
Emory University
MATH 347 Non Linear Optimization

Learning Notes

Jiuru Lyu

June 18, 2025

Contents

1 Math Preliminaries 2
1.1 Introduction to Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Linear Algebra Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Basic Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Continuity and Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Unconstrained Optimization 17
2.1 Global and Local Optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Classification of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Second Order Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Global Optimality Condition and Quadratic Functions . . . . . . . . . . . . . . . 23

3 Least Square 25
3.1 “Solution” of Overdetermined Systems . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Data Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Regularized Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Nonlinear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Constrained Optimization 34
4.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Conditions for Constrained Optimal Problems . . . . . . . . . . . . . . . . . . . 41
4.3 The Karush-Kuhn-Tucker (KKT) Conditions . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 KKT Conditions for Linear Inequality Constrains . . . . . . . . . . . . . . 46
4.3.2 KKT Conditions for Linear Inequality and Equality Constraints . . . . . . 50

4.4 Lagrange Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1



1 MATH PRELIMINARIES

1 Math Preliminaries

1.1 Introduction to Optimization

Definition 1.1.1 (Optimization Problem). The main optimization problem can be stated as
follows

min
x∈S

f(x), (1)

where

• x is the optimization variable,

• S is the feasible set, and

• f is the objective function.

Remark 1.1 max
x∈S

f(x) = −min
x∈S

−f(x). Hence, we will only study minimization problems.

Theorem 1.1.2 Solving an Optimization Problem

• Theoretical Analysis: analytic solution

• Numerical solution/optimization

Definition 1.1.3 (Solution Methods depend on the type of x, S, and f).

• When x is continuous (e.g., R, Rn, Rm×n, . . . ), then the optimization problem stated in
Eq. (1) is a continuous optimization problem. It will also be the focus of this class.

Opposite to continuous optimization problems, we have discrete optimization problem
if x is discrete.

If x has both types of components, then we call the problem mixed.

• Depending on S, we can have

– Unconstrained problems: where S = Rn, S = Rm×n, . . . (m,n are fixed).

– Constrained problems: where S ⊊ Rn, S ⊊ Rm×n, . . . .

Both types of problems will be studied.

• Depending on f , we have

– Smooth optimization problems: f has first and/or second order derivatives.

Only smooth optimization problems will be studied.

– Non-smooth optimization problems: f is not differentiable.
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1 MATH PRELIMINARIES 1.1 Introduction to Optimization

Definition 1.1.4 (Linear Optimization/Program). If f is linear and S consists of linear con-
strains, then the optimization problem is called a linear problem/program.

Example 1.1.5 Classification of Optimization Problems

1. Consider the following problem

min
x1,x2,x3

x2
1 − 4x1x2 + 3x2x3 + sinx3

Solution 1.

• Optimization variable: x = (x1, x2, x3) ∈ R3. −→ continuous.

• Feasible set: S = R3. −→ unconstrained.

• Objective function: f(x1, x2, x3) = x2
1 − 4x1x2 + 3x2x3 + sinx3. −→ smooth but

non-linear.

□

2. Consider the following problem

max
4x1+7x2+3x3≤1

x1,x2,x3≥0

x1 + 2x2 + 3x3

Solution 2.

• Optimization variable: x = (x1, x2, x3) ∈ R3. −→ continuous.

• Feasible set: S = {(x1, x2, x3) : x1, x2, x3 ≥ 0, 4x1 + 7x2 + 3x3 ≤ 1} ⊊ R3. −→
constrained.

• Objective function: f(x1, x2, x3) = x1 + 2x2 + 3x3. −→ smooth and linear.

□

Remark 1.2 This problem can be considered as the budget constrained optimization
problem in Economics.

3. Consider the following problem

min
x1,x2≥0

4x1 − 3|x2|+ sin
(
x2
1 − 2x2

)
Solution 3.

• Optimization variable: x = (x1, x2) ∈ R2. −→ continuous.
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1 MATH PRELIMINARIES 1.2 Linear Algebra Review

• Feasible set: S = {(x1, x2) : x1, x2 ≥ 0} ⊊ R2. −→ constrained.

• Objective function: f(x1, x2) = 4x1 − 3|x2| + sin(x2
1 − 2x2). −→ non-smooth and

non-linear.

□

Remark 1.3 In this particular problem, x2 ≥ 0, and so f(x1, x2) = 4x1 − 3x2 +

sin (x2
1 − 2x2) on the feasible set. Hence, this problem can be equivalently written as

min
x1,x2≥0

4x1 − 3x2 + sin
(
x2
1 − 2x2

)
,

which is a smooth optimization problem.

1.2 Linear Algebra Review

Example 1.2.1 Why linear algebra for optimization?
Consider min

x∈R
f(x), where f(x) = c+ bx+ ax2, a, b, c ∈ R.

• a > 0: x∗ = − b

2a
is a global minimum and f(x∗) = c− b2

4a
.

• a < 0: no minimum exists.

• a = 0: f(x) = c+ bx.

– b ̸= 0: no minimum exists.

– b = 0: f(x) = c, and every x is a minimum point.

We can approximate any smoothing function using Taylor’s approximation and make
them simple into the case discussed above.

Theorem 1.2.2 Taylor’s Approximation

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2︸ ︷︷ ︸
q(x)

+ ε(x− x0)(x− x0)
2︸ ︷︷ ︸

error

,

where lim
x→x0

ε(x− x0).

Remark 1.4 The hope is that the quadratic approximation will inform us on the behavior of f
near x0 and be useful for instance in referring x0 on the subject of optimality.
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1 MATH PRELIMINARIES 1.2 Linear Algebra Review

Definition 1.2.3 (Quadratic Approximation in Higher Dimensions). When d > 1, we con-
sider min

x∈Rd
f(x). Then, the quadratic approximation of f is defined as

q(x) := c+ ⟨b, x⟩+ ⟨x,Ax⟩,

where c ∈ R, b ∈ Rd, A ∈ Rd×d.

Remark 1.5 Then, to know if a minimum exists, we need information on the matrix A and the
vector b.

Definition 1.2.4 (Vector, Rd). We define a vector in Rd as a column vector.

x =

x1

...
xd

 ∈ Rd, xi ∈ R.

On Rd, we also have the following operations defined

• Addition: x1

...
xd

+

y1
...
yd

 =

x1 + y1
...

xd + yd

, xi, yi ∈ R

• Scalar multiplication:

α

x1

...
xd

 =

αx1

...
αxd

, α, xi ∈ R

Definition 1.2.5 (Basis of Rd). A collection of vectors v1 . . . , vd ∈ Rd is a basis in Rd if ∀ x ∈ Rd,
∃! α1, . . . , αd ∈ R s.t. x = α1v1 + · · ·+ αdvd.

