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1 FIRST ORDER ODES

1 First Order ODEs

1.1 Introduction

Definition 1.1.1 (Ordinary Differential Equations/ODEs). An ordinary differential equation

is an equation that contains one or more derivatives of an unknown function y = y(x).

Definition 1.1.2 (Order of ODEs). The order of an ODE is the maximum order of the deriva-

tives appearing in the equation.

Definition 1.1.3 (Solution to ODEs). The solution to an ODE is a function y that satisfies the

equation.

Example 1.1.4 Solve y′′ = 3x+ 1.

Solution 1.

y′ =

∫
3x+ 1 dx =

3

2
x2 + x+ C

y =

∫
y′ dx =

∫
3

2
x2 + x+ C dx =

1

2
x3 +

1

x
x2 + Cx+D.

□

Definition 1.1.5 (Linear ODEs/Non-Linear ODEs). A first order ODE is linear if it can be

written as

y′ + p(x)y = f(x).

Otherwise, it is non-linear.

Definition 1.1.6 (Homogenous/Non-Homogenous Linear ODEs). If f(x) = 0, then the linear

ODE is homogenous. That is,

y′ + p(x)y = 0.

Otherwise, it is non-homogenous.

Definition 1.1.7 (Trivial/Non-Trivial Solution). y = 0 is a trivial solution to a homogenous

ODE. Any other solutions are non-trivial.

Definition 1.1.8 (One-Parameter Family of Solutions). We call C a parameter and the equa-

tion, therefore solution, defines a one-parameter family of solutions.

Example 1.1.9 For the ODE y′ = 1, y1 = x+ C1 is a solution to it, and it is a one-parameter

family of solutions. Similarly, for y′ =
1

x2
, the one-parameter families of solutions are

defined by y2 = −1

x
+ C2 on the interval (−∞, 0) ∪ (0,∞).
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1 FIRST ORDER ODES 1.1 Introduction

Definition 1.1.10 (General Solution). Given the general form of the linear ODE y′ + p(x)y =

f(x) if p and f are continuous on some open interval (a, b) and there is a unique formula

y = y(x, c) and we have the following properties:

• for each fixed c, the resulting function of x is a solution of the ODE on (a, b), and

• if y is a solution of the ODE, then y can be obtained by choosing the value of c appropri-

ately.

The function y = y(x, c) is called a general solution.

More generally, we can write an ODE as

P0(x)y
′ + P1(x)y = F (x).

In this case, the ODE has a general solution on any open interval in which P0, P1, and F are

continuous and P0 ̸= 0.

Definition 1.1.11 (Initial Value Problem (IVP)). A differential equation with an initial condi-

tion.

Example 1.1.12 Let a be a constant. Find the general solution of y′ − ay = 0 and solve the

IVP

y′ − ay = 0

y(x0) = y0.

Solution 2.
Classification: First order, Linear, Homogeneous.

Trivial Solution: y = 0.

General solution:
dy

dx
= ay∫

1

y
dy =

∫
a dx

ln |y| = ax+ c

y = eax+c = Aeax.

This general solution includes the trivial solution.

IVP: Substitute x = x0 and y = y0:

y0 = Aeax0 −→ A = y0e
−ax0

So,

yIVP = y0e
−ax0eax = y0e

a(x−x0).
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1 FIRST ORDER ODES 1.2 Linear First Order ODEs

This IVP is a “generic initial condition.” We need more information on x0, y0 to get a more

specific solution. □

1.2 Linear First Order ODEs

Theorem 1.2.1
If p is continuous on (a, b), then the general solution of the homogeneous equation y′ +

p(x)y = 0 on (a, b) is given by

y = ce−
∫
p(x) dx.

Proof 1.
(a). Substitute the solution formula to show that y = ce−

∫
p(x) dx is a solution for any choice

of c.

y′ = c

(
−
∫
p(x) dx

)′

e−
∫
p(x) dx = −cp(x)e−

∫
p(x) dx.

Then,

y′ + p(x)y = −cp(x)e−
∫
p(x) dx + cp(x)e−

∫
p(x) dx = 0.

So, y = ce−
∫
p(x) dx is a solution for any choice of c. □

(b). Want to show: any solution of y′ + p(x)y = 0 can be written as y = ce−
∫
p(x) dx. Note

that y = 0 is a trivial solution, so we assume y ̸= 0.

y′ + p(x)y = 0

y′ = −p(x)y
y′

y
= −p(x)

⇝
∫

1

y
dy =

∫
−p(x) dx

ln |y| = −
∫
p(x) dx

y = ce−
∫
p(x) dx.

Note that when c = 0, y = 0 is the trivial solution. So, any solution of y′ + p(x)y = 0 can be

written as y = ce−
∫
p(x) dx. ■

Example 1.2.2 Solve the IVP xy′ + y = 0

y(1) = 3.
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1 FIRST ORDER ODES 1.2 Linear First Order ODEs

Solution 2.
Note thatP0(x) = x andP1(x) = 1, which are continuous onR. Since we needP0(x) ̸= 0,

x ̸= 0. So the interval of validity is R\{0}.

Method 1: Separation of Variables

y′ = −y
x
.

Note that y = 0 is a solution. Assume y ̸= 0.

y′

y
= −1

x
⇝

∫
1

y
dy = −

∫
1

x
dx+ k

ln |y| = − ln |x|+ k

|y| = ek
1

|x|
y =

c

x

Method 2: Solution Formula By Theorem 1.2.1,

y = ce−
∫
p(x) dx = ce−

∫
1
x

dx = ce− ln |x| =
c

x
.

Solving the IVP Substitute x = 1 and y = 3:

3 =
c

1
−→ c = 3.

So, yIVP =
3

x
. □

Example 1.2.3 Given the equation (4+x2)y′+2xy = 4x. Classify the equation and find the

general solution y = y(x, c).

Solution 3.
This is a first order, linear, non-homogeneous differential equation.

Note that P0(x) = 4 + x2, P1(x) = 2x, F (x) = 4x, and P0 ̸= 0 ∀x ∈ R, so the interval of

validity is R. Also note that
d

dx

[
4 + x2

]
= 2x, so the equation can be written as

(4 + x2)
dy

dx
+

d

dx

[
4 + x2

]
y = 4x.
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1 FIRST ORDER ODES 1.2 Linear First Order ODEs

Using the product rule to re-write the LHS as

d

dx

[
(4 + x2)y

]
= 4x∫

d

dx

[
(4 + x2)y

]
dx =

∫
4x dx+ c

(4 + x2)y = 2x2 + c

y =
2x2 + c

4 + x2
.

□

Example 1.2.4 Given the equation y′ − 2y = 4 − x. Classify the equation and find the

general solution y = y(x, c).

Solution 4.
This is a first order, linear, non-homogeneous differential equation.

Since P0(x) = 1, P1(x) = −2y, F (x) = 4−x, and P0(x) ̸= 0 ∀x ∈ R, the interval of validity

is R. Consider µ = µ(x) ̸= 0. Multiply both sides of the equation by µ(x):

µ(x)y′ − 2µ(x)y = µ(x)(4− x) (1)

To make the LHS a product rule, we need

d

dx

[
µ(x)y(x)

]
= µ′(x)y(x) + µ(x)y′(x) = µ(x)y′(x)− 2µ(x)y.

So, we have µ′ = −2µ, or µ′ + 2µ = 0, a first order, linear, homogeneous ODE. Solving this

ODE, we get µ(x) = ce−2x. Since we only want one specific µ that would work, take c = 1.

So, µ(x) = e−2x. Substituting µ(x) = e−2x to Eq. (1):

e−2xy′ − 2e−2xy = e−2x(4− x), P̃0 = e−2x ̸= 0, P̃1 = −2e−2x.

Using the product rule:

d

dx

[
e−2xy

]
= 4e−2x − xe−2x∫

d

dx

[
e−2xy

]
dx =

∫
4e−2x − xe−2x dx+ c

e−2xy =
1

2
xe−2x − 7

4
e−2x + c

y = e2x
(
1

2
xe−2x − 7

4
e−2x + c

)
=

1

2
x− 7

4
+ ce2x.
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1 FIRST ORDER ODES 1.2 Linear First Order ODEs

□

Theorem 1.2.5 Method of Integrating Factor
Given the first order linear differential equation y′ + p(x)y = f(x), with p and f both

continuous on some interval (a, b),

y(x) =
1

µ(x)

[∫
µ(x)f(x) dx+ c

]
is the general solution to the equation, with

µ(x) = e
∫
p(x) dx.

We call µ(x) the integrating factor.

Proof 5. Consider µ = µ(x) ̸= 0. Multiplying the both sides of y′ + p(x)y = f(x) by µ:

µy′ + pµy = µf. (2)

Impose µy′ + pµy =
d

dx

[
µy
]

to find µ = µ(x):

µy′ + pµy = µ′y + µy′

µ′ − pµ = 0, first order, linear, homogeneous ODE

µ(x) = e
∫
p(x) dx, the integrating factor

Substitute µ(x) = e
∫
p(x) dx into Eq. (2):

d

dx

[
µy
]
= µf∫

d

dx

[
µy
]
dx =

∫
µf dx+ c

µy =

∫
µf dx+ c

y(x) =
1

µ(x)

[∫
µ(x)f(x) dx+ c

]
.

■

Example 1.2.6 Give the equation y′ + 2y = x3e−2x. Classify the equation and find the

general solution y = y(x, c).
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1 FIRST ORDER ODES 1.2 Linear First Order ODEs

Solution 6.
It is a first order, linear, non-homogeneous ODE, with p = 2 and f = x3e−2x. Let µ(x) be

the integrating factor. Then,

µ(x) = e
∫
2 dx = e2x.

So, by the method of integrating factor, we know

d

dx

[
µ(x)y

]
= µ(x)f(x)∫

d

dx

[
e2xy

]
dx =

∫
e2xx3e−2x dx+ c

e2xy =

∫
x3 dx+ c

e2xy =
1

4
x4 + c

y =
1

4
x4e−2x + ce−2x.

□

Remark. Re-examine the formula we derived from the method of integrating factor:

y(x) =
1

µ

∫
fµ dx+

c

µ
.

The part being boxed,
c

µ
, is independent from f and is exactly ce−

∫
p dx if we expand, which is

the solution for a homogeneous differential equation.

Definition 1.2.7 (Complementary Equation). The complementary equation to a first order

ODE y′ + py = f is the homogeneous part of it. i.e., y′ + py = 0.

Theorem 1.2.8 Method of Variation of Parameters
Given the first order linear differential equation y′ + p(x)y = f(x), with p and f both

continuous on some interval (a, b),

y(x) = y1(x)

[∫
f(x)

y1(x)
dx+ c

]
is the general solution to the equation, where y1 is a solution of the complementary

euqation y′ + py = 0.

Proof 7. Call y1 a solution of the complementary equation y′ + p(x)y = 0. Then, we want

to find y(x) = u(x)y1(x), the general solution of y′ + p(x)y = f(x), where u is an unknown
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1 FIRST ORDER ODES 1.2 Linear First Order ODEs

function of f . Note that, by product rule, y′(x) = u′y1 + uy′1. Then, the equation becomes

(u′y1 + uy′1) + p(x)(uy1) = f(x)

u′y1 + uy′1 + puy1 = f

y1u
′ + (y′1 + py1)︸ ︷︷ ︸

0

u = f

y1u
′ = f =⇒ u(x) =

∫
f(x)

y1(x)
dx+ c.

Therefore, the formula to find y is given by

y = y1u = y1(x)

[∫
f(x)

y1(x)
dx+ c

]
.

■

Remark. The method of variation of parameters will be more useful when solving second or

higher order differential equations.

Example 1.2.9 Give the equation y′ + 2y = x3e−2x. Find the general solution y = y(x, c)

using the method of variation of parameters.

Solution 8.
It is a first order, linear, non-homogeneous ODE, with p = 2 and f = x3e−2x. Let y1 be

the solution of the complementary equation y′ + 2y = 0. Then, y1(x) = e−
∫
2 dx = e−2x. By

the method of variation of parameters, suppose y = uy1, where u is an unknown function

of x. Then,

u(x) =

∫
f(x)

y1(x)
dx+ c =

∫
x3e−2x

e−2x
dx+ c =

∫
x3 dx+ c =

1

4
x4 + c.

So,

y = uy1 = e−2x

(
1

4
x4 + c

)
=

1

4
x4e−2x + ce−2x.

□
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1 FIRST ORDER ODES 1.3 Separable Equations

Theorem 1.2.10 Existence and Uniqueness Theorem
Suppose that p = p(x) and f = f(x) are continuous on (a, b). Then, a general solution of

y′ + p(x)y = f(x) on (a, b) is

y(x) = y1(x)

[∫
f(x)

y1(x)
dx+ c

]
,

where y1(x) is a solution of the complementary equation (i.e., y′ + p(x)y = 0).

If x0 is an arbitrary point in (a, b) and y0 is an arbitrary real number, then the initial value

problem,

y′ + p(x)y = f(x), y(x0) = y0

has a unique solution on (a, b).

1.3 Separable Equations

Definition 1.3.1 (General Forms). The general form of a non-linear first order ODE is given

by

y′ = f(x, y(x)).

If we take M(x, y) = −f(x, y) and N(x, y) = 1, we can also re-write the equation into

M(x, y) +N(x, y)y′ = 0, or M(x, y) dx+N(x, y) dy = 0.

Definition 1.3.2 (Separable Equations). If M(x, y) =M(x) and N(x, y) = N(y), then the ODE

is called separable.

Theorem 1.3.3 Separation of Variables (SoV)
Consider the non-linear first order ODE M(x, y) + N(x, y)y′ = 0, with M(x, y) = M(x)

and N(x, y) = N(y). Then we can find an implicit solution of the ODE in the form of

F (x, y) = c,

where F (x, y) is a function of x and y and

F (x, y) =

∫
M(x) dx+

∫
N(y) dy.

10



1 FIRST ORDER ODES 1.3 Separable Equations

Proof 1. Let H ′
1(x) =M(x) and H ′

2(y) = N(y). Then, the equation becomes

H ′
1(x) +H ′

2(y)y
′ = 0

d

dx

[
H1(x)

]
+

d

dy

[
H2(y)

]dy
dx

= 0

By using the chain rule,
d

dy

[
H2(y)

]dy
dx

=
d

dx

[
H2(y(x))

]
. So, the equation becomes

d

dx

[
H1(x)

]
+

d

dx

[
H2(y(x))

]
= 0

d

dx

[
H1(x) +H2(y)

]
= 0

H1(x) +H2(y) = c∫
M(x)

d

dx
+

∫
N(y) dy = c

F (x, y) = c

■

Example 1.3.4 Given the equation y′ =
x2

1− y2
. Classify the differential equation and find

the general solution.

Solution 2.

