,0) =0 .
[BCs] with¢ > 0
u(t,1) =0
[(IC] u(0,z) = ug(x) with0 <z <1
Solution 1.
Assume that u(t, x) Z Ti(x ). We need to solve the SL Eigenvalue Problem

X"(x)+ XX (z) =0
X(0) =0, X(1) =0.

Assume X (z) = Asin(\x) + B cos(Az). Then,
X(0) = Asin(0) + Beos(0) =0 = B =0

X(1) = Asin(A) + Bcos(A) =0 = Asin(A\) = 0.
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

Since A # 0, it mustbe sin(\) =0 = A\, =kw, k=1,2,.... Then,
Xi(7) = sin(A\px) = sin(kmz) and M2 = (k7)?, X[ (2) = —(kn)?sin(k7x).
So, the equation becomes

> [T + 2(km)*Ti(8)] Xa(x) = Y fu(t) X(2),

k k

where

( b b
= = in(k dox = in(k d
fr(t) 2/0 tsin(kmx) dx 2t/0 sin(krz) dx

By [—ki cos(k:mc)] 1

T 0

2t
= E[l — cos(km)].

We then have the following ODE to solve:
, 9 2t
T (t) + 2(km)*Ty(t) = k—[l — cos(km)]
™

1
Te(0) = Ay = 2/ uo(x) sin(kmax) dz.
0
Integrating factor: p(t) = e/ 2(bm*dt — 2(k7)°t Then,

2 t
Ty(t) = e 200 [k—[l — cos(km)] / se2(b)%s qs Tk(O)]
0

™

/t 2(km)%s d 1 2(km)2%s ' /t 1 2(km)2s d
se S = Se — —€ S
0 2(km)? o Jo 2(km)?

t

_ 1 t€2(k7r)2t_ 1 e2(k71')zs
2(km)? 4(km)?

1

0

— t 2(km)%t 2(km)%t 1
2 (k)2 (k) [6 ]
Ty(t) = —-[1 — cos(hm)] | s — — Ly Lm0t | | -20my (g
g km 2(km)?  A(km)*  4(km)* S
1
where 7,(0) = A, = 2/ uo(z) sin(kmx) da. O
0
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5 BOUNDED WAVE EQUATION

5 Bounded Wave Equation

Remark. We can generalize the method of Separation of Variable. To solve
Ptu = Axu,

where P, is some first-order differential operator with respect to time and A, is the
Laplacian with respect to space.
Let’s assume u(t,z) = T'(t) X (x). Then,

Plu(t,z)] = BT ()X (2)] = R[T(¢)] X (z)
Agu(t, z) = AT X (2)] = T()AL[X (z)].

So, the PDE becomes

. X@
Then, P,[T(t)] = kT(t) and A, [X (z)] = kX ()
5.1 No Damping Force
Consider the IBVP
Pu 0% .
u(t,0) =0 .
[BCs] with¢ > 0
u(t,1) =0
[IC] ou with0 <z <1

{u(O, x) = ug(x)
2(0,2) = wo)

Use Separation of Variable. Assume u(t,xz) = T'(t) X (z). Then,

T"(t) X (v) — y*T(t) X" (x) = 0.
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5 BOUNDED WAVE EQUATION 5.1 No Damping Force

Divide by 72u(t, z) = v*T(t) X (x):

T FOX)
PT(X] 2PN (@)
T/l<t> X//(x) T//(t) B X//(x)

PO X e xXw !

So, we have two SL Eigenvalue Problems:

T"(t) + N4*T(t) =0
X"x)+AX(z) =0
@< T(0) = up(x)
X(0) =0, X(1)=0
7'(0) = wo(x)
From @:
Xy, =sin(krz), M =kmr, and )] = (kn)>.
From @:
Ty (t) = A sin(Ayt) + By cos(Avyt)
= A sin(kmyt) + By, cos(kmyt).
Then,

u(t, x) = Ty (t) Xy (x) = sin(kmx)[Ag sin(kmyt) + By cos(kmyt)].