Example 1.2.6 The Standard Basis
The standard basis is defines as

ei =


0
...
1
...
0

,

where 1 is at the i-th position for 1 ≤ i ≤ d. Note that ∀x ∈ Rd, x = x1e1 + · · ·+ xded.
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1 MATH PRELIMINARIES 1.2 Linear Algebra Review

Notation 1.7.

0d =

0
...
0

.

Definition 1.2.8 (Inner Product). ⟨·, ·⟩ : Rd × Rd → R is an inner product if

• (symmetry) ⟨x, y⟩ = ⟨y, x⟩ ∀x, y ∈ Rd

• (additivity) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩ ∀x, y, z ∈ Rd

• (homogeneity) ⟨λx, y⟩ = λ⟨x, y⟩ ∀x, y ∈ Rd, λ ∈ R

• (positive definiteness) ⟨x, x⟩ ≥ ∀x ∈ Rd and ⟨x, x⟩ = 0 ⇐⇒ x = 0

Example 1.2.9 Examples of Inner Products

1. Definition 1.2.10 (Dot Product). The dot product of x, y ∈ Rd is defined as

⟨x, y⟩ = x1y1 + · · ·+ xdyd =
d∑

i=1

xiyi ∀x, y ∈ Rd.

It is also referred as the standard inner product, and we often use the notation x · y to
denote it.

2. Definition 1.2.11 (Weighted Dot Product). The weighted dot product of x, y ∈ Rd

with some weight w is defined as

⟨x, y⟩w =
d∑

i=1

wixiyi,

where w1, . . . , wd > 0 are called weights.

Remark 1.6 When d = 2, then ⟨x, y⟩ = |x||y| cos∠(x, y). Dot product measure how corre-
lated are two vectors (with respect to their directions).

Definition 1.2.12 (Vector Norm). ∥·∥ : Rd → R is a norm if

• (non-negativity) ∥x∥ ≥ 0 ∀x ∈ Rd and ∥x∥ = 0 ⇐⇒ x = 0

• (positive homogeneity) ∥λx∥ = |λ|∥x∥ ∀λ ∈ R, x ∈ Rd

• (triangular inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ∀x, y ∈ Rd.

Remark 1.7 Vector norm introduces the notion of length of vectors in Rd.
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1 MATH PRELIMINARIES 1.2 Linear Algebra Review

Example 1.2.13 Examples of Vector Norms

• If ⟨·, ·⟩ is an inner product on Rd, then

∥x∥ =
√
⟨x, x⟩ ∀x ∈ Rd

is a norm. For instance,

∥x∥2 =
√
x · x =

(
d∑

i=1

x2
i

) 1
2

.

This norm is called the standard (Euclidean) or ℓ2 norm in Rd.

• Definition 1.2.14 (ℓp Norms). Suppose p ≥ 1, then

∥x∥p :=

(
d∑

i=1

xp
i

) 1
p

.

• Definition 1.2.15 (∞-Norms).

∥x∥∞ := max
1≤i≤d

|xi| ∀x ∈ Rd.

Remark 1.8 lim
p→∞

∥x∥p = ∥x∥∞.

Theorem 1.2.16 Cauchy-Schwarz Inequality
Assume that ⟨·, ·⟩ : Rd × Rd → R is an inner product, then

|⟨x, y⟩|2 ≤ ⟨x, x⟩ · ⟨y, y⟩ ∀x, y ∈ Rd.

In particular, if ∥x∥ =
√
⟨x, x⟩, then

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥ ∀x, y ∈ Rd.

For the standard inner product, we have∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤ ∥x∥2 · ∥y∥2 ∀x, y ∈ Rd.

The equality holds when x and y are linearly dependent.
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1 MATH PRELIMINARIES 1.2 Linear Algebra Review

Definition 1.2.17 (Matrix). Let d,m ∈ N. We say that A ∈ Rd×m is a d×m matrix if

A =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

ad1 ad2 · · · adm

 =
(
aij

)d,m
i=1,j=1

Definition 1.2.18 (Operations with Matrices).

• Let A,B ∈ Rd×m, then
(
A+B

)
i,j

= aij + bij ∀i, j.

• Let A ∈ Rd×m and α ∈ R, then
(
αA
)
ij
= αaij ∀i, j.

• Let A ∈ Rd×m and B ∈ Rm,n, then AB ∈ Rd×n, and
(
AB
)
ij
=

m∑
k=1

aikbkj ∀i, j.

Remark 1.9 Matrix multiplication is not commutative. In fact, if A ∈ Rd×m and B ∈ Rm×n,
then BA is defined if and only if n = d. In that case, AB ∈ Rd×d and BA ∈ Rm×m, and so if
m ̸= d, AB and BA have different sizes. Finally, even if m = d = n, AB ̸= BA in general.

Definition 1.2.19 (Linear Transformation). The mapping L : Rm → Rd is called linear if
L(αx1 + βx2) = αL(x1) + βL(x2).

Theorem 1.2.20 Matrices and Linear Transformation
∀A ∈ Rd×m, LA(x) = Ax is a linear mapping from Rm to Rd. Moreover, ∀L : Rm → Rd

linear, ∃!A ∈ Rd×m s.t. L = LA.

Proof 1. Here, we offer an intuition on why this is true. Suppose A ∈ Rd×m and x ∈ Rm s.t.

A =

a11 · · · a1m
...

. . .
...

ad1 · · · adm

 and x ∈

x1

...
xm

 ∈ Rm×1.

Then, Ax ∈ Rd×1 is the following

Ax =

a11 · · · a1m
...

. . .
...

ad1 · · · adm


x1

...
xm

 =

a11x1 + · · ·+ a1mxm

...
ad1x1 + · · ·+ admxm

 ∈ Rd×1.

So, if LA(x) = Ax for x ∈ Rm, then LA : Rm → Rd is linear. ■
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1 MATH PRELIMINARIES 1.2 Linear Algebra Review

Theorem 1.2.21 Matrix Multiplication as Composite Linear Transformations
Suppose LA : Rm → Rd and LB : Rn → Rm, where A ∈ Rd×m and B ∈ Rm×n. Define
L(x) = LA ◦ LB(x) = LA(LB(x)) ∀x ∈ Rn . Then, L : Rn → Rd. Since LA and LB are
linear, we found that L is also linear. Hence, L = LC f.s. C ∈ Rd×n. It turns out that
C = AB.