It is a first order, non-linear ODE. Since y′ =
x2

1− y2
, so we have 1 − y2 ̸= 0. That is,

y2 ̸= 1, or y ̸= ±1. Using the separation of variables (SoV), we have

(1− y2)y′ = x2∫
1− y2 dy =

∫
x2 dx

y − 1

3
y3 =

1

3
x3 + c

y − 1

3
y3 − 1

3
x3 = c

3y − y3 − x3 = c

□

Example 1.3.5 Given the equation y′ =
(y − 3) cosx

1 + 2y2
. Classify the equation and find the

general solution.

Solution 3.

11



1 FIRST ORDER ODES 1.3 Separable Equations

It is a first order, non-linear ODE. Since 1 + 2y2 ̸= 0 ∀y ∈ R. Note that if we take

y − 3 = 0, we get y = 3, a constant solution to the differential equation. Now, assume

y ̸= 3. Then, use SoV: ∫
1 + 2y2

y − 3
dy =

∫
cosx dx+ c = sinx+ c.

Set t = y − 3, dt = dy. So, y = t+ 3 and y2 = (t+ 3)2. Then,∫
1 + 2y2

y − 3
dy =

∫
1 + 2(t+ 3)2

t
dt =

∫
1 + 2t2 + 12t+ 18

t
dt

=

∫
19

t
+ 12 + 2t dt

= 19 ln |t|+ 12t+ t2

= 19 ln |y − 3|+ 12(y − 3) + (y − 3)2

= 19 ln |y − 3|+ 6y + y2 − 27.

So,

19 ln |y − 3|+ y2 + 6y − 27− sinx = c

□

Example 1.3.6 Give the equation y′ =
1

2
x(1− y2). Classify the equation and find the gen-

eral solution.

Solution 4.
It is a first order, non-linear ODE. Notice that we have the constant solutions when we

take 1− y2 = 0, or y = ±1. Now, assume y ̸= ±1. Using SoV:∫
2

1− y2
dy =

∫
x dx+ c =

1

2
x2 + c.

Note that
2

1− y2
=

2

(1− y)(1 + y)
. Use partial fractions. Assume

2

(1− y)(1 + y)
=

A

1− y
+

B

1 + y
.

Then, we get A(1 + y) +B(1− y) = 2. That is, (A+B) + (A−B)y = 2. Attempting to solve

12



1 FIRST ORDER ODES 1.3 Separable Equations

the system of equations

A−B = 0

A+B = 2
, then we get A = B = 1.Therefore,

2

1− y2
=

1

1− y
+

1

1 + y
.

Then, ∫
1

1− y
+

1

1 + y
dy =

1

2
x2 + c

− ln |1− y|+ ln |1 + y| = 1

2
x2 + c

ln |1− y| − ln |1 + y| = −1

2
x2 + c

ln

∣∣∣∣1− y

1 + y

∣∣∣∣ = −1

2
x2 + c∣∣∣∣y − 1

y + 1

∣∣∣∣ = e−
1
2
x2+c = e−

1
2
x2

ec

y − 1

y + 1
= c2e

− 1
2
x2

y − 1 = (y + 1)c2e
− 1

2
x2

(1− c2e
− 1

2
x2

)y = 1 + c2e
− 1

2
x2

y =
1 + c2e

− 1
2
x2

1− c2e
− 1

2
x2

The value of c2 si chosen according to the sign of
y − 1

y + 1
. □

Example 1.3.7 Given the equation y′ =
3x2 + 4x+ 2

2(y − 1)
, with y(0) = 1. Classify the equation,

find the general solution, and solve the IVP.

Solution 5.
It is a first order, nonlinear, separable ODE. Note that y− 1 ̸= 0, so y ̸= 1. Assume y ̸= 1,

use SoV: ∫
2(y − 1) dy =

∫
3x2 + 4x+ 2 dx+ c

(y − 1)2 = x3 + 2x2 + 2x+ c

y2 − 2y + 1 = x3 + 2x2 + 2x+ c

y2 − 2y = x3 + 2x2 + 2x+ c.

13



1 FIRST ORDER ODES 1.3 Separable Equations

Substitute y = −1 when x = 0:

1 + 2 = c =⇒ c = 3.

So,
y2 − 2y = x3 + 2x2 + 2x+ 3, y ̸= 1

y2 − 2y + 1 = x3 + 2x2 + 2x+ 4

(y − 1)2 = x3 + 2x2 + 2x+ 4

y − 1 = ±
√
x3 + 2x2 + 2x+ 4

y = 1±
√
x3 + 2x2 + 2x+ 4.

If y = −1 and x = 0: −1 = 1±
√
4 = 1± 2. So, it must be that −1 = 1− 2. So,

yIVP = 1−
√
x3 + 2x2 + 2x+ 4.

Note that now we have another condition for x:

x3 + 2x2 + 2x+ 4 ≥ 0

(x+ 2)(x2 + 2) ≥ 0

x+ 2 ≥ 0

x ≥ −2

So,

yIVP = 1−
√
x3 + 2x2 + 2x+ 4, with y ̸= 1 and x ≥ −2.

□

Example 1.3.8 Solve the IVP

y′ = 3
√
y = y

1
3

y(0) = 0
.

Solution 6.
It is a first order, nonlinear, separable ODE. The initial interval of validity: x ∈ R and

y ∈ R. Note that if y = 0, there is a constant solution. Assume y ̸= 0, use SoV :∫
y−

1
3 dy =

∫
dx+ c

3

2
y

2
3 = x+ c

y
2
3 =

2

3
x+ c

y = ±
(
2

3
x+ c

) 3
2

14



1 FIRST ORDER ODES 1.4 Exact Equations

Substitute y(0) = 0:

0 = 0 + c =⇒ c = 0.

So,

yIVP = ±
(
2

3
x

) 3
2

.

□

Theorem 1.3.9 Existence and Uniqueness of Solutions to Nonlinear ODEs
Consider the IVP

y′ = f(x, y(x)) with y(x0) = y0.

• If f is continuous on an open rectangle R{a < x < b, c < y < d} that contains

(x0, y0), then the IVP has at least one solution on some open subinterval of (a, b)

that contains x0.

• If both f and
∂f

∂y
are continuous onR, then the IVP has a unique solution on some

open subinterval of (a, b) that contains x0.

Example 1.3.10 In the IVP above (Example 1.3.8), f(x, y) = y
1
3 , and so

∂f

∂y
=

1

3
y−

2
3 , which

is not continuous at y = 0. So, the IVP ∄ a unique solution on the interval given: R =

{x ∈ R, y ∈ R}.

1.4 Exact Equations

Theorem 1.4.1 Multivariable Chain Rule
Given F (x, y) = c, where y = y(x). Then, the total derivative with respect to x is

∂F

∂x
+
∂F

∂y

dy

dx
= 0.

15
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Example 1.4.2 Exact ODEs

M(x, y) dx+N(x, y) dy = 0

M(x, y) +N(x, y)
dy

dx
= 0 if y = y(x)

M(x, y)
dx

dy
+N(x, y) = 0 if x = x(y).

Example 1.4.3 Show that x4y3 + x2y5 + 2xy = c is an implicit solution of(
4x3y3 + 2xy5 + 2y

)
dx+

(
3x4y2 + 5x2y4 + 2x

)
dy = 0.

Solution 1.

∂F

∂x
= 4x3y3 + 2xy5 + 2y;

∂F

∂y
= 3x4y2 + 5x2y4 + 2x

If y = y(x): (
4x3y3 + 2xy5 + 2y

)
+
(
3x4y2 + 5x2y4 + 2x

)dy
dx

= 0.

If x = x(y): (
4x3y3 + 2xy5 + 2y

)dx
dy

+
(
3x4y2 + 5x2y4 + 2x

)
= 0.

So the implicit function is a solution to the differential equation. □

Theorem 1.4.4
Given an implicit function F (x, y) = c. It is a solution to the differential equation if

Fx dx+ Fy dy = 0.

Definition 1.4.5 (Exact ODEs). We say that an ODE of the form M(x, y) dx +N(x, y) dy = 0 is

exact if ∃ F (x, y) = c, with Fx and Fy continuous, such that

M(x, y) = Fx(x, y) and N(x, y) = Fy(x, y).

16
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Theorem 1.4.6 Characterization of Exact ODEs
Suppose that M and N are continuous on R and have continuous partial derivatives

My, Nx on R. Then,

M(x, y) dx+N(x, y) dy = 0

is exact if and only if

My(x, y) = Nx(x, y)

on R.

Example 1.4.7 Show this ODE is exact:(
4x3y3 + 2xy5 + 2y

)
dx+

(
3x4y2 + 5x2y4 + 2x

)
dy = 0.

Solution 2.

M(x, y) = 4x3y3 + 2xy5 + 2y; My(x, y) = 12x3y2 + 10xy4 + 2

N(x, y) = 3x4y2 + 5x2y4 + 2x; Nx(x, y) = 12x3y2 + 10xy4 + 2

Since My(x, y) = Nx(x, y), it is exact. □

Example 1.4.8 Find the general solution of(
4x3y3 + 3x2

)
dx+

(
3x4y2 + 6y2

)
dy = 0

Solution 3.
Note that M(x, y) = 4x3y3 + 3x2 and N(x, y) = 3x4y2 + 6y2, so

My(x, y) = 12x3y2; Nx(x, y) = 12x3y2.

Since My(x, y) = Nx(x, y), the ODE is exact. Then,

F (x, y) =

∫
M(x, y) dx+ φ(y)

=

∫
4x3y3 + 3x2 dx+ φ(y)

= x4y4 + x4 + φ(y).

17
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Since Fy(x, y) = 3x4y2 + φ′(y) = 3x4y2 + 6y2, we have φ′(y) = 6y2. That is,

φ(y) =

∫
6y2 dy + c = 2y3 + c.

So, F (x, y) = x4y3 + x3 + 2y3 + c. Then, the implicit solution is

x4y3 + x3 + 2y3 = c.

Alternatively, we can use F (x, y) =
∫
N(x, y) dy + ψ(x) to get the same result. □

Theorem 1.4.9 Method of Integrating Factors for Exact ODEs
Given M(x, y) dx+N(x, y) dy = 0 is not exact. Consider µ = µ(x, y) ̸= 0. Multiply

µ(x) = e
∫ My−Nx

N
dx or µ(y) = e

∫ Nx−My
M

dy,

we could make the ODE exact and thus solvable.

Proof 4. Given M(x, y) dx +N(x, y) dy = 0 is not exact. Consider µ = µ(x, y) ̸= 0. Multiply

both sides by µ:

µM(x, y) dx+ µN(x, y) dy = 0 (3)

Then, we have

M̃(x, y) = µM ; and Ñ(x, y) = µN.

Thus, the condition for Eq. (3) to be exact is M̃y = Ñx, or (µM)y = (µN)x. By product rule,

µyM + µMy = µxN + µNx (4)

Remark. Eq. (4) is a PDE, which we cannot solve. So, make the assumption that µ is a function

of only x or only y.

• If µ = µ(x), then µy = 0. So, we have

µMy = µxN + µNx

Nµx + (Nx −My)µ = 0

µ(x) = e
∫ My−Nx

N
dx.

18
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If µ = µ(y), then µx = 0. So, we have

µyM + µMy = µNx

Mµy + (My −Nx)µ = 0

µ(x) = e
∫ Nx−My

M
dy.

■

Remark. To decide on if we should use µ(x) or µ(y), test if
My −Nx

N
is a function of x only and

inf
Nx −My

M
is a function of y only.

Example 1.4.10 Given the equation (3x+ 2y2) dx+ 2xy dy = 0. Find the integrating factor

and solve the ODE.

Solution 5.
Note that M(x, y) = 3x+ 2y2 and N(x, y) = 2xy. So, My = 4y and Nx = 2y. So, the ODE

is not exact, and we should find an integrating factor. It is easier to divide byN since there

is only 1 term:
My −Nx

N
=

4y − 2y

2xy
=

1

x
,

is a function of x only. So, by the Method of Integrating Factors, we know

µ(x) = e
∫

1
x

dx = elnx = x (x ̸= 0).

Now, multiply both decide of the original ODE by x:

(3x2 + 2xy2) dx+ 2x2y dy = 0,

where M̃(x, y) = 3x2 + 2xy2 and Ñ(x, y) = 2x2y. So,

F (x, y) =

∫
Ñ(x, y) dy + ψ(x)

=

∫
2x2y dy + ψ(x)

= x2y2 + ψ(x)
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Compute the partial deriviate of F with respect to x, we get

∂F (x, y)

∂x
= 2xy2 + ψ′(x) = 3x2 + 2xy2

ψ′(x) = 3x2

ψ(x) =

∫
3x2 dx+ c = x3 + c

So, the solution is

x2y2 + x3 = c.

□

Example 1.4.11 Solve the equation (2xy3 − 2x3y3 − 4xy2 + 2x) dx+ (3x2y2 + 4y) dy = 0.

Solution 6.

• Test if the equation is exact:

M(x, y) = 2xy3 − 2x3y3 − 4xy2 + 2x; My = 6xy2 − 6x3y2 − 8xy

N(x, y) = 3x2y2 + 4y; Nx = 6xy2

Since My ̸= Nx, the equation is no exact.

• Find an integrating factor. Try:

My −Nx

N
=

6xy2 − 6x3y2 − 8xy − 6xy2

3x2y2 + 4y
=

−2x(3x2y2 + 4y)

3x2y2 + 4y
= −2x,

which is a function of x only. So, the integrating factor µ = µ(x) ̸= 0 is

µ = e
∫
−2x dx = e−x2

.

• Multiply the equation by µ:

e−x2(
2xy3 − 2x3y3 − 4xy2 + 2x

)
dx+ e−x2(

3x2y2 + 4y
)
dy = 0.

We can easily show that the equation is exact.

F (x, y) =

∫
e−x2(

3x2y2 + 4y
)
dy + ψ(x)

= e−x2(
x2y3 + 2y2

)
+ ψ(x).
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So,

Fx(x, y) = −(2x)e−x2(
x2y3 + 2y2

)
+ e−x2(

2xy3
)
+ ψ′(x)

= e−x2(
2xy3 − 2x3y3 − 4xy2

)
+ ψ′(x).

Note that

e−x2(
2xy3 − 2x3y3 − 4xy2

)
+ ψ′(x) = e−x2(

2xy3 − 2x3y3 − 4xy2 + 2x
)

ψ′(x) = e−x2

(2x)

ψ(x) =

∫
(2x)e−x2

dx+ c = −e−x2

+ c.

• So, the solution is

e−x2(
x2y3 + 2y2 − 1

)
= c.

□

1.5 Autonomous ODEs

Definition 1.5.1 (Autonomous ODEs). ODEs in the form y′ = f(y) is called autonomous

ODEs. In other words, the dependent variable x does not appear explicitly in the equation.

