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1 INTRODUCTION

1 Introduction

1.1 Ways to Study Differential Equations

• Qualitative: analyze the behavior of the solution

• Quantitative: find the solution

• Approximation: numerical solvers.

1.2 Review and Preview

• y = y(t) is a solution to an ODE.

1. y(t) is a one-variable function.

2. y(t, C) = y(t) + C defines a family of solutions, where C is a constant.

3. Order of ODE: highest order of derivative.

• Similar definitions apply to a PDE: u = u(t, x), where u(t, x) is a function of two or more

variables.

• Famous PDEs:

1. Heat equation in 1D:

ut = uxx

2. Heat equation in 2D:

ut = uxx + uyy

3. Laplace equation in polar coordinate:

utt +
1

r
ur +

1

r2
uθθ = 0

4. Wave equation in 3D:

utt = uxx + uyy + uzz

1.3 Classification of PDEs and Definitions

• Order: Highest derivative of the PDE.

• Linearity: The PDE can be written as

Lu = f,
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1 INTRODUCTION 1.3 Classification of PDEs and Definitions

where L is some linear operator.

• Homogeneity (only for linear PDEs): f = 0 means homogenous; f ∕= 0 means non-

homogenous.

• Number of variables: 2 or more.

• Kinds of Coefficients: Constant/Non-constant.

Definition 1.3.1 (Linear PDEs with 2 Variables). We can write

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G, (1)

where A,B,C,D,E, F,G are independent of u (but they can be dependent on x or y).

• If G = 0, (1) is homogenous. If G ∕= 0, (1) is non-homogenous.

• Similar to determinants for quadratic equations, we also classify PDEs according

to the sign of B2 − 4AC:

1. Parabolic if B2 − 4AC = 0,

2. Hyperbolic if B2 − 4AC > 0, and

3. Elliptic if B2 − 4AC < 0.

Definition 1.3.2 (Initial Value/Boundary Value Problems).

• If initial conditions are provided, we have an Initial Value Problem (IVP).

• If boundary conditions are given, we have a Boundary Value Problem (BVP).

• If both initial conditions and boundary conditions are provided, we have an Ini-

tial Boundary Value Problem (IBVP).

Example 1.3.3 Example of an IBVP Problem

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

[PDE]
∂u

∂t
− ∂2u

∂x2
= 0, with 0 < x < 1, t > 0,

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = e−t,
with t > 0,

[IC] u(0, x) = x, with 0 < x < 1.

(2)
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1 INTRODUCTION 1.3 Classification of PDEs and Definitions

With an IBVP, we can

• Solve this IBVP, or

• Verify a function is a solution for the IBVP.

Example 1.3.4 Classification of PDEs

• utt = e−tuxx+ sin t

2nd order, 2 variables (t, x), linear, non-homogenous.

• uuxx + ut = 0

2nd order, 2 variables (t, x), nonlinear.

• uxx + yuyy = 0

2nd order, 2 variables (x, y), linear, homogenous.

• xux + yuy + u2 = 0

1st order, 2 variables (x, y), nonlinear.

Classify the following second order PDE as parabolic, hyperbolic, or elliptic. (Only second

order linear PDE can be classified.)

• ut = uxx =⇒ uxx − ut = 0.

A = 1, B = 0, C = 0 =⇒ B2 − 4AC = 0 =⇒ parabolic.

• utt = uxx =⇒ uxx − utt = 0.

A = 1, B = 0, C = −1 =⇒ B2 − 4AC = 4 > 0 =⇒ hyperbolic.

• utx = 0.

A = 0, B = 1, C = 0 =⇒ B2 − 4AC = 1 > 0 =⇒ hyperbolic.

• uxx + uyy = 0.

A = 1, B = 0, C = 1 =⇒ B2 − 4AC = −4 < 0 =⇒ elliptic.

• yuxx + uyy = 0.

A = y, B = 0, C = 1 =⇒ B2 − 4AC = −4y =⇒

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

elliptic if y > 0

parabolic if y = 0

hyperbolic if y < 0

.
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1 INTRODUCTION 1.3 Classification of PDEs and Definitions

Classify the following PDE. Classify them as parabolic, hyperbolic, or elliptic when appli-

cable.

• ut = uxx + 2ux + u =⇒ uxx + 2ux − ut + u = 0.

2nd order, 2 variables (t, x), linear, homogenous.

A = 1, B = 0, C = 0 =⇒ B2 − 4AC = 0 =⇒ parabolic.

• ut = uxx + e−t =⇒ uxx − ut + e−t = 0.

2nd order, 2 variables (t, x), linear, non-homogenous.

A = 1, B = 0, C = 0 =⇒ B2 − 4AC = 0 =⇒ parabolic.

• uxx + 3uxy + uyy = sin x

2nd order, 2 variables (x, y), linear, non-homogenous.

A = 1, B = 3, C = 1 =⇒ B2 − 4AC = 9− 4 > 0 =⇒ hyperbolic.

• utt = uuxxxx + e−t

4th order, 2 variables (t, x), nonlinear, non-homogenous.
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2 FIRST ORDER LINEAR PDES

2 First Order Linear PDEs

2.1 Principle of Superposition

Theorem 2.1.1 Principle of Superposition

If u1(x, y) and u2(x, y) are solutions of

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G, (3)

then u1(x, y)+u2(x, y) is also a solution of the equation if and only if (3) is homogenous.

Proof 1. Let’s plug-in u1(x, y) + u2(x, y) to the LHS:

A(u1 + u2)xx +B(u1 + u2)xy + C(u1 + u2)yy +D(u1 + u2)x + E(u1 + u2)y + F (u1 + u2)

=Au1xx +Bu1xy + Cu1yy +Du1x + Eu1y + Fu1 + Au1xx +Bu2xy + Cu2yy +Du2x + Eu2y + Fu2

=G+G

=2G.

So, u1 + u2 is a solution ⇐⇒ G = 2G ⇐⇒ G = 0 ⇐⇒ (3) is homogenous. 󰃈

Example 2.1.2 Simple PDEs

Solve the following PDEs:

• ∂u(x, y)

∂x
= 0.

Solution 2.

u(x, y) = f(y), only a function of y. □

• ∂2u(x, y)

∂x∂y
= 0.

Solution 3.

There are two possible orders to take the derivatives:

1.
∂

∂x

󰀕
∂u

∂y

󰀖
= 0 =⇒ ∂u

∂y
is a function of y.

2.
∂

∂y

󰀕
∂u

∂x

󰀖
= 0 =⇒ ∂u

∂x
is a function of x.

Combing the two cases, we know: u(x, y) = f(x) + g(y). □
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

2.2 Transport Equation and Method of Characteristics

Consider we have a bloodstream, and we want to model the oxygen level in it. Let u(t, x) be

the concentration or density of oxygen, and q(t, x, u) be the flux.

a
b

x

Then, the total mass of oxygen at time t is given by

Θ(t) =

󰁝 b

a

u(t, x) dx.

By the conservation law, we have

d

dt
[Θ(t)] = q(t, a, u)− q(t, b, u)

d

dt

󰀗󰁝 b

a

u(t, x) dx

󰀘
= q(t, a, u)− q(t, b, u)

= −
󰁫
q(t, b, u)− q(t, a, u)

󰁬

= −
󰁝 b

a

∂q

∂x
dx [Fund. Thm. of Calculus]

d

dt

󰁝 b

a

u(t, x) dx = −
󰁝 b

a

∂q

∂x
dx

󰁝 b

a

∂u

∂t
dx = −

󰁝 b

a

∂q

∂x
dx [Interchange derivative and integral]

󰁝 b

a

∂u

∂t
+

∂q

∂x
dx = 0

=⇒ ∂u

∂t
+

∂q

∂x
= 0 (Transport Equation)

Now, assume q is linear in u. Then,

q(t, x, u) = c · u(t, x),

where c is the velocity which does not depend on u. Then, (Transport Equation) becomes

∂u

∂t
+ c · ∂u

∂x
= 0 with IC u(0, x) = u0(x).
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

The classification is: 1st order, 2 variables (t, x), linear, and homogenous PDE.

To solve it, suppose we are moving on the stream, at the same velocity as the stream, to

make observations. Let x(t) denote our trajectory. Let x(t) be a function of t. Then,

u(t, x) = u(t, x(t)).

Then, the total derivative of u becomes

D

Dt
u(t, x(t)) =

∂u

∂t
+

∂u

∂x
· dx
dt

,

where
dx

dt
= c is exactly the velocity in (Transport Equation). We form two differential equa-

tions to solve: 󰀻
󰀿

󰀽

dx

dt
= c

x(0) = x0

and

󰀻
󰀿

󰀽

D

Dt
u(t, x(t)) = 0

u(0, x(0) = u0(x0).

From the first system, we get x(t) = ct+x0 ①. From the second system we know that u(t, x(t))

is a constant since the total derivative is 0. By the IC, we know u(t, x(t)) = IC = u0(x0) ②.

Now, jumping out from the stream, we want everything in (t, x). From ①:

x0(t, x) = x− ct.

Substitute this into ②, we get

u(t, x) = u0(x− ct).

This method of solving the PDE is called the Method of Characteristics. Graphically,

x0

x = ct+ x0

x

t

characteristic lines

foot of characteristics

Example 2.2.1

∂u

∂t
+ 5

∂u

∂x
= 0 with u(0, x) = ex sin x.

Solution 1.
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

D

Dt
u(t, x(t)) =

∂u

∂t
+

∂u

∂x
· dx
dt

.

So, we have two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= 5

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
= 0

u(0, x(0)) = ex0 sin x0.

From ①, we have

x = 5t+ x0

x0 = x− 5t

From ②, since
Du

Dt
= 0, u is a constant. By the initial condition,

u(t, x(t)) = ex0 sin x0

u(t, x) = e(x−5t) sin(x− 5t).

□

2.2.1 What Happens when Velocity is not a Constant?

For a, b ∈ R,
∂u

∂t
+ (at+ b)

∂u

∂x
= 0 with u(0, x) = u0(x).

Solution 2.

D

Dt
u(t, x(t)) =

∂u

∂t
+

∂u

∂x
· dx
dt

.

So, we have two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= at+ b

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
= 0

u(0, x(0)) = u0(x0).

From ①,

x(t) =
a

2
t2 + bt+ x0

x0 = x− a

2
t2 − bt.
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

From ②,
Du

Dt
= 0, so u is a constant. By the IC,

u(t, x(t)) = u0(x0)

u(t, x) = u0

󰀓
x− a

2
t2 − bt

󰀔
.

□

2.2.2 Presence of a Forcing Term

∂u

∂t
+ c

∂u

∂x
+ γu(t, x) = f(t, x), with u(0, x) = u0(x).

• γ = 0:
∂u

∂t
+ c

∂u

∂x
= f(t, x), with u(0, x) = u0(x).

Solution 3.

Two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= c

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
= f(t, x(t))

u(0, x(0)) = u0(x0).

From ①,

x(t) = ct+ x0 =⇒ x0 = x− ct.

Solving ②:

󰁝 t

0

Du

Dt
dt =

󰁝 t

0

f(s, x(s)) ds

u(t, x(t))− u(0, x(0)) =

󰁝 t

0

f(s, x(s)) ds [Fund. Thm. of Calculus]

Note that x(t) = ct+ x0. So, x(s) = cs+ x0. Then,

u(t, x(t))− u0(x0) =

󰁝 t

0

f(s, cs+ x0) ds [Use IC]

u(t, x(t)) = u0(x0) +

󰁝 t

0

f(s, cs+ x0) ds

= u0(x− ct) +

󰁝 t

0

f(s, cs+ x− ct) ds [x0 = x− ct]

= u0(x− ct) +

󰁝 t

0

f
󰀃
s, x− c(t− s)

󰀄
ds

□
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

• f = 0:
∂u

∂t
+ c

∂u

∂x
+ γu(t, x) = 0, with u(0, x) = u0(x).

Solution 4.

Two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= c

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
+ γu = 0

u(0, x(0)) = u0(x0).

From ①, x(t) = ct+ x0 =⇒ x0 = x− ct.

From ②: first-order, linear, homogenous ODE. Use integrating factor:

µ = e
󰁕
γ dt = eγt.

Then,

eγt
Du

Dt
+ eγtγu

󰁿 󰁾󰁽 󰂀
= 0

󰁝 t

0

D

Ds
(eγsu) ds = 0

eγtu(t, x(t))− eγ·0󰁿󰁾󰁽󰂀
=1

u(0, x(0)) = 0

eγtu(t, x(t))− u(0, x(0)) = 0

eγtu(t, x(t)) = u(0, x(0)) = u0(x0)

u(t, x(t)) = e−γtu0(x0)

u(t, x) = e−γtu0(x− ct).

□

• γ ∕= 0 and f ∕= 0:

∂u

∂t
+ c

∂u

∂x
+ γu(t, x) = f(t, x), with u(0, x) = u0(x).

Solution 5.

Two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= c

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
+ γu = f(t, x(t))

u(0, x(0)) = u0(x0).

From ①, x(t) = ct+ x0 =⇒ x0 = x− ct.
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

From ②: first-order, linear, non-homogenous ODE. Use integrating factor

µ = e
󰁕
γ dt = eγt.

Then,

eγt
Du

Dt
+ eγtγu

󰁿 󰁾󰁽 󰂀
= eγtf(t, x(t))

󰁝 t

0

D

Ds
(eγsu) du =

󰁝 t

0

eγsf(s, x(s)) ds

eγtu(t, x(t))− eγ·0u(0, x(0)) =

󰁝 t

0

eγsf(s, cs+ x0) ds

eγtu(t, x(t))− u0(x0) =

󰁝 t

0

eγsf(s, cs+ x0) dx

eγtu(t, x(t)) = u0(x0) +

󰁝 t

0

eγsf(s, cs+ x0) ds

eγtu(t, x(t)) = u0(x− ct) +

󰁝 t

0

eγsf(s, cs+ x− ct) ds

eγtu(t, x(t)) = u0(x− ct) +

󰁝 t

0

eγsf
󰀃
s, x− c(t− s)

󰀄
ds

u(t, x(t)) = e−γtu0(x− ct) + e−γt

󰁝 t

0

eγsf
󰀃
s, x− c(t− s)

󰀄
ds

□
Summary

For the PDE 󰀻
󰀿

󰀽

∂u

∂t
+ c(t, x)

∂u

∂x
+ γ(t, x)u = f(t, x)

u(0, x) = u0(x),

we form two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= c(t, x)

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
+ γ(t, x(t))u = f(t, x(t))

u(0, x(0)) = u0(x0).

Equation ② is linear for sure. We use integrating factor to solve it.

Example 2.2.2

∂u

∂t
+ 3

∂u

∂x
− 2u = sin(x− t) with u(0, x) = x2.
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

Solution 6.

Two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= 3

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
− 2u = sin(x− t)

u(0, x(0)) = u0(x0).

①: x = 3t+ x0 =⇒ x0 = x− 3t. ②: Integrating factor.

µ(t) = e
󰁕
−2 dt = e−2t.

Then,

D

Dt

󰀅
e−2tu

󰀆
= e−2t sin(x(t)− t)

󰁝 t

0

D

Ds

󰀅
e−2su

󰀆
ds =

󰁝 t

0

e−2s sin(x(s)− s) ds

e−2tu(t, x(t))− u(0, x(0)) =

󰁝 t

0

e−2s sin(3s+ x0 − s) ds

e−2tu(t, x(t)) = u0(x0) +

󰁝 t

0

e−2s sin(2s+ x0) ds

Lets solve this integral:

󰁝
e−2s sin(2s+ x0) ds = −1

2
e−2s sin(2s+ x0)−

󰁝 󰀕
−1

2
e−2s

󰀖
2 cos(2s+ x0) ds

= −1

2
e−2s sin(2s+ x0) +

󰁝
e−2s cos(2s+ x0) ds

= −1

2
e−2s sin(2s+ x0)−

1

2
e−2s cos(2s+ x0)

−
󰁝 󰀕

−1

2

󰀖
e−2s(−2) sin(2s+ x0) ds

󰁝
e−2s sin(2s+ x0) ds = −1

2
e−2s sin(2s+ x0)−

1

2
e−2s cos(2s+ x0)

−
󰁝

e−2s sin(2s+ x0) ds

2

󰁝
e−2s sin(2s+ x0) ds = −1

2
e−2s[sin(2s+ x0) + cos(2s+ x0)]

󰁝
e−2s sin(2s+ x0) ds = −1

4
e−2s[sin(2s+ x0) + cos(2s+ x0)]
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

So,

e−2tu(t, x(t)) = u0(x0)−
1

4
e−2t[sin(2t+ x0) + cos(2t+ x0)] +

1

4
e0[sin(x0) + cos(x0)]

= (x− 3t)2 − 1

4
e−2t[sin(x− t) + cos(x− t)] +

1

4
[sin(x− 3t) + cos(x− 3t)]

u(t, x) = e2t(x− 3t)2 − 1

4
[sin(x− t) + cos(x− t)] +

1

4
e2t[sin(x− 3t) + cos(x− 3t)].

□

Example 2.2.3

∂u

∂t
+ 2(t2 + 1)

∂u

∂x
= 0 with u(0, x) = ex.

Solution 7.

Two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
= 2(t2 + 1)

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
= 0

u(0, x(0)) = ex0 .

