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1 NUMERICAL APPROXIMATION OF IVPS

1 Numerical Approximation of IVPs

1.1 Euler’s Method

Example 1.1.1 Problem Set-Up

Suppose ytn represents the population at tn. Suppose population grow with a parame-

ter λ. Then, we form the following equation

ytn+∆t = ytn +∆tλytn .

Then,

lim
∆t→0

ytn+∆t − ytn

∆t
= λytn .

dy

dt
= λy, y(0) = y0 (Cauchy Problem)

1. Solution: Separation of Variables.

y(t) = y0e
λt

2. Evolution of Solution (Asymptotic Behavior):

• λ > 0: y →∞ as t→∞

• λ < 0: y → 0 as t→ 0.

• λ = 0: y = y0 ∀ t.

3. Stability of Solution:
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1 NUMERICAL APPROXIMATION OF IVPS 1.1 Euler’s Method

• When λ > 0, no matter how close our perturbation were, we will get very differ-

ent asymptotic behavior =⇒ unstable.

• When λ < 0, with perturbation, we are certain the asymptotic behavior of solu-

tion is to approach 0. So, y = 0 is an asymptotically stable solution.

Remark. Though we can find the exact solution in this example, it is not always the

case. So, we need numerical approximation.

1.1.2 Solving the (Cauchy Problem) Numerically.

dy

dt
= λy =⇒ lim

∆t→0

y(t+∆t)− y(t)

∆t
= λy(t).

1. Explicit Euler’s Method: Collocate the problem at t1, t2, t3, . . . , where ti+1 = ti +∆t.

y(t0 +∆t)− y(t0)

∆t
= λy(t0) Denote u1 = y(t0 +∆t) = y(t1)

u1 − y0
∆t

= λy0 =⇒ u1 = y0(1 + ∆tλ)

u2 − u1

∆t
= λu1 =⇒ u2 = u1(1 + ∆tλ)

=⇒ uj = uj−1(1 + ∆tλ) = · · · = y0(1 + ∆tλ)j

Question: Given λ < 0. If t→∞, j →∞, does uj = y0(1 + ∆tλ)j → 0?

Short Answer: No. We need |1 + ∆tλ| < 1. So, the convergence depends on ∆t.

2. Implicit Euler’s Method:

Note that we can rewrite the derivative using

dy

dt
= lim

∆t→0

y(t)− y(t−∆t)

∆t
= λy(t).

y(t)− y(t−∆t)

∆t
= λy(t) Denote u1 = y(t1)

u1 − y0
∆t

= λu1 =⇒ u1 =
y0

1− λ∆t
u2 − u1

∆t
= λu2 =⇒ u2 =

u1

1− λ∆t
=

y0
(1− λ∆t)2

=⇒ uj =
uj−1

1− λ∆t
=

y0
(1− λ∆t)j
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1 NUMERICAL APPROXIMATION OF IVPS 1.1 Euler’s Method

Same question: Given λ < 0. If t→∞, j →∞, does uj → 0?

1.1.3 General Cauchy Problem. 
dy

dt
= f(t, y)

y(0) = y0

(GCP)

Theorem 1.1.4 Existence and Uniqueness of Solution

Suppose f is continuous for t ∈ I. If f is such that ∃ positive constant

L s.t. |f(·, y1)− f(·, y2)| ≤ L|y1 − y2| (Lipschitz continuity)

• for y1, y2 ∈ R ⊂ R, ∃ a local unique solution to (GCP).

• ∀ y1, y2 ∈ R, ∃ a global unique solution to (GCP).

Algorithm 1: Explicit Euler (EE)

1
u1 − y0
∆t

= f(t0, y0);

2 u1 = y0 +∆tf(t0, y0);
3 u2 = u1 +∆tf(t1, u1);
4 =⇒ uj = uj−1 +∆t · f(tj−1, uj−1).

Algorithm 2: Implicit Euler (IE)

1
u1 − y0
∆t

= f(t1, u1) // implicit as u1 is unknown. This is a root finding problem

2
u2 − y0
∆t

= f(t2, u2);

3
...

1.1.5 Analysis of Explicit Euler’s Method.

Definition 1.1.6 (Convergence). Let uk be our numerical solution and y be the true

solution. From EE, we know uk ≈ y(tk). Then, EE is convergent if

lim
∆t→0

uk = y(tk).

Theorem 1.1.7

EE is convergent.
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1 NUMERICAL APPROXIMATION OF IVPS 1.1 Euler’s Method

Proof 1. Define error ek = y(tk) − uk. So, ek+1 = y(tk+1) − uk+1. Define the linear approxi-

mation of uk+1 as

u∗
k+1 = y(tk) + ∆tf(tk, y(tk)).

Then, we can rewrite ek+1 into two parts:

ek+1 = y(tk+1)− uk+1 = y(tk+1)− u∗
k+1︸ ︷︷ ︸

local

+u∗
k+1 − uk+1︸ ︷︷ ︸

Roll over

• Focus on the local part:
u∗
k+1 − y(tk)

∆t
= f(tk, y(tk)).

But in general,
y(tk+1)− y(tk)

∆t
̸= f(tk, y(tk)).

Using Taylor’s expansion, we have

y(tk+1) = y(tk) +
dy

dt
∆t+

1

2

d2y

dt2
∆t2 + · · · .

So,
y(tk+1)− y(tk)

∆t
= f(tk, y(tk)) +

1

2

d2y

dt2
∆t︸ ︷︷ ︸

local truncation error

.

Therefore,

e∗k+1 = y(tk+1)− u∗
k+1 =⇒

e∗k+1

∆t
=

1

2
ck∆t, the local truncation error.
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1 NUMERICAL APPROXIMATION OF IVPS 1.1 Euler’s Method

Note that

lim
∆t→0

e∗k+1

∆t
= lim

∆t→0

1

2
ck∆t = 0 =⇒ consistency.

• The rolling over part:

u∗
k+1 − uk+1 = y(tk)︸︷︷︸+∆tf(tk, y(tk))−uk︸︷︷︸−∆tf(tk, uk)

= ek +∆tf(tk, y(tk))−∆tf(tk, uk)

By Lipschitz continuity, we have

|f(t, uA)− f(t, uB)| ≤ L · |uA − uB|.

So, by triangle inequality,

|ek+1| ≤
∣∣e∗k+1

∣∣︸ ︷︷ ︸
→0 as ∆t→0

+ |1 + ∆tL||en|︸ ︷︷ ︸
as ∆t→0,accumulates,

but bdd w.r.t ∆t =⇒ stability

So, the rate of convergence:

|ek| ≤ c∆t

is in the first order.

■

Definition 1.1.8 (Absolute Stability). A numerical solution is absolutely stable when

for y(t)→ 0, t→ +∞, ui → as i→ +∞.

Example 1.1.9

Consider the ODE
dy

dt
= λy; y(0) = y0; λ < 0.

• With EE,
ui+1 − ui

∆t
= λui =⇒ ui+1 = ui(1 + ∆tλ) = y0(1 + ∆tλ)i+1.

When i→∞,

|ui+1| =
∣∣y0(1 + ∆tλ)i+1

∣∣→ 0

when |1 + ∆tλ| < 1. (1 + ∆tλ is called a damping factor)

So, we have

−1 < 1 + ∆tλ < 1.
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1 NUMERICAL APPROXIMATION OF IVPS 1.2 Crank-Nicolson Method

As ∆t > 0 and λ < 0, we have

−1 < 1−∆t|λ| < 1 =⇒ ∆t <
2

|λ|
.

So, EE is conditionally absolutely stable. However, this condition is bad, especially

for large λ.

• With IE,
ui − ui−1

∆t
= λui =⇒ ui =

ui−1

1−∆tλ
=

y0
(1−∆tλ)i

.

To have ui → 0 as i→ +∞, we need

1

1−∆tλ
< 1.

As λ < 0, it s equivalent as
1

1 + ∆|λ|
< 1.

This is true ∀∆t. So IE is (unconditionally) absolutely stable.

1.2 Crank-Nicolson Method

Consider the Cauchy problem 
dy

dt
= f(t, y)

y(0) = y0.

One can compute y(t) by

y(t) = y0 +

∫ t

0

f(τ, y(τ)) dτ.

So, if we discretize the problem, we have

y(t1) = y0 +

∫ t1

0

f(τ, y(τ)) dτ.

If we use the trapezoid rule to approximate the integral, we get the numerical solutions:

u1 = y0 +
∆t

2
(f(t0, y0) + f(t1, u1))

u2 = u1 +
∆t

2
(f(t1, y1) + f(t2, u2))
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1 NUMERICAL APPROXIMATION OF IVPS 1.3 Heun Method

Generalize, we have

ui+1 = ui +
∆t

2
(fi + fi+1), where fi = f(ti, ui). (CN)

This is an implicit method because ui+1 appears on both sides of the formula.

As the error of Trapezoid Rule is∼ O((b− a)2), the error of Crank-Nicolson method is also

∼ O(∆t2).

1.3 Heun Method

Recall (CN):

ui+1 = ui +
∆t

2
(f(ti, ui) + f(ti+1, ui+1)) (CN; Corrector)

is an implicit method. We can integrate it with EE:

ui+1 = ui +∆tf(ti, ui) =: u
∗
i+1 (EE; Predcitor)

Then, we form the Heun method as follows

ui+1 = ui +
∆t

2
(f(ti, ui) + f(ti+1, ui+1))

= ui +
∆t

2
(f(ti, ui) + f(ti+1, ui +∆tf(ti, ui)))

= ui +
∆t

2

(
f(ti, ui) + f(ti+1, u

∗
i+1)
)

(H)

Heun is also a second order method, and it is explicit.

In Heun, u∗
i+1 uis called a predictor, and CN is called a corrector.

Theorem 1.3.1

Crank-Nicolson is unconditionally stable.

Proof 1.

ui+1 = ui +
∆t

2
(−λui − λui+1).

ui+1 =
1− ∆

2
λ

1 +
∆t

2
λ
ui =⇒ ui+1 =

∣∣∣∣∣∣∣
1− ∆t

2
λ

1 +
∆t

2
λ

∣∣∣∣∣∣∣
i+1

y0.
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1 NUMERICAL APPROXIMATION OF IVPS 1.4 From Model to General Problems

Since ∆t, λ > 0, 1− ∆t

2
λ < 1 +

∆t

2
λ. Hence,

∣∣∣∣∣∣∣
1− ∆t

2
λ

1 +
∆t

2
λ

∣∣∣∣∣∣∣ < 1 ∀∆t > 0.

So, ui+1 → 0 when i→∞. Then, CN is unconsidtionally stable. ■

Summary: ODE Methods

Table 1: Summary of Numerical ODE Methods
Method Order Absolute Stability Implicit/Explicit

Explicit Euler 1 Conditional Explicit
Implicit Euler 1 Unconditional Implicit

Crank-Nicolson 2 Unconditional Implicit
Heun 2 Conditional Explicit

• The stability condition of Heun method is the same as that of Explicit Euler.

• All explicit methods are conditionally stable.

• But implicit methods may be both conditionally or unconditionally stable. There

is a trade-off: more accuracy =⇒ less stability.

• So, it is a case-by-case decision for which method(s) to use.

1.4 From Model to General Problems

If we use λ to denote the characteristic of the problem that determines the stability of the

problem, what are λ’s in general problems?

(1)
dy

dt
= f(t, y) (General ODE)

Note that

f(t, y) ≈ f(t0, y0) +
∂f

∂y
(y − y0) ≈ λy + f0 − y0,

where f0 = f(t0, y0), we see that λ ≈ ∂f

∂y
.