Definition 1.2.22 (Transpose of Matrix). Let A ∈ Rd×m, then its transpose A⊤ ∈ Rm×d, and(
A⊤
)
ij
= aji.

Corollary 1.2.23 : If x, y ∈ Rd, then ⟨x, y⟩ =
d∑

i=1

xiyi = x⊤y = xy⊤.

Proof 2. Suppose x =

x1

...
xd

, then x⊤ =
(
x1 · · · xd

)
.

x⊤y =
(
x1 · · · xd

)y1
...
yd

 = x1y1 + · · ·+ xdyd.

■

Corollary 1.2.24 Cauchy-Schwarz:
∣∣x⊤y

∣∣ ≤ ∥x∥2∥y∥2.
Definition 1.2.25 (Trace of a Matrix). Assume that A ∈ Rd×d, the trace of A, denoted as Tr(A),
is defined as

Tr(A) =
d∑

i=1

aii.

Definition 1.2.26 (Determinant of a Matrix). Assume that A ∈ Rd×d, the determinant of A,
denoted as det(A), is defined as

det(A) =
∑
σ∈Sd

(−1)i(σ)a1σ(1)a2σ(2) · · · adσ(d),

where Sd is the set of all possible permutation of size d and i(σ) denotes the sign of the per-
mutation.
Definition 1.2.27 (Eigenvalue and Eigenvector). Assume that A ∈ Rd×d. We say that λ is an
eigenvalue for A if ∃x ∈ Rd\{0} s.t. Ax = λx. In this case, x is called an eigenvector.
Definition 1.2.28 (Diagonalizability). A matrix A ∈ Rd×d is called diagonalizable if ∃ basis
v1, . . . , vd s.t. Avi = λvi ∀1 ≤ i ≤ d.
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1 MATH PRELIMINARIES 1.2 Linear Algebra Review

Theorem 1.2.29 Diagonalization, Singular Value Decomposition (SVD) of Squared
Matrices
Assume that A is diagonalizable and

V =
(
v1 v2 · · · vd

)
.

Then, A = V DV −1, where D is a diagonal matrix such that

D =

λ1 0
. . .

0 λd

.

Example 1.2.30 Application of Diagonalization

A2 =
(
V DV −1

)(
V DV −1

)
= V D V −1V︸ ︷︷ ︸

I

DV −1 = V D2V −1.

Generally,

An = V DnV −1 = V

λn
1 0

. . .

0 vnd

V −1.

Remark 1.10 Remarks on Diagonalization

• There might be repeating eigenvalues. Typically, we enumerate λ’s s.t. λ1 ≥ λ2 ≥ · · · ≥ λd.

• In general, it is hard to decide whether A is diagonalizable. For example, rotation matri-
ces have no eigenvectors nor eigenvalues.

• If A is symmetric; that is A = A⊤, then A is diagonalizable. Moreover, we can choose basis
v1, . . . , vd s.t.

v⊤i vj =

0, i ̸= j

1, i = j
.

Such bases are called orthonormal. In matrix form, if V =
(
v1 v2 · · · vd

)
, then

V ⊤V =

v⊤1
...
v⊤d

(v1 · · · vd

)
= I.

That is, V ⊤ = V −1, and hence A = V DV −1 = V DV T .
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1.3 Basic Topology

Example 1.3.1 Introduction
Consider the optimization problem min

x∈[0,1]
f(x). Suppose that x∗ ∈ [0, 1] is a solution for

this problem, then we have
f(x) ≥ f(x∗) ∀x ∈ [0, 1].

Then, we can conduct a case study on the necessary condition we need to have on f ′(x).

1. x∗ ∈ (0, 1) =⇒ f ′(x∗) = 0.

0 1x∗ x

y

2. x∗ = 0 =⇒ f ′(x∗) ≥ 0

0 1x∗ x

y

3. x∗ = 1 =⇒ f ′(x∗) ≤ 0.

Definition 1.3.2 (Open/Closed Ball). The open ball with center c ∈ Rn and radius r > 0 is the
set

B(c, r) := {x ∈ Rn : ∥x− c∥ < r}.

The closed ball with center c ∈ Rn and radius r > 0 is the set

B[c, r] := {x ∈ Rn : ∥x− c∥ ≤ r}.
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Remark 1.11 The boundary is not included in an open ball.

Definition 1.3.3 (Interior Point). Assume that U ∈ Rn. We say that x ∈ U is an interior point
if ∃ r > 0 s.t. B(x, r) ⊆ U . The set of all interior points of U is denoted by int(U)

Example 1.3.4 Interior Point Example
Suppose U = [0, 1]. Prove that int(U) = (0, 1).
Proof 1. To prove this, we have to show int(U) ⊆ (0, 1) and (0, 1) ⊆ int(U).
(⊇): Let x ∈ (0, 1). WTS: x ∈ int(U). Take r = min {x, 1− x}, then the open ball B(x, r) ⊆

U . proof omitted. So, x ∈ int(U), and thus (0, 1) ⊆ int(U). □

(⊆): Let x ∈ int(U). WTS: x ∈ (0, 1). omitted. ■

Definition 1.3.5 (Open Set). A set U ⊆ Rn is called open if int(U) = U .

Example 1.3.6 Open Set Counterexample
U = [0, 1] in Example 1.3.4 is not an open set.

Remark 1.12 When f is defined over an open set U , then we can define differentiability on f on
U .

Definition 1.3.7 (Closed Set). A set F ⊆ Rn is called a closed set if ∀ (xn)
∞
n=1 ⊆ F such that

lim
n→∞

xn = x =⇒ x ∈ F .

Example 1.3.8 Closed Set

• Take F = Rn, then F is a closed set because we have taken everything into the set.

• F = [0, 1] is closed.

Proof 2. Take x1, x2, . . . , xn · · · ∈ [0, 1]. That is, 0 ≤ xn ≤ 1, ∀n ≥ 1. Then, set
x = lim

n→∞
xn. It must be that 0 ≤ x ≤ 1, or x ∈ [0, 1]. ■

• F = (0, 1] is not closed.

Proof 3. Take x1, . . . , xn, · · · ∈ (0, 1], where xn =
1

n
∀n ≥ 1. Then, 0 ≤ xn ≤ 1.