[For a general SL-Eigenvalue problem,
Xi(x) = C sin(Apx) + Dy cos(Apz).
So,

uk,(t, :L') = T/‘f(t>Xk,(X)
= [Ag sin(A\gyt) + By cos(Apt)][Cr sin(Agz) + Dy cos(Apx)]

| Now, to apply ICs:
T}(t) = YA Ak cos(YAt) — Y \e By sin(yAt).
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5 BOUNDED WAVE EQUATION 5.1 No Damping Force

So, T,(0) = By, and T}(0) = A, Ay. Then,
u(0,x) = ; T3(0) Xy (2) = up()
> Bisin(kra) = ug(x)

k (uo (), Xi(x))

— By = (X:(2) X+ (2)) = 2/0 ugp(z) sin(krx) de.

%u(O,x) = ;Tk(O)Xk(x) = vo()

Z YA Ay sin(kmx) = vo(x)
k

Therefore,
(vo (@), Xi(x)) /1 .
M AR = =2 krax)d
AT ), Kalw)) 2y kT e
2 1
A = — [ wvo(x)sin(krz)de
YA
2k e
= T vo(x) sin(kmx) dz.
0

Hence, the solution is

u(t,z) = Z sin(kmz)[Ag sin(kmyt) + By cos(kmyt)],
k=1

where
2 1

A = —
4§ kmy Jo

1
vo(z) sin(kmx)dx and Bk=2/ uo(z) sin(kmx) de.
0

Definition 5.1.1 (k-th Mode of Vibration). The k-th term of the solution is called the
k-th mode of vibration k-th harmonie.

ug(t, ) = sin(knax)[Ay sin(kmyt) + By cos(knyt)]
= Ry sin(kmz) cos[kmy(t — )] (trig. identity)

We call Ry the amplitude, and ¢, the phase angle. Meanwhile, the frequency of k-th

|'T
wr = kmy = kmy [ —.

74

mode is defined as

R




5 BOUNDED WAVE EQUATION 5.2 With Damping

Remark. If we have non-homogeneous boundary conditions, we use lifting functions.

5.2 With Damping

Consider the IBVP
Pu 0%  Ou :
t,0) =

Bcs | U0 witht > 0
u(t,1) =0
u(0, ) = up(x

[IC] 3<u ) o() with0 <z <1

E(O,CE = vg()

Assume u(t,xz) = T(t) X (z). Then,

T ()X (2) = T X" (@) + BT ()X (z) = 0
TN PPN () | Tk

VT)XAT)  2POX(x) 2T X6
V() + AT _ X"(@) _,
V2T (t) X () '

So, we have

) , - {X”(m) 42X (2) = 0
DT'(t) + BT (1) + N °T(H) =0 @
X(0) =0, X(1) = 0.

@ is an SL Eigenvalue Problem, and we have X (X) = sin(krz). Now, solve @, using charac-
teristic polynomial:

B+ By
AR

p(r) =r?+Br+Ay* =0 = 1y =
We want to have complex conjugate roots, so
[2 -4 <0 = B <.

[If 3 is large, we get too much damping. In such a case, no oscillations anymore.]

2 __ 242
—\M:j(sk,

2

Denote
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5 BOUNDED WAVE EQUATION 5.3 With External Force

Then,
Ti(t) = TP/ A sin(6yt) + By cos(Sxt)).

Finally,

ut,x) =Y Ti(t) Xn(x)

= Z e B Ay sin(Oyt) + By cos(Oxt)] sin(k).

5.3 With External Force

Consider the IBVP
Pu ,0%u .

[PDE] Tl 782+ﬁ—_f(t795) with0 <z < 1,t >0
u(t,0) =0 .

[BCs] with¢ > 0
u(t,1) =0
u(0,z) = ug(x)

[IC] ou with0 <z <1

S(0,2) = v(a)

From the Sl-Eigenvalue PRoblem, X" (z) = —AX(z). So,

T"()X (z) + ¥ N2T ()X (z) + BT () X (z) = f(t)X (z) [project f(t,x) on X (z)]
[T(0) + BT'(8) + NT(0] X (@) = FHX (@),

where

(f(t,2), Xi(x))
(Xk(2), Xi())

So, for every k, we want to solve:

8

fk( ) = = 2/0 f(t, x)sin(krx) da.