①:

x(t) =

󰁝
2(t2 + 1) dt+ x0

= 2

󰀗
1

3
t3 + t

󰀘
+ x0

=
2

3
t3 + 2t+ x0

x0 = x− 2

3
t3 − 2t

②: u(t, x(t)) is a constant. So,

u(t, x(t)) = ex0 =⇒ u(t, x) = ex−2/3·t3−2t.

□

Example 2.2.4

∂u

∂t
+

1

3x2

∂u

∂x
+ 2u = t with u(0, x) = u0(x).

Solution 8.
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2 FIRST ORDER LINEAR PDES 2.2 Transport Equation and Method of Characteristics

Two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
=

1

3x2

x(0) = x0

②

󰀻
󰀿

󰀽

Du

Dt
+ 2u = t

u(0, x(0)) = u0(x0).

①:
󰁝

3x2 dx =

󰁝
dt+ C [first-order, separable]

3 · 1
3
x3 = t+ C

x3 = t+ C.

When t = 0, x(0) = x0. So, x3
0 = 0 + C =⇒ C = x3

0. So,

x3 = t+ x3
0

x3
0 = x3 − t

x0 = (x3 − t)1/3.

②:
D

Dt
u+ 2u = t. Integrating factor:

µ(t) = e
󰁕
2 dt = e2t.

Then,

e2t
Du

Dt
+ 2e2tu = e2tt

D

Dt

󰀅
e2tu

󰀆
= e2t · t

󰁝 t

0

e2su ds =

󰁝 t

0

e2s · s ds

e2tu(t, x(t))− e2·0u(0, x(0)) =

󰀗
1

2
e2ss

󰀘t

0

−
󰁝 t

0

1

2
e2s ds =

1

2
e2t · t−

󰀗
1

4
e2s

󰀘t

0

e2tu(t, x(t))− u0(x0) =
1

2
e2t · t− 1

4
e2t +

1

4

e2tu(t, x(t)) = u0(x0) +
1

2
e2t · t− 1

4
e2t +

1

4

e2tu(t, x) = u0

󰀃
(x3 − t)1/3

󰀄
+

1

2
e2t · t− 1

4
e2t +

1

4

u(t, x) = e−2tu0

󰀃
(x3 − t)1/3

󰀄
+

1

2
t− 1

4
+

1

4
e−2t.

□
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Example 2.2.5

t
∂u

∂t
+ x

∂u

∂x
= 0 with u(1, x) = sin x.

Solution 9.

Two ODEs:

①

󰀻
󰀿

󰀽

dx

dt
=

x

t

x(1) = x1

②

󰀻
󰀿

󰀽

Du

Dt
= 0

u(1, x(1)) = sin x1.

①:

dx

dt
− 1

t
x = 0 [first-order, linear, homo]

x = Ce−
󰁕
−1/t dt = Celn(t) = Ct.

At t = 1, x(1) = C = x1. So, x = x1t =⇒ x1 =
x

t
.

②: u(t, x(t)) is a constant.

u(t, x(t)) = sin x1

u(t, x) = sin
󰀓x
t

󰀔
.

□

2.3 System of First Order PDEs
󰀻
󰀿

󰀽

∂u

∂t
+ A

∂u

∂x
+Mu = f, A,M ∈ Rn×n

u0(0, x) = u0(x),

where

u(t, x) =

󰀵

󰀹󰀹󰀹󰀹󰀷

u1(t, x)

u2(t, x)
...

un(t, x)

󰀶

󰀺󰀺󰀺󰀺󰀸
∈ Rn,

∂u

∂t
=

󰀵

󰀹󰀹󰀹󰀹󰀷

∂u1/∂t

∂u2/∂t
...

∂un/∂t

󰀶

󰀺󰀺󰀺󰀺󰀸
∈ Rn,

∂u

∂x
=

󰀵

󰀹󰀹󰀹󰀹󰀷

∂u1/∂x

∂u2/∂x
...

∂un/∂x

󰀶

󰀺󰀺󰀺󰀺󰀸
∈ Rn, f(t, x) =

󰀵

󰀹󰀹󰀹󰀹󰀷

f1(t, x)

f2(t, x)
...

fn(t, x)

󰀶

󰀺󰀺󰀺󰀺󰀸
.

Suppose n = 2. Then,

A =

󰀥
a11 a12

a21 a22

󰀦
.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Set M = 0, f = 0. Then, we have a system of two PDEs:

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

[PDEs]

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂u1

∂t
+ a11

∂u1

∂x
+ a12

∂u2

∂x
= 0

∂u2

∂t
+ a21

∂u1

∂x
+ a12

∂u2

∂x
= 0

[ICs]

󰀻
󰀿

󰀽
u1(0, x) = u1,0(x)

u2(0, x) = u2,0(x).

But... we can’t solve them yet. If A is diagonal, then a12 = a21 = 0, we are back to the transport

equation, and we just need to solve two transport equations. So, our job is to diagonalize A.

By diagonalization, we have

A = V DV −1,

where

V =

󰀵

󰀹󰀷
| |
v1 v2

| |

󰀶

󰀺󰀸 and D =

󰀥
λ1

λ2

󰀦
.

Then,

∂u

∂t
+ V DV −1∂u

∂x
= 0

V −1∂u

∂t
+ V −1V󰁿 󰁾󰁽 󰂀

=I

DV −1∂u

∂x
= 0

V −1∂u

∂t
+DV −1∂u

∂x
= 0 [Change of Variable: w = V −1u]

∂w

∂t
+D

∂w

∂x
= 0.

This is easy to solve! After finding w, we have w = V −1u =⇒ u = V w.

Definition 2.3.1 (Riemann Variable). The auxiliary variables w are called Riemann

variables or invariants.

2.3.1 Review: How to find the diagonalization – Eigenvalue Problem

Find a pair (λ, v) s.t. Av = λv with v ∕= 0. Then,

Av = λv =⇒ (λI − A)󰁿 󰁾󰁽 󰂀
I

v = 0 =⇒ Bv = 0
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Since v ∕= 0 by assumption, it must be that B is singular. That is,

det(B) = det(λI − A) = 0.

This is equivalent to finding roots to the characteristic polynomial

β0λ
m + β1λ

m−1 + · · ·+ βm = 0.

By Fundamental Theorem of Algebra, characteristic polynomial has exactly m roots (and they

can occur multiple times) ∈ C. The number of times they occur is called multiplicity.

For n = 2,

det(λI − A) = aλ2 + bλ+ c = 0.

Solution formula is

λ1,2 =
−b±

√
b2 − 4ac

2a
.

Given λ1,2, we can also find corresponding eigenvectors v1, v2. Then,

V =

󰀵

󰀹󰀷
| |
v1 v2

| |

󰀶

󰀺󰀸 and D =

󰀥
λ1

λ2

󰀦
.

For 2× 2 matrix,

V =

󰀥
a b

c d

󰀦
=⇒ V −1 =

1

det(V )

󰀥
d −b

−c a

󰀦
.

Example 2.3.2

A =

󰀥
3 −3

−4 −1

󰀦

Solution 1.

λI − A =

󰀥
λ 0

0 λ

󰀦
−

󰀥
3 −3

−4 −1

󰀦
=

󰀥
λ− 3 3

4 λ+ 1

󰀦
.

det(λI − A) = (λ− 3)(λ+ 1)− 12 = 0

λ2 − 2λ− 3− 12 = 0

λ2 − 2λ− 15 = 0

(λ− 5)(λ+ 3) = 0 =⇒ λ1 = 5,λ2 = −3.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

• Consider Ax = 5x.
󰀻
󰀿

󰀽
3x1 − 3x2 = 5x1

−4x1 − x2 = 5x2

=⇒

󰀻
󰀿

󰀽
2x1 = −3x2

−4x1 = 6x2

=⇒ x =

󰀥
−3/2x2

x2

󰀦
.

So, the eigenvector corresponding to λ1 = 5 is

󰀥
−3/2

1

󰀦
.

• Consider Ax = −3x.
󰀻
󰀿

󰀽
3x1 − 3x2 = −3x1

−4x1 − x2 = −3x2

=⇒

󰀻
󰀿

󰀽
6x1 = 3x2

−4x1 = −2x2

=⇒ x =

󰀥
1/2x2

x2

󰀦
.

So, the eigenvector corresponding to λ2 = −3 is

󰀥
1

2

󰀦
.

Hence, the diagonalization of A is A = V DV −1, where

V =

󰀥
−3/2 1

1 2

󰀦
and D =

󰀥
5 0

0 −3

󰀦
.

Then,

V −1 =
1

det(V )

󰀥
2 −1

−1 −3/2

󰀦
=

1

−3− 1

󰀥
2 −1

−1 −3/2

󰀦

=
1

−4

󰀥
2 −1

−1 −3/2

󰀦

=

󰀥
−1/2 1/4

1/4 3/8

󰀦
.

□

2.3.2 Worked Examples

Example 2.3.3

∂u

∂t
+ A

∂u

∂x
= 0 with u(0, x) =

󰀥
x3

x2

󰀦
and A =

󰀥
3 −3

−4 −1

󰀦
.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Solution 2.

We have found: λ1 = −3, λ2 = 5, v1 =

󰀥
1

2

󰀦
, and v2 =

󰀥
−3

2

󰀦
. Then,

D =

󰀥
−3 0

0 5

󰀦
and V =

󰀥
1 −3

2 2

󰀦
.

Since det(V ) = 2 + 6 = 8, we have

V −1 =
1

det(V )

󰀥
2 3

−2 1

󰀦
=

1

8

󰀥
2 3

−2 1

󰀦
.

So,

w0 = V −1u0 =
1

8

󰀥
2 3

−2 1

󰀦󰀥
x3

x2

󰀦
=

1

8

󰀥
2x3 + 3x2

−2x3 + x2

󰀦
=

󰀥
w01(x)

w02(x)

󰀦
.

Then, we have two PDEs:

•

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂w1

∂t
− 3

∂w1

∂x
= 0

w01(x) =
1

8
(2x3 + 3x2)

We have two ODEs:

󰀻
󰀿

󰀽

dx

dt
= −3

x(0) = x01

󰀻
󰁁󰀿

󰁁󰀽

Dw1

Dt
= 0

w01(0, x(0)) =
1

8
(2x3

01 + 3x2
01).

Then, we have x(t) = −3t+ x01 =⇒ x01 = x+ 3t. Meanwhile,

w1(t, x(t)) = w01(x01)

=
1

8

󰀃
2x3

01 + 3x2
01

󰀄

w1(t, x) =
1

8

󰀃
2(x+ 3t)3 + 3(x+ 3t)2

󰀄
.

•

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂w2

∂t
+ 5

∂w2

∂x
= 0

w02(x) =
1

8
(−2x3 + x2)
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

We have two ODEs:

󰀻
󰀿

󰀽

dx

dt
= 5

x(0) = x02

󰀻
󰁁󰀿

󰁁󰀽

Dw2

Dt
= 0

w02(0, x(0)) =
1

8
(−2x3

02 + x2
02).

Then, we have x(t) = 5t+ x02 =⇒ x02 = x− 5t. Meanwhile,

w2(t, x(t)) = w02(x02)

=
1

8

󰀃
−2x3

02 + x2
02

󰀄

w2(t, x) =
1

8

󰀃
−2(x− 5t)3 + (x− 5t)2

󰀄
.

Finally, the solution is

u = V w =

󰀥
1 −3

2 2

󰀦󰀥
w1

w2

󰀦

=

󰀥
w1 − 3w2

2w1 + 2w2

󰀦

=

󰀥
1/8(2(x+ 3t)3 + 3(x+ 3t)2)− 3/8(−2(x− 5t)3 + (x− 5t)2)

1/4(2(x+ 3t)3 + 3(x+ 3t)2) + 1/4(−2(x− 5t)3 + (x− 5t)2)

󰀦
.

□

Example 2.3.4 Non-homogenous System, f ∕= 0

∂u

∂t
+ A

∂u

∂x
= f with u(0, x) =

󰀥
x3

x2

󰀦
and A =

󰀥
3 −3

−4 −1

󰀦
and f =

󰀥
0

1

󰀦
.

Solution 3.

Suppose A = V DV −1. Then,

∂u

∂t
+ V DV −1∂u

∂x
= f

V −1∂u

∂t
+ V −1V󰁿 󰁾󰁽 󰂀

=I

DV −1∂u

∂x
= V −1f [Multiply by V −1]

V −1∂u

∂t
+DV −1∂u

∂x
= V −1f =⇒ ∂w

∂t
+D

∂w

∂x
= V −1f [w = V −1u]
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Recall from previous example:

V =

󰀥
1 −3

2 2

󰀦
, V −1 =

1

8

󰀥
2 3

−2 1

󰀦
, and D =

󰀥
−3 0

0 5

󰀦
.

Then,

V −1f =
1

8

󰀥
2 3

−2 1

󰀦󰀥
0

1

󰀦
=

1

8

󰀥
3

1

󰀦
=

󰀥
3/8

1/8

󰀦
.

Then, we have two PDEs:

•

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂w1

∂t
− 3

∂w1

∂x
=

3

8

w01(x) =
1

8
(2x3 + 3x2)

We have two ODEs:

󰀻
󰀿

󰀽

dx

dt
= −3

x(0) = x01

󰀻
󰁁󰀿

󰁁󰀽

Dw1

Dt
=

3

8

w01(0, x(0)) =
1

8
(2x3

01 + 3x2
01).

Then, we have x(t) = −3t+ x01 =⇒ x01 = x+ 3t. Meanwhile,

Dw1

Dt
=

3

8
=⇒ w1(t, x(t)) =

3

8
t+ w01(x01)

=
3

8
t+

1

8

󰀃
2x3

01 + 3x2
01

󰀄

w1(t, x) =
3

8
t+

1

8

󰀃
2(x+ 3t)3 + 3(x+ 3t)2

󰀄
.

•

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂w2

∂t
+ 5

∂w2

∂x
=

1

8

w02(x) =
1

8
(−2x3 + x2)

We have two ODEs:

󰀻
󰀿

󰀽

dx

dt
= 5

x(0) = x02

󰀻
󰁁󰀿

󰁁󰀽

Dw2

Dt
=

1

8

w02(0, x(0)) =
1

8
(−2x3

02 + x2
02).
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Then, we have x(t) = 5t+ x02 =⇒ x02 = x− 5t. Meanwhile,

Dw2

Dt
=

1

8
=⇒ w2(t, x(t)) =

1

8
t+ w02(x02)

=
1

8
t+

1

8

󰀃
−2x3

02 + x2
02

󰀄

w2(t, x) =
1

8
t+

1

8

󰀃
−2(x− 5t)3 + (x− 5t)2

󰀄
.

Finally, the solution is

u = V w =

󰀥
1 −3

2 2

󰀦󰀥
w1

w2

󰀦

=

󰀥
w1 − 3w2

2w1 + 2w2

󰀦
[Plug-in w1 and w2]

□

Now, consider the full system:

󰀻
󰀿

󰀽

∂u

∂t
+ A

∂u

∂x
+Mu = f

u(0, x) = u0(x)

Recall: if A = V DV −1, then

∂u

∂t
+ V DV −1∂u

∂x
+Mu = f

V −1∂u

∂t
+ V −1V󰁿 󰁾󰁽 󰂀

=I

DV −1∂u

∂x
+ V −1Mu = V −1f

V −1∂u

∂t
+DV −1∂u

∂x
+ V −1Mu = V −1f.

• If M is the identity matrix, M = I. Then,

V −1∂u

∂t
+DV −1∂u

∂x
+ V −1Iu = V −1f

V −1∂u

∂t
+DV −1∂u

∂x
+ V −1u = V −1f

∂w

∂t
+D

∂w

∂x
+ w = V −1f [w = V −1u]
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

• If M is a multiple of the identity matrix, M = αI. Then,

V −1∂u

∂t
+DV −1∂u

∂x
+ V −1(αI)u = V −1f

V −1∂u

∂t
+DV −1∂u

∂x
+ αV −1u = V −1f

∂w

∂t
+D

∂w

∂x
+ αw = V −1f [w = V −1u]

• If M is diagonalized by V , (that is, M = V 󰁩MV −1, where 󰁩M is diagonal), then

V −1∂u

∂t
+DV −1∂u

∂x
+ V −1(V󰁿 󰁾󰁽 󰂀

=I

󰁩MV −1)u = V −1f

V −1∂u

∂t
+DV −1∂u

∂x
+ 󰁩MV −1u = V −1f

∂w

∂t
+D

∂w

∂x
+ 󰁩Mw = V −1f [w = V −1u]

• Other cases: Numerical Methods.

Example 2.3.5

∂u

∂t
+ A

∂u

∂x
= f with u(0, x) =

󰀥
x3

x2

󰀦
, A =

󰀥
3 −3

−4 −1

󰀦
, M =

󰀥
5/4 3/8

1/2 7/4

󰀦
, and f =

󰀥
0

1

󰀦
.

Solution 4.

Firstly, let’s verify V −1MV is diagonal. Recall:

V =

󰀥
1 −3

2 2

󰀦
, V −1 =

1

8

󰀥
2 3

−2 1

󰀦
, and D =

󰀥
−3 0

0 5

󰀦
.