Remark. Autonomous ODEs are separable.

Example 1.5.2 Exponential Growth

Let y = φ(t) be the population of the given species at time t. Assume that the rate

of change of the population is proportional to the current value of y, and the constant of

proportionality is given by r, called the rate of growth (r > 0) or decline (r < 0).

A differential equation to model this situation is given byy′ = ry

y(0) = y0

and the solution is

y = y0e
rt.
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Example 1.5.3 Logistic Growth

The logistic growth is modeled by the differential equation

y′ = r
(
1− y

K

)
y,

where r > 0 represents the intrinsic growth rate in absence of limiting factors, and K > 0

is the environmental carrying capacity.

In this system, we have y = 0 and y = k as the constant solutions/equilibria/critical

points of the ODE. y = 0 is the unstable equilibrium solution, and y = k is the asymptotic

stable solution.

This model shows that when 0 < y < K, the population will grow until K (that is,

lim
t→∞

y = K) and when y > K, the population will decrease to K ( lim
t→∞

y = K).

We can model the logistic growth using the following ODE as well

y′ = −r
(
1− y

T

)
y,

where r represents the intrinsic growth rate in absence of limiting factors and T is the

threshold level.

In this system, we have y = 0 and y = T as the equilibrium solutions, y = T is the

unstable solution and y = 0 is the asymptotic stable solution. That is, when 0 < y < T , the

population will decrease to 0 ( lim
t→∞

y = 0) and when y > T , the population will grow forever

( lim
t→∞

y = ∞).

A solution to the IVP

y′ = −r
(
1− y

T

)
y; y(0) = y0

is y =
y0T

y0 + (T − y0)ert
.

The solution also have a vertical asymptote t = t∗ such that y → ∞. To find such an

asymptote, we want lim
t→t∗

yIVP = 0. So, we set the denominator to 0, i.e., y0 + (T − y0)e
rt = 0,

and we get t =
1

r
ln

(
y0

y0 − T

)
with y0 > T by solving the equation.

Combining the two models, we give a more accurate model of the population. We call

it Logistic Growth with a Threshold.

y = −r
(
1− y

T

)(
1− y

K
y
)
,

where r > 0 is the intrinsic growth rate in the absence of limiting factors and 0 < T < K,

where T is the threshold level and K is the environmental carrying capacity.

In this system, y = K and y = 0 are asymptotic stable solutions and y = T is the
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unstable equilibrium solution. Given the IVP

y = −r
(
1− y

T

)(
1− y

K
y
)
; y(0) = y0.

The behavior of the IVP solution with respect to y0 is given as the following:

• If 0 < y0 < T , then y(t) → 0 as t→ ∞.

• If y0 = T , then y(t) = T for all t.

• If T < y0 < K, then y(t) → K as t→ ∞.

• If y0 = K, then y(t) = K for all t.

• If y0 > K, then y(t) → K as t→ ∞.

Example 1.5.4 Newton’s Law of Cooling

Newton’s law of cooling states that the rate of change of the temperature of an object is

proportional to the difference between its own temperature and the ambient temperature

(i.e., the temperature of tis surroundings). This law is summarized using the following

ODE

T ′ = −k(T − Ta),

where T represents the temperature of an object, Ta is the ambient temperature of the

surrounding environment, and k > 0 is the cooling constant.

The equilibrium solution T = Ta is asymptotic stable. Using either integrating factor

or SoV, we find the general solution as T = Ae−kt + Ta.
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2 SYSTEM OF ODES

2 System of ODEs

2.1 Linear Algebra

Definition 2.1.1 (System of Linear Ordinary Differential Equations). A system of ODEs is in

general given by 

y′1 = f1(t, y1, y2, . . . , yn)

y′2 = f2(t, y1, y2, . . . , yn)
...

y′n = fn(t, y1, y2, . . . , yn).

A system of ODEs is called linear if it can be written in the following form

y′ = A(t)y + f(t),

where

A(t) =


a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) · · · a2n(t)
...

...
. . .

...

an1(t) an2(t) · · · ann(t)

, y =


y1

y2
...

yn

, f(t) =


f1(t)

f2(t)
...

fn(t)

.
The system can be

• Homogeneous, if f(t) = 0⃗

• Non-homogeneous, if f(t) ̸= 0⃗

Definition 2.1.2 (Matrix Equality). Suppose A and B are matrices of the same size. We say

A = B if Aij = bij for all i and j. In other words, A = B if they are equal componentwise.

Definition 2.1.3 (Null Matrix/Zero). The symbol 0 will be used to denote the matrix (or vec-

tor) each of whose elements is zero.

Definition 2.1.4 (Transpose). AT is the transpose of A and it is obtained by interchanging the

rows and columns of A. If A =
[
Aij

]
, then AT =

[
Aji

]
.

Definition 2.1.5 (Matrix Addition). Suppose A and B are matrices of the same size. Then,

A+B =
[
aij + bij

]
for all i and j.

Definition 2.1.6 (Product of a Matrix and a Scalar). Suppose A ∈ Rm×n and c ∈ R, then

cA =
[
caij

]
.

Definition 2.1.7 (Dot Product/Scalar Product). Suppose x =

[
x1

x2

]
∈ R2×1 and y =

[
y1

y2

]
∈
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R2×1. Then, the dot product of x and y is defined to be

x · y =

[
x1

x2

]
·

[
y1

y2

]
=
[
x1 x2

][y1
y2

]
= xTy = x1y1 + x2y2.

Definition 2.1.8 (Matrix Product). Suppose Ã ∈ Rm×n and B̃ ∈ Rn×p. Then, each cij of

C̃ ∈ Rm×p such that C̃ = ÃB̃ is the dot product between row i of A and column j of B.

That is,

cij =
n∑

i=1

aikbkj.

Definition 2.1.9 (Identity Matrix). The n× n multiplicative identity is the identity matrix

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

.

From the definition of matrix multiplication, we have AI = IA = A.

Definition 2.1.10 (Determinant). Given a matrix A, we can always find the determinant of

A, which is a number associated to A, denoted as det(A) or |A|. Suppose A ∈ R2×2, then

det(A) = det

[
a11 a12

a21 a22

]
= a11a22 − a12a21.

Definition 2.1.11 (Inverse). For A ∈ Rn×n, if A is invertible, then ∃B ∈ Rn×m such that AB =

I. We denote B as A−1, the inverse of A.

Theorem 2.1.12 Determinant and Invertibility
If det(A) ̸= 0, then the matrix A is nonsingular and invertible. Conversely, if det(A) = 0,

then the matrix is singular and not invertible.

If det(A) ̸= 0, then the inverse is given by

A−1 =
1

det(A)

[
a22 −a12
−a21 a11

]
.

Theorem 2.1.13 Determinants are Multiplicable

det(AB) = det(BA) = det(A) det(B).

Definition 2.1.14 (Linear Systems of Algebraic Equations). Given an n×nmatrix A, an n× 1
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vector b, and a vector of unknowns x, Ax = b is called linear system of equations. If b = 0, the

system if called homogeneous. If b ̸= 0, then the linear system is called non-homogenous.

Theorem 2.1.15 Singularity of Systems
If the system is homogenous, it is nonsingular if it exists a unique solution (which is the

null vector); it is singular if it has infinitely many solutions.

If the system if non-homogenous, then it is nonsingular if it has a unique solution (x =

A−1b), and it is singular if it has either infinitely many solutions or no solutions.

Definition 2.1.16 (Eigenvector, Eigenvalue, Eigenpairs). Suppose that A is an n × n matrix.

A nonzero vector v that satisfies the equation

Av = λv

is called an eigenvector of matrix A. The scalar λ is the eigenvalue associated with this eigen-

vector. An eigenpair is the pair {λi, vi} with i = 1, . . . , n.

Theorem 2.1.17 Finding Eigenpairs
To find an eigenpair {λi, vi} with i = 1, . . . , n, we need to find the roots of the character-

istics polynomial of A. That is, we need to solve the problem

det(A− λI) = 0.

Once we have the eigenvalues, we need to solve the linear systems

(A− λiI)vi = 0 with i = 1, . . . , n.

Proof 1.

Av = λv =⇒ Av − λv = 0

(A− λI)v = 0

To solve this homogeneous linear system, we cannot have v = 0 since v is defined to be

nonzero. Therefore, the system has infinite many solutions. That is, A − λI is singular, or

det (A− λI) = 0. ■

Remark. The matrix A − λI is singular, meaning the system has infinitely many solutions.

Finding the eigenvector consists of identifying a direction (invariant under the action of A) and

choose a representative of it.

Definition 2.1.18 (Similar Matrices). Two n × n matrices A and B are similar if there exists
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an invertible matrix T such that

B = T−1AT and A = TBT−1.

Definition 2.1.19 (Diagonalizable Matrix). A matrix A is said to be diagonalizable if it is simi-

lar to a diagonal matrixD. In this case, the entries of the diagonal matrixD are the eigenvalues

of A.

Theorem 2.1.20 Characterization of Diagonalizablity
A matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Proof 2. Consider the eigenpairs {λi, vi} with i = 1, . . . , n of an n × n matrix A. Let V be

the matrix of the n linearly independent eigenvectors, namely V =
[
v1 v2 . . . vn

]
, then

D = V−1AV.

■

2.2 Basic Theorems on System of ODEs

Example 2.2.1 Solve the following system of ODEs:y′1 = y1 − y2 ①

y′2 = 2y2 ②

Solution 1.
From ②: y′2 − 2y2 = 0 is linear homogeneous ODE, so y2 = c2e

2x. Substitute y2 = c2e
2x

into ①: we have y′1 − y1 = −c2e2x. Using the method of integrating factor, we get

y1 = c1e
x − c2e

2x.

Therefore,

y(x) =

[
c1e

x − c2e
2x

c2e
2x

]
= c1

[
1

0

]
ex + c2

[
−1

1

]
e2x.

□

Corollary 2.2.2: Forms of Solutions When solving systems, we are aiming to find solutions in

the following form:

y(t) = c1x1e
λ1t + c2x2e

λ2t,
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where c1, c2 are constants, x1, x2 are eigenvectors, and λ1, λ2 are eigenvalues.

Definition 2.2.3 (Continuous). A matrix is continuous if and only if all its components are

continuous.

Theorem 2.2.4 Basic theory of Linear Systems (Homogeneous)
If y′ = A(t)y with A(t) continuous on (a, b), then y = 0 is the trivial solution of the

system. Any other solutions will be nontrivial.

Definition 2.2.5 (Linear Combination of Solutions). If y1, y2 are vector functions defined on

(a, b) and c1, c2 are parameters, then c1y1 + c2y2 is a linear combination of y1, y2.

Theorem 2.2.6 Principle of superposition
If y1, y2 are solutions of y′ = A(t)y on (a, b), then c1y1+c2y2 is also a solution of y′ = A(t)y

on (a, b).

Definition 2.2.7 (Fundamental set of Solutions). We say that the set {y1, y2} is a fundamental

set of solutions of y′ = A(t)y on (a, b) if every solution of y′ = A(t)y on (a, b) can be written as

a linear combination of y1 and y2. In this case, y(t) = c1y1 + c2y2 is a general solution of the

system on (a, b).

Definition 2.2.8 (Linear Independence). We say that y1, y2 are linearly independent on (a, b)

if c1y1 + c2y2 = 0 if and only if c1 = c2 = 0.

Theorem 2.2.9 Fundamental Set of Solutions and Linear Independence
Suppose that A(t) is continuous on (a, b). The set {y1, y2} is a fundamental set of solu-

tions if y1 and y2 are linearly independent.

Definition 2.2.10 (Fundamental Matrix and Wronskian). Suppose y1 and y2 are solutions of

y′ = A(t)y. Suppose the initial condition is y(t0) = y0, then the fundamental matrix is

Y =

 | |
y1(t0) y2(t0)

| |

 =

y
(1)
1 (t0) y

(1)
2 (t0)

y
(2)
1 (t0) y

(2)
2 (t0)

,
and the Wronskian of y1 and y2 is

W
([
y1 y2

])
= det (Y(t0)).

Remark. Intuitions of Fundamental Matrices and Wronskians
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Consider c1y1 + c2y2 = 0 if and only if c1 = c2 = 0 in vector form:

c1

[
y
(1)
1

y
(2)
1

]
+ c2

[
y
(1)
2

y
(2)
2

]
= 0.

Given initial condition: y(t0) = y0: [
y(1)(t0)

y(2)(t0)

]
=

[
y
(1)
0

y
(2)
0

]

c1

[
y
(1)
1 (t0)

y
(2)
1 (t0)

]
+ c2

[
y
(1)
2 (t0)

y
(2)
2 (t0)

]
=

[
y
(1)
0

y
(2)
0

]
[
y
(1)
1 (t0) y

(1)
2 (t0)

y
(2)
1 (t0) y

(2)
2 (t0)

][
c1

c2

]
=

[
y
(1)
0

y
(2)
0

]

To ensure we have a unique solution

[
c1

c2

]
, we have that

Y(t0) =

[
y
(1)
1 (t0) y

(1)
2 (t0)

y
(2)
1 (t0) y

(2)
2 (t0)

]

should be nonsingular. That is, det(Y(t0)) ̸= 0.

Definition 2.2.11 (Matrix Differential Equations). Let Y =
[
y1 y2

]
. Then,

Y′ =
[
y′1 y′2

]
=
[
Ay1 Ay2

]
= A

[
y1 y2

]
= AY.

The form Y′ = AY is called the matrix differential equations.

Example 2.2.12 Write the following system of equations in matrix formy′1 = y1 − y2 ①

y′2 = 2y2 ②

Solution 2.

y′ =

[
y′1
y′2

]
=

[
1 −1

0 2

][
y1

y2

]
.

□
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Theorem 2.2.13 Existence and Uniqueness
If A(t) and f(t) are continuous on (a, b), t0 ∈ (a, b), and k is an arbitrary vector, then the

IVP of the system

y′ = A(t)y + f(t)

y(t0) = k
has a unique solution on (a, b).

Example 2.2.14 Given the following system of ODEsy′1 = y1 + 2y2 + 2e4t

y′2 = 2y1 + y2 + e4t.

Write the system in the matrix form and conclude that every initial value problem will

have a unique solution on R. Then, verify that

y =
1

5

[
8

7

]
e4t + c1

[
1

1

]
e3t + c2

[
1

−1

]
e−t

is a solution of the system for all values of c1 and c2.

Solution 3.

y′(t) =

[
1 2

2 1

]
y(t) +

[
2

1

]
e4t. (5)

Note that both A and f are continuous on R, so every IVP will have a unique solution.

Now, consider the solution given. We want to show the solution satisfies Eq. (5).