T () + BT(t) + V*NTi(t) = filt).
This is a second-order ODE that requires a particular solution:

Ti(t) = e Ay sin(6t) + By cos(8it)] + Ti(t),
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

where T},(t) is a particular solution for the non-homogeneous problem:
e Method of Undetermined Coefficient
e Reduction of Orders

e Variational of Parameters:

Th(t) fi ()
WIT'(t), To(t)]

T5(t) fr(t)

WL (). ()] a

T(t) = =Ty (t) dt 4 Ty(t)

5.4 Boundary Conditions
Generic BCs look like the following:

a%(t,O) + Bult, 0) = 0

ou

et 1) 4 du(t, 1) = 0

We could have three possible types of BCs:

e Dirichlet BCs:

Here we have fixed points as our endpoints.

e Neumann BCs:

ou
%(tv 1)

Note that we don’t have fixed points here. We only fix slopes.

e Robin BCs: 3
= (t,0) + aru(t,0)

9
a—Z@, 1) + asu(t, 1)

Here we have a combination of Dirichlet and Neumann BCs.
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

Example 5.4.1
Solve the following IBVP:
Pu 0% )
u(t,0) =0 )
[BCs] with¢ > 0
u(t,1) =0
u 07 l’) = Uo(l')
[IC] ou with0 <z <1
E(O’ x) =
Solution 1.
a=0:
O Pu_
ot?  0x?

This is a homogeneous wave equation with Dirichlet BCs. By separation of variables,
u(t,z) = T(t)X (z). Then, we have SL Eigenvalue problems:

h=1= My =)

o [ X @)+ 22X (@) =0 o ] 70+ XT(0) =0
X(0)=0, X(1) =0 7(0) = @i, T'(0) = T = 0.

Solving @: X (x) = sin(kmx). So, \y, = kr = A} = (kn)*fork =1,2,....
Solving @:

Tk(t) = Ak sin()\kt) + Bk COS()\kt)
T]g(t) = AkAk COS()\]J) — )\kBk sin()\kt).

Imposing IC, we get

Tk(O) = Bk COS(O) = Bk

Since u(t,z) = Z T (t) Xk (z), we have [k starts from 1 blc Xo(x) = 0. We don't see anything.]
k=1

u(0,2) = > T4(0)Xi(z) = Y Bysin(krz) = ug(x),
k=1

k=1
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

where (w0(2), Xulz)) . [!
ug(x), Xp(x / )
B, = =2 k dz.
k= (K@), Xn(@)) i up(z) sin(kmx) de
Meanwhile,
ZTk ) X (x Zk?‘(’AkSIH(lﬁTSL’) = vo(z) =0,
k=1

where

_ (o), Xi(x)) _ 1 -sin(krx) dr = =
kA = (X(2), X¢(@)) —2/0 0 (kmzx)d 0 = A,=0.

So, T'(t) = Ay sin(Agt) + By cos(Akt) = By cos(knt) fork =1,2,. ...

Hence, the solution

x) = Z By, cos(kmt) sin(kmz),

k=1
where 1
By = 2/0 uo(x) sin(knt) dz.
o £ 0;
Pu
Eroiaie il

From separation of variable, assume (¢, x) = T'(t) X (z). Then, we get the same SL Eigen-
value Problem:

— M\ = km, A} = (kn)?, X}, = sin(knz).

X"(2) + N2X(z) = 0
X(0)=0, X(1)=0

The PDE becomes

()X (z) - ()X”(ﬂf
()X (x) = T()(=A" X (x)
T"(t)X () + N*T(t) X (@
[T"(t) + AT ()] X(

[(X"(z) + XX (2) = 0]

)
)
)
z)

STV ) + NTe()] Xi(z) = oz =D CrXy(x),
k=1 k=1
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

where C}, does not depend on ¢ because ax has no ¢ terms. So,

(o, Xi(2))

Cr = (Xu(2), Xi(z

5= /O o sin(ra) dr.