Then,

󰁩M = V −1MV =
1

8

󰀥
2 3

−2 1

󰀦󰀥
5/4 3/8

1/2 7/4

󰀦󰀥
1 −3

2 2

󰀦

=
1

8

󰀥
2 3

−2 1

󰀦󰀥
2 −3

4 2

󰀦

=
1

8

󰀥
16 0

0 8

󰀦
=

󰀥
2 0

0 1

󰀦
.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

Then, we aim to solve
∂w

∂t
+D

∂w

∂x
+ 󰁩Mw = V −1f,

where w = V −1u. Then, we have two PDEs to solve:

•

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂w1

∂t
− 3

∂w1

∂x
+ 2w1 =

3

8

w01(0, x) =
1

8
(2x3 + 3x2)

1.

󰀻
󰀿

󰀽

dx

dt
= −3

x(0) = x01

=⇒ We get x(t) = −3t+ x01 =⇒ x01 = x+ 3t.

2.

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

Dw1

Dt
+ 2w1 =

3

8

w01(0, x(0)) =
1

8
(2x3

01 + 3x2
01).

Apply integrating factor:

µ = e
󰁕
2 dt = e2t.

Then,

󰀥
e2sw1(s, x(s))

󰀦t

0

=

󰀥
e2s

3

8

󰀦t

0

e2tw1(t, x(t))− w1(0, x(0)) =
3

8

󰀃
e2t − 1

󰀄

e2tw1(t, x(t)) =
3

8

󰀃
e2t − 1

󰀄
+ w1(0, x(0))

w1(t, x(t)) =
3

8

󰀃
1− e−2t

󰀄
+ e−2tw1(0, x(0))

=
3

8

󰀃
1− e−2t

󰀄
+ e−2t1

8

󰀃
2x3

01 + 3x2
01

󰀄

w1(t, x) =
3

8

󰀃
1− e−2t

󰀄
+

1

8
e−2t

󰀃
2(x+ 3t)3 + 3(x+ 3t)2

󰀄

•

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂w2

∂t
+ 5

∂w2

∂x
+ w2 =

1

8

w02(0, x) =
1

8
(−2x3 + x2)

1.

󰀻
󰀿

󰀽

dx

dt
= 5

x(0) = x02

=⇒ We get x(t) = 5t+ x02 =⇒ x02 = x− 5t.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

2.

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

Dw2

Dt
+ w2 =

1

8

w02(0, x(0)) =
1

8
(−2x3

02 + x2
02).

Apply integrating factor:

µ = e
󰁕
1 dt = et.

Then,

󰀥
esw2(s, x(s))

󰀦t

0

=

󰀥
es
1

8

󰀦t

0

etw2(t, x(t))− w2(0, x(0)) =
1

8

󰀃
et − 1

󰀄

etw2(t, x(t)) =
1

8

󰀃
et − 1

󰀄
+ w2(0, x(0))

w2(t, x(t)) =
1

8

󰀃
1− e−t

󰀄
+ e−tw2(0, x(0))

=
1

8

󰀃
1− e−t

󰀄
+ e−t1

8

󰀃
−2x3

02 + x2
02

󰀄

w2(t, x) =
1

8

󰀃
1− e−t

󰀄
+

1

8
e−t

󰀃
−2(x− 5t)3 + (x− 5t)2

󰀄

Finally, the solution is

u = V w =

󰀥
1 −3

2 2

󰀦󰀥
w1

w2

󰀦

=

󰀥
w1 − 3w2

2w1 + 2w2

󰀦
[Plug-in w1 and w2]

□

Example 2.3.6 Connection with Wave Equation I

∂u

∂t
+ A

∂u

∂x
= 0, with u(0, x) =

󰀥
sin(x)

cos(x)

󰀦
and A =

󰀥
0 −1

−γ2 0

󰀦
.

Solution 5.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

det(A) = det

󰀥
−λ −1

−γ2 −λ

󰀦
= λ2 − γ2 = 0 =⇒ λ1 = γ, λ2 = −γ.

• λ1 = −γ: 󰀥
γ −1

−γ2 γ

󰀦󰀥
v(1)

v(2)

󰀦
= 0 =⇒ γv(1) − v(2) = 0 =⇒ v1 =

󰀥
1

γ

󰀦

• λ2 = γ: 󰀥
−γ −1

−γ2 −γ

󰀦󰀥
v(1)

v(2)

󰀦
= 0 =⇒ −γv(1) − v(2) = 0 =⇒ v2 =

󰀥
1

−γ

󰀦
.

So,

D =

󰀥
−γ 0

0 γ

󰀦
, and V =

󰀥
1 1

γ −γ

󰀦
.

Since

det(V ) = det

󰀥
1 1

γ −γ

󰀦
= −2γ,

we know

V −1 =
1

det(V )

󰀥
−γ −1

−γ 1

󰀦
= − 1

2γ

󰀥
−γ −1

−γ 1

󰀦
=

1

2γ

󰀥
γ 1

γ −1

󰀦
.

Then, The initial condition is

w0 =

󰀥
w01

w02

󰀦
=

1

2γ

󰀥
γ 1

γ −1

󰀦󰀥
u01

u02

󰀦
=

1

2γ

󰀥
γ 1

γ −1

󰀦󰀥
sin x

cos x

󰀦
=

1

2γ

󰀥
γ sin x+ cos x

γ sin x− cos x

󰀦
.

So, we have two PDEs to solve:

•

󰀻
󰁁󰀿

󰁁󰀽

∂w1

∂t
− γ

∂w1

∂x
= 0

w1(0, x) =
1

2γ
(γ sin x+ cos x)

1.

󰀻
󰀿

󰀽

dx

dt
= −γ

x(0) = x01

=⇒ x(t) = −γt+ x01 =⇒ x01 = x+ γt.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

2.

󰀻
󰁁󰀿

󰁁󰀽

Dw1

Dt
= 0

w1(0, x(0)) =
1

2γ
(γ sin x01 + cos x01)

w1(t, x(t)) = w1(0, x01)

=
1

2γ
(γ sin x01 + cos x01)

w1(t, x) =
1

2γ
(γ sin(x+ γt) + cos(x+ γt))

•

󰀻
󰁁󰀿

󰁁󰀽

∂w2

∂t
+ γ

∂w2

∂x
= 0

w2(0, x) =
1

2γ
(γ sin x− cos x)

1.

󰀻
󰀿

󰀽

dx

dt
= γ

x(0) = x02

=⇒ x(t) = γt+ x02 =⇒ x02 = x− γt.

2.

󰀻
󰁁󰀿

󰁁󰀽

Dw2

Dt
= 0

w2(0, x(0)) =
1

2γ
(γ sin x02 − cos x02)

w2(t, x(t)) = w2(0, x02)

=
1

2γ
(γ sin x02 − cos x02)

w2(t, x) =
1

2γ
(γ sin(x− γt)− cos(x− γt))

So,

w =

󰀥
w1

w2

󰀦
=

1

2γ

󰀥
γ sin(x+ γt) + cos(x+ γt)

γ sin(x− γt)− cos(x− γt)

󰀦
.

Then, the final solution is

u = V w =

󰀥
1 1

γ −γ

󰀦
1

2γ

󰀥
γ sin(x+ γt) + cos(x+ γt)

γ sin(x− γt)− cos(x− γt)

󰀦

=
1

2γ

󰀥
γ sin(x+ γt) + cos(x+ γt) + γ sin(x− γt)− cos(x− γt)

γ2 sin(x+ γt) + γ cos(x+ γt)− γ2 sin(x− γt) + γ cos(x− γt)

󰀦
.
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2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

x+ γt x− γt

(x, t)

x
Domain of Dependence

x+ γtx− γt

x0 x

Range of

Inference

□

Example 2.3.7 Connection with Wave Equation II

∂u

∂t
+ A

∂u

∂x
= 0, with u(0, x) =

󰀥
sin(x)

cos(x)

󰀦
, A =

󰀥
0 −1

−γ2 0

󰀦
, and f =

󰀥
0

1

󰀦
.

Solution 6.

D =

󰀥
−γ 0

0 γ

󰀦
, and V =

󰀥
1 1

γ −γ

󰀦
.

V −1 =
1

2γ

󰀥
γ 1

γ −1

󰀦
, w0 =

1

2γ

󰀥
γ sin x+ cos x

γ sin x− cos x

󰀦
.

󰁨f = V −1f =
1

2γ

󰀥
γ 1

γ −1

󰀦󰀥
0

1

󰀦
=

1

2γ

󰀥
1

−1

󰀦

So, we have two PDEs to solve:

•

󰀻
󰁁󰀿

󰁁󰀽

∂w1

∂t
− γ

∂w1

∂x
=

1

2γ

w1(0, x) =
1

2γ
(γ sin x+ cos x)

1.

󰀻
󰀿

󰀽

dx

dt
= −γ

x(0) = x01

=⇒ x(t) = −γt+ x01 =⇒ x01 = x+ γt.

2.

󰀻
󰁁󰀿

󰁁󰀽

Dw1

Dt
=

1

2γ

w1(0, x(0)) =
1

2γ
(γ sin x01 + cos x01)

w1(t, x) =
1

2γ
t+

1

2γ
(γ sin(x+ γt) + cos(x+ γt))

=
1

2γ
(γ sin(x+ γt) + cos(x+ γt) + t).

30



2 FIRST ORDER LINEAR PDES 2.3 System of First Order PDEs

•

󰀻
󰁁󰀿

󰁁󰀽

∂w2

∂t
+ γ

∂w2

∂x
= − 1

2γ

w2(0, x) =
1

2γ
(γ sin x− cos x)

1.

󰀻
󰀿

󰀽

dx

dt
= γ

x(0) = x02

=⇒ x(t) = γt+ x02 =⇒ x02 = x− γt.

2.

󰀻
󰁁󰀿

󰁁󰀽

Dw2

Dt
= − 1

2γ

w2(0, x(0)) =
1

2γ
(γ sin x02 − cos x02)

w2(t, x) = − 1

2γ
t+

1

2γ
(γ sin(x− γt)− cos(x− γt))

=
1

2γ
(γ sin(x− γt)− cos(x− γt)− t).

So,

w =

󰀥
w1

w2

󰀦
=

1

2γ

󰀥
γ sin(x+ γt) + cos(x+ γt) + t

γ sin(x− γt)− cos(x− γt)− t

󰀦
.

Then, the final solution is

u = V w =

󰀥
1 1

γ −γ

󰀦
1

2γ

󰀥
γ sin(x+ γt) + cos(x+ γt) + t

γ sin(x− γt)− cos(x− γt)− t

󰀦

=
1

2γ

󰀥
γ sin(x+ γt) + cos(x+ γt) + γ sin(x− γt)− cos(x− γt)

γ2 sin(x+ γt) + γ cos(x+ γt)− γ2 sin(x− γt) + γ cos(x− γt) + 2γt

󰀦
.

□
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION

3 Second Order PDE: Unbounded Wave Equation

3.1 Vibrate String

Problem Set-Up Consider a flexible String that is stretched tight between 2points. The stretch-

ing creates a tension T that pulls in both directions at each point along its length. Any

other force is negligible. Write a PDE for this problem.

Solution 1.

• Step 1: Parametrize the String: x ∈ [0, ℓ], where ℓ is the length of the string.

Let u(t, x) be the vertical displacement.

Divide the total length ℓ into segments: ∆x =
ℓ

n
.

Then, the mass of each segment is m = ρ∆x.

u

xx0 = 0 ∆x xj = j∆x ℓ = xn

• Zoom into a single point:

Tj,j−1
Tj,j+1

u(t, xj)

u(t, xj+1)
u(t, xj−1)

αj βj

∆F (t, xj) = Tj,j−1 sin(αj) + Tj,j+1 sin(βj)

Assumptions

1. T is constant; and

2. αj and βj are small s.t. sin(αj) ≈ tan(αj) and sin(βj) ≈ tan(βj).

Then,

sin(αj) ≈ tan(αj) =
u(t, xj−1)− u(t, xj)

∆x

sin(βj) ≈ tan(βj) =
u(t, xj+1)− u(t, xj)

∆x
.
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.1 Vibrate String

Therefore,

F (t, xj) = T
u(t, xj−1)− u(t, xj)

∆x
+ T

u(t, xj+1)− u(t, xj)

∆x

= T

󰀗
u(t, xj−1) + u(t, xj+1)− 2u(t, xj)

∆x

󰀘

Apply Newton’s Law: F = ma, we get

ρ∆x󰁿󰁾󰁽󰂀
mass

∂2u

∂t2
(t, xj)

󰁿 󰁾󰁽 󰂀
acceleration

= ∆F (t, xj)

∂2u

∂t2
(t, xj) =

∆F (t, xj)

ρ∆x

=
T

ρ

󰀗
u(t, xj−1) + u(t, xj+1)− 2u(t, xj)

∆x2

󰀘

󰁿 󰁾󰁽 󰂀
similar to second-order derivative

Take the limit ∆x → 0, i.e., n → +∞, we get

lim
∆x→0

u(t, xj−1) + u(t, xj+1)− 2u(t, xj)

∆x2
=

∂2u

∂x2
.

• Step 3: From discrete back to continuous:

∂2u

∂t2
=

T

ρ

∂2u

∂x2

So, we get the 1D Wave Equation:

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∂2u

∂t2
− T

ρ󰁿󰁾󰁽󰂀
=γ2

∂2u

∂x2
= 0

[ICs]

󰀻
󰀿

󰀽
u(0, x) = u0(x)
∂u

∂t
(0, x) = v0(x)

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, ℓ) = 0

(1D Wave Equation)

□
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

3.2 D’Alembert’s Formula

Theorem 3.2.1 D’Alembert’s Formula

The IVP 󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂2u

∂t2
− γ2∂

2u

∂x2
= 0

u(0, x) = u0(x)
∂u

∂t
(0, x) = v0(x).

for u0 ∈ C2(R2), v ∈ C1(R) has the unique solution

u(t, x) =
1

2
[u0(x+ γt) + u0(x− γt)] +

1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ.

3.2.1 Proof by Reducing to A System of First Order PDEs

Let’s first recall how we can solve a second order ODE using systems. Consider

y′′ + p(t)y′ + q(t)y = 0.

Define

x =

󰀥
x1

x2

󰀦
, where x1 := y and x2 := y′.

We aim to build x′ = Ax. The following will work:

x′ =

󰀥
x′
1

x′
2

󰀦
=

󰀥
y′

y′′

󰀦
=

󰀥
y′

−p(t)y′ − q(t)y

󰀦
=

󰀥
x2

−p(t)x2 − q(t)x1

󰀦
=

󰀥
0 1

−q(t) −p(t)

󰀦󰀥
x1

x2

󰀦
.

We will use a similar method to prove the D’Alembert’s formula by reducing the second order

PDE into a system of first order PDEs.

Consider the following IVP: 󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂2u

∂t2
− γ2∂

2u

∂x2
= 0

u(0, x) = u0(x)
∂u

∂t
= v0(x).

Denote

u1 :=
∂u

∂x
and u2 :=

∂u

∂t
.

Recall from exact equation: Once we know
∂u

∂x
and

∂u

∂t
, we can solve for u.
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

Let’s rewrite the PDE:

∂

∂t

󰀕
∂u

∂t

󰀖
− γ2 ∂

∂x

󰀕
∂u

∂x

󰀖
= 0

∂u2

∂t
− γ2∂u1

∂x
= 0

We need another equation, and we obtain this equation from the requirement that u must be

of C2. That is,

∂

∂x

󰀕
∂u

∂t

󰀖
=

∂

∂t

󰀕
∂u

∂x

󰀖

∂u2

∂x
=

∂u1

∂t

∂u1

∂t
− ∂u2

∂x
= 0

So, the system is 󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∂u1

∂t
− ∂u2

∂x
= 0

∂u2

∂t
− γ2∂u1

∂x
= 0

u1(0, x) =
∂

∂x
u0(x)

u2(0, x) = v0(x).

Then, in matrix form, we have
∂u

∂t
+ A

∂u

∂x
= 0, where A =

󰀥
0 −1

−γ2 0

󰀦
. This is exactly the

problems we worked on in last section!

From previous work, we know u1 and u2:

󰀥
u1

u2

󰀦
=

󰀥
∂u/∂x

∂u/∂t

󰀦
.

The remaining job is to find u(t, x):

u(t, x) =

󰁝
u1(t, x) dx+ ϕ(t)

=

󰁝
∂u

∂x
dx+ ϕ(t)

=

󰁝
1

2γ

󰀗
γ
∂u0

∂x
(x+ γt) + v0(x+ γt) + γ

∂u0

∂x
(x− γt)− v0(x− γt)

󰀘
dx+ ϕ(t)
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

That is,

u(t, x) =
1

2γ

󰀗
γ

󰁝
∂u0

∂x
(x+ γt) +

∂u0

∂x
(x− γt) dx+

󰁝
v0(x+ γt)− v0(x− γt) dx

󰀘
+ ϕ(t)

=
1

2

󰁫
u0(x+ γt) + u0(x− γt)

󰁬
+

1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ+ ϕ(t).

So, the final job is the find ϕ(t): compute
∂u(t, x)

∂t
and compare against u2. [u0(x) is a sin-

gular variable function.]

∂u(t, x)

∂t
=

1

2

󰁫
γu′

0(x+ γt)− γu′
0(x− γt)

󰁬
+

1

2γ
[γv0(x+ γt)− (−γ)v0(x− γt)] + ϕ′(t)

=
1

2γ

󰁫
γ2u′

0(x+ γt)− γ2u′
0(x− γt)

󰁬
+

1

2γ
[γv0(x+ γt) + γv0(x− γt)] + ϕ′(t)

= u2.