(2)
dy

dt
= Ay (System of ODEs)
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1 NUMERICAL APPROXIMATION OF IVPS 1.5 Multistep Methods

Let’s apply EE to the system:

ui+1 − ui

∆t
= Aui

ui+1 = ui +∆tAui = (I +∆tA)ui.

On the other hand, if we apply IE for the system,

(I −∆tA)ui+1 = ui.

We, therefore, need to solve the following linear system:

Bui+1 = ui, where B = I −∆tA.

Hence, IE converges as long as I −∆tA is nonsingular.

From the two examples of applying EE and IE, we see that eigenvalues determines the

stability of the system. Hence, we choose λ = max |eig(A)|, the spectral radius. Mean-

while, the system is asymptotically stable if Re(eig(A)) < 0.

(3)=(1)+(2)
dy

dt
= F (t, y),

where F = (f1, f2, . . . , fm) : Rm → Rn and y = (y1, y2, . . . , yn). Then, we can form the

Jacobian of F :

J =

[
∂fi
∂yj

]
(i,j)

,

and thus the quantity of interest is

λ = max |eig(J)|.

1.5 Multistep Methods

1.5.1 Midpoint Method (Two-Step Method)

Let’s approximate the derivative in the following fashion:

dy

dt

∣∣∣∣
ti

≈ yi+1 − yi−1

2∆t

f(ti, yi) =
dy

dt

∣∣∣∣
ti

≈ ui+1 − ui−1

2∆t

=⇒ ui+1 = ui−1 + 2∆tf(ti, yi) (Midpoint)
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1 NUMERICAL APPROXIMATION OF IVPS 1.5 Multistep Methods

• Initial Condition:

u2 = y0 + 2∆tf(t1, u1),

where u1 = y0 + ∆t(ft0, y0) from EE. However, this approach is bad since its error only

∼ O(∆t). Another approach to consider is to use Heun to compute u1. This approach is

relatively good since its error is∼ O(∆t2).

Remark. How to build the initial condition(s) is one key for multistep problems.

• This method is unconditionally unstable.

Proof 1. Consider the Cauchy Problem
dy

dt
= −λy, λ > 0

y(0) = y0.

Using the (Midpoint), we have

ui+1 = ui−1 − 2∆tλui =⇒ ui+1 + 2∆tλui − ui−1 = 0. (2nd Order Difference Equation)

To solve it, let’s guess

ui = cρi, c ̸= 0

is a solution. Then, plut it in to the difference equation, we get

cρi+1 + 2∆tλcρi − cρi−1 = 0, c ̸= 0

ρ2 + 2∆tλρ− 1 = 0
[
Divide by cρi−1

]
Suppose ρ0 and ρ1 are two solutions. Then,

(ρ− ρ0)(ρ− ρ1) = 0 =⇒ ρ2 − (ρ0 + ρ1)ρ+ ρ0ρ1 = 0.

So, it must be that

|ρ0ρ1| = 1.

WLOG, suppose ρ0 < 1, then ρ1 > 1. Then,

ui = c0ρ
i
0 + c1ρ

i
1, for some c0, c1.

Then, we know u1 ̸→ 0 when i → +∞ in all cases. So, this method is unconditionally

unstable. ■
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1 NUMERICAL APPROXIMATION OF IVPS 1.5 Multistep Methods

1.5.2 Design a Better Method: Backward Differentiation Formula (BDF)

Since (Midpoint) is unconditionally unstable, we should not use it at any cost. However, a

multistep method adds more accuracy to the numerical solution. Our job now is to find a

design such that the error can be of order p, where p is of the user’s choice (i.e. error∼ O(∆tp)).

Taking inspiration from IE:
du

dt

∣∣∣∣
ti

=
ui − ui−1

∆t
.

So, to design a two-step method, we consider the Taylor’s expansion:

ui−1 = ui −
du

dt

∣∣∣∣
ti

∆t+
d2u

dt2

∣∣∣∣
ti

∆t2

2
− d3u

dt3

∣∣∣∣
ti

∆t3

6
+ · · ·

ui−2 = ui −
du

dt

∣∣∣∣
ti

2∆t+
d2u

dt2

∣∣∣∣
ti

4∆t2

2
− d3u

dt3

∣∣∣∣
ti

8∆t3

6
+ · · ·

We want αui−1 + βui−2 to contain only up to the
du

dt
∆t term. So, we want


−α− 2β = 1 so that the

du

dt
term has coefficient of 1

α + 4β = 0 so that the
d2u

dt2
term has coefficient of 0

.

Remark. Coefficients are chosen according to coefficients in the Taylor’s expansion.

Solving the system, we get α = −2

β =
1

2
.

Let’s test that this method really works:

−2ui−1 = −2ui + 2
du

dt

∣∣∣∣
ti

∆t− d2u

dt2

∣∣∣∣
ti

∆t2 +O
(
∆t3
)

1

2
ui−2 =

1

2
ui −

du

dt

∣∣∣∣
ti

∆t+
d2u

dt2

∣∣∣∣
ti

∆t2 +O
(
∆t3
)

−2ui−1 +
1

2
ui−2 = −2ui +

1

2
ui +

du

dt

∣∣∣∣
ti

∆t+O
(
∆t3
)
.

13



1 NUMERICAL APPROXIMATION OF IVPS 1.6 Higher Order Methods

Then,

du

dt

∣∣∣∣
ti

∆t =
1

2
ui−2 − 2ui−1 −

3

2
ui +O

(
∆t3
)

du

dt

∣∣∣∣
ti

=
ui−2 − 4ui−1 − 3ui

2∆t
+O

(
∆t3
)
.

Thus, we have successfully built an implicit order 2 method.

Extension 1.1 (Higher Order Method) If we want to build a 4-th order method, we can con-

sider the Taylor expansion for ui−1, ui−2, ui−3, ui−4. Then, we choose coefficients α, β, γ, δ such

that αui−1 + βui−2 + γui−3 + δui−4 only contain up to
du

dt
term.

Remark 2. (Partical Considerations).

• When building such a method, we need to consider the differentiability of the

function when deciding the order.

• Theoretically, we can go as many orders as we want, but we need to be careful

when getting too high orders. Generally, higher order, more accuracy, but less

stability.

1.6 Higher Order Methods

Definition 1.6.1 (Linear Multistep Methods).

un+1 =

p∑
j=0

ajun−j +∆t

p∑
j=0

bjf(tn−j, un−j) + ∆tb−1f(tn+1, un+1)

• This method is implicit if b−1 ̸= 0.

• We can use a polynomial to represent the method:

π(ρ) = ρp+1 −
p∑

j=1

ajρ
p−j.

Example 1.6.2 BDF Methods

14



1 NUMERICAL APPROXIMATION OF IVPS 1.6 Higher Order Methods

Given that
du

dt

∣∣∣∣
t=tn

≈ f(tn+1, un+1), we have

un+1 −
p∑

j=0

ajun−j

∆t
≈ f(tn+1, un+1),

where

aj =


a1

a2
...

ap

, bj =


0

0
...

0

 for j = 0, 1, . . . , p, and b−1 ̸= 0.

Specifically, BDF2 gives us

un+1 =
4

3
un −

1

3
un−1 +

2

3
∆tf(tn+1, un+1).

So, πBDF2(ρ) = ρ2 − 4

3
ρ+

1

3
.

Definition 1.6.3 (Adams). We know that

y(tn+1) = y(tn) +

∫ tn+1

tn

f(τ, y(τ)) dτ.

We can interpolate points {ti, y(ti)}ni=0 using polynomial p(t). Then, we have

y(tn+1) ≈ y(tn) +

∫ tn+1

tn

p(t) dt.

p(t)

Example 1.6.4 Examples of Adams Method

• Adams-Bashforth:

un+1 = un +
∆t

12
(23fn − 16fn−1 + 5fn−2) (AB3)

15



1 NUMERICAL APPROXIMATION OF IVPS 1.6 Higher Order Methods

Here, b−1 = 0, b1 =
23

12
, b1 = −

16

12
, b2 =

5

12
, and a0 = 1, a1 = 0, a2 = 0. Meanwhile,

πAB3(ρ) = ρ4 − ρ2.

• Adams-Moulton:

un+1 = un +
∆t

24
(9fn+1 + 19fn − 5fn−1 + fn−2). (AM4)

Here, a0 = 1, a1 = 0, a2 = 0, and b−1 =
9

24
, b0 =

19

24
, b1 =

−5
24

, b2 =
1

24
.

Theorem 1.6.5 Consistency and Convergence

• If
p∑

j=0

aj = 1 and−
p∑

j=0

jaj +

p∑
j=0

bj + b−1 = 1, then the method is consistent.

• Suppose r is the root of π(ρ) = 0. If ∀ rj , either:

1. |rj| < 1, or

2. |rj| = 1 and π′(rj) ̸= 0,

then the method is convergent.

Example 1.6.6 BDF2 is Consistent

Recall BDF2:

un+1 =
4

3
un −

1

3
un−1 +

2

3
∆tf(tn+1, un+1).

Then, a0 =
4

3
, a1 = −

1

3
, b−1 =

2

3
. So,

1∑
j=0

aj =
4

3
− 1

3
= 1

and

−
1∑

j=0

jaj +
1∑

j=0

bj + b−1 =

(
−0 · 4

3
+ 1

(
−1

3

))
+ 0 + 0 +

1

2
=

1

3
+

2

3
= 1.

16



1 NUMERICAL APPROXIMATION OF IVPS 1.7 Systems

So, the method is consistent. Further, the polynomial representation of BDF2 is

πBDF2(ρ) = ρ2 − 4

3
ρ+

1

3
.

Then, the roots are r1 = 1, r2 =
1

3
. Note that |r1| = 1 and |r2| =

∣∣∣∣13
∣∣∣∣ < 1. Further, π′(1) ̸= 0.

So, the method is convergent.

Definition 1.6.7 (Runge-Kutta Method). un+1 = un+∆t

s∑
i=1

biKi,where s is the number

of stages, and Ki = f(tn + ci∆t, un + ∆t

s∑
j=1

aijKj). The quantity of c, A, and b⊤ will be

represented using a Butcher array.

1.7 Systems

Consider

dy

dt
= f(t, y), where f, y are vectors, and y(t) =


y1(t)

y2(t)
...

yn(t)


1.7.1 Stability. We can regard the system as

dy

dt
= f(t, y) = Ay.

Then, we can diagonalize A as A = T−1DT . Hence,

dy

dy
= Ay =

(
T−1DT

)
y

T
dy

dt
= T

(
T−1DT

)
y

d(Ty)

dt
= D(Ty) Denote w = Ty

dw

dt
= Dw.

17



1 NUMERICAL APPROXIMATION OF IVPS 1.8 Terminology Clarification

Suppose we apply EE to the system, we get

1

∆t
(un+1 − un) = Aun

un+1 = (I +∆tA)un.

Then, for stability, we require

∆t <
2

|λi|
≤ 2

max |λi|
, where max |λi|is the Spectral Radius.

So, EE is conditionally stable.

However, if we apply Crank-Nicolson, we get

un+1 − un

∆t
=

1

2
(f(tn+1, un+1) + f(tn, un)).

1

∆t
(un+1 − un) =

1

2
Aun +

1

2
Aun+1(

I − ∆t

2
A

)
un+1 =

(
I +

∆t

2
A

)
un.