Compare the terms, we get

TY (1) + NTW(t) = Ci

T{(t) + (km)*Ti(t) = Ci e = (km)?]
So,
Ty (t) = Agsin(knt) + By cos(knt) +  T{(t)
~ - ——
general solution for particular solution
homogeneous part related to RHS

In this example, we would guess 77} (t) is a constant. By method of undetermined coeffi-
cients, we get

P4\ _ Ch
T = G
Imposing ICs:
: C C
T3 (0) = Ay sin(0) + By cos(0) + ﬁ = B + (lmrk)?
Ty (t) = (km) Ay, cos(kmt) — (km) By, sin(kt)
T;.(0) = (k) Ay cos(0) — (k) By, sin(0) = 0.
Hence,
(kITF)Ak =0 = Ak = 0.
Since u(t, x) = i Ty (t) Xk (z), we have
k=1
u(0,2) = Ti(0) Xk(x) = ug
; (Bk + (lm)Q)Xk(x) ug(z) = ; Dy X (),
where
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5 BOUNDED WAVE EQUATION 5.4

Boundary Conditions

So,
Cr B Ck
Bk+W_Dk — B, =D, (kﬂ')Q.
Hence, o
Ty (t) = By cos(kmt) + (k;)2

The final solution is

u(t,z) = Tu(t) Xp(z)
= ; <Bk cos(kmt) + (&)2> sin(kmx),
where

1
Cr = 2a/ xsin(kmx)dz, and
0

1
Dy = 2/ uo(z) sin(kmx) de.
0
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6 LAPLACE EQUATION ON CIRCULAR DOMAINS

6 Laplace Equation on Circular Domains

6.1 Polar Coordinates

Recall from Heat Equation: P,u = Au. Now, we want to eliminate the derivatives of . So, we
just have Au = f. Butif u is singular variable,

R
 da?

Au = f,

and we get just a second order ODE. It is not interesting. So, suppose v = u(z,y). Then,

Ty — lau/ﬁx] .
ou/dy

Recall the divergence operator:

_62}1 0?)2

Vol w] =Gt

S0, 2 2
ou Ou 0“u  0°u

where A is called the Laplacian operator. Then , we have

—Au=f <+ Poisson Equation

Au =10 + Laplace Equation
Usually, Laplace equations are defined cover circular domains. So, it is natural for us to
x =1rcosf
y =rsinf
Then, our goal is to write u(r(x,y),0(x,y)), where

{r\/x2+y2 0<r<R

0 = arctan (g) 0<6<2nr.

T

use the polar coordinates.

Since Laplacian in Cartesian is given by

u  O%*u
Au(z,y) = 92 + a—yQ,
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6 LAPLACE EQUATION ON CIRCULAR DOMAINS 6.1 Polar Coordinates

we can apply chain rule and get

8u_8u or Ou 060

9r ~ or 0z 90 ox
Pu_ 0 (0c 0y o (00 0n)
0x? Ox\Or Ox Ox \ 00 Ox
SO0y e 0 (o) 0 (000 0u 0 ()
Or\or) Ox Or Ox\Ox Or\ 00 )ox 00 Ox\Ox
[2(2)2 2 ()22
or\or )ox 00\0r)ox|dx Ordx?
O (Ou\Oor O [Ou\oo]oo Ou 0%
+{5<%>£*@(%)%}%*%*@
_[QPuor  O%u 00 0r  Oud*r
—&wa+m&%bﬁﬁmz
Ou Or  Pudh) o0  Oud*
+bm%*w@ﬂ%*%%ﬁ

_@ % 2_}_282“%&_}_%627'4_82“_}_82“ % 2_*_%6_29
- or2\ oz 000r Ox Ox  Or 0x2 002 002\ Ox 00 0x2

Finding derivatives, we have

or — cosf 8_27" _ sin” ¢ 90 lsine %0 _ 2cosfsinf
81’ - ) 61.2 - r ) al. - r ) 81[,‘2 - 7“2 .