LHS = y′ =
4

5

[
8

7

]
e4t + 3c1

[
1

1

]
e3t − c2

[
1

−1

]
e−t

=

[
32/5e4t + 3c1e

3t − c2e
−t

28/5e4t + 3c1e
3t + c2e

−t

]
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RHS: y =
1

5

[
8

7

]
e4t + c1

[
1

1

]
e3t + c2

[
1

−1

]
e−t

=

[
8/5e4t + c1e

3t + c2e
−t

7/5e4t + c1e
3t − c2e

−t

]
[
1 2

2 1

][
8/5e4t + c1e

3t + c2e
−t

7/5e4t + c1e
3t − c2e

−t

]
+

[
2e4t

e4t

]

=

[
8/5e4t + c1e

3t + c2e
−t + 14/5e4t + 2c1e

3t − 2c2e
−t + 2e4t

16/5e4t + 2c1e
3t + 2c2e

−t + 7/5e4t + c1e
3t − c2e

−t + e4t

]

=

[
32/5e4t + 3c1e

4t − c2e
−t

28/5e4t + 3c1e
3t + c2e

−t

]

So, LHS = RSH. □

Theorem 2.2.15 Solutions of a System, Fundamental Set of Solutions, Linear inde-
pendency, and Wronskian
Suppose the matrix A = A(t) ∈ Rn×n is continuous on (a, b); let y1, . . . , yn be solutions

of y′ = A(t)y on (a, b). Then, the following statements are equivalent:

• The general solution of y′ = A(t)y on (a, b) is y = c1y1 + · · · + cnyn, where c1, . . . , cn
are arbitrary constants.

• {y1, . . . , yn} is a fundamental set of solutions of y′ = A(t)y on (a, b).

• {y1, . . . , yn} is linearly independent on (a, b).

• The Wronskian of {y1, . . . , yn} is nonzero at some point of (a, b).

• The Wronskian of {y1, . . . , yn} is nonzero at any point of (a, b).

We call Y a fundamental matrix if any of the statement is true.

Example 2.2.16 Given A =

[
−4 −3

6 5

]
, y1 =

[
−e2t

2e2t

]
, and y2 =

[
−e−t

e−t

]
. Compute the Wron-

skian of the solutions toward the system y′ = Ay. Compute the general solution.

Solution 4.

W
([
y1 y2

])
= det

[
−e2t −e−t

2e2t e−t

]
= −e2te−t −

(
−e−t

)(
2e2t

)
= et ̸= 0 ∀t ∈ R.

31



2 SYSTEM OF ODES 2.2 Basic Theorems on System of ODEs

Since W
([
y1 y2

])
̸= 0, y1 and y2 are linear independent. Then, the general solution is

y = c1y1 + c2y2 = c1

[
−1

2

]
e2t + c2

[
−1

1

]
e−t.

□

Example 2.2.17 Given the system y′ = Ay, with A =

[
2 4

4 2

]
. find the general solution.

Solution 5.
Solving the eigenvalue problem: det(A− λI) = 0 =⇒ λ1 = −2 and λ2 = 6.

When λ1 = −2, x1 =

[
1

−1

]
; when λ2 = 6, x2 =

[
1

1

]
. So,

y1 = x1e
λ1t =

[
1

−1

]
e−2t =

[
e−2t

−e−2t

]

y2 = x2e
λ2t =

[
1

1

]
e6t =

[
e6t

e6t

]
.

W
([
y1 y2

])
= det

[
e−2t e6t

−e−2t e6t

]
= e−2t

(
e6t
)
−
(
e6t
)(
−e−2t

)
= 2e4t ̸= 0 ∀t ∈ R.

Then, y1 and y2 are linearly independent, and the general solution is

y1 = c1

[
1

−1

]
e−2t + c2

[
1

1

]
e6t.

□

Example 2.2.18 Solve the following system of ODEs:

y′ =

[
−1

2
1

0 −1
2

]
y.

Solution 6.

det(A− λI) =

∣∣∣∣∣−1
2
− λ 1

0 −1
2
− λ

∣∣∣∣∣ =
(
−1

2
− λ

)2

= 0 =⇒ λ1 = λ2 = −1

2
.
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Here we have repeated eigenvalues, so we cannot solve the system via solving the eigen-

value problem. However, we are dealing with an upper-triangular system, which has nice

properties when solving: y(1)
′
= −1

2
y(1) + y(2) ①

y(2)
′
= −1

2
y(2) ②

From ②, y(2) = c2e
− 1

2
t. So, y(1)

′
+ 1

2
y(1) = c2e

− 1
2
t. So, we havey(1) = c1e

− 1
2
t+ c2te

− 1
2
t

y(2) = c2e
− 1

2
t.

So, the general solution is

y = c1

[
1

0

]
e−

1
2
t

︸ ︷︷ ︸
from eigenvalue problem

+ c2

[
t

1

]
e−

1
2
t

︸ ︷︷ ︸
in the form (w+tx)eλt

.

□

Theorem 2.2.19
Given y′ = Ay. If A has repeated real eigenvalues and eigenvectors, then the solution is

given by

y = c1xe
λt + c2(tx+ w)eλt,

where λ and x are such that Ax = λx, and w is the generalized eigenvector such that

(A− λI)w = x.

Proof 7. Note that y = (tx+ w)eλt is a solution to y′ = Ay. So,

LHS = y′ = xeλt + λ(tx+ 2)eλt

= (x+ tλx+ λw)eλt

and

RHS = Ay = A(tx+ w)eλt = (tAx+Aw)eλt.
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By LHS = RHS, we have

(x+ tλx+ λw)eλt = (tAx+Aw)eλt

x+ tλx+ λw = t Ax︸︷︷︸
=λx

+A

x+ λw = Aw

Aw − λw = x =⇒ (A− λI)w = x.

■

Theorem 2.2.20
If λ and λ are complex eigenvalues of A, and x is the eigenvector of A corresponding to

λ, then Ax = λx. That is, x is the eigenvector of A corresponding to λ.

Proof 8. We know Ax = λx. So, Ax = λx. Note that Ax = Ax and λx = λx. So, we have

Ax = λx. ■

Theorem 2.2.21
Suppose z = a+ ib ∈ C, then z = a− ib, a = Re(z) ∈ R, and b = Im(z) ∈ R. Then,

z + z

2
=

(a+ ib) + (a− ib)

2
=

2a

2
= a = Re(z)

z − z

2i
=

(a+ ib)− (a− ib)

2i
=

2ib

2i
= b = Im(z)

Definition 2.2.22 (Euler’s Formula).

eiθ = cos θ + i sin θ
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Theorem 2.2.23
Given y′ = Ay, where A has complex conjugate eigenvalues and eigenvectors such that

λ = α + iβ, λ = α − iβ, x = u + iv, and x = u − iv, with α, β ∈ R and u, b ∈ R2. Then, a

complex solution to the system will be

yC = xeλt = (u+ iv)e(α+iβ)t; yC = xeλt = (u− iv)eα−iβt.

Note that, by the Euler’s Formula,

yC = (u+ iv)eαteiβt = eαt(u+ iv)(cos(βt) + i sin(βt))

= eαt(u cos(βt)− v sin(βt)) + ieαt(u sin(βt) + v cos(βt))

So, we have

y1 = Re
(
yC
)
= eαt(u cos(βt)− v sin(βt)); y2 = Im

(
yC
)
= eαt(u sin(βt) + v cos(βt))

Remark. Note that y1 and y2 are linearly independent if and only if u and v are linear indepen-

dent.

Example 2.2.24 Solve the system of ODEs: y′ =

[
4 −5

5 −2

]
y.

Solution 9.
Find eigenvalues and eigenvectors: det(A− λI) = 0 =⇒ λ1,2 = 1 ± 4i. Suppose

λ = 1 + 4i, then[
3− 4i −5

5 −3− 4i

][
x
(1)
1

x
(2)
1

]
=

[
0

0

]
=⇒ 3− 4i

5
x
(1)
1 = x

(2)
1 =⇒ x1 =

[
5

3− 4i

]
.

Therefore, when λ = 1− 4i, we have x2 = x =

[
5

3 + 4i

]
. So, the complex solutions are

yC = xeλt =

[
5

3− 4i

]
e(1+4i)t; yC = xeλt =

[
5

3 + 4i

]
e(1−4i)t.

Remark. By Principle of Superposition, any linear combination of y1 and y2 is a solution to

the system. We want to combine yC and yC in order to get Re(yC) and Im(yC).
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By Euler’s Formula:

yC =

[
5

3− 4i

]
e(1+4i)t =

[
5

3− 4i

]
ete4it = et

[
5

3− 4i

]
(cos(4t) + i sin(4t))

= et

[
5 cos(4t) + i5 sin(4t)

3 cos(4t) + i3 sin(4t)− i4 cos(4t) + 4 sin(4t)

]

= et

([
5 cos(4t)

3 cos(4t) + 4 sin(4t)

]
+ i

[
5 sin(4t)

3 sin(4t)− 4 cos(4t)

])
.

So,

y1 = Re(yC) = et

[
5 cos(4t)

3 cos(4t) + 4 sin(4t)

]
and y2 = Im(yC) = et

[
5 sin(4t)

3 sin(4t)− 4 cos(4t)

]
.

We found two real-valued solutions to the system. In order to write the general solution,

we need to verify that {y1, y2} is a fundamental set of solutions (FSS):

W [y1, y2] = det

[
et5 cos(4t) et5 sin(4t)

et(3 cos(4t) + 4 sin(4t)) et(3 sin(4t)− 4 cos(4t))

]

Choose t = 0, we have W [y1, y2] =

∣∣∣∣∣5 0

3 −4

∣∣∣∣∣ = −20 ̸= 0. Then, {y1, y2} is a FSS, and y =

c1y1 + c2y2 is a general solution to the system.,

□
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Theorem 2.2.25 Summary: Solve Homogeneous System of Linear ODE
Given y′ = Ay, A ∈ R2×2. Then, y = xeλt, where λ is an eigenvalue of A and x is the

corresponding eigenvector. When finding λ, we need to solve det(A− λI) = 0. That is,

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0, or in general, aλ2 + bλ+ c = 0. Then, we have

λ1,2 =
−b±

√
∆

2a
, ∆ = b2 − 4ac

• If ∆ > 0, λ1 ̸= λ2 and λ1, λ2 ∈ R. Then,

y1 = x1e
λ1t, y2 = x2e

λ2t,

and y = c1y1 + c2y2 is a general solution.

• If ∆ = 0, λ1 = λ2 = λ ∈ R. Then,

y1 = xeλt, y2 = (tx+ w)eλt,

where x is such that (A − λI)x = 0 and w is such that (A − λI)w = x. Meanwhile,

y = c1y1 + c2y2 is a general solution.

• If ∆ < 0, we have λ1 = λ2, and λ1, λ2 ∈ C. Suppose yC = xeλt, then y1 = Re
(
yC
)

and

y2 = Im
(
yC
)

, and y = c1y1 + c2y2 is a general solution.

Example 2.2.26

• y′ =

[
1 1

2

−1
2

1

]
y.

Complex eigenvalues: y1 =

[
cos(t/2)

− sin(t/2)

]
et and y2 =

[
sin(t/2)

cos(t/2)

]
et.

• y′ =

[
3 −2

4 −1

]
y.

Complex eigenvalues: y1 =

[
cos(2t)

cos(2t) + sin(2t)

]
et and y2 =

[
sin(2t)

sin(2t)− cos(2t)

]
et.

• y′ =

[
3 −4

1 −1

]
y.

Repeated eigenvalues: y1 =

[
2

1

]
et and y2 =

(
t

[
2

1

]
+

[
1

0

])
et =

[
2t+ 1

t

]
et.
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• y′ =

[
2 −5

1 −2

]
y.

Complex eigenvalues: y1 =

[
2 cos(t)− sin(t)

cos(t)

]
and y2 =

[
2 sin(t) + cos(t)

sin(t)

]
.

2.3 Phase Portraits

• Setting up:

[
y′1
y′2

]
=

[
a11 a12

a21 a22

][
y1

y2

]
.

If y is a constant solution, y′ = 0 and Ay = 0. So, if det(A) ̸= 0, we have y =

[
0

0

]
. If

det(A) = 0, we have infinitely many constant solutions (a line). But we are not interested

in constant solutions. If y is a non-constant, then (y1(t), y2(t)) moves along a curve C,

where C is the trajectory of infinitely many solutions.

1. Two trajectories cannot intersect.

2. A trajectory of a nontrivial solution cannot obtain (0, 0).

3. (0, 0) is the trajectory of the trivial solution y = 0.

4. Generally, if y =
[
k1, k2

]T
is a constant solution, its trajectory will be the point

(k1, k2).

• Case of Real Eigenvalues (Non-defective)

1. Suppose repeated eigenvalues: λ1 = λ2 = λ:

y = c1x2e
λt + c2x2e

λt = (c1x1 + c2x2)e
λt = xeλt.

The trajectories of nontrivial solutions of the system are half-lines through the ori-

gin. If λ > 0: lim
t→+∞

xeλt = +∞ and lim
t→−∞

xeλ = 0. So the direction of the trajectories

are moving away from the origin. On the other hand, if λ < 0: lim
t→+∞

xeλt = 0 and

lim
t→−∞

xeλ = −∞. So the direction of the trajectories are moving towards the origin.
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(a) λ > 0 (b) λ < 0

2. Suppose λ2 > λ1 ̸= 0. Then, y = c1x1e
λ1t + c2x2e

λ2t. Let L1 be the line parallel to x1
and L2 be the line parallel to x2.

(a) If c2 = 0, then y = c1x2e
λ1t. If c1 ̸= 0, the trajectory is a half-line of L1. If λ1 > 0,

motion is away from the origin. If λ1 < 0, motion is towards the origin.

(c) c2 = 0;λ1 > 0 (d) c2 = 0;λ1 < 0 (e) c1 = 0;λ2 > 0 (f) c1 = 0;λ2 < 0

(b) If c1 = 0, then y = c2x2e
λ2t. If c2 ̸= 0, the trajectory is a half-line of L2. If λ2 > 0,

motion moves away from origin. If λ2 < 0, motion moves towards origin.

(c) If c1 ̸= 0 and c2 ̸= 0, then y = c1x1e
λ1t + c2x2e

λ2t. The trajectory cannot intersect

L1 or L2. The trajectories lie entirely in one of the open sectors bounded by L1

and L2. The direction is the same as

– Note that e−λ2ty(t) = c1x1e
−(λ2−λ1)t + c2x2. Therefore as t → ∞, we have

e−λ2ty(t) → c2x2 =⇒ trajectory is asymptotically parallel to L2.