Denote−∆t

2
A = B. Then, eig

(
I − ∆t

2
A

)
= eig(I+B) = 1+eig(B) > 0. Therefore, the system

will always be solvable, and thus CN is unconditionally stable.

1.8 Terminology Clarification

Definition 1.8.1 (Consistency). Given

dy

dt
= f(t, y).

An algorithm is consistent if

lim
∆t→0

yi+1 − yi
∆t

= f(ti+1, yi+1).

Example 1.8.2

18



1 NUMERICAL APPROXIMATION OF IVPS 1.8 Terminology Clarification

Consider
dy

dt
= −λy with y(0) = 1. Then, yexact = e−λt.

y(ti+1)− y(ti)

∆t
̸= −λy(ti+1)

e−(ti+∆t) − e−λti

∆t
̸= −λe−λ(ti+∆t).

We want to investigate the quantity

e−(ti+∆t) − e−λti

∆t
− λe−λ(ti+∆t) =

e−λtie−λ∆t − e−λti

∆t
+ λe−λtie−λ∆t

= e−λti

(
e−λ∆t − 1

∆t
+ λe−λ∆t

)
.

Consider Taylor’s expansion:

e−λ∆t = 1− λ∆t+
λ2

2
∆t2 − λ3

3
∆t3 + · · ·

e−λ∆t − 1 = −λ∆t+
λ2

2
∆t2 − λ3

3
∆t3 + · · ·

e−λ∆t − 1

∆t
= −λ+

λ2

2
∆t− λ3

3
∆t2 + · · ·

λe−λ∆t = λ− λ2∆t+
λ3

2
∆t2 − λ4

3
∆t3 + · · ·

So,
e−λ∆t − 1

∆t
+ λe−λ∆t = −λ2

2
∆t− λ3

6
∆t2 + · · · ∼ O(∆t) = C∆t.

Then,

e−λti

(
e−λ∆t − 1

∆t
+ λe−λ∆t

)
= C∆te−λti .

When ∆→ 0,

e−λti

(
e−λ∆t − 1

∆t
+ λe−λ∆t

)
= C∆te−λti → 0.

So, this method is consistent.
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1 NUMERICAL APPROXIMATION OF IVPS 1.8 Terminology Clarification

Definition 1.8.3 (Zero Stability and Convergence).

dataexact yexact

dataN u

Pexact :
dy

dt
= f, y(0) = α

consistency convergence

d̃ata ũ

PN : Numerical Problem
∆u∆data zero-stability

∆u is controlled by ∆data

P̃N : Near-by Problem

∆u ∝
1

∆t
∆data

Example 1.8.4

Consider the linear system Au = r(∆t) with ∥r∥ → 0 as ∆t→ 0. Then,

u = A−1r.

One have ∥u∥ ≤ ∥A−1∥·∥r∥. When ∆t→ 0, though ∥r∥ → 0, ∥A−1∥ can be still huge, leading

to unstable u.

Definition 1.8.5 (Absolute Stability). Asympototic behavior of the method when t →
∞.

20



2 ITERATIVE METHODS

2 Iterative Methods

Problem: Ax = b.

2.1 Introduction and Definitions

• Direct methods: Gauss-Elimination:

A = LU,

where L is lower triangular and U is upper triangular.

To solve, Ax = LUx = b. We solve two systems: Ly = b and Ux = y.

(+) CostO(n3) for A ∈ Rn×n

(+) Finite number of steps to solution

(-) If A is sparse (# non-zero entries≪ total # of entries), in general, L and U are full.

Therefore, computing LU factorization will consume huge memory.

• Iterative Methods General Expression:

x(k+1) = Bx(k) + g (Iter)

Cost: O(n2 ·M), where M is the number of iterations. So if n2 ·M ≪ n3 (that is, M ≪ n),

we win.

Example 2.1.1 Iterative Methods

Consider 2Idx = b with exact solution xex =
1

2
b.

We know x+ x = b. So,

x = −x+ b.

Then, our iterative update will be

x(k+1) = −Idx(k) + b, where B = −Id, g = b

• If x(k) = xex =
1

2
, do we say at xex?

x(k+1) = −Id ·
(
1

2
b

)
+ b =

1

2
b = xex.

So, yes. The method is therefore consistent.

21



2 ITERATIVE METHODS 2.1 Introduction and Definitions

• If x(k) = 0, then we have

x(k+1) = 0 + b = b, x(k+1) = −Id · b+ b = 0, x(k+3) = 0 + b = b, · · ·

The iterates oscillates between 0 and b. BAD initial guess.

What if we change a method? Note that

2Idx = αIdx+ (2− α)Idx = b.

Then, the update rule can be

x(k+1) =
α− 2

α
Idx

(k) +
1

α
b, where B =

α− 2

α
Id, g =

1

α
b.

Let our initial guess to be x(0) = 0.

• If α = 2, then the solution converge to xex =
1

2
b in 1 step.

• If α =
3

2
, then x(0) = 0, x(1) = −1

3
b +

2

3
b =

1

3
b, x(2) = −5

9
b, . . . . We do converge in this

case, but we need a lot of steps.

• If α =
1

2
, we have x(0) = 0, x(1) = 2b, x(2) = −b. and x(3) = 5b. In fact, we don’t

converge with this choice of α.

Theorem 2.1.2 Convergence of an Iterative Method

Let ρ(B) be the spectrum radius of B. i.e., ρ(B) = maxi |λi|.

• the iterative method converges x(k) → x as k →∞ ⇐⇒ ρ(B) < 1.

• x = xex (i.e., x is the exact solution for Ax = b) ⇐⇒ x = Bx+ g (i.e., x is a fixed

point of the iterative method).

• The smaller ρ(B), the faster convergence.

Therefore, since B =
α− 2

α
Id, we know that ρ(B) =

∣∣∣∣α− 2

α

∣∣∣∣.
• Optimal convergence: ρ(B) = 0:

α− 2

α
= 0 =⇒ α∗ = 2.

• When α =
1

2
, ρ(B) =

∣∣∣∣1/2− 2

1/2

∣∣∣∣ = 3 > 1 =⇒ no convergence.
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2 ITERATIVE METHODS 2.2 Richardson Method

Definition 2.1.3 (Consistency).An iterative method (Iter) is consistent with the linear

system Ax = b when xex is a stationary point of (Iter) (i.e., fixed point):

Bxex + g = xex

Definition 2.1.4 (Convergence of an Iterative Method). The iterative method (Iter) is

convergent to the solution xex of the linear system Ax = b when

lim
k→∞

∥∥e(k)∥∥ = 0,

where e(k) = x(k) − xex.

If ∃C = ρ(B) < 1 s.t.
∥∥e(k+1)

∥∥ ≤ C ·
∥∥e(k)∥∥ ∀ k ≥ 0, then we guarantee convergence

regardless of the initial guess x(0).

2.2 Richardson Method

Ax = b

x− x = α(b− Ax) = 0

xx− αAx+ αb

x(k+1) = (I − αA)x(k) + αb,

where B = I − αA, g = αb

• We converge ⇐⇒ ρ(I − αA) < 1.

• If A is SPD (all eigenvalues are real and x⊤Ax > 0), then if

0 < α <
2

λmax

,

we converge. The optimal convergence rate attains when

α∗ =
2

λmin + λmax

.

• Conditioning: κ(A) =
λmax

λmin

≥ 1.

If κ(A) is high, slow convergence. If κ(A) is slow, fast convergence. Specially, if κ(A) = 1,

then A is unitary matrix such that A∗A = AA∗ = Id.
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2 ITERATIVE METHODS 2.3 Preconditioning

• Stopping Criteria:

– Residual: r(k) = b− Ax(k):
∥∥r(k)∥∥ ≤ tol

Problem: If κ(A) is high, BAD.

– Consecutive iterations:
∥∥x(k+1) − x(k)

∥∥ ≤ tol

Why it work?

x(k) − xex︸ ︷︷ ︸
e(k)

= x(k) − x(k+1) + x(k+1) − xex︸ ︷︷ ︸
e(k+1)

So, ∥∥e(k)∥∥ ≤ ∥∥e(k) − x(k+1)
∥∥+ ∥∥e(k+1)

∥∥.
If the method is convergent,

∥∥e(k+1)
∥∥ ≤ ρ(B)

∥∥e(k)∥∥. So,

∥∥e(k)∥∥ ≤ ∥∥x(k) − x(k+1)
∥∥+ ∥∥e(k+1)

∥∥
≤
∥∥x(k) − x(k+1)

∥∥+ ρ(B) ·
∥∥e(k)∥∥∥∥e(k)∥∥ ≤ 1

1− ρ(B)

∥∥x(k) − x(k+1)
∥∥.

2.3 Preconditioning

Definition 2.3.1 (Preconditioner). A preconditioner P is an invertible matrix (i.e.,

det(P ) ̸= 0) such that P−1Ax = P−1b with reduced κ(P−1A).

Remark. In other words, we require P−1A ≈ I. So, P needs to be close to A and be easy

to solve at hte same time. However, these two requirements are exactly the opposite.

Example 2.3.2 How to come up with a P?

In Richardson method, we have

P
(
x(k+1) − x(k)

)︸ ︷︷ ︸
δ

= −αAx(k) + αb

= αr(k), where r(k) = b− Ax(k) is the residual.

Note

δ = x(k+1) − x(k) =⇒ x(k+1) = x(k) + δ = −αP−1Ax(k) + αP−1b.

So, we want κ(P−1A)≪ κ(P−1b).
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2 ITERATIVE METHODS 2.3 Preconditioning

Theorem 2.3.3 Convergence

For A SPD,

α∗ =
2

λmin + λmax

,

the following convergence estimate holds:

∥∥e(k)∥∥
A
≤
(
κ(P−1A)− 1

κ(P−1A) + 1

)k∥∥e(0)∥∥
A
,

where ∥·∥A is the energy norm defined as

∥v∥A =
√
v⊤Av for A real, SPD.

Theorem 2.3.4 Common Choices of P

• P = diag(A): Jacobi method.

• P = lower(A): Gauss-Seidel method.

• P = L̃Ũ , incomplete LU factorization.
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3 FINITE DIFFERENT FOR BVPS

3 Finite Different for BVPs

3.1 Introduction to BVPs

Problem Set up: Suppose we have a string with fixed endpoints. There is a force adding on the

string. One can write −
d2u

dx2
= f(x), x ∈ (0, 1)

u(0) = α,
du

dx
= β

From ODE, we can denote w =
du

dx
. Then,

dw

dx
= f(x). The above problem can be written into

an ODE system:
dy

dt
=

[
0 0

1 0

][
w

u

]

Definition 3.1.1 (Bondary Value Problem (BVP). A boundary-value problem (BVP) is

given by −µ
d2u

dx2
= f(x), x ∈ (0, 1), µ > 0

u(0) = α, u(1) = β.
(BVP)

Example 3.1.2 Poisson Equation−
(
∂2u

∂x2
+

∂2u

∂y2

)
= f(x, y), (x, y) ∈ Ω

u(boundary of Ω) = 0

(Poisson)

One can further write (
∂2u

∂x2
+

∂2u

∂y2

)
= ∆u,

where ∆u = ∇2u =
n∑

i=1

∂2

∂x2
i

, and ∆ is called the Laplace operator, the divergence of gradi-

ent.

3.1.3 Derive the BVP from String. Note that the energy of the string is given by

J(u) =
1

2

∫ 1

0

µ

(
du

dx

)2

dx−
∫ 1

0

f · u dx.