However, notice that x = lim
n→∞

xn = lim
n→∞

1

n
= 0 /∈ (0, 1]. Hence, F is not closed. ■

Remark 1.13 In general, optimization problems are set on closed sets for otherwise, we cannot
guarantee, in general, existence of optimal solutions.
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Example 1.3.9 Optimization Problem on a Set that is not Cloased
Suppose f(x) = x and consider the optimization problem

min
0<x≤1

f(x) = min
0<x≤1

x.

Then we know that this problem does not have a solution.

Remark 1.14 A set can be neither open nor closed.

Definition 1.3.10 (Boundary Points). A point x is a boundary point for U if ∀ r > 0, B(x, r)

contains points from both U and its complement. The set of all boundary points of U is de-
noted by bd(U).

Example 1.3.11 Boundary Pooints

• U = [0, 1] =⇒ bd(U) = {0, 1}.

• U = (0, 1] =⇒ bd(U) = {0, 1}.

Definition 1.3.12 (Compact Set). A set C ∈ Rn is called compact if it is closed and bounded.
The latter means that ∃M > 0 s.t. ∥x∥ ≤ M ∀x ∈ C.

1.4 Continuity and Differentiability

Definition 1.4.1 (Continuity). Let S ⊆ Rn, f : S → R, x ∈ S. We say that f is continuous at x
if

lim
z→x
z∈S

f(z) = f(x).

If f is continuous at all points x ∈ S, we simply say f is continuous on S. We also use the
notation f ∈ C(S).

Theorem 1.4.2 Weierstrass Theorem
Assume that S ⊆ Rn is a compact set, and f : S → R is a continuous function. Then
∃ xmin, xmax ∈ S s.t.

f(x) ≥ f(xmin) ∀x ∈ S and f(x) ≤ f(xmax) ∀x ∈ S.

In other words, min
x∈S

f(x) and max
x∈S

f(x) problems are guaranteed to have solutions.
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1 MATH PRELIMINARIES 1.4 Continuity and Differentiability

Example 1.4.3 Classes of Continuous Functions

1. Polynomials.

2. sin(x) and cos(x); tan(x) and cot(x) at certain domain.

3. Exponents: eax, a ∈ R.

4. Logarithm: lnx, x > 0.

5.

Theorem 1.4.4 Building Continuous Functions

• If f and g are continuous, then f · g, f + g, and af are continuous ∀a ∈ R.

• If f and g are continuous, then
f

g
is continuous for x s.t. g(x) ̸= 0.

• If f, g are continuous and h = f ◦ g makes sense, then h is continuous.

Definition 1.4.5 (Differentiability). Let S ⊆ Rn, x ∈ int(S), and f : S → R. Then, the i-th
partial derivative of f at x is the limit (if it exists)

∂f(x)

∂xi

= lim
t→0

f(x+ tei)− f(x)

t
, where ei is the standard basis.

If all partial derivatives exist, then we assemble them in a column vector called gradient.

∇f(x) =

(
∂f(x)

∂x1

· · · ∂f(x)

∂xn

)⊤

We say that f is continuously differentiable on S if ∃ U open set s.t. S ⊆ U and ∇f(x) exists
∀x ∈ U and is continuous. In this case, we write f ∈ C1(S).

Example 1.4.6 Continuous Function that is not Continuously Differentiable
Consider f(x) = |x|. Then we know its derivative

f ′(x) =


1 x > 0

−1 x < 0

undefined x = 0.

So, f ∈ C(R) but f /∈ C1(R).

14



1 MATH PRELIMINARIES 1.4 Continuity and Differentiability

Definition 1.4.7 (Directional Derivative). Let f ∈ Rn\{0}. Then, the directional derivative of
f at x is the limit (if it exists)

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t
.

Remark 1.15 If f ∈ C1(S), then
f ′(x; d) = ∇f(x)⊤ · d.

However, the converse is not true in general. Indeed, for f(x) = |x|, we have that f ′(0; 1) = 1

(the positive direction), and f ′(0;−1) = −1 (the negative direction). But f ′(0) does not exist.

Definition 1.4.8 (Second-Order Differentiability). The (i, j)-th partial derivative of f at x is

∂2f

∂xi∂xj

=
∂

∂xi

(
∂f(x)

∂xj

)
.

If all second order partial derivatives exist and are continuous on S, we say that f is twice
continuously differentiable on S and write f ∈ C2(S).

If f ∈ C2(S), then
∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

∀i, j.

If f has all second-order partial derivatives at x, then we denote the Hessian of f at x by the
matrix

∇2f(x) =

(
∂2f

∂xi∂xj

)n

i,j=1

If f ∈ C2(S), then ∇2f(x) is symmetric for all x ∈ S.
Definition 1.4.9 (Small-O Notation). o(r) is the small-o notation and means that this quantity
is much smaller than r. For example, o(∥y − x∥) is any quantity s.t.

lim
y→x

o(∥y − x∥)
∥y − x∥

= 0.

Theorem 1.4.10 Taylor Approximation I
If f is differentiable at x, then

f(y) = f(x) +∇f(x)⊤(y − x) + o(∥y − x∥).

Theorem 1.4.11 Taylor Approximation II
If f is twice differentiable at x, then

f(y) = f(x) +∇f(x)⊤(y − x) +
1

2
(y − x)⊤∇2f(x)(y − x) + o

(
∥y − x∥2

)︸ ︷︷ ︸
small error

.
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1 MATH PRELIMINARIES 1.4 Continuity and Differentiability

Theorem 1.4.12 Taylor Approximation III
If f is twice differentiable at x, then

f(y) = f(x) +∇f(x)⊤(y − x) +
1

2
(y − x)⊤∇2f(c)(y − x) for some c(x, y, f . . . ),

where the point c is dependent on x, y, and f , but we do not know exactly what c is.

Remark 1.16 From Taylor Approximation II to III, we improve our approximation from an
expression with a small error, to an exact equation. However, the trade-off here is that we have
to introduce a new constant c, which we do not have any information about.

16



2 UNCONSTRAINED OPTIMIZATION

2 Unconstrained Optimization

2.1 Global and Local Optima

Definition 2.1.1 (Global Minimum and Maximum). Let f : S → R be defined on a set S ⊆ Rn.
Then, x∗ ∈ S is called a

• global minimum point of f over S if f(x) ≥ f(x∗) for any x ∈ S.

• strict global minimum point of f over S if f(x) > f(x∗) for any x∗ ̸= x ∈ S.

• global maximum point of f over S if f(x) ≤ f(x∗) for any x ∈ S.

• strict global maximum point of f over S if f(x) < f(x∗) for any x∗ ̸= x ∈ S.