– Note that e−λ1ty(t) = c1x1 + c2x2e
(λ2−λ1)t. Therefore as t → −∞, we have

e−λ1ty(t) → c1x1 =⇒ trajectory is asymptotically parallel to L1.

i. If λ2 > λ1 > 0.
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Figure 1: Origin: Unstable Node (Source)

Note that lim
t→−∞

∥y(t)∥ = lim
t→−∞

∥c1x1eλ1t+ c2x2e
λ2t∥ = 0. Therefore, the trajec-

tory is asymptotically tangent to L1 at origin.

Further note lim
t→+∞

∥y(t)∥ = lim
t→+∞

∥c1x1eλ1t+c2x2e
λ2t∥ = ∞, and we know that

lim
t→∞

∥y(t) − c2x2e
λ2t∥ = lim

t→∞
∥c1x2eλ1t∥ = ∞. Then, the trajectory is asymp-

totically parallel to L2, but not tangent to L2.

Direction: Away from the origin.

ii. If 0 > λ2 > λ1.

Figure 2: Origin: Asymptotically Stable Node (Sink)

We have lim
t→∞

∥y(t)∥ = lim
t→∞

∥c1x2eλ1t + c2x2e
λ2t∥ = 0, so the trajectory is

asymptotically to L2.

Further we have lim
t→−∞

∥y(t)∥ = lim
t→−∞

∥c1x1eλ1t + c2x2e
λ2t∥ = ∞, and we have
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that lim
t→−∞

∥y(t) − c1x1e
λ1t∥ = lim

t→−∞
∥c2x2eλ2t∥ = ∞. So, the trajectory is

asymptotically parallel to L1.

Direction: Toward the origin.

iii. If λ2 > 0 > λ1

Figure 3: Origin: Unstable Node (Saddle Point)

Note that lim
t→∞

∥y(t)∥ = lim
t→∞

∥c1x1eλ1t + c2x2e
λ2t∥ = ∞, and we know that

lim
t→∞

∥y(t)−c2x2eλ2t∥ = lim
t→∞

∥c1x1eλ1t∥ = 0. Therefore, the trajectory is asymp-

totically tangent to L2.

Further we have that lim
t→−∞

∥y(t)∥ = lim
t→−∞

∥c1x1eλ1t + c2x2e
λ2t∥ = ∞, and we

know lim
t→−∞

∥y(t)− c1x1e
λ1t∥ = lim

t→−∞
∥c2x2eλ2t∥ = 0. Therefore, the trajectory

is asymptotically tangent to L1.

iv. If λ2 = 0, λ1 ̸= 0. Then, y = c1x2e
λ1t + c2x2.

y = c2x2 is a constant solution (a line).

41



2 SYSTEM OF ODES 2.3 Phase Portraits

(a) λ1 > 0 (b) λ1 < 0

If λ1 > 0, we have lim
t→∞

∥y(t)∥ = lim
t→∞

∥c1x1eλ1t + c2x2∥ = ∞.

If λ1 < 0, we have lim
t→∞

∥y(t)∥ = lim
t→∞

∥c1x1eλ1t + c2x2∥ = 0.

Also, we know lim
t→∞

∥y(t)− c1x1e
λ1t∥ = lim

t→∞
∥c2x2∥ = c2x2.

We get parallel half-lines because we know all the solutions must be parallel

to L1.

• Case of Repeated Eigenvalues (Defective):

y = c1xe
λt + c2e

λt(w + tx).

1. Assume λ ̸= 0. Call L the line through origin parallel to x. If c2 ̸= 0, the solution is a

parametric equation of the half-line of L.

– In the direction of x if c1 > 0.

– In the direction of −x if c1 < 0.

2. Assume c2 ̸= 0.

The trajectory cannot intersect L since every point on L is on a trajectory obtained

by setting c2 = 0. The trajectory must lie entirely in on of the open half-planes

bounded byL, but does not obtain any point onL. Since the initial point (y1(0), y2(0))

defined by y(0) = c1x+ c2w is on the trajectory, we can determine which half-plane

contains the trajectory from the sign of c2.

We call the half-plane where c2 > 0 the positive half-plane and c2 < 0 the negative

half-plane.

Multiply the solution by e−λt, we have

e−λty(t) = c1x+ c2w + c2tx.

When |t| is large, the last term is dominant; therefore,
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(a) Along the trajectories in the positive half-plane:

The direction of y(t) approaches x as t → +∞; the direction of y(t) approaches

−x as t→ −∞.

(b) Along the trajectories in the negative half-plane:

The direction of y(t) approaches−x as t→ +∞; the direction of y(t) approaches

x as t→ −∞.

3. If λ > 0:

lim
t→∞

∥axeλt + c2e
λt(w + tx)∥ = ∞

and

lim
t→−∞

∥c1xeλt + c2e
λt(w + tx)∥ = 0.

(c) λ > 0: Origin: Improper Node (Und-
able)

(d) λ < 0: Origin: Improper Node (Asymp-
totically Stable)

4. If λ < 0:

lim
t→+∞

∥c1xeλt + c2e
λt(w + tx)∥ = 0

and

lim
t→−∞

∥c1xeλt + c2e
λt(w + tx)∥ = ∞

• Case of Complex Eigenvalues:

y = eαt[c1(cos(βt)u− sin(βt)v) + c2(cos(βt)v + sin(βt)u)],

which can be written as

y = eλt{[c1 cos(βt) + c2 sin(βt)]u+ [−c1 sin(βt) + c2 cos(βt)]v}.
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CallU =
u

∥u∥
and V =

v

∥v∥
, and multiply the solution by e−λt, and call the curve traversed

by e−αty a shadow trajectory, then

e−αty = z1U + z2V,

where z1 = ∥u∥[c1 cos(βt) + c2 sin(βt)] and z2 = ∥v∥[−c1 sin(βt) + c2 cos(βt)]. We can verify

that
z21

∥u∥2
+

z22
∥v∥2

= c21 + c22, meaning the shadow trajectories are ellipses centered at the

origin with axes parallel to U and V .

(e) α = 0: Origin: Center (Stable) (f) α > 0: Origin: Spiral Point
(Unstable)

(g) α < 0: Origin: Spiral Point
(Unstable)

2.4 Autonomous System of Differential Equations

2.4.1 The Predator-Prey Model

1. Setting-ups and Assumptions:

(a) Rabbits: R(t) = the number of rabbits.

The rabbits have ample food supplies.

In the absence of predators, the food supply would support exponential growth of

the prey:
dR

dt
= rR, r > 0.

(b) Wolves: W (t) = the number of wolves.

The wolves feed on the rabbits. In the absence of prey, the predators would decline

at a rate which is proportional the actual population:

dW

dt
= −kW, k > 0.
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Theorem 2.4.1 Principle of Mass Action
Given two populations, the rate of contact between the populations is propor-

tional to the product of their sizes.

2. In the model, we need to consider: (a) the cause of death for the prey are the predators;

and (b) the birth rate of the predators depends on the prey. So, we have the following

system of ODEs: 
dR

dt
= rR− aRW

dW

dt
= −kW + bRW

, k, r, a, b > 0.

3. Definition 2.4.2 (Autonomous Systems of ODEs).x′(t) = f(x, y), x = x(t), population of x at time t

y′(t) = g(x, y), y = y(t), population of y at time t

4. Definition 2.4.3 (Nullclines). Given

x′ = f(x, y)

y′ = g(x, y)
, the x-nullclines are the curves in

the xy-plane that satisfy f(x, y) = 0. Along these curves, we have x′ = 0. The y-nullclines

are the curves in the xy-plane that satisfy g(x, y) = 0. Along these curves, we have y′ = 0.

5. Definition 2.4.4 (Equilibrium Point).Any point at which an x-nullicline intersects a y-

nullcline is an equilibrium point, where both x and y are not changing.

Theorem 2.4.5 Phase-Plane Analysis

1. Set f(x, y) and g(x, y) to 0 to find the nullclines and the equilibrium points.

2. Draw nullclines and equilibria on the xy-plane.

3. Study the signs of functions f and g, and draw the combined arrows in each differ-

ent region of the plane. At which values of x and y are functions f and g increasing

or decreasing?

4. Describe the equilibrium points (extinction of both x and y, extinction of x or y,

coexistence of x and y, etc.)

5. Estimate the behavior of x(t) and y(t) as t → ∞, and make conclusion about the

long term behavior of the populations.
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Example 2.4.6 Consider R′ = rR− aRW

W ′ = −kW + bRW
, k, r, a, b > 0.

1. Find R-nullclines: R′ = rR− aRW = R(r − aW ) = 0 =⇒ R = 0 or W =
r

a
.

2. Find W -nullclines: W ′ = −kW + bRW = W (bR− k) = 0 =⇒ W = 0 or R =
k

b

3. Find equilibrium points: E1(0, 0) and E2

(
k

b
,
r

a

)
.

4. Study sign of R′: R′ < 0 =⇒ rR− aRW > 0 =⇒ R > 0 and W <
r

a
.

5. Study sign of W ′: W ′ > 0 =⇒ −kW + bRW > 0 =⇒ W > 0 and R >
k

b
.

2.4.2 Competing Species

Let x, y be populations of two species X, Y . we model x, y using logistic growth:

x′ = rx
(
1− x

K

)
, y′ = sy

(
1− y

L

)
, r,K, s, L > 0

Example 2.4.7 Model I

x′ = 0.05x
(
1− x

20

)
− 0.002xy y′ = 0.09

(
1− y

15

)
− 0.15xy

Example 2.4.8 Model II

x′ = x(0.2− 0.05x− 0.02y) y′ = y(0.1− 0.01x− 0.02y)

Example 2.4.9 Model III

x′ = 6x− (2/3)x2 − xy y′ = 10y − y2 − 2xy
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2.4.3 SIR Model

Example 2.4.10 The SIR Model

Let S be the number of the susceptible, the people who are not yet sick but who could

become sick, I the number of the infected, the people who are currently sick, and R the

number of recovered, the people who have been sick and can no longer infect others or be

reinfected.

Since S+ I +R = n, the total population, we only need the populations of S and I, and

then we can compute R. Therefore, we form the following system of equations:

dS

dt
= −aSI dI

dt
= aSI − bI

Using the phase plane analysis, we can find a threshold value ST such that it will maximize

I. Considering the multi-variable chain rule:

dI

dS
=

dI

dt

dt

dS
=
aSI − bI

−aSI
= −1 +

b

aS

Then, we can solve for I as a function of S by separation of variables:

I(S) = −S +
b

a
ln(S) + C.

Given some initial conditions, we can easily find C. By substituting different values of S

we can find the value of I at any desired time.
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3 Second Order ODEs

3.1 Introduction to Linear Second Order ODEs

Definition 3.1.1 (Linear Second Order ODEs). Generally, we can write linear second order

ODEs in the following form:

y′′ = f(x, y, y′)

Echoing what we have did in first order ODEs, we can further write it as

P0(x)y
′′ + P1(x)y

′ + P2(x)y = F (x) (6)

Definition 3.1.2 (Homogeneous and Non-homogeneous Second Order ODEs). In the form

of Eq. (6), if F (x) = 0, then the ODE is homogeneous. If F (x) ̸= 0, then the ODEe is non-

homogeneous.

Remark. If P0(x) ̸= 0, we can rewrite Eq. (6) as

y′′ + p(x)y′ + q(x)y = f(x),

where p(x) =
P1

P0

, q(x) =
P2

P0

, and f =
F

P0

.

3.2 Homogeneous ODEs

Definition 3.2.1 (Initial Value Problem/IVP). We need two initial conditions for an IVP:y′′ + p(x)y′ + q(x)y = 0

y(x0) = k0, y′(x0) = k1
. (7)

Theorem 3.2.2 Existence and Uniqueness

Given the IVP

y′′ + p(x)y′ + q(x)y = 0

y(x0) = k0, y′(x0) = k1
as in Eq. (7). If

• p(x) and q(x) are continuous on (a, b),

• x0 ∈ (a, b), and

• k0, k1 ∈ R,

Then, the solution to the IVP exists and it is unique on (a, b).

Definition 3.2.3 (Trivial Solution). For a homogeneous second order ODE, we always have

this trivial solution y = 0.
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3 SECOND ORDER ODES 3.2 Homogeneous ODEs

Example 3.2.4 Given the equation y′′ − y = 0. Verify y1 = ex and y2 = e−x are solutions

of the problem on (−∞,+∞). Further, show that if c1 and c2 are two arbitrary constants,

then y = c1y1 + c2y2 is a solution of the equation on (−∞,+∞). Finally solve the IVP with

y(0) = 1, y′(0) = 3.

Solution 1.

y′1 = ex, y′′1 = ex =⇒ y′′ − y = ex − ex = 0

and

y′2 = −e−x y′′2 = e−x =⇒ y′′ − y = e−x − e−x = 0.

Since p(x) = 0 and q(x) = −1 are constants so they are continuous on R. Then, y1 and y2

are solutions on R. Since

y = c1y1 + c2y2 = c1e
x + c2e

−x,

we have

y′ = c1e
x − c2e

−x, y′′ = c1e
x + c2e

−x.

Then,

y′′ − y = c1e
x + c2e

−x −
(
c1e

x + c2e
−x
)
= 0 ∀c1, c2 ∈ R.

To solve the IVP, we solve the following systemy(0) = c1e
0 + c2e

0 = 1

y′(0) = c1e
0 − c2e

0 = 3
=⇒

c1 + c2 = 1

c1 − c2 = 3
=⇒

c1 = 2

c2 = −1

□

Theorem 3.2.5 Principle of Superposition
Given y′′ + p(x)y′ + q(x)y = 0. If y1 and y2 are two solutions on (a, b), then any linear

combination of y1 and y2, that is, c1y1 + c2y2, is a solution of the equation on (a, b).

Proof 2.
y = c1y1 + c2y2 : y′ = c1y

′
1 + c2y

′
2, y′′ = c1y

′′
1 + c2y

′′
2 .
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3 SECOND ORDER ODES 3.2 Homogeneous ODEs

Then,

y′′ + p(x)y′ + q(x)y = c1y
′′
1 + c2y

′′
2 + p(x)(c1y

′
1 + c2y

′
2) + q(x)(c1y1 + c2y2)

= c1y
′′
1 + c1p(x)y

′
1 + c1q(x)y1 + c2y

′′
2 + c2p(x)y

′
2 + c2q(x)y2

= c1 (y
′′
1 + p(x)y′1 + q(x)y1)︸ ︷︷ ︸
y1 is solution =⇒ =0

+c2 (y
′′
2 + p(x)y′2 + q(x)y2)︸ ︷︷ ︸
y2 is solution =⇒ =0

= 0

Therefore, y = c1y1 + c2y2 is a solution. ■

Definition 3.2.6 (Second Order Linear Constant-Coefficient Homogeneous ODEs). The fol-

lowing second order linear homogenous ODE is called to have constant coefficients:

ay′′ + by′ + cy = 0, a, b, c ∈ R.