J is called a functional (function of a function). The boundary condition is given by u(0) =

u(1) = 0. In nature, things tend to minimize energy, so we want to min J(u). Let’s take the
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3 FINITE DIFFERENT FOR BVPS 3.1 Introduction to BVPs

gradient: suppose ε ∈ R, then

lim
ε→0

J(u+ εv)− J(u)

ε
= 0,

where v is an arbitrary function such that v(0) = v(1) = 0. Note that

Numerator =
1

2

∫ 1

0

µ

(
du

dx
+ ε

dv

dx

)2

dx−
∫ 1

0

f · (u+ εv) dx− 1

2

∫ 1

0

µ

(
du

dx

)2

dx−
∫ 1

0

f · u dx

=
����������1

2

∫ 1

0

µ

(
du

dx

)2

dx+
1

2
2ε

∫ 1

0

µ
du

dx
· dv
dx

dx+
1

2
ε2
∫ 1

0

µ

(
dv

dx

)2

dx∣∣∣∣ −
�
���

��∫ 1

0

f · u dx− ε

∫ 1

0

f · v dx−
����������1

2

∫ 1

0

µ

(
du

dx

)2

dx−
�

���
��∫ 1

0

f · u dx

= ε

∫ 1

0

µ
du

dx
· dv
dx

dx+
1

2
ε2
∫ 1

0

µ

(
dv

dx

)2

dx− ε

∫ 1

0

f · v dx.

Then,
J(u+ εv)− J(u)

ε
=

∫ 1

0

µ
du

dx
· dv
dx

dx+
1

2
ε

∫ 1

0

µ

(
dv

dx

)2

dx−
∫ 1

0

f · v dx.

So, the limit is given by

lim
ε→0

J(u+ εv)− J(u)

ε
=

∫ 1

0

µ
du

dx
· dv
dx

dx−
∫ 1

0

f · v dx = 0.

This gives us an equilibrium solution, and∫ 1

0

µ
du

dx
· dv
dx

dx−
∫ 1

0

f · v dx = 0

is called variational / weak (we get the solution from a perturbed system).

Now, use integration by parts: ∫
Fg = [FG]−

∫
fG.

Denote
du

dx
= F and

dv

dx
= g =⇒ d

dx

(
du

dx

)
=

d2u

dx2
and

∫
dv

dx
dx = v.

So, ∫ 1

0

µ
du

dx
· dv
dx

dx = µ

[
du

dx
v

]1
0︸ ︷︷ ︸

=0 as v(1)=v(0)=0

−µ
∫ 1

0

d2u

dx2
v dx = −u

∫ 1

0

d2u

dx2
v dx.
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3 FINITE DIFFERENT FOR BVPS 3.2 Finite Difference

So, the variational becomes

−µ
∫ 1

0

d2u

dx2
v dx−

∫ 1

0

f · v dx = 0

−
∫ 1

0

(
µ
d2u

dx2
+ f

)
· v dx = 0.

We want the equation to be true ∀ v, so it must be

µ
d2u

dx2
+ f = 0.

That is, −µ
d2u

dx2
= f

u(0) = u(1) = 0.
(BVP)

Assumption: u is twice differentiable.

3.1.4 Two ways to formula a BVP.

• Find u s.t. ∀ v with v(0) = v(1) = 0,∫ 1

0

µ
du

dx
· dv
dx

dx =

∫ 1

0

f · v dx

In this formulation, we only require u to be once differentiable. This formulation is used

in Finite Elements

• Find u s.t. −µ
d2u

dx2
= f, x ∈ (0, 1)

u(0) = u(1) = 0.

This formulation requires u to be twice differentiable. This formulation is used for Finite

Difference

3.2 Finite Difference

Let’s use Taylor’s formula to approximate u(xi+1) and u(xi−1):

u(xi+1) = u(xi) +
du

dx
∆x+

1

2

d2u

dx2
∆x2 + · · ·

u(xi−1) = u(xi)−
du

dx
∆x+

1

2

d2u

dx2
∆x2 + · · ·
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3 FINITE DIFFERENT FOR BVPS 3.2 Finite Difference

Then,

u(xi+1) + u(xi−1) = 2u(xi) +
d2u

dx2
∆x2 +

1

12

d4u

dx4
∆x4 +O

(
∥∆x∥4

)
d2u

dx2
∆x2 = u(xi+1) + u(xi−1)− 2u(xi)−

1

12

d4u

dx4
∆x4 +O

(
∥∆x∥4

)
d2u

dx2
=

u(xi+1) + u(xi−1)− 2u(xi)

∆x2
− 1

12

d4u

dx4
∆x4 +O(∥∆x∥2).

So, second order derivative approximation is

d2u

dx2
≈ u(xi+1) + u(xi−1)− 2u(xi)

∆x2

Denote ui = u(xi) and fi = f(xi). Then,

−µd
2u

dx2
= −µui+1 + ui−1 − 2ui

∆x2
= fi

Then, we form a linear system Au = f , where A is given byu

A =
µ

∆x



2 −1
−1 2 −1

−1 2
. . .

. . . . . . −1
−1 2


.

Claim 3.1

• Au = f is solvable because A is positive definite (x⊤Ax > 0 ∀ x ̸= 0.)

• Since A is symmetric, all eigenvalues of A is real. Further since A is positive definite, all

eigenvalues are positive. So, A is nonsingular.

•
λmin

λmax

⊥⊥ ∆x.

Theorem 3.2.2 Consistency and Convergence

FD is consistent and convergent.

Proof 1. Note that Au = f is the system we want to solve. Consider uex, the exact solution

to the BVP. Then, we know, in general, Auex ̸= f . Instead,

Auex =

[
∂2u

∂x2

]
+ τi,
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3 FINITE DIFFERENT FOR BVPS 3.3 Advection-Diffussion Equation

where τi = C(xi)∆x2. From previously noted,

C(xi) = c
∂4u

∂x4
.

So, one can write Auex = f + τ .

Define e = uex − u. Then, Ae = τ =⇒ e = A−1τ . So,

∥e∥ ≤
∥∥A−1τ

∥∥ ≤ ∥∥A−1
∥∥ · ∥τ∥.

So, to have convergence, we need

∥∥A−1
∥∥ <∞ and ∥τ∥ → 0 as ∆x→ 0.

As claimed before,
λmin

λmax

⊥⊥ ∆x, we know ∥A−1∥ is bounded regardless of ∆x. Since ∥τ∥ ∼ ∆x2,

∥τ∥ → 0 as ∆x→ 0. Then, the method is consistent.

Further, we have that

∥e∥ → 0 as ∆x→ 0.

So, this method is convergent. ■

3.3 Advection-Diffussion Equation

The problem: 

−µd
2u

dx2︸ ︷︷ ︸
diffusion

+ β
du

dx︸︷︷︸
advection

= f

u(0) = uL

u(1) = uR.

(Advection-Diffusion)

One can think of this equation to model a particle’s random walk. Based on the Guassian

distribution, the particle has 50% chance to move to the left or to the right at each time point.

3.3.1 Discretization. By Taylor’s Expansion:

u(xj+1) = u(xj) +
du

dx
∆x+

1

2

d2u

dx2
∆x2 − 1

6

d3u

dx3
∆x3 +

1

12

d4u

dx4
∆x4 +O

(
∥∆x∥4

)
(1)

du

dx
∆x = u(xj+1)− u(xj) +

1

2

d2u

dx2
∆x2

du

dx
=

uj+1 − uj

∆x
+

1

2

d2u

dx2
∆x2
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3 FINITE DIFFERENT FOR BVPS 3.3 Advection-Diffussion Equation

Can we achieve a better discretization?

u(xj−1) = u(xj)−
du

dx
∆x+

1

2

d2u

dx2
∆x2 − 1

6

d3u

d23
∆x3 +

1

12

du

dx
∆x4 +O

(
∥∆x∥4

)
(2)

Consider (1)− (2):

u(xj+1)− u(xj−1) = 2
du

dx
∆x+

1

3

d3u

dx3
∆x3 +O(∥∆x∥3).

Then,
du

dx
=

u(xj+1)− u(xj−1)

2∆x
− 1

6

d3u

dx3
∆x2 +O

(
∥x∥2

2

)
.

So, the final numerical solution is given by

−µuj+1 − 2uj + uj−1

∆x2
+ β

uj+1 − uj−1

2∆x
= fj ∼ O(∆x2).

Example 3.3.2 A Specific Example
−µd

2u

dx2
+ β

du

dx
= 0

u(0) = 0

u(1) = 1.

uex =
e

β
µ
x − 1

e
β
µ − 1

.

If we have
|β|
µ
≫ 1: convection dominated problem.
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3 FINITE DIFFERENT FOR BVPS 3.3 Advection-Diffussion Equation

Numerical experiment shows that when |β| is large, the numerical solution will not be

consistent anymore. What’s wrong?

• Mathematical explanation:

µ
uj+1 − 2uj + uj−1

∆x2
+ β

uj+1 − uj−1

2∆x
= 0(

− µ

∆x2
+

β

2∆x

)
uj+1 +

2µ

∆x2
uj −

(
µ

∆x2
+

β

2∆x

)
uj−1 = 0

This is a difference equation: guess a solution uj = cρj . Then,(
− µ

∆x2
+

β

2∆x

)
cρj+1 +

(
2µ

∆x2

)
cρj −

(
µ

∆x2
+

β

2∆x

)
cρj−1 = 0(

− µ

∆x2
+

β

∆x

)
ρ2 +

(
2µ

∆x2

)
ρ−

(
µ

∆x2
+

β

2∆x

)
= 0

We can find ρ1 and ρ2 from this equation. Then,

uj = c1ρ1 + c2ρ2, a linear combination.

Note that ρ1 and ρ2 are solutions, so

ρ1ρ2 =

−
(

µ

∆x2
+

β

2∆x

)
(
− µ

∆x2
+

β

∆x

) =

1 +
β∆x

2µ

1− β∆x

2µ

.

• Péclet= Pe =
|β|∆
2µ

• If
|β|∆
2µ

> 1, ρ1ρ2 < 0, and then we have oscillating solutions.

3.3.3 Another Method: Upwind Method. Our previous computation relies on symmetry.

However, there is a clear physical information flow. So, this problem is asymmetric in real-

ity. We don’t want as fancy as∼ O(∆x22) solutions, but we can use a∼ O(∆x) method:

β
∂u

∂x
≈ β

ui − ui−1

∆x
(upwind)
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3 FINITE DIFFERENT FOR BVPS 3.3 Advection-Diffussion Equation

• Now, let’s show (upwind) is stable:

β
ui − ui−1

∆x
= β

ui+1 − ui−1

2∆x
− β

ui+1

2∆x
+ β

2ui

2∆x

= β
ui+1 − ui−1

2∆x︸ ︷︷ ︸
central mean

−β∆x

2

ui+1 − 2ui + ui−1

∆x2︸ ︷︷ ︸
approx. of 2nd derivative

So, we can consider the equation:

−
(
µ+
|β|∆x

2

)
︸ ︷︷ ︸

µ(1+Pe)

∂2u

∂x2
+ β

∂u

∂x
= 0.

Apply a central approximation:

−µui+1 − 2ui + ui−1

∆x2
+ β

ui+1 − ui−1

2∆x
= 0.

Then, upwind solution of the original problem is the central approximation of a per-

turbed system:

Central (Perturbed) = Upwind (Original)

Recall Péclet:

Pe =
|β|∆x

2µ
.