So, it must be ϕ′(t) = 0.

Since we are doing definite integrals, ϕ′(t) = 0 =⇒ ϕ(t) = 0. So, we recover the

D’Alembert’s formula:

u(t, x) =
1

2

󰁫
u0(x+ γt) + u0(x− γt)

󰁬
+

1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ.

3.2.2 Proof by Reducing to Two First Order Linear Conservation Laws

Again, consider the following IVP:

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂2u

∂t2
− γ2∂

2u

∂x2
= 0

u(0, x) = u0(x)
∂u

∂t
(0, x) = v0(x).

Apply algebra formulas on operators, we get

󰀕
∂

∂t
+ γ

∂

∂x

󰀖󰀕
∂

∂t
− γ

∂

∂x

󰀖
u

󰁿 󰁾󰁽 󰂀
=:w

= 0

Then, we have two first-order linear conservation laws to solve.

1.

󰀻
󰁁󰀿

󰁁󰀽

∂w

∂t
+ γ

∂w

∂x
= 0

w(0, x) =
∂u

∂t
(0, x)− γ

∂u

∂x
(0, x)
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

Using the method of characteristics, we get

•

󰀻
󰀿

󰀽

dx

dt
= γ

x(0) = x0

=⇒ x(t) = γt+ x0 =⇒ x0 = x− γt.

•

󰀻
󰁁󰀿

󰁁󰀽

Dw

Dt
= 0

w(0, x(0)) =
∂u

∂t
(0, x(0))− γ

∂u

∂x
(0, x(0))

So,

w(t, x(t)) = v0(x0)− γ
∂u0

∂x
(x0)

w(t, x) = v0(x− γt)− γ
∂u0

∂x
(x− γt).

Recall

w =

󰀕
∂

∂t
− γ

∂

∂x

󰀖
u =

∂u

∂t
− γ

∂u

∂x
.

So, we have the second first-order linear conservation law:

2.

󰀻
󰀿

󰀽

∂w

∂t
− γ

∂u

∂t
= w

u(0, x) = u0(x).

Again, we use the method of characteristics. The characteristic line is x(t) = −γt + x0.

So, x0 = x+ γt.

Further,

Du

Dt
= w(t, x(t)) =⇒

󰁝 t

0

Du

Dt
(s, x(s)) ds =

󰁝 t

0

w(s, x(s)) ds

u(t, x(t))− u(0, x(0)) =

󰁝 t

0

w(s, x(s)) ds

u(t, x(t))− u0(x0) =

󰁝 t

0

w(s, x(s)) ds

=

󰁝 t

0

w(s,−γs+ x0) ds

=

󰁝 t

0

w(s,−γs+ x+ γt) ds

=

󰁝 t

0

w(s, x+ γ(t− s)) ds.
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

Let’s work on the RHS first. Since w(t, x) = v0(x− γt)− γ
∂u0

∂t
(x− γt),

w(s, x+ γ(t− s)) = v0(x+ γ(t− s)− γs)− γ
∂u0

∂t
(x+ γ(t− s)− γs)

= v0(x+ γ(t− 2s))− γ
∂u0

∂t
(x+ γ(t− 2s)).

So, 󰁝 t

0

w(s, x+ γ(t− s)) =

󰁝 t

0

v0(x+ γ(t− 2s))− γ
∂u0

∂t
(x+ γ(t− 2s)) ds

Let κ = x+ γ(t− 2s). Then dκ = −2γ ds =⇒ ds = − 1

2γ
dκ.

• When s = 0, κ = x+ γt

• When s = t, κ = x+ γ(t− 2t) = x− γt.

Further, since κ(x) = x+ γ(t− 2s), we have

∂u0

∂x
=

∂u0

∂κ
· ∂κ

∂x󰁿󰁾󰁽󰂀
=1

=⇒ ∂u0

∂x
=

∂u0

∂κ
.

Then,

󰁝 t

0

w(s, x+ γ(t− s)) =

󰁝 x−γt

x+γt

v0(κ)− γ
∂u0

∂κ
(κ)

󰀕
− 1

2γ
dκ

󰀖

=
1

2γ

󰁝 x+γt

x−γt

v0(κ)− γ
∂u0

∂κ
(κ) dκ

Eventually, we get

󰁝 t

0

w(s, x+ γ(t− s)) =
1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ− 1

2✓γ
✓γ
󰁫
u0(x+ γt)− u0(x− γt)

󰁬
.

Hence,

u(t, x(t))− u0(x0) = −1

2

󰁫
u0(x+ γt)− u0(x− γt)

󰁬
+

1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ

u(t, x) = u0(x+ γt)− 1

2

󰁫
u0(x+ γt)− u0(x− γt)

󰁬
+

1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ

=
1

2

󰁫
u0(x+ γt) + u0(x− γt)

󰁬
+

1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

3.2.3 Applying D’Alembert’s Formula

Example 3.2.2 Motion of a Simple Square Wave

∂2u

∂t2
− γ2∂

2u

∂x2
= 0 with u(0, x) =

󰀻
󰀿

󰀽
1 for |x| ≤ 1

0 o/w,
,

∂u

∂t
(0, x) = 0.

Find the solution using D’Alembert formula.

Solution 1.

u0(x) =

󰀻
󰀿

󰀽
1, |x| ≤ 1

0, o/w
, v0(x) = 0.

[Even though u0(x) ∕∈ C2(R), we can still apply D’Alembert’s formula.]

By D’alembert’s formula, we have

u(t, x) =
1

2

󰁫
u0(x+ γt) + u0(x− γt)

󰁬
+ 0 =

1

2

󰁫
u0(x+ γt) + u0(x− γt)

󰁬
.

To visualize the solution, note that

u0(x+ γt) =

󰀻
󰀿

󰀽
1 1− γt ≤ x ≤ x− γt

0 o/w
and u0(x− γt) =

󰀻
󰀿

󰀽
1 1− γt ≤ x ≤ 1 + γt

0 o/w

Then, the snapshots of solutions are

• t = 0:

x

u0(x)

1

−1 1

• 1 + γt < 1− γt =⇒ 2γt < 2 = =⇒ t <
1

γ
:

x

1

−1 + γt 1− γt−1− γt 1 + γt

1/2
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

• −1 + γt > 1− γt =⇒ t >
1

γ
:

x−1 + γt 1− γt−1− γt 1 + γt

1/2

□

Example 3.2.3

Find the solution using D’Alembert’s formula:

∂2u

∂t2
− γ2∂

2u

∂x2
= 0 with u(0, x) = 0,

∂u

∂t
(0, x) =

󰀻
󰀿

󰀽
1, for |x| ≤ 1

0, o/w.

Solution 2.

From D’Alembert’s formula, we know

u(t, x) =
1

2γ

󰁝 x+γt

x−γt

v0(κ) dκ.

Now, let’s discuss different cases (i.e., relationship among −1, 1, x− γt, and x+ γt to solve

the integral.

• No overlapping:

1. x− γt < x+ γt < −1 < 1: u1 = 0

2. −1 < 1 < x− γt < x+ γt: u2 = 0

• Partial overlapping:

1. x− γt < −1 < x+ γt < 1:

u3 =
1

2γ

󰁝 x+γt

−1

1 dκ =
x+ γt+ 1

2γ
.

2. −1 < x− γt < 1 < x+ γt:

u4 =
1

2γ

󰁝 1

x−γt

1 dκ =
1− x+ γt

2γ
.
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

• Total overlapping:

1. −1 < x− γt < x+ γt < 1:

u5 =
1

2γ

󰁝 x+γt

x−γt

1 dκ =
x+ γt− x+ γt

2γ
= t.

2. x− γt < −1 < 1 < x+ γt:

u6 =
1

2γ

󰁝 1

−1

1 dκ =
1 + 1

2γ
=

1

γ
.

Combining all the situations, we can draw the solution:

−1 1

t =
1

γ

t <
1

γ

−1− γt 1− γt −1 + γt 1 + γt

u1 u2

u3 u4

u5

u6

Let’s look at a more specific example. Suppose t =
1

2γ
. Then,

u3 =

x+ γ

󰀕
1

γ

󰀖
+ 1

2γ
=

x+
3

2
2γ

, u5 = t =
1

2γ
, u6 =

1− x− γ

󰀕
1

2γ

󰀖

2γ
=

−x+
3

2
2γ

.

Visualizing it, we get

xu1 u2

u3 u4

u5

Further, when t =
1

γ
, we get

xu1 u2

u3 u4
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3 SECOND ORDER PDE: UNBOUNDED WAVE EQUATION 3.2 D’Alembert’s Formula

When t >
1

γ
, we have

xu1 u2

u3 u4

u6 1

γ

□
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4 HEAT EQUATION

4 Heat Equation

4.1 Introduction
∂u

∂t
− α2∂

2u

∂x2
= f

is a one-dimensional diffusion equation, where α is called the diffusion coefficient.

To derive this equation, let’s consider Heat Conduction on a homogenous, isomorphic bar.

Let ρ be the constant mass density. Assume e = e(t, x) models the thermal energy per unit

mass, then the total quantity of thermal energy is given by

󰁝 b

a

eρ dx.

Hence, the change of thermal energy is

dd

dt

󰁝 b

a

eρ dx =

󰁝 b

a

∂e

∂t
ρ dx.

Let q = q(t, x) model the heat flux, then the heat flux change is given by

qa− qb = −
󰁝 b

a

∂q

∂x
dx.

So, by Law of Conservation of Energy,

󰁝 b

a

∂e

∂t
ρ dx = −

󰁝 b

a

∂q

∂x
dx

󰁝 b

a

∂e

∂t
ρ+

∂q

∂x
dx = 0

=⇒ ∂e

∂t
ρ+

∂q

∂x
= 0

By Fourier Law of Heat Conduction, if u = u(t, x) is the absolute temperature and k > 0 is the

thermal conductivity, we have

q = −k
∂u

∂x
.

Moreover, if c is the specific heat of the material, then

e = cu.

Hence, we get
∂u

∂t
− k

cρ

∂2u

∂x2
= 0,
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4 HEAT EQUATION 4.1 Introduction

where
k

cρ
is called the thermal diffusivity.

We also prescribe initial condition and boundary conditions:

• Initial condition: u(0, x) = u0(x) is the initial temperature profile, and

• Boundary conditions:

1. Dirichlet BCs: 󰀻
󰀿

󰀽
u(t, 0) = h0(t)

u(t, 1) = h1(t)

2. Neumann BCs: 󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂u

∂x
(t, 0) = h0(t)

∂u

∂x
(t, 1) = h1(t)

3. Robin BCs: 󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂u

∂x
(t, 0) + αu(t, 0) = h0(t)

∂u

∂x
(t, 1) + βu(t, 1) = h1(t)

Definition 4.1.1 (Heat Equation).

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[IC] u(0, x) = u0(x) with 0 < x < 1

[BCs]

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

Dirichlet

Nuemann

Robin

with t > 0
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4 HEAT EQUATION 4.2 Separation of Variables

4.2 Separation of Variables

Given the IBVP

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC] u(0, x) = sin(nπx) with 0 < x < 1, n integer

We can find solutions to the PDE in the form u(t, x) = T (t)X(x) by transforming the PDE to

ODEs. [This BC is called the Dirichlet homogenous BCs.]

Assume u(t, x) = T (t)X(x). Then,

∂u

∂t
= T ′(t)X(x)

∂u

∂x
= T (t)X ′(x) =⇒ ∂2u

∂x2
= T (t)X ′′(x).

Then, the PDE becomes

T ′(t)X(x)− α2T (t)X ′′(x) = 0.

Note that u(t, x) = 0 is a trivial solution, and we are not interested in this trivial solution.

Assume u(t, x) ∕= 0. Divide both sides by α2u(t, x):

T ′(t)X(x)

α2u(t, x)
− α2T (t)X ′′(x)

α2u(t, x)
= 0

T ′(t)✟✟✟X(x)

α2T (t)✟✟✟X(x)
− ✘✘✘✘α2T (t)X ′′(x)

✘✘✘✘α2T (t)X(x)
= 0

T ′(t)

α2T (t)
− X ′′(x)

X(x)
= 0

T ′(t)

α2T (t)
=

X ′′(x)

X(x)
.

The only possibility of a function of t equals a function of x is that both of them equal to a

constant, say k. So, we have
T ′(t)

α2T (t)
=

X ′′(x)

X(x)
= k.

That is, we have two ODEs:

• T ′(t)

α2T (t)
= k =⇒ T ′(t) = kα2T (t) =⇒ T ′(t) − kα2T (t) = 0. This is a first-order linear
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4 HEAT EQUATION 4.2 Separation of Variables

homogenous ODE, and we have the general solution formula:

T (T ) = Cekα
2t.

[Recall that u(t, x) = T (t)X(x) is the temperature. So, we expect T (T ) = Cekα
2t → 0 when

t → ∞. Since α2 > 0 and t > 0, we need k < 0. We will also see this condition later in the

discussion of cases.]

• X ′′(x)

X(x)
= k =⇒ X ′′(x) = kX(x) =⇒ X ′′(x)− kX(x) = 0. This is a second-order, linear,

homogenous, constant coefficients ODE. We will solve using characteristic polynomial:

p(r) = r2 − k
set
= 0.

Case I : k > 0. Since r2 = k, r1,2 = ±
√
k. Then, the Fundamental Set of Solutions (FSS)

is
󰁱
e
√
kx, e−

√
kx
󰁲

. Imposing BCs, we have

X(0) = 0 and X(1) = 0.

Let X(t) = Ae
√
kx +Be−

√
kx. Then,

󰀻
󰀿

󰀽
X(0) = A+B = 0

X(1) = Ae
√
k +Be−

√
k = 0

Write it in the matrix form: 󰀥
1 1

e
√
k e−

√
k

󰀦󰀥
A

B

󰀦
=

󰀥
0

0

󰀦
.

[Recall: A󰂓x = 󰂓0

󰀻
󰀿

󰀽
det(A) ∕= 0 =⇒ unique solution: 󰂓x = 󰂓0

det(A) = 0 =⇒ infinitely many solutions
] Since

det

󰀥
1 1

e
√
k e−

√
k

󰀦
= e−

√
k − e

√
k ∕= 0 when k > 0,

we have a unique solution to the system

󰀥
A

B

󰀦
=

󰀥
0

0

󰀦
.

Hence, X(t) = 0 · e
√
kx + 0 · e−

√
kx = 0 and u(t, x) = T (t)X(x) = 0. This is not interesting!

Case II : k = 0. Then, we have X ′′(x) = 0, which implies X(x) is a linear function.
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Assume X(x) = Ax+B. Imposing BCs, we have

󰀻
󰀿

󰀽
X(0) = B = 0

X(1) = A+B = 0
=⇒

󰀻
󰀿

󰀽
A = 0

B = 0

Then, X(x) = 0 =⇒ u(t, x) = T (t)X(x) = 0. Not interesting!

Case III : k < 0. Let’s define k = −λ2. So,

X ′′(x)− (−λ2)X(x) = 0

X ′′(x) + λ2X(x) = 0.

Solving the characteristic polynomial, we need

p(r) = r2 + λ2 set
= 0

r2 = −λ2

r1,2 = ±iλ.

So, FSS =
󰀋
eiλx, e−iλx

󰀌
. By Euler’s formula, we have

eiλx = cos(λx) + i sin(λx)

e−iλx = cos(λx)− i sin(λx).

[Recall: z = a+ ib and its conjugate z = a− ib. Then,

z + z

2
=

a+ ib+ a− ib

2
=

2a

2
= a = Re(z) ∈ R

z − z

2i
=

a+ ib− a+ ib

2i
=

2ib

2i
= b = Im(z) ∈ R.

Re(z) and Im(z) are linear combinations of z and z. By Principle of Superposition, if z and

z are solutions, so do Re(z) and Im(z).]

So, by Principle of Superposition, Re
󰀃
eiλx

󰀄
and Im(eiλx) are solutions to the ODE:

X1(x) = Im
󰀃
eiλx

󰀄
= sin(λx)

X2(x) = Re
󰀃
eiλx

󰀄
= cos(λx).

So, X(x) = AX1(x) +BX2(x) = A sin(λx) +B cos(λx).
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4 HEAT EQUATION 4.2 Separation of Variables

Imposing BCs: 󰀻
󰀿

󰀽
X(0) = A sin(λ · 0) +B cos(λ · 0) = 0

X(1) = A sin(λ · 1) +B cos(λ · 1) = 0

=⇒

󰀻
󰀿

󰀽
B = 0

A sin(λ) +B cos(λ) = 0
=⇒

󰀻
󰀿

󰀽
A sin(λ) = 0

B = 0

Then, we have two possibilities:

1. A = 0. Then, we are back into cases of X(x) = 0 and u(t, x) = 0. Not interesting!

2. sin(λ) = 0. Then, λ = γπ, where γ = 1, 2, . . . . Then, X(x) = A sin(γπx). This is the

interesting case.

Hence, the solution is

u(t, x) = T (t)X(x) = Cekα
2tA sin(γπx).

Recall that k = −λ2 and λ = γπ. So, k = −(γπ)2. Then,

u(t, x) = CAe−(γπ)2α2t sin(γπx).