Example 3.2.7 Find a solution to ay′′ + by′ + cy = 0, a, b, c ∈ R. Note that not all y’s is

going to work. For example, if y = x2, y′ = 2x, and y′′ = 2. Then, 2a + 2bx + cx2 = 0. This

can never happen for x ∈ R. Inspired by Example 3.2.4, we guess y = erx is a solution.

Then we have y′ = rerx and y′′ = r2erx. Then, ar2erx + brerx + cerx = 0. That is, we need(
ar2 + br + c

)
erx = 0

Since erx can never be zero, we need p(r) = ar2 + br+ c = 0. We call this p(r) the character-

istic polynomial of the solution.

Theorem 3.2.8 Solving ay′′ + by′ + cy = 0

To solve ay′′+ by′+ cy = 0, we solve the characteristic polynomial p(r) = ar2+ br+ c = 0.

Example 3.2.9 Suppose p(r) = 0, and we have r1, r2 ∈ R with r1 ̸= r2. (That is, we have two

distinct real roots). Then, y1 = er1x and y2 = er2x. So, y = c1y1 + c2y2 = c1e
r1x + c2e

r2x. Given

the IVP

ay′′ + by′ + cy = 0

y(x0) = k0, y
′(x0) = k1

, we have

y(x0) = c1y1(x0) + c2y2(x0)

y′(x0) + c1y
′
1(x0) + c2y

′
2(x0)

,

a system of linear equations with unknowns c1 and c2. We can rewrite the system into the
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matrix form as follows: [
y(x0)

y′(x0)

]
︸ ︷︷ ︸

y

=

[
y1(x0) y2(x0)

y′1(x0) y′2(x0)

]
︸ ︷︷ ︸

A

[
c1

c2

]
︸︷︷︸

c

This system can be solved when detA ̸= 0. That is,

detA = y1(x0)y
′
2(x0)− y′1(x0)y2(x0) ̸= 0 (8)

We call the condition Eq. (8) the Wronskian of y1 and y2.

Theorem 3.2.10
Assume that y1 and y2 are two solutions of y′′ + p(x)y′ + q(x)y = 0 with initial conditions

y(x0) = k0 and y′(x0) = k1. Then, it is always possible to choose constants c1 and c2 such

that y = c1y1 + c2y2 satisfy the IVP if and only if

W[y1, y2]
∣∣∣
x0

̸= 0

Theorem 3.2.11
Suppose that y1 and y2 are two solutions of y′′ + p(X)y′ + q(x)y = 0. Then, y = c1y1 + c2y2

is the general solution of the equation (contains all possible solutions) if and only if

W[y1, y2]
∣∣∣
x0

̸= 0 at some x0.

Definition 3.2.12 (Fundamental Set of Solutions). If the general solution of y′′ + p(x)y′ +

q(x)y = 0 can be written as y = c1y1 + c2y2 on (a, b), then the set {y1, y2} is called the funda-

mental set of solutions.

Theorem 3.2.13 Abel’s Formula
Suppose that p, q are continuous on (a, b). Let y1 and y2 be two solutions of y′′ + p(x)y′ +

q(x)y = 0 on (a, b). Define W = y1y
′
2 − y′1y2. Let x0 ∈ (a, b). Then,

W(x) = W(x0)e
−

∫ x
x0

p(t) dt (9)

Therefore, either W has no zeros on (a, b) or W = 0 on (a, b).

Proof 3. Eq. (9) looks like a solution to first order homogenous ODE. So, we will prove the

51



3 SECOND ORDER ODES 3.2 Homogeneous ODEs

formula by constructing a differential equation.

W = y1y
′
2 − y′1y2

W′ = y′1y
′
2 + y1y

′′
2 − y′′1y2 − y′1y

′
2

= y1y
′′
2 − y′′1y2

= y1(−py′2 − qy2)− (−py′1 − qy1)y2 y′′1 + py′1 + qy1 = 0

= −py1y′2 − qy1y2 + py′1y2 + qy1y2

= −p(y1y′2 − y′1y2)

= −pW

When solving W′ = −pW, we will have Eq. (9).

■

Corollary 3.2.14: If W[y1, y2] ̸= 0 at one point of x0, W[y1, y2] ̸= 0 for all x’s in the interval.

Proof 4. From Theorem 3.2.13, W(x) = W(x0)e
−

∫ x
x0

p(t) dt. Since e−
∫ x
x0

p(t) dt
> 0, we know

W(x) = 0 ⇐⇒ W(x0) = 0. ■

Theorem 3.2.15
Suppose that p and q are continuous on (a, b), and let y1 and y2 be solutions of

y′′ + p(x)y′ + q(x)y = 0 on (a, b) (10)

Then, the following statements are equivalent:

1. The general solution of Eq. (10) on (a, b) is y = c1y1 + c2y2.

2. {y1, y2} is a fundamental set of solutions (FSS) for Eq. (10) on (a, b).

3. y1 and y2 are linearly independent on (a, b).

4. The Wronskian of {y1, y2} is nonzero at some point in (a, b).

5. The Wronskian of {y1, y2} is nonzero at all points in (a, b).

Example 3.2.16 Find the solution of the equation y′′ + 6y′ + 5y = 0 given the initial condi-

tions y(0) = 3, y′(0) = −1.

Solution 5.
The characteristic polynomial is r2 + 6r + 5r = 0 =⇒ (r + 1)(r + 5) = 0. So, r1 = −1

and r2 = −5. Therefore, we have y1 = e−x and y2 = e−5x. Then,

y = c1y1 + c2y2 = c1e
−x + c2e

−5x
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is still a solution, and y′ = −ce−x +−5c2e
−5x. Then, by the initial condition:y(0) = c1e

0 + c2e
0 = c1 + c2 = 3

y′(0) = −c1e0 − 5c2e
0 = −c1 − 5c2 = −1

=⇒

c1 = 7/2

c2 = −1/2

So,

yIVP =
7

2
e−x − 1

2
e−5x

□

Example 3.2.17 Find the solution of the equation y′′ + 5y′ + 6y = 0 given the initial condi-

tions y(0) = 2, y′(0) = 3.

Solution 6.
The characteristic polynomial: r2 + 5r + 6 = 0 =⇒ (r + 2)(r + 3) = 0. So, r1 = −2 and

r2 = −3. S0, y1 = e−2x and y2 = e−3x. Therefore,

y = c1y1 + c2y2 = c1e
−2x + c2e

−3x,

and then y′ = −2c1e
−2x − 3c2e

−3x. By the initial condition, we havey(0) = c1e
0 + c2e

0 = c1 + c2 = 2

y′(0) = −2c1e
0 − 3c2e

0 = −2c1 − 3c2 = 3
=⇒

c1 = 9

c2 = −7

So,

yIVP = 9ex − 7e−6x.

□

Example 3.2.18 Find the general solution of the equation y′′ + 6y′ + 9y = 0 with initial

conditions y(0) = 3, y′(0) = −1.

Solution 7.
The characteristic polynomial: r2 + 6r + 9 = 0 =⇒ (r + 3)2 = 0 =⇒ r1 = r2 = −3. In

this case, we have repeated roots. Suppose y = ue−3x, where u is a function of x.

y′ = u′e−3x − 3ue−3x = (u′ − 3u)e−3x

y′′ = (u′′ − 3u′)e−3x − 3(u′ − 3u)e−3x

= (u′′ − 6u′ + 9u)e−3x
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So,

y′′ + 6y′ + 9y = (u′′ − 6u′ + 9u)e−3x + 6
[
(u′ − 3u)e−3x

]
+ 9ue−3x

= (u′′ − 6u′ + 9u+ 6u′ − 18u+ 9u)e−3x

= u′′e−3x

= 0

Since e−3x > 0 ∀x ∈ R, it must be u′′ = 0 =⇒ u′ = c2 =⇒ u = c2x+ c1. So,

y = ue−3x = (c2x+ c1)e
−3x = c1e

−3x + c2xe
−3x.

Let y1 = e−3x and y2 = xe−3x. Then,

W[y1, y2] =

∣∣∣∣∣ e−3x xe−3x

−3e−3x e−3x − 3xe−3x

∣∣∣∣∣
= e−3x

(
e−3x − 3xe−3x

)
−
(
−3e−3x

)(
xe−ex

)
= e−6x − 3xe−6x + 3xe−6x

= e−6x ̸= 0 ∀x ∈ R.

So, y = c1e
−3x + c2xe

−3x is the general solution, and y′ = −3c1e
−3x + c2(e

−3x − 3xe−3x).

Therefore, by the initial condition, we havey(0) = c1 = 3

y′(0) = −3c1 + c2 = −1
=⇒

c1 = 3

c2 = 8

Therefore, solution to the IVP is given by

yIVP = 3e−3x + 8xe−3x = (3 + 8x)e−3x.

□

Example 3.2.19 Find the general solution of the equation y′′ + 4y′ + 13y = 0.

Solution 8.
The characteristic polynomial: r2 + 4r + 13 = 0 =⇒ r2 + 4r + 4 + 9 = 0 So we have

(r + 2)2 = −9 =⇒ r + 2 = ±− 3i =⇒ r1,2 = −2± 3i. In this case, we have complex roots:

yC1 = e(−2+3i)x and yC2 = e(−2−3i)x. Key: any linear combination of yC1 and yC2 is a solution. So,
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we can choose
yC1 + yC2

2
= Re

(
yC1
)

and
yC1 − yC2

2i
= Im

(
yC1
)

.

yC1 = e(−2+3i)x = e−2x[cos(3x) + i sin(3x)]

= e−2x cos(3x) + ie−2x sin(3x)

Therefore,

y1 = Re
(
yC1
)
= e−2x cos(3x) and y2 = Im

(
yC1
)
= e−2x sin(3x)

Compute the Wronskian:

W[y1, y2] =

∣∣∣∣∣ e−2x cos(3x) e−2x sin(3x)

−2e−2x cos(3x)− 3e−2x sin(3x) −2e−2x sin(3x) + 3−2x cos(3x)

∣∣∣∣∣
= e−2x cos(3x)

[
−2e−2x sin(3x) + 3e−2x cos(3x)

]
+

− e−2x sin(3x)
[
−2e−2x sin(3x)− 3e−2x sin(3x)

]
= e−4x

[
−2 cos(3x) sin(3x) + 3 cos2(3x)

]
+

− e−4x
[
−2 cos(3x) sin(3x)− 3 sin2(3x)

]
= e−4x

(
−2 cos(3x) sin(3x) + 3 cos2(3x) + 2 cos(3x) sin(3x) + 3 sin2(3x)

)
= 3e−4x

(
sin2(3x) + cos2(3x)

)
= 3e−4x ̸= 0 ∀x ∈ R.

Therefore, y1 and y2 are fundamental set of solutions, and the general solution is given by

y = c1y1 + c2y2 = c2e
−2x cos(3x) + c2e

−2x sin(3x). □

55
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Theorem 3.2.20 Summary I: Solving Constant-Coefficient Second Order Homoge-
neous ODE
Let p(r) = ar2 + br+ c be the characteristic polynomial associated to the equation ay′′ +

by′ + cy = 0. Then,

• If p(r) = 0 has two real distinct roots r1, r2, then the general solution of the equa-

tion is y = c1e
r1x + c2e

r2x.

Proof 9. Verify that y1 and y2 are linearly independent.

W[y1, y2] =

∣∣∣∣∣ er1x er2x

r1e
r1x r2e

r2x

∣∣∣∣∣ = r2e
(r1+r2)x − r1e

(r1+r2)x

= (r2 − r1)e
(r1+r2)x

Since e(r1+r2)x > 0 ∀x ∈ R, W ̸= 0 ⇐⇒ r2 − r1 ̸= 0. As, by assumption, r1 ̸= r2,

r2 − r1 ̸= 0, and thus W ̸= 0. So, y1 and y2 are linearly independent. ■

• If p(r) = 0 has two repeated real roots r1 = r2 = r, then the general solution of the

equation is y = c1e
rx + c2xe

rx.

• If p(r) = 0 has two complex conjugated roots r1 = r2 = α + iβ, then the general

solution of the equation is y = c1e
αx cos (βx) + c2e

αx sin (βx).

3.3 Method of Undetermined Coefficients

Theorem 3.3.1 Existence of Solutions
Suppose that p, q, f are continuous on (a, b). Let x0 ∈ (a, b), and let k0, k1 be arbitrary real

numbers. Then, the initial value problemy′′ + p(x)y′ + q(x)y = f(x)

y(x0) = k0, y′(x0) = k1

has a unique solution on (a, b).

Definition 3.3.2 (Complementary Equation). The complementary equation of y′′ + p(x)y′ +

q(x)y = f(x) is given by y′′ + p(x)y′ + q(x)y = 0.
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Theorem 3.3.3 Solution to Non-Homogeneous Constant Coefficient Second Order
Equations
Suppose that p, q, and f are continuous on (a, b). Let yp be a particular solution of

y′′ + p(x)y′ + q(x)y = f(x). Let {y1, y2} be a fundamental set of solutions of the com-

plementary equation y′′ + p(x)y′ + q(x)y = 0 on (a, b). Then, y is a solution if and only if

y = yp + c1y1 + c2y2.

Proof 1. To prove this theorem, we need to prove the following two things:

• Show that yp + c1y1 + c2y2 satisfies the equation.

• Show that y − yp satisfies the complementary equation.

■

Example 3.3.4 Find the general solution of y′′ − 2y′ + y = −3− x+ x2.

Solution 2.
By the method of undetermined coefficients, suppose

yp = A+Bx+ Cx2.

So, y′p = B + 2Cx and y′′p = 2C. Therefore, we have

y′′ − 2y′ + y = 2C − 2(B + 2Cx) + A+Bx+ Cx2

= 2C − 2B + 4Cx+ A+Bx+ Cx2

= (A− 2B + 2C) + (B − 4C)x+ Cx2

= −3− x+ x2

So, we have the following system:
A− 2B + 2C = −3

B − 4C = −1

C = 1

=⇒


A = 1

B = 3

C = 1

Thus,

yp = 1 + 3x+ x2.

Solve the complementary equation: y′′ − 2y′ + y = 0. Consider the characteristic polyno-

mial: r2−2r+1 = 0 =⇒ (r−1)2 = 0 =⇒ r1 = r2 = 1. So, y1 = ex and y2 = xex. Therefore,
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the general solution is

y = c1y1 + c2y2 + yp = c1e
x + c2xe

x + 1 + 3x+ x2.

□

Example 3.3.5 Given the equation y′′ − 7y′ + 12y = 4e2x. Find a particular solution and

then find the general solution.

Solution 3.
By the method of undetermined coefficients, suppose yp = Ae2x, and then we have

y′p = 2Ae2x and y′′p = 4Ae2x. So,

4Ae2x − 7
(
2Ae2x

)
+ 12Ae2x = 4e2x

4A− 14A+ 12A = 4

2A = 4 =⇒ A = 2.