Then, µ∗ = µ(1 + Pe). So, the Péclet of the perturbed system is

P∗
e =
|β|∆x

2µ∗ =
|β|∆x

2µ(1 + Pe)
=

Pe

1 + Pe

< 1 ∀ |β| and ∆x.

So, this upwind method is always stable.

• Consistency: when ∆x→ 0, µ∗ → µ.

• Order : for the perturbed system, we have a 2nd order approach, but with the original

problem, it is only a 1st order method.

3.3.4 Design a Better Method.

µsmart = µ(1 + Φ(Pe)) such that

• Φ(Pe)→ 0 as ∆x→ 0.

• Psmart
e =

|β|∆x

2µsmart
< 1.
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3 FINITE DIFFERENT FOR BVPS 3.4 2-D Problem

Our upwind method takes Φ(Pe) = Pe ∼ O(∆x). But can we take some Φ(Pe) ∼ O(∆x2)?

• We consider the Scharfetter-Gummel Method:

Φ(Pe) = Pe − 1 +
2Pe

e2Pe − 1︸ ︷︷ ︸
Bernoulli function

• The worst case order of Scharfetter-Gummel is∼ O(∆x2).

• Scharfetter-Gummel is also a special Φ(Pe) choice that produces exact solutions.

3.4 2-D Problem

Consider

−µ∆u+ β ·∇u = f

u(∂Ω) = data,

where ∂Ω is the boundary of Ω.

Write this problem out:
−µ
(
∂2u

∂x2
+

∂2u

∂y2

)
︸ ︷︷ ︸

diffusion

+ βx
∂u

∂x
+ βy

∂u

∂y︸ ︷︷ ︸
wind

= f(x, y)

u(∂Ω) = d

3.4.1 Only consider Diffusion.

−µui+i,j − 2ui,j + ui−1,j

∆x2
−µui,j+1 − 2ui,j + ui,j−1

∆y2
= f(xi, yj)
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3 FINITE DIFFERENT FOR BVPS 3.5 Parabolic Problems

To solve, we form a system: (i, j)→ f such that Au = b, where A is SPD and takes the form

of:

3.4.2 Turn on the wind.

We see that the points are not good points.

3.5 Parabolic Problems
∂u

∂t
− µ

∂2u

∂x2
= f, x ∈ (0, 1) and 0 < t < T

u(0, t) = uL(t), u(1, t) = uR(t)

u(x, t = 0) = u0(x).

Discretization along x (semidiscritization): uj(t) = u(xj, t). The equation becomes

duj

dt
− µ

uj+1(t)− 2uj(t) + uj−1(t)

∆x2
= fj(t) = f(xj, t).

So, we form a system Au = f :

A =
µ

∆x2
Triad(−1, 2, 1), u(t) =


u1(t)

...

un(t)

, f(T ) =


f1(t)

...

fn(t)

.
Then, we have a system of ODE to solve:

du

dt
− Au = f.

35



3 FINITE DIFFERENT FOR BVPS 3.5 Parabolic Problems

We can now do time discretization and use ODE methods.

• EE/FE: un = u(tn). Then,

du

dt

∣∣∣∣
tn
≈ un+1 − un

∆t
= fn + Aun

un+1 = un +∆tAun +∆tfn

= (I +∆tA)un +∆tfn

= (I +∆tA)nu0 +∆tfn.

• IE/BE:

du

dt

∣∣∣∣
tn

=
un − un−1

∆t
= fn + Aun

un − un−1 = ∆tfn +∆tAun

un −∆tAun = ∆tfn + un−1

(I −∆tA)un = un−1 +∆tfn ← a linear system to solve

I−∆tA is SPD and A is time-independent. So, we may favor direct method over iterative

method (as we can store A = LU and reuse it).

Now, let’s discuss the stability by setting f = 0.

• EE is conditionally stable:

Let λi be eigenvalues of A. Then, we need

∆t <
2

|λi|
for stability.

Further, A =
µ

∆x2
Triad(1,−2, 1), so ρ(A) ∼ c

∆x2
. Then,

∆t <
2

|λi|
≤ 2

ρ(A)
=

2

c
∆x2.

So, if we decrease ∆x by 2, to have stability,

∆tnew <
2

c

(
∆x

2

)2

=
∆told

4
=⇒ we need finer intervals for time

• IE is unconditionally stable.
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3 FINITE DIFFERENT FOR BVPS 3.6 Hyperbolic Problems

Definition 3.5.1 (θ Methods).

un+1 − un

∆t
= θAun+1 + (1− θ)Aun + θfn+1 + (1− θ)fn, θ ∈ [0, 1]

• EE: θ = 0,∼ O(∆t), explicit, conditional stability

• IE: θ = 1,∼ O(∆t), implicit, unconditional stability

• CN: θ =
1

2
,∼ O(∆t2), implicit, unconditional stability

To numerically solve θ methods, suppose f = 0. Then,

un+1 − un

∆t
= θAun+1 + (1− θ)Aun

un+1 − un = ∆tθAun+1 +∆t(1− θ)Aun

(I −∆tθA)un+1 = (I +∆t(1− θ)A)un

We essentially solve a linear system in each iteration.

Theorem 3.5.2 Stability and Order of θ Methods

• θ methods are unconditionally stable for θ ≥ 1. Otherwise, it is conditionally stable

for θ <
1

2
, and the stability condition for parabolic problem is ∆t < c∆x2.

• Meanwhile, the method is order 1 for θ ̸= 1

2
and order 2 for θ =

1

2
.

• Although the θ method is 2nd order is space, the order of error is dominant and deter-

mined by the order in time.

• CN is the most vulnerable to lack of regularity and sensitive to non-smoothness.

3.6 Hyperbolic Problems
∂u

∂t
+ α

∂u

∂x
= 0, α > 0 constant

u(x, 0) = u0(x)

Exact solution: u(x, t) = u0(x− αt).
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3 FINITE DIFFERENT FOR BVPS 3.6 Hyperbolic Problems

Example 3.6.1 Modeling Density of Pollutant

u: pollutant, x: displacement of boat, t: time.

Consider the solution to


dx

dt
= a

x(0) = x0.
We have x(t) = x0 + at. With different initial value

x0, we form different characteristic curves.

Consider u(x(t), t):
du

dt
=

∂u

∂t
+

∂u

∂x
· dx
dy

=
∂u

∂t
+ a

∂u

∂x
= 0.

3.6.2 Similar Problems.

• Conservation Law:
∂u

∂t
+

∂g(u)

∂x
= 0,

where q(u) = v(u) · u with v = vmax

(
1− u

umax

)
.

=⇒ ∂u

∂t
+ vmax

(
1− u

umax

)
︸ ︷︷ ︸

=“a”

∂u

∂x
= 0 ← models the density of traffic

Here, a is no longer a constant.
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3 FINITE DIFFERENT FOR BVPS 3.6 Hyperbolic Problems

• Heat Equation:
∂2u

∂t2
− γ2∂

2u

∂x2
= f.

Define w1 =
∂u

∂x
and w2 =

∂u

∂t
:


∂w1

∂t
− γ2∂w2

∂x
= f

∂w2

∂t
− ∂w1

∂x
= 0

[
∂2u

∂x∂t
=

∂2u

∂t∂x

]
.

Define w =

[
w1

w2

]
and A =

[
0 −γ2

−1 0

]
. Then, the original equation becomes a system

∂w

∂t
+ A

∂w

∂x
= 0.

The eigenvalues of A: λ1,2 = ±γ =⇒ Diagonalizable.

3.6.3 Find the Numerical Solution.

∂u

∂t

∣∣∣∣
tn+1,uj

=
un+1
j − un

j

∆t
and a

∂u

∂x

∣∣∣∣
tn+1,uj

=
a

2
·
un+1
j+1 − un+1

j−1

∆t

• With Backward-Euler Centered (BE-C):

un+1
j − un

j

∆t
+

a

2
·
un+1
j+1 − un+1

j−1

∆t
= 0

=⇒



1

∆t

a

2∆t
0 0 · · ·

− a

2∆t

1

∆t

a

2∆t
0 · · ·

. . .

.

• With Forward-Euler Centered (FE-C): Unconditionally unstable. NEVER USE IT!

un+1
j − un

j

∆t
+

a

2
·
un
j+1 − un

j−1

∆t
= 0

=⇒ un+1
j = un

j +
a∆t

2∆t
(un

j+1 − un
j−1).
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3 FINITE DIFFERENT FOR BVPS 3.6 Hyperbolic Problems

• With Forward-Euler Upwind (FE-Upwind):

un+1
j − un

j

∆t
+ a

un
j − un

j−1

∆x
= 0 a > 0

un+1
j − un

j

∆t
+ a

un
j+1 − un

j

∆x
= 0 a < 0

un+1
j − un

j

∆t
+

a

2

un
j+1 − un

j−1

∆x
− |a|∆t

2

un
j+1 − 2un

j + un
j−1

∆x2︸ ︷︷ ︸
diffusion

= 0

• With Lax Wendroff (LW): FE-Upwind with modified coefficient

un+1
j − un

j

∆t
+

a

2

un
j+1 − un

j−1

∆x
− a2∆t

2
·
un
j+1 − 2un

j + un
j−1

∆x2
= 0.

Proof 1.

u(xj, t
n+1) = u(xj, t

n) +
∂u

∂t

∣∣∣∣
tn,xj

(tn+1 − tn) +
1

2

∂2u

∂t2

∣∣∣∣
tn,xj

(tn+1 − tn)2 +O
(∥∥tn+1 − tn

∥∥2)
Note that

∂u

∂t
= −a∂u

∂x
,

∂2u

∂x∂y
= −a∂

2u

∂x2
,

∂2u

∂x2
= −a ∂2u

∂x∂t
= a2

∂2u

∂x2
.

Substitute:

un+1
j = un

j − a

(
un
j+1 − un

j−1

2∆x

)
∆t+

a2

2

(
un
j+1 − 2un

j + un
j−1

∆x2

)
∆t2.

■

3.6.4 Consistency of Numerical Methods. τ : truncation error

• τBE-C ∼ O(∆t+∆x2)

• τFE-UPW ∼ O(∆t+∆x)

• τLW ∼ O(∆t2 +∆x2 +∆t∆x)

Theorem 3.6.5 Necessary Condition for Stability∣∣∣∣a∆t

∆x

∣∣∣∣ = |a|∆t

∆x
≤ 1 (CFL Condition)

Remark. This is also a sufficient condition for FE-UPW and LW.
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3 FINITE DIFFERENT FOR BVPS 3.6 Hyperbolic Problems

• FE-UPW:

un+1
j = un

j +
a

∆t

(
un
j − un

j−1

)
• LW: un+1

j depend on un
j , un

j−1, and un
j+1

• Unit analysis:
[u]

[t]
=

[
[a] · [u]

[x]

]
=⇒ [a] =

[x]

[t]

=⇒ a is the velocity of exact solution.

∆x

∆t
: velocity of numerical solution

So, CFL condition: vexact ≤ vnumerical

• Boundary of LW: At boundary of x, we require un
m−1, u

n
m, and un

m+1 to find un+1
m . However,

un
m+1 is out of region of interest.

What to do? We use the characteristic curves:

un
m+1 = un

m +
∆t

∆x
a
(
un
m − un

m−1

)
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3 FINITE DIFFERENT FOR BVPS 3.6 Hyperbolic Problems

3.6.6 Wave/Heat Equation.
∂2u

∂t2
− γ2∂

2u

∂x2
= 0.

• Form a linear system and solve using tools for conservation laws:

∂w

∂t
+ A

∂w

∂x
= 0.