So, we can find

Pu  10u 1 0%
Aulr0) =53+ o T o
Now, let’s define the Laplace Equation problem again:

e : Disc of radius 1, centered at (0, 0)

O}

Then, the Laplace Equation with boundary conditions is given by

e I: 01, the boundary of Q.

[PDE] Au=0 onf
[BC] wu=g onl =00

Transforming to polar coordinate, we have

u  10u 1 0%

A= 222, 227
Y 8r2+7’6r+r2892

=0.
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6 LAPLACE EQUATION ON CIRCULAR DOMAINS 6.1 Polar Coordinates

To apply separation of variable, assume u(r, §) = R(r)©(f). Then,
Au= R'(1O(0) + -R(r)O(0) + 5 R(R)S"(6) = 0.

Multiply by r? and divide by R(r)©(6):

2 R"(r)©(0) n r? R (r)©(0) N r?R(r)0"(0) _0
R(r)©(0) rR(r)O(0) r2R(r)O©(0)

r?R'(r) rR(r) ©"(0)
Rr) T R() e

r’R'(r)+rR(r)  ©"(0)
R(r) e h=A

So, we have two ODEs to solve:
® r*R'(r)+rR(r) = NR(r)=0, @ ©"(0)+I\6(0) =0.

Solving @: guess R, (r) = r™. Then, R'(r) = nr"~'and R"(r) = n(n — 1)r"~2. So,

r*n(n — 1)r" 2 +rnr™ = X" =0

(n* —n)r" +nr" — X" =0
(n*—n+n—\)r"=0
(n* = A\)r" =0

2

— n? =N =0 = =)\ = |\o=1n|

[We are solving for the eigenvalues here. Eventually, we will have a sum of R,,(r)©,,(0).] Here,
ESS = {r",r‘”}.
However, we need to also consider the special case: what if \> = 02 Then,
r*R"(R) +rR/(r) = 0.
Denote Z(r) = R'(r) and Z'(r) = R"(r), [Reduction of Order| we have

r2Z'(r) +rZ(r)

Z(r) + %Z(r)

0

I

0

C1

= R'(r)=Z(r) = cre=/rdr — ¢l =
,
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Hence,

R(r):/R’(r)dr:/i—ldr:cllnr+02

So, FSS = {Inr, 1}.
In this case, since 0 < r < 1, we don’t want singularities at » = 0. So, we will eliminate
non-singular cases. Thatis, 7~" and In r are omitted. In summary;,

R(r) =

Crm ifA=n=#0
1 ifA=n=0.

Solving ®, we solve an SL Eigenvalue Problem:

0"(0) + ) \*0(0) =0
©(0) = Acos(A\0) + Bsin(\0)
Acos(nf) + Bsin(nf) A =n from Q)]

Hence, the n-th general solution on (2 is given by

un(r,0) = R, (r)0,(0)
= Cr"[A,, cos(nb) + B, sin(nb)]
= r"[A,, cos(nd) + B, sin(nb)] [Drop constant C)|

So, the general solution is
u(r,0) = Ag + Z r"[A,, cos(nf) + B, sin(nh)].
n=1

At the boundary,
u(1,6) = g(cosf,sin ).

lg(z,y) = g(rcos®,rsind), but herer = 1.] Let’s write g(cosf,sinf) = g(¢) on I'. Then, project
9(0) onto the same functional space:

_ (9(0),co8(0-m)) /0 os(0- D510 40 _ L 3(0)do
(cos(0 - ), cos(0 - n)) /27r cos*(0 - 0) o |

2m Jo
1 2

[Note that u(0,0) = Ay = gy / g(0)de. So, the energy at the center is the average energy on
T Jo
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the boundary.] We also can find

@ocotom) _fy IO [0y cosony o
(cos(nh), cos(nd)) /%cosz(nﬁ)de 7 Jo

(9(6),sin(nf)) /0 Sinn0)g(0) 40 _1 / 7 §(0) sin(nf) 49
(sin(nf), sin(nf)) /27T sin(nf) b T Jo

For the following examples, we will apply the Principle of Superposition.