Finally, let’s impose IC:

u(0, x) = sin(nπx)

CAe0 sin(γπx) = sin(nπx)

CA sin(γπx) = sin(nπx)

So, CA = 1 and γ = n. Therefore, our solution of the IBVP is

u(t, x) = e−(nπ)2α2t sin(nπx) .

Example 4.2.1 Principle of Superposition

Given the IBVP

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC] u(0, x) = 3 sin(7πx) + 12 sin(10πx) with 0 < x < 1, n integer
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Solution 1.

The solution is

u(t, x) = CAe−(γπ)2α2t sin(γπx).

Use the principle of superposition, we can split the ICs into 2:

u1(0, x) = 3 sin(7πx)

u2(0, x) = 12 sin(10πx).

Then, u(t, x) = u1(t, x) + u2(t, x). So,

u1(0, x) = CAe0 sin(γπx) = 3 sin(7πx)

CA sin(γπx) = 3 sin(7πx)

=⇒ CA = 3, γ = 7

So, u1(t, x) = 3e−(7π)2α2t sin(7πx). Similarly, u2(t, x) = 12e−(10π)2α2t sin(10πx). So, the solution

to the IBVP is

u(t, x) = u1(t, x) + u2(t, x)

= 3e−(7π)2α2t sin(7πx) + 12e−(10π)2α2t sin(10πx).

□

4.3 Fourier Series

We can represent a periodic function f = f(x) with period of 2π (i.e., f(x) = f(x + 2π)) in

terms of weighted sums of sine and cosine functions:

f(x) = B0

=1󰁽 󰂀󰁿 󰁾
cos(0 · x)+B1 cos(x) +B2 cos(2x) + · · ·+BN cos(Nx) + · · ·

+ A0 sin(0 · x)󰁿 󰁾󰁽 󰂀
=0

+A1 sin(x) + A2 sin(2x) + · · ·+ AN sin(Nx) + · · ·

Theorem 4.3.1 Summary of Integrals of Sine and Cosine Functions

Let’s consider the interval [−π, π].

•
󰁝 π

−π

sin(mx) dx = 0.
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4 HEAT EQUATION 4.3 Fourier Series

•
󰁝 π

−π

cos(mx) dx = 0.

•
󰁝 π

−π

sin(mx) cos(nx) dx = 0.

•
󰁝 π

−π

sin(mx) sin(nx) dx = 0 if m ∕= n.

•
󰁝 π

−π

sin(mx) sin(nx) dx = π if m = n.

•
󰁝 π

−π

cos(mx) cos(nx) dx = 0 if m ∕= n.

•
󰁝 π

−π

cos(mx) cos(nx) dx = π if m = n.

Suppose we want to find B1:

f(x) cos(x) = B0 cos(x) +B1 cos(x) cos(x) + · · ·+BN cos(Nx) cos(x) + · · ·

+ A1 sin(x) cos(x) + · · ·+ AN sin(Nx) cos(x) + · · ·

󰁝 π

−π

f(x) cos(x) dx = B0

=0󰁽 󰂀󰁿 󰁾󰁝 π

−π

cos(x) dx+B1

=π󰁽 󰂀󰁿 󰁾󰁝 π

−π

cos(x) cos(x) dx+ · · ·+BN

=0󰁽 󰂀󰁿 󰁾󰁝 π

−π

cos(Nx) cos(x) dx+ · · ·

+ A1

󰁝 π

−π

sin(x) cos(x) dx

󰁿 󰁾󰁽 󰂀
=0

+ · · ·+ AN

󰁝 π

−π

sin(Nx) cos(x) dx

󰁿 󰁾󰁽 󰂀
=0

So, 󰁝 π

−π

f(x) cos(x) dx = πB1 =⇒ B1 =
1

π

󰁝 π

−π

f(x) cos(x) dx

In general,

Bk =
1

π

󰁝 π

−π

f(x) cos(kx) dx .

To find B0:

󰁝 π

−π

f(x) dx = B0

2π󰁽 󰂀󰁿 󰁾󰁝 π

−π

dx+B1

=0󰁽 󰂀󰁿 󰁾󰁝 π

−π

cos(x) dx+ · · ·+BN

=0󰁝 π

−π

cos(Nx) dx

󰁿 󰁾󰁽 󰂀
+ · · ·

+ A1

󰁝 π

−π

sin(x) dx

󰁿 󰁾󰁽 󰂀
=0

+ · · ·+ AN

󰁝 π

−π

sin(Nx) dx

󰁿 󰁾󰁽 󰂀
=0

+ · · ·
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4 HEAT EQUATION 4.3 Fourier Series

So, we have 󰁝 π

−π

f(x) dx = 2πB0 =⇒ B0 =
1

2π

󰁝 π

−π

f(x) dx .

Similarly,

Ak =
1

π

󰁝 π

−π

f(x) sin(kx) dx .

Theorem 4.3.2

Denote

pN(x) = B0 +
N󰁛

k=1

Bk cos(kx) + Ak sin(kx).

If f(x) has a period of 2π (i.e., f(x) = f(x+ 2π)) and is integrable on [−π, pi], then

lim
N→+∞

pN(x) = f(x).

Example 4.3.3

Consider the function f = f(x) = ex on (−π, π), replicated to be a periodic function on

R of period 2π. Find its Fourier expansion.

Solution 1.

This function is periodic with a period of 2π.

B0 =
1

2π

󰁝 π

−π

ex dx =
eπ − e−π

2π

Bk =
1

π

󰁝 π

−π

ex cos(kx) dx =
eπ − e−π

π(k2 + 1)
(−1)k

Ak =
1

π

󰁝 π

−π

ex sin(kx) dx =
eπ − e−π

π(k2 + 1)
k(−1)k+1
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4 HEAT EQUATION 4.3 Fourier Series

Recall: hyperbolic sine:

sinh(x) =
ex − e−x

2
.

Then,

pN(x) =
2 sinh(π)

π

󰀥
1

2
+

N󰁛

k=1

k(−1)k+1 sin(kx) + (−1)k cos(kx)

k2 + 1
.

󰀦

□

Example 4.3.4

Write the following square wave in terms of Fourier Series:

f(x) =

󰀻
󰀿

󰀽
5 if 2kπ < x < (2k + 1)π

0 if (2k + 1)π < x < (2k + 2)π

Solution 2.

B0 =
1

2π

󰁝 π

−π

f(x) dx =
5

2

Bk =
1

π

󰁝 π

−π

f(x) cos(kx) dx = 0

Ak =
1

π

󰁝 π

−π

f(x) sin(kx) dx =

󰀻
󰀿

󰀽
0, if k is even
10

kπ
if k is odd.

So,

pN =
5

2
+

⌊N/2⌋󰁛

k=0

10

(2k + 1)π
sin((k + 1)x)

=
5

2
+

10

π
sin(x) +

10

3π
sin(3x) + · · ·

□
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4 HEAT EQUATION 4.3 Fourier Series

How to make f(x) periodic with a period of 2π?

• The zero option: Let f(x) = 0 for x ∈ [−π, 0].

• Even function: reflect w.r.t. y-axis.

• Odd function: reflect w.r.t. x-axis.
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4 HEAT EQUATION 4.3 Fourier Series

Properties

•
󰁝 π

−π

odd(x) dx = 0

•
󰁝 π

−π

even(x) dx = 2

󰁝 π

0

even(x) dx

•
󰁝 π

−π

even(x) odd(x)󰁿 󰁾󰁽 󰂀
odd

dx = 0

General Solution of Heat Equation with Dirichlet BCs

u(t, x) =
∞󰁛

k=1

e−(kπ)2α2t[Ak sin(kπx)].

So, we don’t want any B0 or Bk terms.

Take f(x) = odd(x). Then,

B0 =
1

2π

󰁝 π

−π

f(x) dx =
1

2π

󰁝 π

−π

odd(x) dx = 0

Bk =
1

π

󰁝 π

−π

f(x) cos(kx) dx =
1

π

󰁝 π

−π

odd(x) cos(kx)󰁿 󰁾󰁽 󰂀
even

dx = 0

Ak =
1

π

󰁝 π

−π

f(x) sin(kx) dx =
2

π

󰁝 π

0

odd(x) sin(kx) dx

At t = 0, compare u(t, x) against the IC u0(x):

u(0, x) =
∞󰁛

k=1

e0Ak sin(kπx) =
∞󰁛

k=1

Ak sin(kπx) = u0(x).

One more step: Change of variable – map from [0, π] → [0, 1].

Let ξ = πx. Then, x = 0 =⇒ ξ = 0 and x = 1 =⇒ ξ = π. Also, dξ = πdx.

We are working on u0(ξ) because the integrals were defined on [0, π]. Convert from ξ

back to x, we get

Ak =
2

π

󰁝 π

0

󰁨u0(ξ) sin(kξ) dξ [󰁨u0(ξ) = u0 in terms of ξ.]

=
2

✚π

󰁝 1

0

u0(x) sin(kπ)✚π dx [Change of Variable]

Ak = 2

󰁝 1

0

u0(x) sin(kπx) dx .
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4 HEAT EQUATION 4.3 Fourier Series

4.3.1 Worked Examples

Example 4.3.5

Solve the IBVP

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC] u(0, x) = ex with 0 < x < 1

Solution 3.

By separation of variables ((t, x) = T (t)X(x)) and by imposing the Dirichlet boundary

condition, we can write the solution in the form

u(t, x) =
∞󰁛

k=1

e−(kπ)2α2t[Ak sin(kπx)].

By imposing IC, we can find the coefficients Ak:

u(0, x) =
∞󰁛

k=1

Ak sin(kπx) = ex.

By Fourier Series of ex:

Ak = 2

󰁝 1

0

ex sin(kπx) dx
󰁝

ex sin(kπx)) dx = ex sin(kπx)− kπ

󰁝
ex cos(kπx) dx

= ex sin(kπx)− kπ

󰀗
ex cos(kπx) + kπ

󰁝
ex sin(kπx) dx

󰀘

= ex sin(kπx)− kπex cos(kπx)− (kπ)2
󰁝

ex sin(kπx) dx

󰀃
1 + (kπ)2

󰀄 󰁝
ex sin(kπx) dx = ex sin(kπx)− kπex cos(kπx)

󰁝
ex sin(kπx) dx =

1

1 + (kπ)2
ex sin(kπx)− kπex cos(kπx)

55



4 HEAT EQUATION 4.3 Fourier Series

So,

󰁝 1

0

ex sin(kπx) dx =
1

1 + (kπ)2
[−kπe cos(kπ) + kπ]

=
kπ

1 + (kπ)2
[1− e cos(kπ)] =

󰀻
󰁁󰀿

󰁁󰀽

(1− e)
kπ

1 + (kπ)2
if k even

(1 + e)
kπ

1 + (kπ)2
if k odd

□

Example 4.3.6

Solve the IBVP

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC] u(0, x) =

󰀻
󰀿

󰀽
0 with x ≤ 1/2

1 with x > 1/2
with 0 < x < 1

Solution 4.

General solution of heat equation with Dirichlet BCs:

u(t, x) =
∞󰁛

k=1

e−(kπ)2α2tAk sin(kπx),

and

Ak = 2

󰁝 1

0

u0(x) sin(kπx) dx

= 2

󰁝 1/2

0

u0(x)󰁿 󰁾󰁽 󰂀
=0

sin(kπx) dx+ 2

󰁝 1

1/2

u0(x)󰁿 󰁾󰁽 󰂀
=1

sin(kπx) dx

= 2

󰁝 1

1/2

sin(kπx) dx

= − 2

kπ
[cos(kπx)]11/2

= − 2

kπ

󰁫
cos(kπ)− cos

󰀓
k
π

2

󰀔󰁬
.
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4 HEAT EQUATION 4.3 Fourier Series

Since

cos(kπ) =

󰀻
󰀿

󰀽
1 k is even

−1 k is odd
and cos

󰀓
k
π

2

󰀔
=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1 k is multiple of 4

0 k is odd

−1 k is even but not multiple of 4

,

we have

Ak =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

− 2

kπ
(−1) =

2

kπ
k is odd

− 2

kπ
(0) = 0 4 | k

− 2

kπ
(1 + 1) = − 4

kπ
k is even but 4 ∤ k.

□

Example 4.3.7 Lifting Function

Solve the IBVP

[PDE]
∂u

∂t
− γ2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = α

u(t, 1) = β
with t > 0,α, β ∈ R

[IC] u(0, x) = sin(nπx) with 0 < x < 1, n a given integer

Idea Write u(t, x) as the sum of two functions. One function satisfy the problem with ho-

mogeneous Dirichlet condition, and the other function captures whatever is leftover.

u(t, x) = 󰁨u(t, x) + ℓ(t, x),

where ℓ is called the lifting function.

Solution 5.

We want ℓ(t, x) to satisfy:

ℓ(t, 0) = α and ℓ(t, 1) = β.

Then,

u(t, 0) = 󰁨u(t, 0) + ℓ(t, 0)
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So,

󰁨u(t, 0) = u(t, 0)− ℓ(t, 0) = α− α = 0.

󰁨u(t, 1) = u(t, 1)− ℓ(t, 1) = β − β = 0.

Assume ℓ is linear w.r.t. x:

ℓ(t, x) = P (t)x+Q(t).

Imposing BCs:

ℓ(t, 0) = P (t) · 0 +Q(t) = α =⇒ Q(t) = α,

ℓ(t, 1) = P (t) · 1 +Q(t) = β =⇒ P (t) = β − α.

So,

ℓ(t, x) = (β − α)x+ α.

Hence,

u(t, x) = 󰁨u(t, x) + ℓ(t, x)

= 󰁨u(t, x) + (β − α)x+ α.

Rewrite the problem in 󰁨u(t, x):
∂u

∂t
=

∂󰁨u
∂t

+
∂ℓ

∂t
=

∂󰁨u
∂t

∂t

∂x
=

∂󰁨u
∂x

+
∂ℓ

∂x
=

∂󰁨u
∂x

+ (β − α).

=⇒ ∂2u

∂x2
=

∂2󰁨u
∂x2

+
∂

∂x
(β − α) =

∂2󰁨u
∂x2

.

Also,

u(0, x) = 󰁨u(0, x) + ℓ(0, x)

=⇒ 󰁨u(0, x) = u(0, x)− ℓ(0, x) = sin(nπx)− (β − α)x− α.

So, the problem becomes:

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂󰁨u
∂t

− γ2∂
2󰁨u

∂x2
= 0

󰁨u(t, 0) = 󰁨u(t, 1) = 0

󰁨u(0, x) = sin(nπx)− (β − α)x− α.
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By separation of variable, imposing Dirichlet BCs, and principle of superposition, we have

u(t, x) =
∞󰁛

k=1

e−(kπ)2α2tAk sin(kπx),

where

Ak = 2

󰁝 1

0

󰁨u0(x) sin(kπx) dx

= 2

󰁝 1

0

[sin(nπx)− (β − α)x− α] sin(kπx) dx

So,

u(t, x) =
∞󰁛

k=1

󰁫
e−(kπ)2α2tAk sin(kπx)

󰁬

󰁿 󰁾󰁽 󰂀
󰁨u(t,x)

+(β − α)x+ α󰁿 󰁾󰁽 󰂀
ℓ(t,x)

.

□

Example 4.3.8

Solve the IBVP

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = t
with t > 0

[IC] u(0, x) = u0(x) with 0 < x < 1

Solution 6.

Suppose u(t, x) = 󰁨u(t, x) + ℓ(t, x), where ℓ(t, 0) = 0 and ℓ(t, 1) = t.

Assume ℓ(t, x) = P (t)x+Q(t). Imposing BCs, we have

ℓ(t, 0) = P (t) · 0 +Q(t) = 0 =⇒ Q(t) = 0

ℓ(t, 1) = P (t) · 1 +Q(t) = t =⇒ P (t) = t.

So, ℓ(t, x) = tx =⇒ u(t, x) = 󰁨u(t, x) + tx. Then,

∂u

∂t
=

∂󰁨u
∂t

+
∂ℓ

∂t
=

∂󰁨u
∂t

+ x and
∂2u

∂x2
=

∂2󰁨u
∂x2

+
∂2ℓ

∂x2
=

∂2󰁨u
∂x2
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Also,

u(0, x) = 󰁨u(0, x) + 0 · x = u0(x) =⇒ 󰁨u(0, x) = u0(x).

Then, the problem becomes
∂󰁨u
∂t

+ x− α2∂
2󰁨u

∂x2
= 0

That is, 󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂󰁨u
∂t

− α2∂
2󰁨u

∂x2
= −x

󰁨u(t, 0) = 󰁨u(t, 1) = 0

󰁨u(0, x) = u0(x).

This PDE is non-homogeneous, so we don’t know how to solve it yet... □

Example 4.3.9

Solve the IBVP

[PDE]
∂u

∂t
− γ2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 1

u(t, 1) = e
with t > 0

[IC] u(0, x) = ex with 0 < x < 1

Solution 7.

Suppose u(t, x) = 󰁨u(t, x) + ℓ(t, x), where ℓ(t, 0) = 1 and ℓ(t, 1) = e.

Assume ℓ(t, x) = P (t)x+Q(t). Then,

ℓ(t, 0) = P (t) · 0 +Q(t) = 1 =⇒ Q(t) = 1

ℓ(t, 1) = P (t) · 1 +Q(t) = e =⇒ P (t) = e− 1.

So,

ℓ(t, x) = (e− 1)x+ 1 =⇒ u(t, x) = 󰁨u(t, x) + (e− 1)x+ 1.