(
Define w1 =

∂u

∂x
and w2 =

∂u

∂t
.

)
• System of first order equations: apply relevant tools.

• Wave equation Specific methods: Leapfrog Method

un+1
j − 2un

j + un−1
j

∆t2
− γ2

un
j+1 − 2un

j + un
j−1

∆x2
= f(xj, t

n)

un+1
j = ∆t2fn

j + 2un
j − un−1

j +
γ2∆t2

∆x2

(
un
j+1 − 2un

j + un
j−1

)
– Explicit

– Second order in time and space: τ ∼ O(∆t2 +∆x2)

– Stable under CFL condition:
|γ|∆t

∆x
≤ 1.
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4 FINITE ELEMENTS

4 Finite Elements

Motivation: Consider

J(u) =
1

2
µ

∫
(u′)2 −

∫
fu, (Energy)

where u(0) = u(1) = 1.

• FE: Find u (u(0) = u(1) = 0) such that

u

∫ 1

0

u′v′ −
∫ 1

0

fv = 0 ∀ v (v(0) = v(1) = 0),

Weak as u ∈ C1 is enough.

• FD: Discretize approximation: −µu′′ = 0.

Strong and requires u ∈ C2.

4.1 Elementary Functional Analysis

Definition 4.1.1 (Space of Functions). Suppose S is a set of functions. S is a space of

function if

• Closed under addition: f1, f2 ∈ S =⇒ f1 + f2 ∈ S.

• Closed under scalar multiplication: f1 ∈ S and λ ∈ R =⇒ λf ∈ S.

Definition 4.1.2 (Convergence of Functions).

• fn → f ⇐⇒ lim
n→∞

d(fn, f) = 0.

• d(fn, f)→ 0 and d(fm, f)→ 0 as n,m→∞ =⇒ d(fn, fm)→ 0 as n,m→ 0.

• Cauchy sequence:

d(fn, fm)→ 0 as n,m→ 0 =⇒ d(fn, f)→ 0.

Definition 4.1.3 (Complete Space). A metric space (have distance defined) is complete

if all sequences are Cauchy.

Definition 4.1.4 (Banach Space). A complete space with a norm defined is a Banach

space.
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4 FINITE ELEMENTS 4.1 Elementary Functional Analysis

Definition 4.1.5 (Hilbert Space). A Banach space with a scalar dot product defined is

a Hilbert space.

Theorem 4.1.6 Banach Space / Lp / Hilbert Space

Collect all the functions on (0, 1) s.t.∣∣∣∣∫ 1

0

fp dx

∣∣∣∣ < +∞.

We form a Banach space. The norm is defined as

∥f∥Lp :=

(∫ 1

0

fp dx

)1/p

.

This Banach space is called a Lp(0, 1) space.

More specifically, if p = 2, L2(0, 1) is a Hilbert space. The scalar dot product is defined as

⟨f, g⟩L2 :=

∫ 1

0

f · g dx =⇒ ∥f∥L2 =

√∫ 1

0

f 2 dx.

Definition 4.1.7 (Distributional Derivative). Suppose v ∈ C∞(R) and vanishes out of

an interval. Say we want to find the derivative of f , denoted as f ′. Consider f ′ · v:∫
R
f ′v dx = lim

x→+∞

∫ x

−x

f ′v dx = lim
x→+∞

[f(x)v(x)− f(−x)v(−x)]︸ ︷︷ ︸
=0 since v vanishes

−
∫ x

−x

fv′ dx

= −
∫
R
fv′ dx.

So, ∫
R
f ′v dx = −

∫
R
fv′ dx = −

∫ β

α

v′ dx = −v(β) + v(α).

Therefore, we define the distributional derivative as

f ′ :=

∫
R
f ′v dx = −v(β) + v(α).

g
f

α β
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4 FINITE ELEMENTS 4.1 Elementary Functional Analysis

Definition 4.1.8 (Dirac-δ). The dirac function is defined as∫
R
δv = v(0), where v is regular enough.

Meanwhile, ∫
R
δαv = v(α).

So,

f ′ = −v(B) + v(α) = −δβ + δα.

Definition 4.1.9 (H1(0, 1) Space). Suppose f ∈ L2(0, 1) can be differentiated using the

distributional derivative. Then, the collection of f forms a space namedH1(0, 1).

H1(0, 1) is a Hilbert space, with

⟨f, g⟩H1 = ⟨f, g⟩L2 + ⟨f ′, g′⟩L2

=

∫ 1

0

fg dx+

∫ 1

0

f ′g′ dx.

Hk space is the space of L2 functions with k derivatives in L2(0, 1).

Definition 4.1.10 (H1
0(0, 1)). We define

H1
0(0, 1) =

{
f ∈ H1(0, 1) | f(0) = f(1) = 0

}
.

Remark. H1
1(0, 1) does not form a space.

Proof. SupposeH1
1(0, 1) = {f ∈ H1(0, 1) | f(0) = f(1) = 1}. Let f, g ∈ H1

1(0, 1). Then,

(f + g)(0) = (f + g)(1) = 2.

So, f + g /∈ H1
1(0, 1), implyingH1

1 is not a space. □

Theorem 4.1.11 Poincaré Inequality

∥f∥2H1 = ⟨f, f⟩H1 = ∥f∥2L2 + ∥f ′∥2L2 ≥ ∥f∥2L2 .

Specifrically, inH1
0(0, 1), ∃ constant Cp > 0 s.t.

∥f∥2L2 ≤ ∥f∥2H1 ≤ Cp∥f ′∥2L2 .
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4 FINITE ELEMENTS 4.2 Introduction to Finite Element

With all the terminologies, we can rewrite (Energy) as: For

J =
1

2

∫ 1

0

u2 −
∫

fu,

find u ∈ H1
0(0, 1) s.t. ∫ 1

0

u′v′ dx =

∫ 1

0

fv dx, ∀ v ∈ H1
0(0, 1).

where f ∈ L2(0, 1).

4.2 Introduction to Finite Element

Notation 4.1.

• V := H1
0(0, 1) is a Hilbert space.

• a(·, ·) : V × V → R s.t. ∀ f, g, u, v ∈ V and ∀ λ, µ ∈ R:

– a(λf + µg, v) = λa(f, v) + µa(g, v), and

– a(u, λf + µg) = λa(u, f) + µa(u, g).

• F : a linear function on V : ∀v1, v2 ∈ V and ∀ λ, µ ∈ R,

F(λv1 + µv2) = λF(v1) + µF(v2).

▶ General Problem for FE

Find u ∈ V s.t.

a(u, v) = F(v) ∀ v ∈ V (P)

Theorem 4.2.2 Lax-Milgram Lemma

Suppse

• a(u, v) is continuous: ∀ u, v ∈ V, ∃ γ > 0 s.t. |a(u, v)| ≤ γ∥u∥∥v∥,

• F(v) is continuous: ∀ v ∈ V, ∃M > 0 s.t. |F(v)| ≤M∥v∥, and

• a(·, ·) is coercive: ∀ u ∈ V, ∃ α > 0 s.t. a(u, u) ≥ α∥u∥2.

Then, (P) is well posed. i.e., (P) is solvable and the solution is unique.
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4 FINITE ELEMENTS 4.2 Introduction to Finite Element

Remark.

• |a(u, v)| ≤ µ∥u′∥L2∥v∥L2 ≤ µ︸︷︷︸
=γ

∥u∥H1∥v∥H.

• |F(v)| ≤ ∥f∥L2∥v∥L2 ≤ ∥f∥L2︸ ︷︷ ︸
=M

∥v∥H1 .

• a(u, u) = µ
∫ 1

0
(u′)2 = µ∥u′∥2L2 ≥

µ

Cp︸︷︷︸
α

∥u∥2H1 , where ∥u∥2H1 ≤ Cp∥u′∥2L2 .

Claim 4.3 The problem 
µu′′ + βu′ + σu = f σ > 0

−µu′′ = f x ∈ (0, 1)

u(0) = u(1) = 0

can be written as

−
∫ 1

0

µu′′v +

∫ 1

0

βu′v +

∫ 1

0

σuv︸ ︷︷ ︸
a(u,v)

=

∫ 1

0

fv︸ ︷︷ ︸
F(v)

.

This problem satisfies Lax-Milgram conditon.

Proof 1.

• a(u, v) is continuous: ∣∣∣∣β ∫ 1

0

u′v

∣∣∣∣ ≤ |β|∥u′∥L2∥v∥L2 ≤ |β|∥u′∥H1∥v∥H1 .

β

∫ 1

0

u′u =
β

2

∫ 1

0

du2

dx
=

β

2

(
u2(1)− u2(0)

)
= 0.

σ

∫
u2 = σ∥u∥2L2 .

• F(v) is continuous.

• a(u, u) is coercive:

a(u, u) ≥ µCp∥u∥2H1 + σ∥u∥2L2 ≥ µCp∥u∥2H1 .

■
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4 FINITE ELEMENTS 4.3 Galerkin Method

4.3 Galerkin Method

Find u ∈ V s.t. a(u, v) = F(u) ∀ v ∈ V . We write the numerical problem as

PN : Find vN ∈ VN s.t. a(uN , vN) = F(vN) ∀ vN ∈ VN ⊂ V.

• PN satisfies Lax-Milgram condition, and thus is well-posed.

• If u is the exact solution to the original problem, then u is also an exact solution for PN :

a(u, vN) = F(vN) ∀ v ∈ VN .

In other words, PN is strongly consistent and truncation error τ = 0.

• Convergence: Suppose

a(uN , vN) = F(vN) and a(u, vN) = F(vN).

What is ∥u− uN∥H1 as N →∞?

α∥u− uN∥2H1 ≤ a(u− uN , u− uN)

= a(u− uN , u− wN + wN − uN)

= a(u− uN , u− wN) + a(u− uN , wN − uN) [Bilinearity]

Since u and uN are exact for vN . So, by strong consistency,

a(u, vN) = F(vN) and a(uN , vN) = F(vN).

Therefore,

a(u− uN , vN) = a(u, vN)− a(uN , vN)

= F(vN)−F(vN)

= 0.

Then,

a(u− uN , u− uN) = a(u− uN , u− wN) + a(u− uN , wN − uN)︸ ︷︷ ︸
=0

= a(u− uN , u− wN)

≤ γ∥u− uN∥H1 · ∥u− wN∥H1 .
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4 FINITE ELEMENTS 4.3 Galerkin Method

We have

α∥u− uN∥�2H1 ≤ γ
�������∥u− uN∥H1 · ∥u− wN∥H1

∥u− uN∥H1 ≤
γ

α
∥u− wN∥H1 .

Lemma 4.1 Cea Lemma: We have

∥u− uN∥H1 ≤
γ

α
inf

wN∈VN

∥u− wN∥H1 .

When N →∞, we have inf
wN∈VN

∥u− wN∥H1 → 0. Then,

∥u− uN∥H1 → 0 as well.

Remark 1. (Implication of Cea Lemma). The Galerkin solution uN might not be

the best solution wN . However, it converges to exact solution u at the same rate

as wN .

• How to find uN? Interpolation with Piecewise Polynomials

VN ≡
{

functions | continuous on a set of given intervals
polynomial of order 1 (linear functions)

}
.

We use Lagrange polynomials: piecewise linear polynomials φj(x) s.t.

φj(xi) =

1, i = j

0, i ̸= j.

and

vN(x) =
∑
j

cjφj(xi) where cj = vj.