Example 6.1.1
Solve the BVP
Au=0 0<r<l1
u(1,0) =1+ sin() + %sin(?ﬁ) +cos(46) 0<6 <2rm
Solution 1.

1
A():l, Blzl, Bgzé,A4:1.SO,

u(r,8) =14 rsin(9) + %7‘3 sin(36) + r* cos(40).

[We applied the Principle of Superposition)]

Example 6.1.2
Solve the BVP
Au = 0<r<l1
1
u(1,0) = 1+sin(0) + acos(@) 0<6<2r
Solution 2.

1
A():l, Blzl, A1:§.SO,

u(r,0) =1+ rsin(0) + %r cos(6)
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Example 6.1.3
Solve the BVP
Au=0 0<r<l1
w(l,0)=2 0<60<2r
Solution 3.

The boundary condition is independent of §. So, our solution is constant and is also
independent of ¢. That is,

u(r,0) = 2.
O
Example 6.1.4
Solve the BVP
Au =0 0<r<l
u(1,0) =sin(f) 0<6 <27
Solution 4.
Bl == 1. SO,
u(r,0) = rsin(6).
O
Example 6.1.5
Solve the BVP
Au=0 0<r<l1
u(1,0) =sin(37) 0<0 < 27.
Solution 5.
Bg =1. SO,
u(r, ) = r3sin(36).
0

Sometimes, we can also have more complicated boundary condition that is piecewise de-
fined.
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Example 6.1.6
Solve the BVP
Au=0 0<r<l1
sinf 0<f<m
u(l,0) =
0 T<0<2r
Solution 6.
sin(0)
0
2
Ay = /sm d¢9~|——/ 0deo
o 0
= l/ sin(#) cos(nfh) df + — / 0 - cos(nb) do
T Jo 0
1 [ )
= —/ sin(#) sin(nd) do + — / 0 - sin(nd) d0
T Jo T Jo
So,
= A —1—2 [A,, cos(nf) + By, sin(nf)].

6.2 Boundary Value Problems

I Definition 6.2.1 (Steady-State Problems). Solution does not change in time.

Example 6.2.2 Steady-State Heat Equation

ou  0%*u
[PDE] % o sin(mx), O<z<1,t>0
[BCs]  w(t,0) =u(t,1) =0 t>0
O0<x<1

[IC] (0, ) = sin(37x)
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To find the steady-state solution, find u(oo, x). If u(co, x) exists, we solve

d2
d—;;:sin(m:) 0<zr<l
u(0) = u(1) = 0.

So,

Definition 6.2.3 (Dirichlet Problems (First Kind of BC)). The PDE holds over a given
region of space, and the solution is specified on the boundary of that region.

e Interior Dirichlet Problem

Au =0 0<r<1
u(1,0) =u1(#) 0<6<2m.

e Exterior Dirichlet Problem

Au =0 r>1
u(1,0) =u1(0) 0<6<2m.

Definition 6.2.4 (Neumann Problems (Second Kind of BC). The PDE holds on some
region of space. The outward normal derivative du/dn (proportional to the inward
flux) is specified on the boundary.

Au=0 0<r<l1
ou
5(1,0) =uv1(0) 0<0<2m,

where % is the normal derivative. We also have the following property:
T

2m ou
—df = 0.
0 87‘
That is, the temperature of each point inside the circle does not change with respect to

time.
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Remark.

e Neumann problem makes sense only if the net flux across the region is 0. i.e., only

27 au
—df =0
/0 or

e The solution to Neumann problems is not unique.

when

Example 6.2.5 Non-Unique Solution to Neumann Problem

Au=0 0<r<i1
ou
5(1,0) =cos(20) 0<6<2rm

has infinitely many solutions. But they just differ by constant:

u(r,8) = r?cos(26) + C.

Definition 6.2.6 (Robin Problems (Third Kind of BC)). The PDE is given in some re-
gion of space, but the condition on the boundary is a mixture of the first two kinds.

where

ou . ..
° n is the normal derivative
n

e hisaconstant
e ¢isagiven function on the boundary.