Then,
∂u

∂t
=

∂󰁨u
∂t

+
∂ℓ

∂t
=

∂󰁨u
∂t

and
∂2u

∂x2
=

∂2󰁨u
∂x2

+
∂2ℓ

∂x2
=

∂2󰁨u
∂x2

.

Also,

u(0, x) = 󰁨u(0, x) + (e− 1)x+ 1 =⇒ 󰁨u(0, x) = u(0, x)− (e− 1)x− 1 = ex − (e− 1)x− 1.
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So, the problem becomes

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂󰁨u
∂t

− α2∂
2󰁨u

∂x2
= 0

u(t, 0) = u(t, 1) = 0

󰁨u(0, x) = ex − (e− 1)x− 1.

The solution is

󰁨u(t, x) =
∞󰁛

k=1

e−(kπ)2α2t2Ak sin(kπx),

where

Ak = 2

󰁝 1

0

(ex − (e− 1)x− 1) sin(kπx) dx.

Hence,

u(t, x) = 󰁨u(t, x) + ℓ(t, x)

=
∞󰁛

k=1

󰁫
e−(kπ)2α2t2Ak sin(kπx)

󰁬
+ (e− 1)x+ 1.

□

4.4 The Sturm-Liouville Eigenvalue Problem

Example 4.4.1

Solve the IBVP

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 1 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽

∂u

∂x
(t, 0) = 0

u(t, 1) = t
with t > 0

[IC] u(0, x) = 0 with 0 < x < 1

Solution 1.

Introducing a lifting function:

u(t, x) = 󰁨u(t, x) + ℓ(t, x).

Write ℓ(t, x) = P (t)x+Q(t), linear in x.
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Then,

∂ℓ

∂x
(t, x) = P (t) = 0

ℓ(t, x) = P (t) +Q(t) = t =⇒ Q(t) = t.

So, ℓ(t, x) = t. Then, the problem becomes

∂u

∂t
− α2∂

2u

∂x2
=

∂󰁨u
∂t

+
∂ℓ

∂t
− α2

󰀗
∂2󰁨u
∂x2

+
∂2ℓ

∂x2

󰀘

=
∂󰁨u
∂t

+ ✁1− α2∂
2󰁨u

∂x2
= ✁1

∂󰁨u
∂t

− α2∂
2󰁨u

∂x2
= 0

BCs:
∂󰁨u
∂x

(t, 0) = 0, 󰁨u(t, 1) = 0

IC:

󰁨u(0, x) = 0

The solution is 󰁨u(t, x) = 0. So,

u(t, x) = 󰁨u(t, x) + ℓ(t, x) = 0 + t = t.

Let’s verify our solution. Solve using separation of variables.

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∂u

∂t
− α

∂2u

∂x2
= 0

∂u

∂x
(t, 0) = 0, u(t, 1) = 0

u(0, x) = 0.

Assume u(t, x) = T (t)X(x). Then, BCs are X ′(0) = 0 and X(1) = 0. Since

X(x) = A sin(λx) +B cos(λx),

we have that

X ′(x) = Aλ cos(λx)− Bλ sin(λx)
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So, we have

X ′(0) = Aλ cos(0)󰁿 󰁾󰁽 󰂀
=1

−Bλ sin(0)󰁿 󰁾󰁽 󰂀
=0

= Aλ = 0 =⇒ A = 0

X(1) = A󰁿󰁾󰁽󰂀
=0

sin(λ) +B cos(λ) = 0

B cos(λ) = 0

cos(λ) = 0

λk =
(2k + 1)π

2
, k = 0, 1, 2, . . .

So, Xk(x) = Bk cos(λkx). Then, the solution should look like

u(t, x) =
∞󰁛

k=0

e−λ2
kα

2tBk cos(λkx).

Imposing IC:

u(0, x) =
∞󰁛

k=0

e0Bk cos(λkx) = 0

Bk = 0.

Recall how we solved Bk using Fourier Series:

Bk = 2

󰁝 1

0

u0(x) cos(λkx) dx, ∀ k = 0, 1, 2, . . .

= 0.

□

Generally speaking, we apply separation of variable to solve the heat equation:

u(t, x) = T (t)X(x).

We have

X(x) = A sin(λx) +B cos(λx)

X ′(x)Aλ cos(λx)− Bλ sin(λx)
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

Note that,

X ′′(x) = −Aλ2 sin(λx)− Bλ2 cos(λx)

= −λ2 [A sin(λx) +B cos(λx)]󰁿 󰁾󰁽 󰂀
X(x)

= −λ2X(x).

So, we have

X ′′(x) = −λ2X(x)

This is an eigenvalue problem. [Recall what we have with matrix and vectors: We want to find

λ and x such that Ax = λx. Moreover, if A = A⊤ is a symmetric matrix, then eigenvalues of A

are orthogonal to each other: 〈xi,xj〉 = 0 for i ∕= j.] In this case, the second order derivative is

a symmetric operator. [Why? Think of integration by parts
󰁝

d2Xj

dx2
Xk dx = −

󰁝
dXj

dx

dXk

dx
dx].

So, the eigenfunctions are orthogonal:

(Xi, Xj) = 0 if i ∕= j,

where (Xi, Xj) =

󰁝 1

0

XiXj dx and λ2 is called the eigenvalue.

Example 4.4.2 Orthogonal Functions

Xk = Ak sin(kπx) for k = 0, 1, . . . are orthogonal.

Proof 2.

(Xi, Xj) =

󰁝 1

0

Ai sin(iπx)Aj sin(jπx) dx =

󰀻
󰀿

󰀽
0 if i ∕= j
1

2
if i = j

.

󰃈

Example 4.4.3

Solve the IBVP

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0
∂u

∂x
(t, 1) = 0

with t > 0

[IC] u(0, x) = x with 0 < x < 1
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

Solution 3.

Apply separation of variable: u(t, x) = T (t)X(x). Then,

① T ′(t) + λ2

󰁿󰁾󰁽󰂀
−k

α2T (t) = 0

②

󰀻
󰀿

󰀽
X ′′(x) + λ2X(x) = 0

X(0) = 0, X ′(1) = 0.

For ②, the solution looks like

X(x) = A sin(λx) +B cos(λx)

X ′(x) = Aλ cos(λx)− Bλ sin(λx)

Imposing the BCs:

X(0) = Aλ sin(0)󰁿 󰁾󰁽 󰂀
=0

+B cos(0)󰁿 󰁾󰁽 󰂀
=1

= 0 =⇒ B = 0

X ′(1) = Aλ cos(λ)− B󰁿󰁾󰁽󰂀
=0

sin(λ) = 0

Aλ cos(λ) = 0

cos(λ) = 0 [A = 0 is not interesting]

λk =
(2k + 1)π

2
, k = 0, 1, 2, . . .

So, the solution takes in the form

u(t, x) =
∞󰁛

k=1

e−λ2
kα

2tAk sin(λkx), where λk =
(2k + 1)π

2
.

Imposing IC:

u(0, x) =
∞󰁛

k=1

Ak sin(λkx) = x

Ak = 2

󰁝 1

0

x sin(λkx) dx
󰁝

x sin(λkx) = − 1

λk

cos(λkx)x+

󰁝
1

λk

cos(λx) dx

= − 1

λk

cos(λkx)x+
1

λ2
k

sin(λkx) + C
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

Therefore,

Ak = 2

󰁝 1

0

x sin(λkx) dx = 2

󰀗
− 1

λk

cos(λkx)x+
1

λ2
k

sin(λkx)

󰀘1

0

= 2

󰀕
− 1

λk

cos(λk) +
1

λ2
k

sin(λk)

󰀖

= − 2

λk

cos(λk)󰁿 󰁾󰁽 󰂀
=0

+
2

λ2
k

sin(λk)

=
2

λ2
k

sin

󰀕
(2k + 1)π

2

󰀖

= ± 2

λ2
k

.

□

Theorem 4.4.4 Sturm-Liouville (SL) Eigenvalue Problem

Let’s consider the following problem

[ODE] (p(x)y′)
′ − q(x)y + kr(x)y = 0

[BCs] α0y(0) + β0y
′(0) = 0

α1y(1) + β1y
′(1) = 0.

Let’s assume:

• p, p′q, r ∈ C([0, 1]), and

• p(x) > 0, r(x) > 0 ∀ x ∈ [0, 1] (regularity).

Then,

1. All eigenvalues kn are real,

2. If ϕi and ϕj are two eigenfunctions corresponding to ki ∕= kj , then

(ϕi,ϕj)r =

󰁝 1

0

rϕiϕj dw = 0, (Orthogonal condition)

where r is a weight (constant)

3. To each eigenvalue corresponds ONLY one eigenfunction. Eigenfunctions are lin-

early independent, eigenvalues are real, and they form a ordered sequence

k1 < k2 < · · · < kN < · · · .
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4 HEAT EQUATION 4.4 The Sturm-Liouville Eigenvalue Problem

In general, we write

u0(x) =
∞󰁛

k

γkXk(x),

where γk =
(u0, Xk)

(Xk, Xk)
. The 3rd conclusion ensures the infinite sum in the Fourier series will

converge.

Extension 4.1 (Not a Boundary Condition) What if we don’t have a boundary condition?

[PDE]
∂u

∂t
− ∂2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰁁󰀿

󰁁󰀽

u(t, 0) = 0

∂u

∂x

󰀕
t,
1

2

󰀖
= 0

with t > 0

[IC] u(0, x) = x with 0 < x < 1

With our typical separation of variable, we can solve the problem for 0 < x <
1

2
, but how about

the rest? We need to use data assimilation framework. That is, we want to find Xm(1) that

minimizes 󰀏󰀏󰀏󰀏
dXsol

dx

󰀕
1

2

󰀖
− dXm

dx

󰀕
1

2

󰀖󰀏󰀏󰀏󰀏
2

,

with Xm(0) = 0, Xm(1), and the PDE constraints.

This is a constraint optimization, and we need Lagrangian multiplier to solve.

Example 4.4.5 SL Eigenvalue Problems

[PDE]
∂u

∂t
− ∂2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs] u(t, 0) = 0,
∂u

∂x

󰀏󰀏󰀏󰀏
(t,1)

+ u(t, 1) = 0 with t > 0

[IC] u(0, x) = u0(x) with 0 < x < 1

[The physical interpretation of the second BC is that: the flux of heat is proportional to the

temperature at the endpoint.]

Solution 4.

Use separation of variables: 󰀻
󰀿

󰀽
T ′ − kT = 0

X ′′ − kX = 0.
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

The BCs become

T (t)X(0) = 0 =⇒ X(0) = 0

T (t)X ′(1) + T (t)X(1) = 0 =⇒ X ′(1) +X(1) = 0

X(x) = A sin(λX) +B cos(λx)

X(0) = A sin(0)󰁿 󰁾󰁽 󰂀
=0

+B cos(0)󰁿 󰁾󰁽 󰂀
=1

= 0 =⇒ B = 0

X ′(1) +X(1) = Aλ cos(λ)− Bλ sin(λ) + A sin(λ) +B cos(λ)

= Aλ cos(λ) + A sin(λ) = 0

sin(λ) + λ cos(λ) = 0 [Since A ∕= 0]

sin(λ) = −λ cos(λ)

tan(λ) =
sin(λ)

cos(λ)
= −λ

Then, we can use numerical approaches to find λ’s, and

u0(t, x) =
∞󰁛

k=1

γkϕk(x), where γk =
(u0,ϕk)

(ϕk,ϕk)
and ϕk = sin(λkx).

Meanwhile, T (t) = T0e
−λ2µt. Then,

u(t, x) =
∞󰁛

k=1

γke
−λ2

kµtϕk(x) =
∞󰁛

k=1

(u0,ϕk)

(ϕk,ϕk)
e−λ2

kµt sin(λkx).

□

4.5 Nonhomogeneous Heat Equation

Consider the following IBVP:

[PDE]
∂u

∂t
− α2∂

2u

∂x2
= f(t, x) with 0 < x < 1, t > 0

[BCs]

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

a
∂u

∂x
(t, 0) + βu(t, 0) = 0

γ
∂u

∂x
(t, 1) + δu(t, 1) = 0

with t > 0

[IC] u(0, x) = u0(x) with 0 < x < 1
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

Assumption: u(t, x) =
󰁛

k

Tk(t)Xk(x). Compute the partial derivatives and plug-in:

󰁛

k

T ′
k(t)Xk(x)− α2

󰁛

k

Tk(t)X
′′
k (x) = f(t, x)

󰁛

k

󰀅
T ′
k(t)Xk(x)− α2Tk(t)X

′′
k (x)

󰀆
= f(t, x).

Expresse f(t, x) =
󰁛

k

fk(t)Xk(x), where fk(t) =
(f(t, x), Xk(x))

(Xk(x), Xk(x))
. The equation becomes

󰁛

k

󰀅
T ′
k(t)Xk(x)− α2Tk(t)X

′′
k (x)

󰀆
=

󰁛

k

fk(t)Xk(x).

From Separation of Variable on the homogeneous equation and the SL Eigenvalue Problem,

X ′′
k (x) = −λ2Xk(x).

Substitute:

󰁛

k

󰀅
T ′
k(t)Xk(x) + α2λ2

kTk(t)Xk(x)
󰀆
=

󰁛

k

fk(t)Xk(x)

󰁛

k

󰀅
T ′
k(t) + α2λ2

kTk(t)
󰀆

󰁿 󰁾󰁽 󰂀
Xk(x) =

󰁛

k

fk(t)󰁿󰁾󰁽󰂀Xk(x)

Comparing terms, we get a nonhomogeneous first-order ODE to solve:

T ′
k(t) + α2λ2

kTk(t) = fk(t)

Apply integrating factors, we have

µ(t) = e
󰁕
α2λ2

k dt = eα
2λ2

kt.

So, the general solution is

Tk(t) = e−α2λ2
kt

󰀗󰁝 t

0

eα
2λ2

ksfk(s) ds+ Tk(0)

󰀘

=

󰁝 t

0

e−α2λ2
kteα

2λ2
ksfk(s) ds+ e−α2λ2

ktTk(0)

=

󰁝 t

0

e−α2λ2
k(t−s)fk(s) ds+ e−α2λ2

ktTk(0)
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

Therefore,

u(t, x) =
󰁛

k

Tk(t)Xk(x)

=
󰁛

k

󰀗 󰁝 t

0

e−α2λ2
k(t−s)fk(s) ds

󰁿 󰁾󰁽 󰂀
additional term for

the nonhomogeneous part

+ e−α2λ2
ktTk(0)󰁿 󰁾󰁽 󰂀

solution to the
homogeneous

part

󰀘
Xk(x)

Finally, impose the initial condition:

u(0, x) =
󰁛

k

󰀗 󰁝 0

0

e−α2λ2
k(0−s)fk(s) ds

󰁿 󰁾󰁽 󰂀
=0

+ e−α2λ2
k0Tk(0)󰁿 󰁾󰁽 󰂀

=Tk(0)

󰀘
Xk(x)

=
󰁛

k

Tk(0)Xk(x) = u0(x).

So,

Tk(0) =
(u0(x), Xk(x))

(Xk(x), Xk(x))
.

Example 4.5.1

[PDE]
∂u

∂t
− 2

∂2u

∂x2
= f(t, x) with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC] u(0, x) = u0(x) with 0 < x < 1

Solution 1.

Assume that u(t, x) =
󰁛

k

Tk(x)Xk(x). We need to solve the SL Eigenvalue Problem

󰀻
󰀿

󰀽
X ′′(x) + λ2X(x) = 0

X(0) = 0, X(1) = 0.

Assume X(x) = A sin(λx) +B cos(λx). Then,

X(0) = A sin(0) +B cos(0) = 0 =⇒ B = 0

X(1) = A sin(λ) +B cos(λ) = 0 =⇒ A sin(λ) = 0.
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4 HEAT EQUATION 4.5 Nonhomogeneous Heat Equation

Since A ∕= 0, it must be sin(λ) = 0 =⇒ λk = kπ, k = 1, 2, . . . . Then,

Xk(x) = sin(λkx) = sin(kπx) and λ2
k = (kπ)2, X ′′

k (x) = −(kπ)2 sin(kπx).

So, the equation becomes

󰁛

k

󰀅
T ′
k(t) + 2(kπ)2Tk(t)

󰀆
Xk(x) =

󰁛

k

fk(t)Xk(x),

where

fk(t) =
(f(t, x), Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

t sin(kπx) dx = 2t

󰁝 1

0

sin(kπx) dx

= 2t

󰀗
− 1

kπ
cos(kπx)

󰀘1

0

=
2t

kπ
[1− cos(kπ)].

We then have the following ODE to solve:

T ′
k(t) + 2(kπ)2Tk(t) =

2t

kπ
[1− cos(kπ)]

Tk(0) = Ak = 2

󰁝 1

0

u0(x) sin(kπx) dx.