So, the numerical solution is

uN =
∑
j

ujφj(x).

Plug-in a(uN , vN) = F(vN):
N∑
j=1

uja(φj, vN) = F(vN).

What is vN? Try φi’s:

vN =
∑
i

ciφi.

49



4 FINITE ELEMENTS 4.3 Galerkin Method

Then,
N∑
i=1

ci

N∑
j=1

uj︸︷︷︸
uj

A(φj, φi)︸ ︷︷ ︸
Ai,j

= F(φi)︸ ︷︷ ︸
bi

.

So, we can form a linear system to solve: Au = b .

Example 4.3.2 Poisson Problem

u

∫ 1

0

u′v′ =

∫ 1

0

fv

a(φj, φi) = µ

∫ 1

0

φ′
jφ

′
i

Note: we don’t need to integrate for every combinations of i and j. For example, when

support(φ2) ∩ support(φ7) = ∅ =⇒ no need to compute the integral.

Therefore, the matrix A is tridiagonal.

4.3.1 Nonhomogenous Condition−µu′′ + βu′ + σu = f

x ∈ (0, 1).

• Under non-homogeneous condition, FE will not work because

H1
non-hom =

{
f ∈ H1(0, 1) : u(0) = 1, u(1) = 2

}
does not form a space.

• What to do instead?

u(x) =
◦
u(x) + ℓ(x), ℓ(0) = 1 and ℓ(1) = 2.

where ℓ(x) is a lifting function. Then, we need to find
◦
u ∈ H1

0(0, 1) s.t.

µ

∫ 1

0

◦
u
′
v′ + β

∫ 1

0

◦
u
′
v + σ

∫ 1

0

◦
uv =

∫ 1

0

fv − µ

∫ 1

0

ℓ′v′ − β

∫ 1

0

ℓ′v − σ

∫ 1

0

ℓv︸ ︷︷ ︸
F(v)

• Another example: u(0) = 0 and u′(1) = 0. Define

V =
{
f ∈ H1(0, 1) s.t. f(0) = 0

}
≡ H1

D(0, 1).
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4 FINITE ELEMENTS 4.3 Galerkin Method

With FE:

−µ
∫ 1

0

u′′v + β

∫ 1

0

u′v + σ

∫ 1

0

uv =

∫ 1

0

fv.

Apply integration by parts:

µ
[
u′v
]1
0︸ ︷︷ ︸

=−µ(u′(1)v(1)−u′(0)v(0)

+µ

∫ 1

0

u′v′ + β

∫ 1

0

u′v + σ

∫ 1

0

uv =

∫ 1

0

fv

µ

∫ 1

0

u′v′ + β

∫ 1

0

u′v + σ

∫ 1

0

uv =

∫ 1

0

fv.

So, the problem looks the same, and the only difference is the space we search.

• u(0) = 0 and u′(1) = d. Then,

µ

∫ 1

0

u′v′ + β

∫ 1

0

u′v + σ

∫ 1

0

uv =

∫ 1

0

fv + µv(1)d︸ ︷︷ ︸
New F(v)

• u(0) = 0 and u′(1) + u(1) = d.

µ
[
u′v
]1
0︸ ︷︷ ︸+µ

∫ 1

0

u′v′ + β

∫ 1

0

u′v + σ

∫ 1

0

uv =

∫ 1

0

fv.

Note that

−µ(u′(1)v(1)− u′(0)v(0)) = µdv(1) + µu(1)v(1) [plug in u′(1) = d− u(1)]

So,

µ

∫ 1

0

u′v′ + β

∫ 1

0

u′v + σ

∫ 1

0

uv + µu(1)v(1)︸ ︷︷ ︸
New a(u,v)

=

∫ 1

0

fv + µdv(1)︸ ︷︷ ︸
New F(v)

.
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4 FINITE ELEMENTS 4.3 Galerkin Method

4.3.2 Notes on Code Implementation

• Node-wise (Physical Element):

For each note, we compute:∫ xi

xi−1

φ′
i−1φi∫ xi+1

xi−1

(φ′′
i )

2
=

∫ xi

xi−1

(φ′′
i )

2 −
∫ xi+1

xi

(φ′′
i )

2

∫ xi+1

xi

φ′
i+1φi

• Element wise (Reference Element):

On one sub-interval:

[
a(φi−1, φi−1) a(φi−1, φi)

a(φi, φi−1) a(φi, φi)

] φi−1

φi

We can further map the interval [xi, xi+1] to [0, 1] by setting ξ =
x− xi

xi+1 − xi

. Then,

φ̂0(ξ) = 1− ξ and φ̂1(ξ) = ξ.

Meanwhile, we have x = xi + ξ(xi+1 − xi), so we can move back-and-forth.

• Computing integral: quadrature rule:∫ b

a

f ≈
∑
j

wjf(xj)

• φj can be other types of functions. For example, piecewise quadratic. Then, on each

interval, we need 3 points to interpolate a quadratic function.

u(x) =
∑
j

ujφj(x),

where φj(x) is composed of midpoint quadratic function and node function.

Generalization: Xr
h :=

{
Vh ∈ C0

(
Ω
)
: Vh|kj ∈ Pr ∀ kj ∈ Th

}
, where h is the level of dis-

cretization, Pr is the set of polynomials with degree r, andTh is the triangulation/mesh.
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4 FINITE ELEMENTS 4.3 Galerkin Method

Definition 4.3.3 (Interpolant). The interpolant of v in the space Xr
h is the function

Πr
h(V ) s.t.

Πr
h(v(xi)) = v(xi) ∀ xi node of partition Th.

Theorem 4.3.4

Let v ∈ Hr+1(I) with r ≥ 1, and let Πr
h(v) ∈ Xr

h. Then, the following estimates hold

∥v − Πr
h(v)∥Hk(I) ≤ Ck,rh

r+1−k∥v∥Hr+1(I) for k = 0, 1.

Theorem 4.3.5

Let u ∈ V be the exact solution of the variational problem via the finite element approx-

imation of order r, where Vh = Xr
h ∩ V . Moreover, let u ∈ Hp+1(I) for r ≤ p. Then, we

have a priori estimate

∥u− uh∥V ≤
M

α
Chr∥u∥Hr+1(I),

where the constant
M

α
comes from Cea Lemma.

Remark 2. (Implication of Theorem 4.3.5). Increasing r too much will not help us gain

faster speed on convergence.

r u ∈ H1 u ∈ H2 u ∈ H3 u ∈ H4

1 convergence h h h

2 convergence h h2 h2

3 convergence h h2 h3

4 convergence h h2 h3

So, ∥u− uh∥H1 ≤ Chs∥u∥Hs+1 , where s = min {r, p}.

Example 4.3.6

Consider the problem

−u′′ = f x ∈ (0, 1).

The exact solution is given by

uex =


sin

(
π

(
x− 1

3

))
, x ≤ 1

3

1− cos

(
π

(
x− 1

3

))
+ π

(
x− 1

3

)
.

(S)

53



4 FINITE ELEMENTS 4.4 Advection Diffusion and Reaction in 1D

• Recall: uex ∈ Hs+1(0, 1). Let uh be the solution of FE in Pq. The accuracy is summa-

rized as

s = 1 s = 2 s = 3

q = 1 1 1 1

q = 2 1 2 2

q = 3 1 2 3

We know that the boxed denotes the optimal selection, and

∥uex − uh∥ ≤ Chmin {s,q}.

• Question: what is the space of (S)?

1. (S) is continuous

2. First derivative is also continuous.

Second derivative is not continuous but ∈ L2(0, 1).

Third derivative is not in L2(0, 1).

3. So, uex ∈ H2(0, 1).

Hence, s = 1. Regardless of the degree of FE we use, the order of convergence should

be only linear.

4.4 Advection Diffusion and Reaction in 1D

4.4.1 Advection Diffusion

−µu′′ + βu′ = f µ > 0, µ ∈ R+, β ∈ R.

• With FD:

−µui+1 − 2ui + ui−1

∆x2
+ β

ui+1 − ui−1

2∆x
= fi (FD)

If f = 0, u(0) = 0, and u(1) = 1, we get that

uex =
e(β/µ)x − 1

e(β/µ) − 1
.

We also know (FD) is table when Pe =
|β|∆x

2µ
> 1.
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We can also consider the upwind scheme to make (FD) stable regardless of Pe:

βu′ ≈

β
ui − ui−1

∆x
, β > 0

β
ui+1 − ui

∆x
, β < 0.

• With Linear FEM: the formulation is

−
�
�
�
��

µ
[
u′v
]1
0
+ µ

∫ 1

0

u′v′ +

∫ 1

0

βu′v =

∫
fv.

With uh =
∑
j

ujφj(x), where φj is linear, we get

∫ 1

0

u′v′ = µ

∫ 1

0

φ′
j · φ′

i︸ ︷︷ ︸
constant

+β

∫ 1

0

φ′
jφi︸ ︷︷ ︸

linear

The FEM equation is

−µui+1 − 2ui + ui−1

∆x
+ β

ui+1 − ui−1

2
= 0 (FEM)

Note that
1

∆x
(FEM) = (FD).

So, FEM is also suffering from oscillations, and we require Pe < 1.

• FEM with upwind scheme:

Change µ to µ(1 + Pe). Or, in general, the Scharfetter-Gummel (SG) Method:

µ∗ = µ(1 + Φ(Pe)).

Then,

Pupw =
|β|∆x

2µupw
=

|β|∆x

2µ(1 + Pe)
=

Pe

1 + Pe

< 1 ∀∆x.

4.4.2 Advection Reation

−µ′′ + σu = f, f ∈ L2(0, 1), σ > 0.

• With FD:

−µui+1 − 2ui + ui−1

∆x2
+ σui = f(xi).
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Form a system:

Ad + σI = f.

1. If σ = 0: only diffusion

2. λ(Ad), ρ(Ad) ⊥⊥ of ∆x

3. λ(Ad + σI) = λ(Ad) + σ,⊥⊥ of ∆x =⇒ no oscilations.

• Linear FEM:

−µui+1 − 2ui + ui−1

∆x
+

σ∆x

6
(ui+1 + 4ui + ui−1).

1. We can have instability: The condition is

Pe =
σ∆x2

6µ
< 1.

we need to enforce the roots of the characteristic polynomials to be > 0.

2. Compare with AD:

]

AD AR

Pe =
|β|∆x

2µ
< 1 Pe =

σ∆x2

6µ
< 1

∆x <
2µ

|β|
∆x <

√
6µ

σ

Suppose
µ

|β|
,
µ

σ
∼ O(10−6). Then, ∆xAD < O(10−6) is hard to achieve. However,

∆xAR < O(10−3) is easier.

3. Can we avoid this condition? We can do so by using trapezoidal rule.

σ

∫ 1

0

φiφj dx =



0, j ̸= 0, i± 1
σ

6
∆x, j = i± 1

2σ

3
∆x, j = i

If we compute this integral with trapezoidal rule:

(T )

∫ b

a

f ≈ f(a) + f(b)

2
(b− a) (Trapezoidal)
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Then,

(T )

∫ 1

0

φiφj =


0, j ̸= i, i± 1

0, j = i± 1

∆x, j = i.

So,

σ(T )

∫ 1

0

φiφj =

0, i ̸= j

σ∆x, i = j
=⇒ σI matrix representation

Then, the FE formula becomes

−µui+1 − 2ui + ui+1

∆x
+ σui∆x = fi

=⇒ ∆x

(
−µui+1 − 2ui + ui+1

∆x2
+ σui

)
︸ ︷︷ ︸

FD formula, stable

= fi.