We can rewrite the condition into
ou
= = _h(u-—g).
n (u—9g)
So, the inward flux across the boundary is proportional to the difference between the

temperature v and some specified temperature g. This exactly reflects the Newton’s
Law of Cooling.
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Example 6.2.7 Robin Problem

Au=0 0<r<l1

ou .

8_(1’0) = —h(u —sinf) 0<0 < 2m.
r

So, here g(0) = sin 6.

o Ifh =0: ? = 0. Then, the solution is not unique and will be constant.
r

e If h gets larger, the solution will move like the solution to the Dirichlet problem with
BC: u = g(f) = sin 6.

e If h is positive but close to zero, then the solution will be almost zero (the average of
g(0) = sin 6 on the boundary).

6.3 More Complicated BCs

Example 6.3.1 A Ring
Find a formula for the solution of the following BVP:

Au =0 R <r< Ry

0<6 < 2m.

Solution 1.

In polar coordinate:
Pu  10u 1 0%u

o i T Ree
Using separation of variables, assume u(r,0) = R(r)©(0). Then,

Au = 0.
@ rR'+rR —X’R=0 and @ ©"+\?0=0.
For @:
o Ifn=XANA£0:R,(r)=cir" 4+ cor™"

e Ifn=XA=0:R,(r) =c3+c4lnr.
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For @:
©,(0) = A, cos(nf) + B, sin(nb).

Since R; < r < R, nothing will cause trouble, and we should keep everything here.

uw(r,0) = (cs+cylnr)Ay + Z (c1r™ + cor™™)[A, cos(nf) + By, sin(nb))]

n=1
00

=ko+kiInr+ Z (Dnr” + Enr_") cos(nb) + (Fnr" + Gnr_”) sin(nf)

n=1
o

w(Ry,0) = ko + kiIn Ry + Z (DnR? + Ean_") cos(nf) + (FnR? + Gan_") sin(nf) = g1(0)

n=1

w(Ro,0) = ko + ki1 In Ry + Z (DnRS + E,Ry™) cos(nb) + (F, RS + G, R;™) sin(nf) = g(0).

n=1

Apply Fourier Expansion on ¢, () and g, (6):

g1(0) = Ao+ Z Ay, cos(nb) + By, sin(nd)

n=1

g2(0) = Agp + Z Ay, cos(nl) + By, sin(nh).

n=1

Matching coefficients, we have two systems to solve:

ko +kiln Ry = Ay ko+kilnRy = Ay
D,R! + E,R" = Ay, and DRy + E,Ry" = Ay,
FTLR? + GnR;n = Bl,n FnRg + GnRZ—n — Bg’n

Example 6.3.2 A Ring in Action

Solve the BVP:
Au=0 l<r<?2
u(1,0) =0
0<0<2m.
u(2,0) = sin(0)
Solution 2.
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Applying Fourier’s Expansion:

gl(a) =0 = ALO = 07 Al,n = 07 Bl,n =0
G2(0) =sinf = Ayg=0, Ay, =0, Boppr1 =0, By = 1.

Hence, we need to solve

( (
ko + kl 11’1(1) = 0 ko + kl 11’1(2) = 0
D, 1"+ E, 17" =0 D.2"+ E,27" =0
and
F "+ G,1™ =0, n#l F2"+G2"=0 n#l
\F11+G11:O \F12+012:1
0
Example 6.3.3 Exterior Dirichlet BC
Find a formula for the solution of the following BVP:
Au=0 l<r<oo
u(1,0) =g(0) 0<0<2nm.
Solution 3.
The most general solution we can get from Laplace Equation is
u(r,0) = O(0)Ru(r),
n=1
where
e O,(0) = A, cos(nd) + By, sin(nb)
o Ry(r) =c1+ coln(r)
o R,(r)=csr™ + cyr .
Since we don’t want irregularity (things that will blow up), we drop In(r) and ™. Hence,
u(r,0) = Ay + Z r~"[A, cos(nd) + B, sin(nd)].
n=1
O
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