Integrating factor: µ(t) = e
󰁕
2(kπ)2 dt = e2(kπ)

2t. Then,

Tk(t) = e−2(kπ)2t

󰀗
2

kπ
[1− cos(kπ)]

󰁝 t

0

se2(kπ)
2s ds+ Tk(0)

󰀘

󰁝 t

0

se2(kπ)
2s ds =

󰀗
1

2(kπ)2
se2(kπ)

2s

󰀘t

0

−
󰁝 t

0

1

2(kπ)2
e2(kπ)

2s ds

=
1

2(kπ)2
te2(kπ)

2t −
󰀗

1

4(kπ)4
e2(kπ)

2s

󰀘t

0

=
1

2(kπ)2
te2(kπ)

2t − 1

4(kπ)4

󰁫
e2(kπ)

2t − 1
󰁬

Tk(t) =
2

kπ
[1− cos(kπ)]

󰀗
t

2(kπ)2
− 1

4(kπ)4
+

1

4(kπ)4
e−2(kπ)2t

󰀘
+ e−2(kπ)2tTk(0),

where Tk(0) = Ak = 2

󰁝 1

0

u0(x) sin(kπx) dx. □
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5 BOUNDED WAVE EQUATION

5 Bounded Wave Equation

Remark. We can generalize the method of Separation of Variable. To solve

Ptu = ∆xu,

where Pt is some first-order differential operator with respect to time and ∆x is the

Laplacian with respect to space.

Let’s assume u(t, x) = T (t)X(x). Then,

Pt[u(t, x)] = Pt[T (t)X(x)] = Pt[T (t)]X(x)

∆xu(t, x) = ∆x[T (t)X(x)] = T (t)∆x[X(x)].

So, the PDE becomes

Pt[T (t)]X(x) = T (t)∆x[X(x)]

Pt[T (t)]

T (t)
=

∆x[X(x)]

X(x)
= k

Then, Pt[T (t)] = kT (t) and ∆x[X(x)] = kX(x).

5.1 No Damping Force

Consider the IBVP

[PDE]
∂2u

∂t2
− γ2∂

2u

∂x2
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC]

󰀻
󰀿

󰀽
u(0, x) = u0(x)
∂u

∂t
(0, x) = v0(x)

with 0 < x < 1

Use Separation of Variable. Assume u(t, x) = T (t)X(x). Then,

T ′′(t)X(x)− γ2T (t)X ′′(x) = 0.
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5 BOUNDED WAVE EQUATION 5.1 No Damping Force

Divide by γ2u(t, x) = γ2T (t)X(x):

T ′′(t)✟✟✟X(x)

γ2T (t)✟✟✟X(x)
− ✘✘✘✘γ2T (t)X ′′(x)

✘✘✘✘γ2T (t)X(x)
= 0

T ′′(t)

γ2T (t)
− X ′′(x)

X(x)
= 0 =⇒ T ′′(t)

γ2T (t)
=

X ′′(x)

X(x)
= k = −λ2 < 0.

So, we have two SL Eigenvalue Problems:

①

󰀻
󰀿

󰀽
X ′′(x) + λX(x) = 0

X(0) = 0, X(1) = 0
②

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

T ′′(t) + λ2γ2T (t) = 0

T (0) = u0(x)

T ′(0) = v0(x)

From ①:

Xk = sin(kπx), λk = kπ, and λ2
k = (kπ)2.

From ②:

Tk(t) = Ak sin(λγt) +Bk cos(λγt)

= Ak sin(kπγt) +Bk cos(kπγt).

Then,

uk(t, x) = Tk(t)Xk(x) = sin(kπx)[Ak sin(kπγt) +Bk cos(kπγt)].

[For a general SL-Eigenvalue problem,

Xk(x) = Ck sin(λkx) +Dk cos(λkx).

So,

uk(t, x) = Tk(t)Xk(X)

= [Ak sin(λkγt) +Bk cos(λkγt)][Ck sin(λkx) +Dk cos(λkx)]

] Now, to apply ICs:

T ′
k(t) = γλkAk cos(γλkt)− γλkBk sin(γλkt).
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5 BOUNDED WAVE EQUATION 5.1 No Damping Force

So, Tk(0) = Bk and T ′
k(0) = γλkAk. Then,

u(0, x) =
󰁛

k

Tk(0)Xk(x) = u0(x)

󰁛

k

Bk sin(kπx) = u0(x)

=⇒ Bk =
(u0(x), Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

u0(x) sin(kπx) dx.

∂

∂t
u(0, x) =

󰁛

k

Tk(0)Xk(x) = v0(x)

󰁛

k

γλkAk sin(kπx) = v0(x)

Therefore,

γλkAk =
(v0(x), Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

v0(x) sin(kπx) dx

Ak =
2

γλk

󰁝 1

0

v0(x) sin(kπx) dx

=
2

kπγ

󰁝 1

0

v0(x) sin(kπx) dx.

Hence, the solution is

u(t, x) =
∞󰁛

k=1

sin(kπx)[Ak sin(kπγt) +Bk cos(kπγt)],

where

Ak =
2

kπγ

󰁝 1

0

v0(x) sin(kπx) dx and Bk = 2

󰁝 1

0

u0(x) sin(kπx) dx.

Definition 5.1.1 (k-th Mode of Vibration). The k-th term of the solution is called the

k-th mode of vibration k-th harmonie.

uk(t, x) = sin(kπx)[Ak sin(kπγt) +Bk cos(kπγt)]

= Rk sin(kπx) cos[kπγ(t− δk)] [trig. identity]

We call Rk the amplitude, and δk the phase angle. Meanwhile, the frequency of k-th

mode is defined as

ωk = kπγ = kπ

󰁶
T

ρ
.
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5 BOUNDED WAVE EQUATION 5.2 With Damping

Remark. If we have non-homogeneous boundary conditions, we use lifting functions.

5.2 With Damping

Consider the IBVP

[PDE]
∂2u

∂t2
− γ2∂

2u

∂x2
+ β

∂u

∂t
= 0 with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC]

󰀻
󰀿

󰀽
u(0, x) = u0(x)
∂u

∂t
(0, x) = v0(x)

with 0 < x < 1

Assume u(t, x) = T (t)X(x). Then,

T ′′(t)X(x)− γ2T (t)X ′′(x) + βT ′(t)X(x) = 0

T ′′(t)✟✟✟X(x)

γ2T (t)✟✟✟X(x)
− ✘✘✘✘γ2T (t)X ′′(x)

✘✘✘✘γ2T (t)X(x)
+ β

T ′(t)✟✟✟X(x)

γ2T (t)✟✟✟X(x)
= 0

T ′′(t) + βT ′(t)

γ2T (t)
=

X ′′(x)

X(x)
= k = −λ2.

So, we have

① T ′′(t) + βT ′(t) + λ2γ2T (t) = 0 ②

󰀻
󰀿

󰀽
X ′′(x) + λ2X(x) = 0

X(0) = 0, X(1) = 0.

② is an SL Eigenvalue Problem, and we have Xk(X) = sin(kπx). Now, solve ①, using charac-

teristic polynomial:

p(r) = r2 + βr + λ2γ2 = 0 =⇒ r1,2 =
−β ±

󰁳
β2 − 4λ2γ2

2
.

We want to have complex conjugate roots, so

β2 − 4λ2γ2 < 0 =⇒ β ≪ γ.

[If β is large, we get too much damping. In such a case, no oscillations anymore.]

Denote 󰁳
β2 − 4λ2γ2

2
= iδk.
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5 BOUNDED WAVE EQUATION 5.3 With External Force

Then,

Tk(t) = e(−β/2)t[Ak sin(δkt) +Bk cos(δkt)].

Finally,

u(t, x) =
∞󰁛

k=1

Tk(t)Xk(x)

=
∞󰁛

k=1

e(−β/2)t[Ak sin(δkt) +Bk cos(δkt)] sin(kπ).

5.3 With External Force

Consider the IBVP

[PDE]
∂2u

∂t2
− γ2∂

2u

∂x2
+ β

∂u

∂t
= f(t, x) with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC]

󰀻
󰀿

󰀽
u(0, x) = u0(x)
∂u

∂t
(0, x) = v0(x)

with 0 < x < 1

Assume u(t, x) = T (t)X(x). Then,

T ′′(t)X(x)− γ2T (t)X ′′(x) + βT ′(t)X(x) = f(t, x).

From the Sl-Eigenvalue PRoblem, X ′′(x) = −λX(x). So,

T ′′(t)X(x) + γ2λ2T (t)X(x) + βT ′(t)X(x) = 󰁨f(t)X(x) [project f(t, x) on X(x)]
󰀅
T ′′(t) + βT ′(t) + γ2λ2T (t)

󰀆
X(x) = 󰁨f(t)X(x),

where
󰁨fk(t) =

(f(t, x), Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

f(t, x) sin(kπx) dx.

So, for every k, we want to solve:

T ′′
k (t) + βT ′

k(t) + γ2λ2Tk(t) = fk(t).

This is a second-order ODE that requires a particular solution:

Tk(t) = e(−β/2)t[Ak sin(δkt) +Bk cos(δkt)] + 󰁨Tk(t),
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

where 󰁨Tk(t) is a particular solution for the non-homogeneous problem:

• Method of Undetermined Coefficient

• Reduction of Orders

• Variational of Parameters:

󰁨Tk(t) = −T1(t)

󰁝
T2(t)fk(t)

W[T1(t), T2(t)]
dt+ T2(t)

󰁝
T1(t)fk(t)

W[T1(t), T2(t)]
dt

5.4 Boundary Conditions

Generic BCs look like the following:

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

α
∂u

∂x
(t, 0) + βu(t, 0) = 0

γ
∂u

∂x
(t, 1) + δu(t, 1) = 0

We could have three possible types of BCs:

• Dirichlet BCs: 󰀻
󰀿

󰀽
u(t, 0) = f(t)

u(t, 1) = g(t)

Here we have fixed points as our endpoints.

• Neumann BCs: 󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂u

∂x
(t, 0)

∂u

∂x
(t, 1)

Note that we don’t have fixed points here. We only fix slopes.

• Robin BCs: 󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∂u

∂x
(t, 0) + α1u(t, 0)

∂u

∂x
(t, 1) + α2u(t, 1)

Here we have a combination of Dirichlet and Neumann BCs.
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

Example 5.4.1

Solve the following IBVP:

[PDE]
∂2u

∂t2
− ∂2u

∂x2
= αx with 0 < x < 1, t > 0

[BCs]

󰀻
󰀿

󰀽
u(t, 0) = 0

u(t, 1) = 0
with t > 0

[IC]

󰀻
󰀿

󰀽
u(0, x) = u0(x)
∂u

∂t
(0, x) = 0

with 0 < x < 1

Solution 1.

Case I α = 0:
∂2u

∂t2
− ∂2u

∂x2
= 0.

This is a homogeneous wave equation with Dirichlet BCs. By separation of variables,

u(t, x) = T (t)X(x). Then, we have SL Eigenvalue problems:

①

󰀻
󰀿

󰀽
X ′′(x) + λ2X(x) = 0

X(0) = 0, X(1) = 0
②

󰀻
󰀿

󰀽
T ′′(t) + λ2T (t) = 0

T (0) = 󰁨u0, T
′(0) = 󰁨v0 = 0.

[γ = 1 =⇒ λγ = λ]

Solving ①: Xk(x) = sin(kπx). So, λk = kπ =⇒ λ2
k = (kπ)2 for k = 1, 2, . . . .

Solving ②:

Tk(t) = Ak sin(λkt) +Bk cos(λkt)

T ′
k(t) = λkAk cos(λkt)− λkBk sin(λkt).

Imposing IC, we get

Tk(0) = Bk cos(0) = Bk

T ′
k(0) = λkAk cos(0) = λkAk = kπAk

Since u(t, x) =
∞󰁛

k=1

Tk(t)Xk(x), we have [k starts from 1 b/c X0(x) = 0. We don’t see anything.]

u(0, x) =
∞󰁛

k=1

Tk(0)Xk(x) =
∞󰁛

k=1

Bk sin(kπx) = u0(x),
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

where

Bk =
(u0(x), Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

u0(x) sin(kπx) dx.

Meanwhile,

∂u

∂t
(0, x) =

∞󰁛

k=1

T ′
k(0)Xk(x) =

∞󰁛

k=1

kπAk sin(kπx) = v0(x) = 0,

where

kπAk =
(v0(x), Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

0 · sin(kπx) dx = 0 =⇒ Ak = 0.

So, T (t) = Ak sin(λkt) +Bk cos(λkt) = Bk cos(kπt) for k = 1, 2, . . . .

Hence, the solution

u(t, x) =
∞󰁛

k=1

Bk cos(kπt) sin(kπx),

where

Bk = 2

󰁝 1

0

u0(x) sin(kπt) dx.

Case II α ∕= 0:
∂2u

∂t2
− ∂2u

∂x2
= αx.

From separation of variable, assume u(t, x) = T (t)X(x). Then, we get the same SL Eigen-

value Problem:
󰀻
󰀿

󰀽
X ′′(x) + λ2X(x) = 0

X(0) = 0, X(1) = 0
=⇒ λk = kπ,λ2

k = (kπ)2, Xk = sin(kπx).

The PDE becomes

T ′′(t)X(x)− T (t)X ′′(x) = αx

T ′′(t)X(x)− T (t)(−λ2X(x)) = αx [X ′′(x) + λ2X(x) = 0]

T ′′(t)X(x) + λ2T (t)X(x) = αx
󰀅
T ′′(t) + λ2T (t)

󰀆
X(x) = αx

∞󰁛

k=1

󰀅
T ′′
k (t) + λ2

kTk(t)
󰀆
Xk(x) = αx =

∞󰁛

k=1

CkXk(x),
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

where Ck does not depend on t because αx has no t terms. So,

Ck =
(αx,Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

αx sin(kπx) dx.

Compare the terms, we get

T ′′
k (t) + λ2

kTk(t) = Ck

T ′′
k (t) + (kπ)2Tk(t) = Ck [λ2

k = (kπ)2]

So,

Tk(t) = Ak sin(kπt) +Bk cos(kπt)󰁿 󰁾󰁽 󰂀
general solution for
homogeneous part

+ T p
k (t)󰁿 󰁾󰁽 󰂀

particular solution
related to RHS

In this example, we would guess T p
k (t) is a constant. By method of undetermined coeffi-

cients, we get

T p
k (t) =

Ck

(kπ)2
.

Imposing ICs:

Tk(0) = Ak sin(0) +Bk cos(0) +
Ck

(kπ)2
= Bk +

Ck

(kπ)2

T ′
k(t) = (kπ)Ak cos(kπt)− (kπ)Bk sin(kπt)

T ′
k(0) = (kπ)Ak cos(0)− (kπ)Bk sin(0) = 0.

Hence,

(kπ)Ak = 0 =⇒ Ak = 0.

Since u(t, x) =
∞󰁛

k=1

Tk(t)Xk(x), we have

u(0, x) =
∞󰁛

k=1

Tk(0)Xk(x) = u0

∞󰁛

k=1

󰀕
Bk +

Ck

(kπ)2

󰀖
Xk(x) = u0(x) =

∞󰁛

k=1

DkXk(x),

where

Dk =
(u0(x), Xk(x))

(Xk(x), Xk(x))
= 2

󰁝 1

0

u0(x) sin(kπx) dx.
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5 BOUNDED WAVE EQUATION 5.4 Boundary Conditions

So,

Bk +
Ck

(kπ)2
= Dk =⇒ Bk = Dk −

Ck

(kπ)2
.

Hence,

Tk(t) = Bk cos(kπt) +
Ck

(kπ)2
.

The final solution is

u(t, x) =
∞󰁛

k=1

Tk(t)Xk(x)

=
∞󰁛

k=1

󰀕
Bk cos(kπt) +

Ck

(kπ)2

󰀖
sin(kπx),

where

Bk = Dk −
Ck

(kπ)2

Ck = 2α

󰁝 1

0

x sin(kπx) dx, and

Dk = 2

󰁝 1

0

u0(x) sin(kπx) dx.

□
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6 LAPLACE EQUATION ON CIRCULAR DOMAINS

6 Laplace Equation on Circular Domains

6.1 Polar Coordinates

Recall from Heat Equation: Ptu = ∆u. Now, we want to eliminate the derivatives of t. So, we

just have ∆u = f . But if u is singular variable,

∆u =
d2u

dx2
= f,

and we get just a second order ODE. It is not interesting. So, suppose u = u(x, y). Then,

∇u =

󰀥
∂u/∂x

∂u/∂y

󰀦
.

Recall the divergence operator:

∇ ·
󰁫
v1 v2

󰁬
=

∂v1
∂x

+
∂v2
∂y

.

So,

∇ ·∇u = ∇ ·
󰀗
∂u

∂x

∂u

∂y

󰀘
=

∂2u

∂x2
+

∂2u

∂y2
= ∆x,

where ∆ is called the Laplacian operator. Then , we have

−∆u = f ← Poisson Equation

∆u = 0 ← Laplace Equation

Usually, Laplace equations are defined cover circular domains. So, it is natural for us to

use the polar coordinates. 󰀻
󰀿

󰀽
x = r cos θ

y = r sin θ
.

Then, our goal is to write u(r(x, y), θ(x, y)), where

󰀻
󰀿

󰀽
r =

󰁳
x2 + y2 0 ≤ r ≤ R

θ = arctan
󰀓y
x

󰀔
0 ≤ θ ≤ 2π.