Definition 2.1.2 (Feasible Set and Feasible Solution). The set S on which the optimization of
f is performed is called the feasible set, and any only x ∈ S is called a feasible solution.
Definition 2.1.3 (Minimizer and Maximizer). We refer to a global minimum point as a min-
imizer or a global minimizer, and a global maximum point as a maximizer or a global maxi-
mizer. A vector x∗ ∈ S is called a global optimum of f over S if it is either a global minimum
or a global maximum.
Definition 2.1.4 (Maximal and Minimal Value). The maximal value of f over S is defined as
the supremum of f over S:

max {f(x) : x ∈ S} = sup {f(x) : x ∈ S}.

If x∗ ∈ S is a global maximum of f over S, then the maximum value of f over S is f(x∗). The
minimal value of f over S is the infimum of f over S,

min {f(x) : x ∈ S} = inf {f(x) : x ∈ S},

and is equal to f(x∗) when x∗ is a global minimizer of f over S.

Remark 2.1 (Difference between min and inf) For A ⊆ R, minA = y∗ if y∗ ∈ A, and y∗ ≤
y ∀y ∈ A. On the other hand, inf A = y∗ if y∗ ≤ y ∀y ∈ A, and any y′ > y∗ is NOT a lower
bound for A.

Remark 2.2 There could be several global minimum points, but there could be only one mini-
mal value.

Definition 2.1.5 (Set of Global Minimizers and Global Maximizers). The set of all global
minimizers of f over S is denoted by

argmin {f(x) : x ∈ S}

17



2 UNCONSTRAINED OPTIMIZATION 2.1 Global and Local Optima

and the set of all global maximizers of f over S is denoted by

argmax {f(x) : x ∈ S}.

Definition 2.1.6 (Local Minima and Maxima). Let f : S → R be defined on a set S ⊆ Rn.
Then, x∗ ∈ S is called a

• local minimum point of f over S if there exists r > 0 for which f(x∗) ≤ f(x) for any
x ∈ S ∩B(x∗, r).

• strict local minimum point of f over S if there exists r > 0 for which f(x∗) < f(x) for any
x∗ ̸= x ∈ S ∩B(x∗, r).

• local maximum point of f over S if there exists r > 0 for which f(x∗) ≥ f(x) for any
x ∈ S ∩B(x∗, r).

• strict local maximum point of f over S if there exists r > 0 for which f(x∗) > f(x) for any
x∗ ̸= x ∈ S ∩B(x∗, r).

Lemma 2.1.7 Fermat’s Theorem: For a one-dimensional function f defined and differen-
tiable over an interval (a, b), if a point x∗ ∈ (a, b) is a local maximum or minimum, then
f ′(x∗) = 0.

Remark 2.3 Moving into multidimensional extension of this Lemma, the result states that the
gradient is zero at local optimum points. We refer to such an optimality condition as a first
order optimality condition .

Theorem 2.1.8 First Order Optimality Condition for Local Optima Points
Let f : U → R be a function defined on a set U ⊆ Rn. Suppose that x∗ ∈ int(U) is a local
optimum point and that all the partial derivatives of f exist at x∗. Then, ∇f(x∗) = 0.

Proof 1. Let i ∈ {1, 2, . . . , n} and consider the one-dimensional function g(t) = f(x∗ + tei),

where ei is the standard basis. Note that g is differentiable at t = 0 and that g′(0) =
∂f

∂xi

.

Since x∗ is a local optimum point of f , it follows that t = 0 is a local optimum of g, which

immediately implies that g′(0) = 0. The latter equality is exactly the same as
∂f

∂xi

= 0. Since

this is true for any i ∈ {1, 2, . . . , n}, the result ∇f(x∗) = 0 follows. ■

Remark 2.4 Our proof of the multidimensional First Order Condition relies on the first order
optimality condition for one-dimensional functions.

Remark 2.5 Theorem 2.1.8 presents a necessary optimality condition: the gradient vanishes at
all local optimum points, which are interior points of the domain of the function; however, the
reverse claim is not true since there could be points which are not local optimum points whose
gradient is zero.
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2 UNCONSTRAINED OPTIMIZATION 2.2 Classification of Matrices

Definition 2.1.9 (Stationary Points). Let f : U → R be a function defined on a set U ⊆ Rn.
Suppose that x∗ ∈ int(U) and that f is differentiable over some neighborhood of x∗. Then, x∗

is called a stationary point of f if ∇f(x∗) = 0.

Remark 2.6 Theorem 2.1.8 essentially states that local optimum points are necessarily station-
ary points. However, again, stationary points are not necessarily local optimum points.

2.2 Classification of Matrices

Definition 2.2.1 (Positive Definiteness, Negative Definiteness). A symmetric matrix A ∈
Rn×n is called

• positive semidefinite, denoted by A ⪰ 0, if x⊤Ax ≥ 0 for every x ∈ Rn.

• positive definite, denoted by A ≻ 0, if x⊤Ax > 0 for every x ̸= 0 ∈ Rn.

• negative semidefinite, denoted by A ⪯ 0, if x⊤Ax ≤ 0 for every x ∈ Rn.

• negative definite, denoted by A ≺ 0, if x⊤Ax < 0 for every x ̸= 0 ∈ Rn.

• indefinite if there exist x and y ∈ Rn such that x⊤Ax > 0 and y⊤Ay < 0.

Remark 2.7 A matrix is negative (semi)definite if and only if −A is positive (semi)definite.

Lemma 2.2.2 Necessary Condition for Definiteness of Matrices: If A ∈ Rn×n is a positive
definite matrix, then its diagonal elements are positive. If A ∈ Rn×n is a semidefinite matrix,
then its diagonal elements are nonnegative. Similarly, if A is a negative definite matrix, then
its diagonal elements are negative. If A is a negative semidefinite matrix, then tis diagonal
elements are nonpositive.

Remark 2.8 Note that Lemma 2.2.2 gives a necessary condition for a positive definite matrix.
It is not sufficient. That is, one can easily generate a matrix with positive diagonal entries that
is not positive definite.

Lemma 2.2.3 : LetAbe a symmetric n×nmatrix. If there exists positive and negative elements
in the diagonal of A, then A is indefinite.

Theorem 2.2.4 Eigenvalue Characterization Theorem
Let A be a symmetric n× n matrix. Then,

• A is positive definite if and only if all its eigenvalues are positive.

• A is positive semidefinite if and only if all its eigenvalues are nonnegative.

• A is negative definite if and only if all its eigenvalues are negative.