This procedure is called Mass Lumping.

– Mass matrix:

(T )

∫ 1

0

φiφj

– Lumping:

Original approximation is given by

σ

6
(ui+1 + 4ui + ui−1)∆x

When moving ui+1 and ui−1 to ui, we get

σ

6
(6ui)∆x = σui∆x.

Mass lumping stabilizes the FE solution for AR problem.

4.4.3 Generalization

• Recall:

Exact problem: Find u ∈ V s.t. a(u, v) = F(v) ∀ v ∈ V .

Numerical problem: Find uh ∈ Vh s.t. a(uh, vh) = F(vh) ∀ vh ∈ Vh.

• What happens if we do upwind or mass lumping?
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A modification to the numerical problem:

Find uh ∈ Vh s.t. ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh,

where

1. upwind:

ah(uh, vh) = a(uh, vh) +
|β|h
2µ

∫ 1

0

u′
hv

′
h

2. mass lumping:

ah(uh, vj) = (T )

∫ 1

0

µu′
hv

′
h + (T )

∫ 1

0

βu′
hvh + (T )

∫ 1

0

uhvh

= a(uh, vh) + (T )

∫ 1

0

−
∫ 1

0︸ ︷︷ ︸
integration error

This is called the generalized Galerkin shceme.

• Under generalized Galerkin, we don’t have strong consistency anymore:

ah(u− uh, vh) ̸= 0.a(u, vh) = F(vh)

ah(uh, vh) = Fh(vh).

=⇒ ah(uh, vh) = a(uh, vh) + δ(uh, vh),

where δ(uh, vh) = δF(vh).

• For Galerkin method: we have Cea Lemma

∥u− uh∥H1 ≤ C inf
wh∈Vh

∥u− wh∥.

• For generalized Galerkin method: we have Strang Lemma:

∥u− uh∥H1 ≤ C1 inf
wh∈Vh

∥u− wh∥ [form Cea]

+ C2 inf
wh∈Vh

sup
vh∈Vh

|ah(wh, vh)− a(wh, vh)|

+ C3 sup
vh∈Vh

|Fh(vh)−F(vh)|
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• For upwind:

O(hq) +O(h) + 0,

where q = min {s, p}. This implies that regardless what s and p we have, the upwind will

only produce a convergence rate of linear.

• For SG:O(h2)

• For mass lumping:

O(hq) +O(h2) +O(h2).

4.5 2D Problems

4.5.1 Poisson Problem in 2D −µ∆u = f

u(∂Ω) = uD

• Weak formulation:

1. Green’s Formula: ∫
Ω

∇u · w =

∫
∂Ω

wµu−
∫
Ω

∇w · u∫
Ω

∇w · u =

∫
∂Ω

w · µu−
∫
Ω

∇u · w.

µ is normal to ∂Ω, a standard unit vector. We further have

∇ · w =
∂w0

∂x
+

∂w1

∂y
+

∂w2

∂z

=
2∑

i=0

∂wi

∂xi

.

So,

−µ
∫
Ω

∇w︷︸︸︷
∆u ·v dw =

∫
Ω

fv ∆u = ∇ · (∇u︸︷︷︸
w

)

−µ
∫
∂Ω

∇u · uv︸ ︷︷ ︸
v(∂Ω)=0

+µ

∫
Ω

w︷︸︸︷
∇u ·∇v =

∫
Ω

fv ∀ v ∈ H1
0(Ω).

µ

∫
Ω

∇u ·∇v =

∫
Ω

fv.
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4 FINITE ELEMENTS 4.5 2D Problems

• FE: Suppose Vh ⊂ V . Find uh ∈ Vh s.t.

a(uh, vh) = F(vh) ∀ vh ∈ Vh,

where

a(uh, vh) = µ

∫
Ω

∇u ·∇v and F(vh) =
∫
Ω

fv.

1. FEM in P1: uh is a piecewise linear function in Ω.

Lemma If a function is C0(Ω), then it isH1(Ω) ≡ V .

Assumption, we have no handing nodes (a node that is both an interior of some

lines and the vertex of the others) or overlapping triangles.

On each Tk, uh is linear:

uh = akx0 + bkx1 + ck.

Each uj is determined by the three vertices, and the continuity is for free.

uh(x0, x1) =
∑

cjφj(x0, x1), where φj(x0, x1) =

1, (x0, x1) ∈ pj

0, o/w.

So,

uh(x0, x1) =
∑

ujφj(x0, x1).

Then, the FEM discretized problem is∑
uja(φi, φj) = F(φj)

=⇒ Au = b

⋆ Loop over elements: Reference element

k
k + 1

i

j k

(0, 1)

(0, 0) (1, 0)

φ0

φ1

φ2


φ0 = 1− x̂− ŷ

φ1 = x̂

φ2 = ŷ

transform to physical elements−−−−−−−−−−−−−−−−→


x0(0, 0)→ x0(i

x0(1, 0)→ x0(j)

x0(0, 1)→ x0(k).
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4 FINITE ELEMENTS 4.5 2D Problems

The mapping:

x0(x̂, ŷ) = x0(i)φ̂0(x̂, ŷ) + x0(j)φ̂1(x̂, ŷ) + x0(j)φ̂2(x̂, ŷ).

Change of variable:

∇x0,x1 = J−1∇x̂, ŷ

Then, ∫
Th

∇φj∇φi d(x0, x1) =

∫
T̂

J−1∇x̂,ŷφαJ
−1∇x̂,ŷφβ|J | d(x̂, ŷ),

where α, β = 0, 1, 2. So, the submatrix to add is 3× 3.

4.5.2 Advection Diffusion in Multidimension

We want to model polutant concentration:

−µ∆u+ β ·∇u+ σu = f,

where if µ depends on u, µ = −∇ · (µ ·∇u), β models for wind, σ models biological consump-

tion. The initial condition is given by u(ΓD) = dataD. The Péclet is

Pe =
∥β∥h
2µ

< 1.

• With upwind method: µ→ µ∗ = µ(1 + Pe). We can compute

P∗
e =
∥β∥h
2µ∗ =

∥β∥h
2µ(1 + Pe)

=
Pe

1 + Pe

< 1 ∀ h.

µ∗ = µ

(
1 +
∥β∥h
2µ

)
.

• If the wind is only along x:

−µ∗∂
2u

∂x2
− µ∗∂

2u

∂y2
is a bad implementation

Here, the second µ∗ related to y is not helping at all. It affects accuracy. So, we consider

the following method

−µ∗∂
2u

∂x2
− µ

∂2u

∂y2
,

which is a better practical implementation.
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4 FINITE ELEMENTS 4.6 Time Dependent Problems

• Generally: Streamline Diffusion.

−µ∆u+ β∇u+ σu =
h

2
∇ ·

(
(β ·∇u)

β

∥β∥

)
= f.

Weak formulation:

µ

∫
Ω

∇u ·∇v +

∫
Ω

β∇u · v +
∫
Ω

σuv +
h

2

∫
Ω

(β ·∇u)(β ·∇v)
1

∥β∥︸ ︷︷ ︸
normalizing along β, direction of wind

=

∫
Ω

fv.

Theorem 4.5.1 Strang Lemma

For generalized Galerkin method, we have consistency in the following way:

∥u− uh∥H1 ≤ C1 inf
wh∈Vh

∥u− wh∥ [form Cea]

+ C2 inf
wh∈Vh

sup
vh∈Vh

|ah(wh, vh)− a(wh, vh)|

+ C3 sup
vh∈Vh

|Fh(vh)−F(vh)|

Theorem 4.5.2 Strong Consistent Methods (Thomas Jr. Hughes)

a(u, v) + ℓh(u, v)︸ ︷︷ ︸
ah(u,v)

= F(·, v) + gh(·, v)︸ ︷︷ ︸
Fh(v)

,

where ℓh(u, v) = gh(v).

−µ∆u+ β ·∇u+ σu− f = 0∑
Tk

K(−µ∆u+ β ·∇u+ σu− f,−µ∆v + β ·∇v + σu) = 0,

where K depends on h and j.

4.6 Time Dependent Problems

• 1D heat equation:
∂u

∂t
− µ

∂2u

∂x2
+ β

∂u

∂x
+ σu = 0.

• Multiple dimension:
∂u

∂t
−∇ · (µ∇u) + β∇u+ σu = 0.
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4 FINITE ELEMENTS 4.6 Time Dependent Problems

with boundary condition u(∂Ω) = 0 and initial condition u(x, y, 0) = u0(x, y).

• General approach: FD in time and FE in space.

• Variational formulation: V = H1
0(Ω) and v ∈ V :∫

Ω

∂u

∂t
v +

∫
Ω

µ∇u∇v +

∫
Ω

β ·∇uv +

∫
Ω

σuv =

∫
Ω

fv ∀ v ∈ V,

where

−
∫
Ω

∇ · (µ∇u)v = −
∫
Ω

µ∇u · uv +
∫
Ω

µ∇u∇v,

if µ is not space dependent.

We can add some regularity: L2(0, T ;H1
0(Ω)) = L2(H1) and L∞(0, T ;L2(Ω)) = L∞(L2).

Then, the problem becomes: Find u ∈ L2(H1
0) ∩ L∞(L2) s.t.(

∂u

∂t
, v

)
= a(u, v) = (f, v) ∀ v ∈ V = H1

0(Ω).

By Lax-Milgram, this problem is:

1. Continuous for a(·, ·) and F(·),

2. Weak coercive.

So, the problem is well-posed.

• Numerical problem: Vh ⊂ V = H1
0(Ω).

Find uh ∈ L2(Vh) ∩ L∞(L2) s.t.(
∂uh

∂t
, vh

)
+ a(uh, vh) = F(vh) ∀ vh ∈ Vh,

where uh(x, y, t) =
∑

u
(t)
j φj(x, y).

• Solution from separation of variables:

u = T (t)X(x),

where T represents time and X represents space.

dT

dt
X − ∂2X

∂x2
T = 0

1

T

dT

dt
− 1

X

d2X

dx2
= K ← separable
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4 FINITE ELEMENTS 4.6 Time Dependent Problems

So, we have

u =
∞∑
j=0

TjXj(x).

A numerical solution will be

u =
N∑
j=0

TjXj(x).

The error is

e =
∞∑

j=N+1

TjXj(x),

decays with a factor of e−N . Not bad, but the problem is that this approach only works

on a specific type of problem: separable.

• A more generic method:

∑
j

dui

dt
(φj, φi)︸ ︷︷ ︸

mass matrix

+
∑

uj(t) a(φj, φi)︸ ︷︷ ︸
A

= bj(t)

M · du
dt

+ Au = b

M
1

∆t

(
un+1 − un

)
+ Aun+1 = bn+1(

1

∆t
M + A

)
u1 = b1 +

1

∆t
Mu0(

1

∆t
M + A

)
un+1 = bn+1 +

1

∆t
Mu0.

We can solve this system by θ method.

1

∆t
M
(
un+1 − un

)
+ θAun+1 + (1− θ)Aun = θbn+1 + (1− θ)bn(

1

∆t
M + θA

)
un+1 = θbn+1 + (1− θ)bn +

(
1

∆t
M − (1− θ)A

)
un.

• CFL condition for stability:
∆t

∆x
|a| ≤ c < 1,

1. For LX: c =
1√
3

2. For UPW: c =
1

3
.

• Wave equation: Leap frog can be incorporated with FEM. Also need to satisfy CFL con-

ditions.
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