Since Laplacian in Cartesian is given by

∆u(x, y) =
∂2u

∂x2
+

∂2u

∂y2
,
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6 LAPLACE EQUATION ON CIRCULAR DOMAINS 6.1 Polar Coordinates

we can apply chain rule and get

∂u

∂x
=

∂u

∂r
· ∂r
∂x

+
∂u

∂θ
· ∂θ
∂x

∂2u

∂x2
=

∂

∂x

󰀕
∂u

∂r
· ∂r
∂x

󰀖
+

∂

∂x

󰀕
∂u

∂θ
· ∂θ
∂x

󰀖

=
∂

∂x

󰀕
∂u

∂r

󰀖
· ∂r
∂x

+
∂u

∂r
· ∂

∂x

󰀕
∂r

∂x

󰀖
+

∂

∂x

󰀕
∂u

∂θ

󰀖
∂θ

∂x
+

∂u

∂θ
· ∂

∂x

󰀕
∂θ

∂x

󰀖

=

󰀗
∂

∂r

󰀕
∂u

∂r

󰀖
∂r

∂x
+

∂

∂θ

󰀕
∂u

∂r

󰀖
∂θ

∂x

󰀘
∂r

∂x
+

∂u

∂r

∂2r

∂x2

+

󰀗
∂

∂r

󰀕
∂u

∂θ

󰀖
∂r

∂x
+

∂

∂θ

󰀕
∂u

∂θ

󰀖
∂θ

∂x

󰀘
∂θ

∂x
+

∂u

∂θ
+

∂2θ

∂x2

=

󰀗
∂2u

∂r2
∂r

∂x
+

∂2u

∂θ∂r

∂θ

∂x

󰀘
∂r

∂x
+

∂u

∂r

∂2r

∂x2

+

󰀗
∂2u

∂r∂θ

∂r

∂x
+

∂2u

∂θ2
∂θ

∂x

󰀘
∂θ

∂x
+

∂u

∂θ

∂2θ

∂x2

=
∂2u

∂r2

󰀕
∂r

∂x

󰀖2

+ 2
∂2u

∂θ∂r

∂θ

∂x

∂r

∂x
+

∂u

∂r

∂2r

∂x2
+

∂2u

∂θ2
+

∂2u

∂θ2

󰀕
∂θ

∂x

󰀖2

+
∂u

∂θ

∂2θ

∂x2

Finding derivatives, we have

∂r

∂x
= cos θ,

∂2r

∂x2
=

sin2 θ

r
,

∂θ

∂x
=

1

r
sin θ,

∂2θ

∂x2
= −2 cos θ sin θ

r2
.

So, we can find

∆u(r, θ) =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

Now, let’s define the Laplace Equation problem again:

• Ω: Disc of radius 1, centered at (0, 0)

• Γ: ∂Ω, the boundary of Ω.

Ω

∂Ω

Then, the Laplace Equation with boundary conditions is given by

󰀻
󰀿

󰀽
[PDE] ∆u = 0 on Ω

[BC] u = g on Γ = ∂Ω

Transforming to polar coordinate, we have

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.
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6 LAPLACE EQUATION ON CIRCULAR DOMAINS 6.1 Polar Coordinates

To apply separation of variable, assume u(r, θ) = R(r)Θ(θ). Then,

∆u = R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(R)Θ′′(θ) = 0.

Multiply by r2 and divide by R(r)Θ(θ):

r2
R′′(r)Θ(θ)

R(r)Θ(θ)
+

r2R′(r)Θ(θ)

rR(r)Θ(θ)
+

r2R(r)Θ′′(θ)

r2R(r)Θ(θ)
= 0

r2R′′(r)

R(r)
+

rR′(r)

R(r)
+

Θ′′(θ)

Θ(θ)
= 0

r2R′′(r) + rR′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
= k = λ2

So, we have two ODEs to solve:

① r2R′′(r) + rR′(r)− λ2R(r) = 0, ② Θ′′(θ) + λ2Θ(θ) = 0.

Solving ①: guess Rn(r) = rn. Then, R′(r) = nrn−1 and R′′(r) = n(n− 1)rn−2. So,

r2n(n− 1)rn−2 + rnrn−1 − λ2rn = 0

(n2 − n)rn + nrn − λ2rn = 0

(n2 − n+ n− λ2)rn = 0

(n2 − λ2)rn = 0

=⇒ n2 − λ2 = 0 =⇒ n2 = λ2 =⇒ λ1,2 = ±n .

[We are solving for the eigenvalues here. Eventually, we will have a sum of Rn(r)Θn(θ).] Here,

FSS =
󰀋
rn, r−n

󰀌
.

However, we need to also consider the special case: what if λ2 = 0? Then,

r2R′′(R) + rR′(r) = 0.

Denote Z(r) = R′(r) and Z ′(r) = R′′(r), [Reduction of Order] we have

r2Z ′(r) + rZ(r) = 0

Z ′(r) +
1

r
Z(r) = 0

=⇒ R′(r) = Z(r) = c1e
−

󰁕
1
r
dr = c1e

− ln r =
c1
r
.
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6 LAPLACE EQUATION ON CIRCULAR DOMAINS 6.1 Polar Coordinates

Hence,

R(r) =

󰁝
R′(r) dr =

󰁝
c1
r
dr = c1 ln r + c2

So, FSS = {ln r, 1}.

In this case, since 0 < r < 1, we don’t want singularities at r = 0. So, we will eliminate

non-singular cases. That is, r−n and ln r are omitted. In summary,

R(r) =

󰀻
󰀿

󰀽
Crn if λ = n ∕= 0

1 if λ = n = 0.

Solving ②, we solve an SL Eigenvalue Problem:

Θ′′(θ) + λ2Θ(θ) = 0

Θ(θ) = A cos(λθ) +B sin(λθ)

= A cos(nθ) +B sin(nθ) [λ = n from ①]

Hence, the n-th general solution on Ω is given by

un(r, θ) = Rn(r)Θn(θ)

= Crn[An cos(nθ) +Bn sin(nθ)]

= rn[An cos(nθ) +Bn sin(nθ)] [Drop constant C]

So, the general solution is

u(r, θ) = A0 +
∞󰁛

n=1

rn[An cos(nθ) +Bn sin(nθ)].

At the boundary,

u(1, θ) = g(cos θ, sin θ).

[g(x, y) = g(r cos θ, r sin θ), but here r = 1.] Let’s write g(cos θ, sin θ) = 󰁥g(θ) on Γ. Then, project

󰁥g(θ) onto the same functional space:

A0 =
(󰁥g(θ), cos(0 · n))

(cos(0 · n), cos(0 · n)) =

󰁝 2π

0

cos(0 · θ)󰁥g(θ) dθ
󰁝 2π

0

cos2(0 · θ) dθ
=

1

2π

󰁝 2π

0

󰁥g(θ) dθ.

[Note that u(0, 0) = A0 =
1

2π

󰁝 2π

0

󰁥g(θ) dθ. So, the energy at the center is the average energy on
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the boundary.] We also can find

An =
(󰁥g(θ), cos(nθ))

(cos(nθ), cos(nθ))
=

󰁝 2π

0

cos(nθ)󰁥g(θ) dt
󰁝 2π

0

cos2(nθ) dθ

=
1

π

󰁝 2π

0

󰁥g(θ) cos(nθ) dθ

Bn =
(󰁥g(θ), sin(nθ))

(sin(nθ), sin(nθ))
=

󰁝 2π

0

sin(nθ)󰁥g(θ) dθ
󰁝 2π

0

sin2(nθ) dθ

=
1

π

󰁝 2π

0

󰁥g(θ) sin(nθ) dθ

For the following examples, we will apply the Principle of Superposition.

Example 6.1.1

Solve the BVP

󰀻
󰀿

󰀽
∆u = 0 0 < r < 1

u(1, θ) = 1 + sin(θ) +
1

2
sin(3θ) + cos(4θ) 0 ≤ θ < 2π

Solution 1.

A0 = 1, B1 = 1, B3 =
1

2
, A4 = 1. So,

u(r, θ) = 1 + r sin(θ) +
1

2
r3 sin(3θ) + r4 cos(4θ).

[We applied the Principle of Superposition] □

Example 6.1.2

Solve the BVP 󰀻
󰀿

󰀽
∆u = 0 0 < r < 1

u(1, θ) = 1 + sin(θ) +
1

a
cos(θ) 0 ≤ θ < 2π

Solution 2.

A0 = 1, B1 = 1, A1 =
1

2
. So,

u(r, θ) = 1 + r sin(θ) +
1

2
r cos(θ)

□
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Example 6.1.3

Solve the BVP 󰀻
󰀿

󰀽
∆u = 0 0 < r < 1

u(1, θ) = 2 0 ≤ θ < 2π

Solution 3.

The boundary condition is independent of θ. So, our solution is constant and is also

independent of θ. That is,

u(r, θ) = 2.

□

Example 6.1.4

Solve the BVP 󰀻
󰀿

󰀽
∆u = 0 0 < r < 1

u(1, θ) = sin(θ) 0 ≤ θ < 2π

Solution 4.

B1 = 1. So,

u(r, θ) = r sin(θ).

□

Example 6.1.5

Solve the BVP 󰀻
󰀿

󰀽
∆u = 0 0 < r < 1

u(1, θ) = sin(3π) 0 ≤ θ < 2π.

Solution 5.

B3 = 1. So,

u(r, θ) = r3 sin(3θ).

□

Sometimes, we can also have more complicated boundary condition that is piecewise de-

fined.
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Example 6.1.6

Solve the BVP 󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∆u = 0 0 < r < 1

u(1, θ) =

󰀻
󰀿

󰀽
sin θ 0 ≤ θ < π

0 π ≤ θ < 2π

Solution 6.

Ω

sin(θ)

0

A0 =
1

2π

󰁝 π

0

sin(θ) dθ +
1

2π

󰁝 2π

π

0 dθ

An =
1

π

󰁝 π

0

sin(θ) cos(nθ) dθ +
1

π

󰁝 π

0

0 · cos(nθ) dθ

Bn =
1

π

󰁝 π

0

sin(θ) sin(nθ) dθ +
1

π

󰁝 π

0

0 · sin(nθ) dθ

So,

u(r, θ) = A0 +
∞󰁛

n=1

rn[An cos(nθ) +Bn sin(nθ)].

□

6.2 Boundary Value Problems

Definition 6.2.1 (Steady-State Problems). Solution does not change in time.

Example 6.2.2 Steady-State Heat Equation

[PDE]
∂u

∂t
− ∂2u

∂x2
= sin(πx), 0 < x < 1, t > 0

[BCs] u(t, 0) = u(t, 1) = 0 t > 0

[IC] u(0, x) = sin(3πx) 0 < x < 1
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To find the steady-state solution, find u(∞, x). If u(∞, x) exists, we solve

󰀻
󰀿

󰀽

d2u

dx2
= sin(πx) 0 < x < 1

u(0) = u(1) = 0.

So,

u(∞, x) =
1

π2
sin(πx).

Definition 6.2.3 (Dirichlet Problems (First Kind of BC)). The PDE holds over a given

region of space, and the solution is specified on the boundary of that region.

• Interior Dirichlet Problem
󰀻
󰀿

󰀽
∆u = 0 0 < r < 1

u(1, θ) = u1(θ) 0 ≤ θ < 2π.

• Exterior Dirichlet Problem
󰀻
󰀿

󰀽
∆u = 0 r > 1

u(1, θ) = u1(θ) 0 ≤ θ < 2π.

Definition 6.2.4 (Neumann Problems (Second Kind of BC). The PDE holds on some

region of space. The outward normal derivative ∂u/∂n (proportional to the inward

flux) is specified on the boundary.

󰀻
󰀿

󰀽
∆u = 0 0 < r < 1
∂u

∂r
(1, θ) = v1(θ) 0 ≤ θ < 2π,

where
∂u

∂r
is the normal derivative. We also have the following property:

󰁝 2π

0

∂u

∂r
dθ = 0.

That is, the temperature of each point inside the circle does not change with respect to

time.
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Remark.

• Neumann problem makes sense only if the net flux across the region is 0. i.e., only

when 󰁝 2π

0

∂u

∂r
dθ = 0

• The solution to Neumann problems is not unique.

Example 6.2.5 Non-Unique Solution to Neumann Problem

󰀻
󰀿

󰀽
∆u = 0 0 < r < 1
∂u

∂r
(1, θ) = cos(2θ) 0 ≤ θ < 2π

has infinitely many solutions. But they just differ by constant:

u(r, θ) = r2 cos(2θ) + C.

Definition 6.2.6 (Robin Problems (Third Kind of BC)). The PDE is given in some re-

gion of space, but the condition on the boundary is a mixture of the first two kinds.

∂u

∂n
+ h(u− g) = 0,

where

• ∂u

∂n
is the normal derivative

• h is a constant

• g is a given function on the boundary.

We can rewrite the condition into

∂u

∂n
= −h(u− g).

So, the inward flux across the boundary is proportional to the difference between the

temperature u and some specified temperature g. This exactly reflects the Newton’s

Law of Cooling.
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Example 6.2.7 Robin Problem

󰀻
󰀿

󰀽
∆u = 0 0 < r < 1
∂u

∂r
(1, θ) = −h(u− sin θ) 0 ≤ θ < 2π.

So, here g(θ) = sin θ.

• If h = 0:
∂u

∂r
= 0. Then, the solution is not unique and will be constant.

• If h gets larger, the solution will move like the solution to the Dirichlet problem with

BC: u = g(θ) = sin θ.

• If h is positive but close to zero, then the solution will be almost zero (the average of

g(θ) = sin θ on the boundary).

6.3 More Complicated BCs

Example 6.3.1 A Ring

Find a formula for the solution of the following BVP:

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∆u = 0 R1 < r < R2

u(R1, θ) = g1(θ)

u(R2, θ) = g2(θ)
0 ≤ θ < 2π.

Solution 1.

In polar coordinate:

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.

Using separation of variables, assume u(r, θ) = R(r)Θ(θ). Then,

① r2R′′ + rR′ − λ2R = 0 and ② Θ′′ + λ2Θ = 0.

For ①:

• If n = λ ∕= 0: Rn(r) = c1r
n + c2r

−n

• If n = λ = 0: Rn(r) = c3 + c4 ln r.
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For ②:

Θn(θ) = An cos(nθ) +Bn sin(nθ).

Since R1 < r < R2, nothing will cause trouble, and we should keep everything here.

u(r, θ) = (c3 + c4 ln r)A0 +
∞󰁛

n=1

󰀃
c1r

n + c2r
−n

󰀄
[An cos(nθ) +Bn sin(nθ)]

= k0 + k1 ln r +
∞󰁛

n=1

󰀃
Dnr

n + Enr
−n

󰀄
cos(nθ) +

󰀃
Fnr

n +Gnr
−n

󰀄
sin(nθ)

u(R1, θ) = k0 + k1 lnR1 +
∞󰁛

n=1

󰀃
DnR

n
1 + EnR

−n
1

󰀄
cos(nθ) +

󰀃
FnR

n
1 +GnR

−n
1

󰀄
sin(nθ) = g1(θ)

u(R2, θ) = k0 + k1 lnR2 +
∞󰁛

n=1

󰀃
DnR

n
2 + EnR

−n
2

󰀄
cos(nθ) +

󰀃
FnR

n
2 +GnR

−n
2

󰀄
sin(nθ) = g2(θ).

Apply Fourier Expansion on g1(θ) and g2(θ):

g1(θ) = A1,0 +
∞󰁛

n=1

A1.n cos(nθ) +B1,n sin(nθ)

g2(θ) = A2,0 +
∞󰁛

n=1

A2,n cos(nθ) +B2,n sin(nθ).

Matching coefficients, we have two systems to solve:

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

k0 + k1 lnR1 = A1,0

DnR
n
1 + EnR

−n
1 = A1,n

FnR
n
1 +GnR

−n
1 = B1,n

and

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

k0 + k1 lnR2 = A2,0

DnR
n
2 + EnR

−n
2 = A2,n

FnR
n
2 +GnR

−n
2 = B2,n

□

Example 6.3.2 A Ring in Action

Solve the BVP: 󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∆u = 0 1 < r < 2

u(1, θ) = 0

u(2, θ) = sin(θ)
0 ≤ θ < 2π.

Solution 2.
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Applying Fourier’s Expansion:

g1(θ) = 0 =⇒ A1,0 = 0, A1,n = 0, B1,n = 0

g2(θ) = sin θ =⇒ A2,0 = 0, A2,n = 0, B2,n,n ∕=1 = 0, B2,1 = 1.

Hence, we need to solve

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

k0 + k1 ln(1) = 0

Dn1
n + En1

−n = 0

Fn1
n +Gn1

−n = 0, n ∕= 1

F1 · 1 +G1 · 1 = 0

and

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

k0 + k1 ln(2) = 0

Dn2
n + En2

−n = 0

Fn2
n +Gn2

−n = 0 n ∕= 1

F1 · 2 +G1 · 2 = 1.

□

Example 6.3.3 Exterior Dirichlet BC

Find a formula for the solution of the following BVP:

󰀻
󰀿

󰀽
∆u = 0 1 < r < ∞

u(1, θ) = g(θ) 0 ≤ θ ≤ 2π.

Solution 3.

The most general solution we can get from Laplace Equation is

u(r, θ) =
∞󰁛

n=1

Θ(θ)Rn(r),

where

• Θn(θ) = An cos(nθ) +Bn sin(nθ)

• R0(r) = c1 + c2 ln(r)

• Rn(r) = c3r
n + c4r

−n.

Since we don’t want irregularity (things that will blow up), we drop ln(r) and rn. Hence,

u(r, θ) = A0 +
∞󰁛

n=1

r−n[An cos(nθ) +Bn sin(nθ)].

□
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