• A is negative semidefinite if and only if all its eigenvalues are nonpositive.

• A is indefinite if and only if it has both positive and negative eigenvalues.
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2 UNCONSTRAINED OPTIMIZATION 2.2 Classification of Matrices

Corollary 2.2.5 : Let A be a positive semidefinite (definite) matrix. Then, tr(A) and det(A) are
nonnegative (positive).
Lemma 2.2.6 : Let D = diag(d1, d2, . . . , dn). Then, D is

• positive definite if and only if di > 0 ∀i.

• positive semidefinite if and only if di ≥ 0 ∀i.

• negative definite if and only if di < 0 ∀i.

• negative semidefinite if and only if di ≤ 0 ∀i.

• indefinite if and only if ∃ i, j s.t. di > 0, dj < 0.

Proposition 2.2.7 : Let A be a symmetric 2 × 2 matrix. Then, A is positive semidefinite (defi-
nite) if and only if both tr(A) ≥ 0 and det(A) ≥ 0 (tr(A) > 0 and det(A) > 0).

Example 2.2.8 Square Root of Matrices
For any positive semidefinite matrix A, we can define the square root of matrix A1/2.

Let A = UDU⊤ by the spectral decomposition. Then, D = diag(d1, d2, . . . , dn), where di’s
are eigenvalues of A. Since A is positive semidefinite, we have d1, . . . , dn ≥ 0. Now, define

A1/2 = UEU⊤,

where E = diag(
√
d1, . . . ,

√
dn). Then

A1/2A1/2 = UEU⊤UEU⊤ = UEEU⊤ = UDU⊤ = A.

The matrix A1/2 is also known as the positive semidefinite square root.

Definition 2.2.9 (Principal Minor). Given an n × n matrix, the determinant of the upper left
k × k sub-matrix is called the k-th principal minor and is denoted by Dk(A).

Example 2.2.10 Principal Minor
Consider a 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

.

Then the principal minors are

D1(A) = a11, D2(A) =

∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣, D3(A) =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣.

20



2 UNCONSTRAINED OPTIMIZATION 2.3 Second Order Optimality Conditions

Theorem 2.2.11 Principal Minors Criterion
Let A be an n × n symmetric matrix. Then, A is positive definite if and only if all its
principal minors are positive. That is, D1(A) > 0, . . . , Dn(A) > 0.

Remark 2.9 When the matrix becomes large, computing its determinant will be hard. So, other
method to determine the definiteness of a matrix shall be introduced.

Definition 2.2.12 (Diagonally Dominant Matrices). Let A be a symmetric n×n matrix. Then,

• A is diagonally dominant if

|Aii| ≥
∑
j ̸=i

|Aij|, for i = 1, 2, . . . , n.

• A is called strictly diagonally dominant if

|Aii| >
∑
j ̸=i

|Aij|, for i = 1, 2, . . . , n.

Theorem 2.2.13 Positive (Semi)Definiteness of Diagonally Dominant Matrices

• Let A be a symmetric n× n diagonally dominant matrix whose diagonal elements
are nonnegative. Then, A is positive semidefinite.

• Let A be a symmetric n × n strictly diagonally dominant matrix whose diagonal
elements are positive. Then, A is positive definite.

2.3 Second Order Optimality Conditions

Theorem 2.3.1 Necessary Second Order Optimality Condition
Let f : U → R be a function defined on an open set U ⊆ Rn. Suppose that f is twice
continuously differentiable over U and that x∗ is a stationary point. Then, the following
hold:

• If x∗ is a local minimum point of f over U , then ∇2f(x∗) ⪰ 0.

• If x∗ is a local maximum point of f over U , then ∇2f(x∗) ⪯ 0.

Proof 1. Proving the second condition, we just need to employ the result from the first
condition on the function −f . So, we will only prove the first condition here.

Since x∗ is a local minimum point, ∃ a ball B(x∗, r) ⊆ U for which f(x) ≥ f(x∗) for all x ∈
B(x∗, r). Let d ∈ Rn be a nonzero vector. For any 0 < a <

r

∥d∥
, we have x∗

α = x∗+αd ∈ B(x∗, r),

21



2 UNCONSTRAINED OPTIMIZATION 2.3 Second Order Optimality Conditions

and hence for any such α,
f(x∗

α) ≥ f(x∗). (2)

On the other hand, by the linear approximation theorem (Taylor’s approximation), it fol-
lows that ∃ a vector zα ∈ [x∗, x∗

α] such that

f(x∗
α)− f(x∗) = ∇f(x∗)⊤(x∗

α − x∗) +
1

2
(x∗

α − x∗)⊤∇2f(zα)(x
∗
α − x∗).

Since x∗ is a stationary point of f , and by the definition of x∗
α, the equation can be reduced to

f(x∗
α)− f(x∗) =

α2

2
d⊤∇2f(zα)d. (3)

Combining Eq. (2) and Eq. (3), it follows that for any α ∈
(
0,

r

∥d∥

)
, the following inequality

holds:
d⊤∇2f(zα)d ≥ 0.

Finally, using the fact that zα → x∗ as α → 0+, and the continuity of the Hessian, we
obtain that d⊤∇2f(x∗)d ≥ 0. Since the inequality holds for any d ∈ Rn, the desired result is
established. ■

Theorem 2.3.2 Sufficient Second Order Optimal Condition
Let f : U → R be a function defined on an open set U ⊆ Rn. Suppose that f is twice
continuously differentiable over U and that x∗ is a stationary point. The following hold:

• If ∇2f(x∗) ≻ 0, then x∗ is a strict local minimum point of f over U .

• If ∇2f(x∗) ≺ 0, then x∗ is a strict local maximum point of f over U .

Definition 2.3.3 (Saddle Point). Let f : U → R be a function defined on an open set U ⊆ Rn.
Suppose that f is continuously differentiable over U . A stationary point x∗ is called a saddle
point of f over U if it is neither a local minimum point nor a local maximum point of f over
U .

Theorem 2.3.4 Sufficient Condition for a Saddle Point
Let f : U → R be a function defined on an open set U ⊆ Rn. Suppose that f is twice
continuously differentiable over U and that x∗ is a stationary point. If ∇2f(x∗) is an
indefinite matrix, then x∗ is a saddle point of f over U .

Remark 2.10 Recall the Weierstrass Theorem (Theorem 1.4.2), which states that a function de-
fined over a compact set must attain its maximum and minimum value at some point. How-
ever, if we loose the condition on the compact set, we will not get this nice property. Therefore,
we wonder if we can come up with some condition on the objective function to ensure the max-
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2 UNCONSTRAINED OPTIMIZATION2.4 Global Optimality Condition and Quadratic Functions

imum and minimum values are attained. This motivates the following definition of coercive-
ness.