So, yp = 2e2x. Now, consider the complementary equation: y′′ − 7y′ + 12y = 0. Then, we

have the characteristic polynomial r2 − 7r + 12 = 0 =⇒ (r− 3)(r− 4) = 0. Then, we have

r1 = 3 and r2 = 4. So, y1 = e3x and y2 = e4x. Check linearly independence:

W[y1, y2] =

∣∣∣∣∣ e3x e4x

3e3x 4e4x

∣∣∣∣∣ = 4e3xe4x − 3e3xe4x = e7x ̸= 0.

So, y1 and y2 are linearly independent, and the general solution is

y = c1y1 + c2y2 + yp = c1e
3x + c2e

4x + 2e2x.

□

Example 3.3.6 Given the equation y′′ − 7y′ + 12y = 5e4x. Find a particular solution and

then the general solution.

Solution 4.
Suppose yp = Ae4x. Then, y′p = 4Ae4x and y′′p = 16Ae4x. So,

16Ae4x − 7
(
4Ae4x

)
+ 12Ae4x = 5e4x

16A− 28A+ 12A = 5

0 · A = 5
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This conclusion indicate that e4x is a solution in the fundamental solution set. So, we need

to try something else: yp = ue4x, where u is a function of x. Then,

y′p = u′e4x + 4ue4x = e4x(u′ + 4u)

y′′p = u′′e4x + 4u′e4x + 4u′e4x + 16ue4x

= e4x(u′′ + 8u′ + 16u)

So,

e4x(u′′ + 8u′ + 16u)− 7e4x(u′ + 4u) + 12ue4x = 5e4x

u′′ + 8u′ + 16u− 7u′ − 28u+ 12u = 5 =⇒ u′′ + u′ = 5

Guess u′p = 5, u′′p = 0 =⇒ 0 + u′p = 5 So, up = 5x. Therefore, yp = ue4x = 5xe4x.

The complementary equation and the characteristic polynomial are the same from the

previous question. So,

y = c1y1 + c2y2 + yp = c1e
3x + c2e

4x + 5xe4x.

□

Example 3.3.7 Given the equation y′′ − 8y′ +16y = 2e4x. Find a particular solution and the

general solution.

Solution 5.
Complementary equation: y′′ − 8y′ + 16y = 0. Consider the characteristic polynomial

r2 − 8r + 16 = 0 =⇒ (r − 4)2 = 0 =⇒ r1 = r2 = 4.

So, FSS = {e4x, xe4x}. Now, guess yp = ue4x. Then, we have

y′p = u′e4x + 4ue4x = e4x(u′ + 4u)

y′′p = u′′e4x + 4u′e4x + 4u′e4x + 16ue4x

= e4x(u′′ + 8u′ + 16u)
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So, we have

y′′ − 8y′ + 16y = e4x(u′′ + 8u′ + 16u)− 8e4x(u′ + 4u) + 16ue4x = 2e4x

u′′ + 8u′ + 16u− 8u′ − 32u+ 16u = 2

u′′ = 2.

So, u′′p = 2 =⇒ u′p = 2x =⇒ up = x2. Therefore, yp = upe
4x = x2e4x. Thus, the general

solution is

y = c1y1 + c2y2 + yp = c1e
4x + c2xe

4x + x2e4x.

Remark. If we find the general solution to u′′ = 2:

u′ = 2x+ c2 =⇒ u = x2 + c2x+ c1

Then we have

y = ue4x =
(
x2 + c2x+ c1

)
e4x,

exactly the general solution.

□
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Theorem 3.3.8 Summary II: Method of Undetermined Coefficients
If f(x) = eαx, when finding the particular solution to

y′′ + p(x)y′ + q(x)y = f(x),

we have the following situations when apply the method of undetermined coefficients:

• If eαx is not in the FSS, then yp = Aeαx.

• If eαx ∈ FSS, but xeαx /∈ FSS, then yp = Axeαx.

• If eαx, xeαx ∈ FSS, but x2eαx /∈ FSS, then yp = Ax2eαx.

If we want to solve ay′′ + by′ + cy = f(x) with the method of undetermined coefficient,

in general, we suppose f(x) = P (x)ex. With deg(P ) = deg(Q), we have

• yp = Q(x)eαx if eαx /∈ FSS

• yp = xQ(x)eαx if eαx ∈ FSS and xeαx /∈ FSS.

• yp = x2Q(x)eαx if eαx, xeαx ∈ FSS.

Theorem 3.3.9 Superposition
Suppose yp1 is a particular solution of y′′ + py′ + qy = f1 and yp2 is a particular solution

of y′′ + py′ + qy = f2. Then, yp1 + yp2 is a particular solution of y′′ + py′ + qy = f1 + f2.

Example 3.3.10 Find a particular solution of y′′ − 7y′ + 12y = 4e2x + 5e4x.

Solution 6.
2e2x is a particular solution of y′′ − 7y′ + 12y = 4e2x, and 5xe4x is a particular solution of

y′′ − 7y′ + 12y = 5e4x. Then, yp = 2e2x + 5xe4x is a particular solution of y′′ − 7y′ + 12y =

4e2x + 5e4x. □

Example 3.3.11 Find the general solution of y′′ − 3y′ + 2y = e3x(−1 + 2x+ x2).

Solution 7.
Suppose yp = e3x(−A+Bx+ Cx2) =⇒ yp = ue3x, where u is a function of x. So,

y′p = 3ue3x + u′e3x

y′′p = 9ue3x + 3u′e3x + u′′e3x + 3u′e3x

= u′′e3x + 6u′e3x + 9ue3x
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So, we have

u′′e3x + 6u′e3x + 9ue3x − 3
(
3ue3x + u′e3x

)
+ 2ue3x = e3x

(
−1 + 2x+ x2

)
u′′ + 6u′ + 9u− 9u− 3u′ + 2u = −1 + 2x+ x2

u′′ + 3u′ + 2u = −1 + 2x+ x2.

We don’t have to find the general solution. Instead, we just need to find a particular solution.

Let up = A+Bx+ Cx2 =⇒ u′p = B + 2Cx =⇒ u′′p = 2C. Then,

2C + 3(B + 2Cx) + 2
(
A+Bx+ Cx2

)
= −1 + 2x+ x2

2C + 3B + 6Cx+ 2A+ 2Bx+ 2Cx2 = −1 + 2x+ x2

(2A+ 3B + 2C) + (2B + 6C)x+ 2Cx2 = −1 + 2x+ x2

So, we have the following system of equations:
2A+ 3B + 2C = −12

B + 6C = 2

2C = 1

=⇒


A = −1/4

B = −1/2

C = 1/2

Therefore, up = −1

4
− 1

2
x+

1

2
x2, and then

yp = e3x
(
−1

4
− 1

2
x+

1

2
x2
)

The complementary equation is y′′ − 3y′ + 2y = 0, and the characteristic polynomial is

r2 − 3r + 2 = 0 =⇒ (r − 1)(r − 2) = 0 =⇒ r1 = 1, r2 = 2. So, the general solution is

y = c1y1 + c2y2 + yp = c1e
x + c2e

2x + e3x
(
−1

4
− 1

2
x+

1

2
x2
)
.

□

Example 3.3.12 Find the general solution of y′′ − 4y′ + 3y = e3x(6 + 8x+ 12x2).

Solution 8.
The complementary equation is y′′−4y′+3y = 0, and thus the characteristic polynomial

is r2 − 4r + 3r = 0 =⇒ (r − 1)(r − 3) = 0 =⇒ r1 = 1, r2 = 3. So, FSS = {ex, e3x}. Suppose

yp = ue3x. Then, we can find the first and second derivatives of yp to be y′p = 3ue3x+u′e3x =
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e3x(3u+ u′) and

y′′p = 9ue3x + 3u′e3x + u′′e3x + 3u′e3x

= u′′e3x + 6u′e3x + 9ue3x

= e3x(u′′ + 6u′ + 9u).

So,

e3x(u′′ + 6u′ + 9u)− 4e3x(3u+ u′) + 3ue3x = e3x
(
6 + 8x+ 12x2

)
u′′ + 6u′ + 9u− 12u− 4u′ + 3u = 6 + 8x+ 12x2

u′′ + 2u′ = 6 + 8x+ 12x2.

Suppose u′p = A+Bx+ Cx2, then u′′p = B + 2Cx. So,

(B + 2Cx) + 2
(
A+Bx+ Cx2

)
= 6 + 8x+ 12x2

B + 2Cx+ 2A+ 2Bx+ 2Cx2 = 6 + 8x+ 12x2

(2A+B) + (2B + 2C)x+ 2Cx2 = 6 + 8x+ 12x2

So, we have the following system:
2A+B = 6

2B + 2C = 8

2C = 12

=⇒


A = 4

B = −2

C = 6

So, u′p = 4 − 2x + 6x2 =⇒ up = 4x − x2 + 2x3. Then, yp = upe
3x = (4x− x2 + 2x3)e3x. So,

the general solution is

y = c1y1 + c2y2 + yp = c1e
x + c2e

3x +
(
4x− x2 + 2x3

)
e3x.

□

Example 3.3.13 Find the general solution of y′′ − 2y′ + y = 5 cos(2x) + 10 sin(2x).

Solution 9.
The complementary equation is y′′ − 2y′ + y = 0, and so the characteristic polynomial

is r2 − 2r + 1 = 0 =⇒ (r − 1)2 = 0 =⇒ r1 = r2 = 1. So, FSS = {ex, xex}. So, suppose
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yp = A cos(2x) +B sin(2x). Then,

y′p = −2A sin(2x) + 2B cos(2x)

y′′p = −4A cos(2x)− 4B sin(2x)

So,

y′′p − 2y′p + yp = [−4A cos(2x)− 4B sin(2x)]− 2[−2A sin(2x) + 2B cos(2x)]

+ [A cos(2x) +B sin(2x)]

= (−4A− 4B + A) cos(2x) + (−4B + 4A+B) sin(2x)

= (−3A− 4B) cos(2x) + (4A− 3B) sin(2x)

= 5 cos(2x) + 10 sin(2x)

So, we have the following system:−3A− 4B = 5

4A− 3B = 10
=⇒

A = 1

B = −2
=⇒ yp = cos(2x)− 2s sin(2x)

So, the general solution is

y = c1yy + c2y2 + yp = c1e
x + c2xe

x + cos(2x)− 2 sin(2x).

□

Example 3.3.14 Find the general solution of y′′ + 4y = 8 cos(2x) + 12 sin(2x).

Solution 10.
The complementary equation is y′′ + 4y = 0, and so the characteristic polynomial is

p(r) = r2 + 4 = 0 =⇒ r2 = −4 =⇒ r = ±2i. Since e2xi = cos(2x) + i sin(2x), we know the

FSS is {cos(2x), sin(2x)}. Suppose yp = x(A cos(2x) +B sin(2x)). Then,

y′p = A cos(2x) +B sin(2x) + x(−2A sin(2x) + 2B cos(2x))

= (A+ 2Bx) cos(2x) + (B − 2Ax) sin(2x)

y′′p = 2B cos(2x)− 2(A+ 2Bx) sin(2x)− 2A sin(2x) + 2(B − 2Ax) cos(2x)

= (2B − 4Ax+ 2B) cos(2x) + (−2A− 4Bx− 2A) sin(2x)

= (4B − 4Ax) cos(2x) + (−4A− 4Bx) sin(2x).
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Therefore,

y′′ + 4y = (4B − 4Ax) cos(2x) + (−4A− 4Bx) sin(2x)

+ 4x(A cos(2x) +B sin(2x))

= (4B − 4Ax+ 4Ax) cos(2x) + (−4A− 4Bx+ 4Bx) sin(2x)

= 4B cos(2x)− 4A sin(2x)

= 8 cos(2x) + 12 sin(2x)

So, we have the following system4B = 8

−4A = 12
=⇒

A = −3

B = 2
=⇒ yp = x[−3 cos(2x) + 2 sin(2x)].

So, the general solution is

y = c1y1 + c2y2 + yp = c1 cos(2x) + c2 sin(2x) + x[−3 cos(2x) + 2 sin(2x)]

= c1 cos(2x) + c2 sin(2x)− 3x cos(2x) + 2x sin(2x).

□

Example 3.3.15 Find the general solution of y′′ + 3y′ + 2y = (16 + 20x) cosx+ 10 sinx.

Solution 11.
The complementary equation is y′′ + 3y′ + 2y = 0, and the characteristic polynomial is

p(r) = r2 + 3r + 2 = 0 =⇒ (r + 1)(r + 2) = 0 =⇒ r1 = −1, r2 = −2. So, we know that the

FSS = {e−x, e−2x}.

Remark. We might consider to set our initial guess as yp = (A+Bx) cosx+C sinx. However,

it will not work since we will end up with 3 parameters with 4 conditions. Therefore, the rule

is treat cosx and sinx in the same say. So, the true guess should be yp = (Ax + B) cosx +

(Cx+D) sinx.

Suppose yp = (Ax+B) cosx+ (Cx+D) sinx. Then, we have

y′p = A cosx− (Ax+B) sinx+ C sinx+ (Cx+D) cosx

= (Cx+ A+D) cosx+ (−Ax−B + C) sinx

y′′p = C cosx− (Cx+ A+D) sinx+ (−A) sinx+ (−Ax−B + C) cosx

= (−Ax−B + C + C) cosx+ (−Cx− A−D − A) sinx

= (−Ax−B + 2C) cosx+ (−Cx− 2A−D) sinx
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So,

y′′p + 3y′p + 2yp = (−Ax−B + 2C) cosx+ (−Cx− 2A−D) sinx

+ 3((Cx+ A+D) cosx+ (−Ax−B + C) sinx)

+ 2((Ax+B) cosx+ (Cx+D) sinx)

= (−Ax−B + 2C + 3Cx+ 3A+ 3D + 2Ax+ 2B) cosx

+ (−Cx− 2A−D − 3Ax− 3B + 3C + 2Cx+ 2D) sinx

= ((A+ 3C)x+ 3A+B + 2C + 3D) cosx)

+ ((C − 3A)x− 2A− 3B + 3C +D) sinx

So, we have the following system:
A+ 3C = 20

3A+B + 2C + 3D = 16

C − 3A = 0

−2A− 3B + 3C +D = 10

=⇒


A = 2

B = 1

C = 6

D = −1

Therefore, the general solution is

y = c1y1 + c2y2 + yp = c1e
−x + c2e

−2x + (2x+ 1) cosx+ (6x− 1) sinx.

□

3.4 Variable Coeff Nonhomo Second Order ODE

3.4.1 Method of Reduction of Order (RoO)

Theorem 3.4.1 Method of Reduction of Order
Given the equation

P0(x)y
′′ + P1(x)y

′ + P2(x)y = F (x), (11)

and a solution y1 = y1(x)o f its complementary equation (P0(x)y
′′+P1(x)y

′+P2(x)y = 0).

Then the general solution of Eq. (11) has the form y = uy1.

Proof 1. Given y = uy1, we have y′ = u′y1 + uy′1 and

y′′ = u′′y1 + u′y′1 + u′y′1 + uy′′1 = u′′y1 + 2u′y′1 + uy′′1 .
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So, Eq. (11) becomes

P0(u
′′y1 + 2u′y′1 + uy′′1) + P1(u

′y1 + uy′1) + P2(uy1) = F

(P0y1)u
′′ + (2P0y

′
1 + P1y1)u

′ + (P0y
′′
1 + P1y

′
1 + P2y1)︸ ︷︷ ︸

=0

u = F

(P0y1)u
′′ + (2P0y

′
1 + P1y1)u

′ = F

Let Q0 := P0y1 and Q1 := 2P0y
′
1 + P1y1, so we want to solve Q0u

′′ + Q1u
′ = F . Set z = u′ and

z′ = u′′, we have Q0z
′ +Q1z = F =⇒ z′ +

Q1

Q0

z =
F

Q0

. By the method of integrating factor,

µ(x) = e
∫
Q1/Q0 dx.

So,

z(x) = e
−

∫ Q1
Q0

dx

[∫
F

Q0

e
∫ Q1

Q0
dx

dx+ c2

]
= u′(x)

Therefore, u(x) =
∫
z(x) dx+ c1. So, the general solution is

y = u(x)y1(x) = y1(x)

∫
z(x) dx+ c1y1(x).

■

Example 3.4.2 Given the equation

xy′′ − (2x+ 1)y′ + (x+ 1)y = x2

verify that y1 = ex is a solution of the complementary equation and find the general solu-

tion of the equation.

Solution 2.

• Verify y1 = ex is a solution of the complementary equation. We have y1 = ex, y′1 = ex,

and y′′1 = ex. As the complementary equation is xy′′−(2x+1)y′+(x+1)y = 0, consider

xy′′1 − (2x+ 1)y′1 + (x+ 1)y1 = xex − (2x+ 1)ex + (x+ 1)ex

= 2xex − 2xex − ex + ex

= 0.

• Compute a u(x) such that y = uy1 = uex. So, we have y′ = u′ex + uex and

y′′ = u′′ex + u′ex + u′ex + uex = u′′ex + 2u′ex + uex.
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So, we have

x(u′′ex + 2u′ex + uex)− (2x+ 1)(u′ex + uex) + (x+ 1)(uex) = x2

xexu′′ + (2xex − 2xex − ex)u′ + (xex − 2xex − ex + ex)︸ ︷︷ ︸
0

u = x2

ex(xu′′ − u′) = x2

xu′′ − u′ = x2e−x.

From the original equation, we know that x ̸= 0. So, u′′ − 1

x
u′ = xe−x. Set z = u′ and

so z′ = u′′. Then,

z′ − 1

x
z = xe−x =⇒ µ(x) = e

∫
− 1

x
dx = e− ln(x) =

1

x
.

So,

u(x) =

∫
−xe−x + c2x dx = e−x(x+ 1) +

1

2
c2x

2 + c1 = e−x(x+ 1) + c2x
2 + c1.

Then, the general solution is

y = u(x)y1(x) = ex(e−x(x+ 1) + c2x
2 + c1) = c1e

x + c2x
2ex + (x+ 1).

• From the general solution, we know FSS = {ex, x2ex} and a particular solution yp =

x+ 1. We can verity these as well.

□

Example 3.4.3 Given the equation

x2y′′ + xy′ − y = x2 + 1.

Verify that y1 = x is a solution of the complementary equation and find the general solu-

tion of the equation.

Solution 3.
Note that y1 = x, y′1 = 1, y′′1 = 0. So, x2y′′1 + xy′1 − y1 = x2(0) + x− x = 0, and thus it is a

solution of the complementary equation.

Find y = ux, where u is a function of x. Then, y′ = u+ u′x and

y′′ = u′ + u′′x+ u′ = 2u′ + u′′x.
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So, the original equation becomes

x2y′′ + xy′ − y = x2(2u′ + u′′x) + x(u+ u′x)− ux

= x3u′′ +
(
2x2 + x2

)
u′

= x3u′′ + 3x2u′ = x2 + 1.

Set z = u′ and z′ = u′′. So, we have

x3z′ + 3x2z = x2 + 1 =⇒ z′ +
3

x
z =

x2 + 1

x3
=⇒ µ(x) = e

∫
3
x

dx = x3.

So,

zµ(x) =

∫
µ(x) cot

x2 + 1

x3
dx =

∫
x2 + 1 dx+ c2

z · x3 = 1

3
x3 + x+ c2

z(x) =
1

3
+ x−2 + c2x

−3.

So,

u(x) =

∫
z(x) dx =

1

3
x− x−1 − c2e

−2 + c1.

Therefore, the general solution is

y(x) = u(x)y1(x) = x

(
1

3
x− x−1 − c2x

−2 + c1

)
= c1x−

c2
x

+

(
1

3
x2 − 1

)
.

□

3.4.2 Method of Variation of Parameters (VoP)

Theorem 3.4.4 Method of Variation of Parameters
Given the equation

P0(x)y
′′ + P1(x)y

′ + P2(x)y1 = F (x),

and two solutions y1 = y1(x) and y2 = y2(x) of its complementary equation, then a

particular solution to the equation has the form y = u1y1 + u2y2.

Proof 4. Since y = u1y1 + u2y2, we have y′ = u′1y1 + u2y
′
1 + u′2y2 + u2y

′
2. Set u′1y1 + u′2y2 = 0 .

Therefore,

y′ = u1y
′
1 + u2y

′
2 =⇒ y′′ = u′1y

′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 .

69



3 SECOND ORDER ODES 3.4 Variable Coeff Nonhomo Second Order ODE

So, the original equation becomes

P0(u
′
1y

′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2) + P1(u1y

′
1 + u2y

′
2) + P2(u1y1 + u2y2) = F

P0(u
′
1y

′
1 + u′2y

′
2) + P0(u1y

′′
1 + u2y

′′
2) + P1(u1y

′
1 + u2y

′
2) + P2(u1y1 + u2y2) = F

P0(u
′
1y

′
1 + u′2y

′
2) + u1 (P0y

′′
1 + P1y

′
1 + P2y1)︸ ︷︷ ︸

0

+u2 (P0y
′′
1 + P1y

′
2 + P2y2)︸ ︷︷ ︸

0

= F

P0(u
′
1y

′
1 + u′2y

′
2) = F

u′1y
′
1 + u′2y

′
2 =

F

P0

Hence, solving the original differential equation becomes solving the following system:u′1y1 + u′2y2 = 0 ①

u′1y
′
1 + u′2y

′
2 = F/P0 ②

Consider ① · y′2 : u′1y1y
′
2 + u′2y2y

′
2 = 0 ③ and ② × y2 : u′1y

′
1y2 + u′2y2y

′
2 = F/P0 · y2 ④

Then, we know that ③ − ④ : u′1y1y
′
2 − u′1y

′
1y2 = − F

P0

y2

u′1

 y1y
′
2 − y′1y2︸ ︷︷ ︸

=W[y1,y2] ̸=0 as y1,y2∈FSS

 = − F

P0

y2

u′1 = − F

P0 ·W
y2 =⇒ u1(x) = −

∫
F (x)

P0(x)W[y1, y2]
y2(x) dx

Similarly, we can find

u′2 =
Fy1

P0(y1y′2 − y′1y2)
=⇒ u2(x) =

∫
F (x)

P0(x)W[y1, y2]
y1(x) dx .

So, the general solution is

y = c1y1 + c2y2 + u1y1 + u2y2.

■

Example 3.4.5 Given the equation

x2y′′ − 2xy′ + 2y = x9/2, x ̸= 0

and two solutions y1 = x and y2 = x2 of the complementary equation, find the general

solution.
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3 SECOND ORDER ODES 3.5 Application of Second Order ODEs

Solution 5.
The general solution is

y = c1y1 + c2y2 + u1y1 + u2y2 = c1x+ c2x
2 + u1x+ u2x

2.

The Wronskian is

W
[
x, x2

]
=

∣∣∣∣∣x x2

1 2x

∣∣∣∣∣ = 2x2 − x2 = x2 ̸= 0 ∀x ∈ R\{0}.

So,

u1(x) = −
∫

x9/2

x2 · x2
x2 dx = −

∫
x5/2 dx = −2

7
x7/2.

u2(x) =

∫
x9/2

x2 · x2
· x dx =

∫
x3/2 dx =

2

5
x5/2.

So, the particular solution is

yp = u1x+ u2x
2 = −2

7
x7/2 · x+ 2

5
x5/2x2

= −2

7
x9/2 +

2

5
x9/2

+

(
2

5
− 2

7

)
x9/2 =

4

35
x9/2.

Then, the general solution is given by

y = c1x+ c2x
2 +

4

35
x9/2.

□

Remark. When given two solutions from the FSS, we can choose to use either RoO or VoP. With

constant coefficient equations, RoO and VoP can also be used in addition to method of unde-

termined coefficients.

3.5 Application of Second Order ODEs

3.5.1 Vibrating Springs

Example 3.5.1 Assume no Friction.
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We can have the following equation

F = −kx, k > 0.

Since we know F = ma = −kx and a = x′′, then

mx′′ + kx = 0,

which is a second order, linear, constant coefficient, homogeneous ODE.

Attempt to solve this ODE, we consider the characteristic polynomial.

p(r) = mr2 + k = 0 =⇒ r2 = −k/m =⇒ r1,2 = ±i

√
k

m
.

Let ω :=

√
k

m
, we have

xC = eiωt = cos (ωt) + i sin (ωt).

So,

x(t) = c1 cos(ωt) + c2 sin(ωt).

This is called the simple harmonic motion.

Figure 4: The Simple Harmonic Motion

Example 3.5.2 Take Friction into Account.

If we take friction into account, then we should have the following equation

F = −kx− cv
v=x′
−−→ F = −kx− cx′

Similarly, since F = ma = −kx− cx′, we have

mx′′ + cx′ + kx = 0.
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3 SECOND ORDER ODES 3.5 Application of Second Order ODEs

To solve this ODE, we consider the characteristic polynomial.

p(r) = mr2 + cr + k = 0 =⇒ r1,2 =
−c±

√
c2 − 4mk

2m

∆:=c2−4mk−−−−−−−→ r1,2 =
−c±

√
∆

2m
.

Case 1 Overdamping. ∆ > 0, then r1 =
−c+

√
∆

2m
and r2 =

−c−
√
∆

2m
. So,

x(t) = c1e
r1t + c2e

r2t

If r1 or r2 > 0, then x → ∞ when t → ∞. That is impossible. So, we need r1, r2 < 0. Since

−c−
√
∆ < 0 for sure, we need

√
∆ =

√
c2 − 4mk <

√
c2 = c =⇒ −c+

√
∆ < 0.

So, as t→ ∞, x(t) → 0.

Figure 5: Overdamping

Case 2 Critical Damping. ∆ = 0, then r1 = r2 = r =
−c
2m

. So,

x(t) = c1e
rt + c2xe

rt = (c1 + c2x)e
− c

2m
t

Case 3 Underdamping. ∆ < 0, then r1 =
−c+ i

√
−∆

2m
and r2 =

−c− i
√
−∆

2m
. Let

ω :=

√
−∆

2m
, then

r1 =
−c+ i

√
−∆

2m
=

−c
2m

+ i
−∆

2m
=

−c
2m

+ iω.

So,

xC(t) = er1t = e(−
−c
2m

+iω)t = e−
c

2m
t[cos(ωt) + i sin(ωt)].

Therefore,

x(t)[c1 cos(ωt) + c2 sin(ωt)]e
− c

2m
t.
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3 SECOND ORDER ODES 3.5 Application of Second Order ODEs

Figure 6: Underdamping

Example 3.5.3 If we have an external force, then we will have the following non-

homogeneous system.

mx′′ + cx′ + kx = F (t).

Example 3.5.4 A spring with a mass of 2kg has natural length 0.5m. A force of 25.6N is

required to maintain it stretched to a length of 0.7m. If the spring is stretched to a length

of 0.7m and then released with initial velocity 0, find the position of the mass at any time

t.

Solution 1.
We attempt to sove

mx′′ + kx = 0.

Form the question, we know

F = −kx k > 0

−25.6 = −k(0.7− 0.5)

k =
25.6

0.2
= 128.

Given: m = 2, k = 128, x(0) = 0.7− 0.5 = 0.2, x′(0) = 0.

2x′′ + 128x = 0 =⇒ x′′ + 64x = 0.
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3 SECOND ORDER ODES 3.5 Application of Second Order ODEs

The characteristic polynomial: p(r) = 2r2 + 128 = 0 =⇒ r1,2 = ±8i. So,

xC = rr1t = e8it = cos(8t) + i sin(8t)

That is,

x(t) = c1 cos(8t) + c2 sin(8t).

So,

x′(t) = −8c1 sin(8t) + 8c2 cos(8t)

We solve the following system:x(0) = c1 cos(0) + c2 sin(0) = c1 = 0.2

x′(0) = −8c1 sin(0) + 8c2 cos(0) = 8c2 = 0
=⇒

c1 = 0.2

c2 = 0

Then,

xIVP(t) = 0.2 cos(8t).

□

3.5.2 Circuit with Resistor, Inductors, and Capacitors

The general equation is

LI ′ +RI =
Q

C
= E(t).

Since I = Q′, we can also write the equation to be

LQ′′ +RQ′ +
Q

C
= E(t).

Therefore, depending on the question (what are given), we could have a first order or a second

order equation.

75


	1 First Order ODEs
	1.1 Introduction
	1.2 Linear First Order ODEs
	1.3 Separable Equations
	1.4 Exact Equations
	1.5 Autonomous ODEs

	2 System of ODEs
	2.1 Linear Algebra
	2.2 Basic Theorems on System of ODEs
	2.3 Phase Portraits
	2.4 Autonomous System of Differential Equations
	2.4.1 The Predator-Prey Model
	2.4.2 Competing Species
	2.4.3 SIR Model


	3 Second Order ODEs
	3.1 Introduction to Linear Second Order ODEs
	3.2 Homogeneous ODEs
	3.3 Method of Undetermined Coefficients
	3.4 Variable Coeff Nonhomo Second Order ODE
	3.4.1 Method of Reduction of Order (RoO)
	3.4.2 Method of Variation of Parameters (VoP)

	3.5 Application of Second Order ODEs
	3.5.1 Vibrating Springs
	3.5.2 Circuit with Resistor, Inductors, and Capacitors