Definition 2.3.5 (Coerciveness). Let f : Rn → R be a continuous function defined over Rn.
The function f is called coercive if

lim
∥x∥→∞

f(x) = ∞.

Theorem 2.3.6 Attainment Under Coerciveness
Let f : Rn → R be a continuous and coercive function and let S ⊆ Rn be a nonempty
closed set. Then, f has a global minimum point over S.

2.4 Global Optimality Condition and Quadratic Functions

Theorem 2.4.1 Global Optimality Condition
Let f be a twice continuously differentiable function defined over Rn. Suppose that
∇2f(x) ⪰ 0 for any x ∈ Rn. Let x∗ ∈ Rn be a stationary point of f . Then, x∗ is a global
minimum point of f .

Proof 1. By the linear approximation theorem, it follows that for any x ∈ Rn, there exists a
vector zx ∈ [x∗, x] for which

f(x)− f(x∗) =
1

2
(x− x∗)⊤∇2f(zx)(x− x∗).

Since∇2f(zx) ⪰ 0, we have that f(x) ≥ f(x∗), establishing the fact that x∗ is a global minimum
point of f . ■

Definition 2.4.2 (Quadratic Function). A quadratic function over Rn is a function of the form

f(x) = x⊤Ax+ 2b⊤x+ c,

where A ∈ Rn×n is symmetric, b ∈ Rn, and c ∈ R. The matrix A will be referred as the matrix
associated with the quadratic function f . The gradient and Hessian of a quadratic function
have simple analytic formulas:

∇f(x) = 2Ax+ 2b; ∇2f(x) = 2A.

Lemma 2.4.3 : Let f(x) = x⊤Ax + 2b⊤x + c, where A ∈ Rn×n is symmetric, b ∈ Rn, and c ∈ R.
Then,

• x is a stationary point of f if and only if Ax = −b.

• if A ⪰ 0, then x is a global minimum point of f if and only if Ax = −b.
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2 UNCONSTRAINED OPTIMIZATION2.4 Global Optimality Condition and Quadratic Functions

• if A ≻ 0, then x = −A−1b is a strict global minimum point of f .

Lemma 2.4.4 Coerciveness of Quadratic Functions: Let f(x) = x⊤Ax + 2b⊤x + c, where A ∈
Rn×n symmetric, b ∈ Rn, and c ∈ R. Then, f is coercive if and only if A ≻ 0.

Theorem 2.4.5 Characterization of the non-negativity of quadratic functions
Let f(x) = x⊤Ax + 2b⊤x + c, where A ∈ Rn×n symmetric, b ∈ Rn, and c ∈ R. Then, the
following two claims are equivalent:

• f(x) ≡ x⊤Ax+ 2b⊤x+ c ≥ 0 for all x ∈ Rn.

•

(
A b

b⊤ c

)
⪰ 0.
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3 LEAST SQUARE

3 Least Square

3.1 “Solution” of Overdetermined Systems

Definition 3.1.1 (Least Square Problem). Suppose that we are given a linear system of the
form Ax = b, where A ∈ Rm×n and b ∈ Rm. Assume that the system is overdetermined,
meaning that m > n. Assume that A has a full column rank; that is, rank(A) = n. Then,
the system is usually inconsistent (has no solution) and a common approach of finding an
approximate solution is to pick the solution resulting with the minimal squared norm of the
residual r = Ax− b:

min
x∈Rn

∥Ax− b∥2. (LS)

Solution 1.
To solve the Problem (LS), we can rewrite the objective function as

f(x) = x⊤A⊤Ax− 2b⊤Ax+ ∥b∥2.

Since A is of full column rank, it follows that for any x ∈ Rn, it holds that ∇2f(x) = 2A⊤A ≻ 0.
Hence, the unique stationary point

xLS =
(
A⊤A

)−1
A⊤b

is the optimal solution of problem (LS). □

Definition 3.1.2 (The Least Square Solution/Normal System). The vector xLS we found is
called the least squares solution or the least squares estimate of the system Ax = b. It is also
common to write the explicit expression for xLS associated with the normal system:(

A⊤A
)
xLS = A⊤b.

3.2 Data Fitting

Definition 3.2.1 (Linear Fitting). Suppose that we are given a set of data points (si, ti), i =

1, 2, . . . ,m, where si ∈ Rn and ti ∈ R, and assume that a linear relation of the form

ti = s⊤i x, i = 1, 2, . . . ,m,

approximately holds.
Solution 1.
In the least square approach, the objective is to find the parameters vector x ∈ Rn that

solves the problem

min
x∈Rn

m∑
i=1

(
x⊤
i x− ti

)2
.
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3 LEAST SQUARE 3.2 Data Fitting

We can alternatively write the problem as

min
x∈Rn

∥Sx− t∥2,

where

S =


−s⊤1 −
−s⊤2 −

...
−s⊤m−

, t =


t1
t2
...
tm

.

□

Definition 3.2.2 (Nonlinear Fitting). The least square approach can be used also in nonlinear
fitting. Suppose, for example, that we are given a set of points in R2 : (ui, yi), i = 1, 2, . . . ,m,
and that we know a priori that these points are approximately related via a polynomial of
degree at most d; i.e., there exists a0, . . . , ad such that

d∑
j=0

aju
j
i ≈ yi, i = 1, . . . ,m.

The least squares approach to this problem seeks a0, a1, . . . , ad that are the least squares solu-
tion to the linear system 

1 u1 u2
1 · · · ud

1

1 u2 u2
2 · · · ud

2
...

...
...

. . .
...

1 um u2
m · · · ud

m


︸ ︷︷ ︸

U


a0
a1
...
ad

 =


y0
y1
...
ym

.

Note that, the matrix U is also called the Vandermonde matrix.

Data Fitting

1 d = linspace(0, 1, 30)’;

2 e = 2 * d + 1 + 0.1 * randn(30, 1);

3 plot(d, e, "*");

4 u = [d, ones(30,1)]\e;

5 a = u(1), b = u(2);

6 >>> a =

7 2.0616

8 >>> b =

9 0.9725
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3.3 Regularized Least Squares

When A is underdetermined, that is, when there are fewer equations than variables, there
are several optimal solutions to the least squares problem, and it is unclear which of these
optimal solutions is the one that should be considered.

Example 3.3.1

Consider A =

0 | | |
... | | · · · |
0 | | |

. Then, consider

Ax =

0 | | |
... | | · · · |
0 | | |


x1

...
xn

 = b.

There will be no x1 in b. Therefore, changing x1 will not alter the value ∥Ax− b∥2.

Theorem 3.3.2
Suppose that b = Ax0. Consider all x ̸= x0 s.t. Ax = Ax0, then A(x − x0) = 0. So,
x− x0 ∈ null(A), x ∈ x0 + null(A).

Definition 3.3.3 (Regularized Least Square). Consider a penalized problem in which a regu-
larization function R(·) is added to the objective function. The regularized least square (RLS)
problem has the form

min
x

∥Ax− b∥2 + λR(x). (RLS)

The positive constant λ is the regularization parameter. As λ gets larger, more weight is given
to the regularization function.

In many cases, the regularization is taken to be quadratic. In particular, R(x) = ∥Dx∥2,
where D ∈ Rp×n is a given matrix. Then, (RLS) can be written as

min
x

∥Ax− b∥2 + λ∥Dx∥2.

To find the optimal solution, we can equivalently write the problem as

min
x

{
fRLS(x) ≡ x⊤(A⊤A+ λD⊤D

)
x− 2b⊤Ax+ ∥b∥2

}
.

Since the Hessian of the objective function ∇2fRLS(x) = 2(A⊤A + λD⊤D) ⪰ 0, any stationary
point is a global minimum point. The stationary points are those satisfying ∇fRLS(x) = 0, that
is (

A⊤A+ λD⊤D
)
x = A⊤b.
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3 LEAST SQUARE 3.4 Denoising

Therefore, if A⊤A+ λD⊤D ≻ 0, then the RLS solution is given by

xRLS =
(
A⊤A+ λD⊤D

)−1
A⊤b.

If we control the norm of the solution, we add the quadratic regularization function ∥x∥2, then

xRLS =
(
A⊤A+ λI

)−1
A⊤b.

Remark 3.1 The regularization is to find the smallest norm possible. That is, xRLS is the one
orthogonal to the null space of A.

Example 3.3.4
Suppose B ∈ R2×3. Then, A = B⊤B is rank deficient:

rank(A) = rank(B⊤) rank(B) ≤ min
{
rank(B⊤), rank(B)

}
.

As rank(B) ≤ 2, dim(null(A)) = 3− dim(rank(B)) ≥ 1.

Example 3.3.5
Suppose A is invertible. Axtrue = btrue and Axnoisy = bnoisy. Then,

A
(
xtrue − xnoisy

)
= btrue − bnoisy

xtrue − xnoisy = A−1
(
btrue − bnoisy

)
.

Suppose A =

λ1 0 0

0 λ2 0

0 0 λ3

with λi > 0. Then,

A−1 =

1/λ1 0 0

0 λ2 0

0 0 1/λ3

.

If λ3 is small, A−1
(
btrue − bnoisy

)
will still be large.

3.4 Denoising

One application of regularization is denoising. Suppose that a noisy measurement of a signal
x ∈ Rn is given as

b = x+ w.
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3 LEAST SQUARE 3.5 Nonlinear Least Squares

Here x is an unknown signal, w is an unknown noise vector, and b is the known measurements
vector.

Denoising Problem: Given b, find a “good” estimate of x. The least squares problem associ-
ated with the approximate equation x ≈ b is

min ∥x− b∥2.

In this case, though x = b is the obvious solution of the problem, it is meaningless.

Solution: Considering the signal is smooth, we can add a penalty on the problem. That is,

∫ b

a

[x′(t)]
2
dt < ∞ Discretization−−−−−−−→

n−1∑
i=1

(xi − xi+1)
2, using x′(t) ≈ xi+1 − xi

∆t
.

This penalty is equivalent as using the matrix representation R(x) = ∥Lx∥2, where L ∈
R(n−1)×n is given by

L =


1 −1 0 0 · · · 0 0

0 1 −1 0 · · · 0 0

0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

.

The resulting RLS problem is

min
x

∥x− b∥2︸ ︷︷ ︸
fidelity

+

λ
∑

(xi−xi+1)
2︷ ︸︸ ︷

λ ∥Lx∥2︸ ︷︷ ︸
regularity

,

and the optimal solution is given by

xRLS(λ) =
(
I + λL⊤L

)−1
b.

Remark 3.2 λ controls how smooth we want and how noisy we want. However, note that there
is a trade-off between smoothness and accuracy.

3.5 Nonlinear Least Squares

Problem Assume that we have data {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd, y ∈ R.

Goal Find f s.t. yi ≈ f(xi) ∀i we are searching a function. Mathematically, we solve this
problem as follows:

min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2, (4)
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3 LEAST SQUARE 3.5 Nonlinear Least Squares

where H is the hypothesis set, and
1

n

n∑
i=1

(yi − f(xi))
2 is the loss function.

H is linear

Suppose H is a linear space: H ∈ span {φ1, φ2, . . . , φm}. We know that ∀ f ∈ H, ∃ α1, . . . , αm ∈
R s.t. α1φ1 + α1φ2 + · · ·+ αmφm. Hence, (4) is reduced to

min
α1,...,αm

1

n

n∑
i=1

(
yi −

m∑
j=1

αjφj(xj)︸ ︷︷ ︸
f(xi)

)2
(5)

In terms of least square:

y =


y1
y2
...
yn

, Φ =


φ1(x1) · · · φm(x1)

φ1(x2) · · · φm(x2)
...

. . .
...

φ1(xn) · · · φm(xn)

, α =


α1

α2

...
αm

.

Then, (5) reduces to
min
α

∥y − Φα∥2, (6)

where φ1, . . . , φn are called features, and Φ is called a feature matrix. Example of features:
polynomials, trigonometric polynomials, etc.

H is nonlinear

Suppose H is not a linear subspace: H = {φ(·;α) : α ∈ Rn}. So, f(x) = φ(x;α), which is a set
of parametric function. Once α is fixed, we can evaluate f(x). Note, generally, α 7→ φ(x;α) is
not linear. When H is a linear space with features φ1, . . . , φm, then

φ(x;α) = α1φ1(x) + α2φ2(x) + · · ·+ αmφm(x),

and then we are back into the H is linear case.
For example, we can have a one-layer Neural Network as follows, where σ : R → R is called

the activation function. Then,

φ(x;w1, . . . , wm,

biases︷ ︸︸ ︷
b1, . . . , bm, α1, . . . , αm︸ ︷︷ ︸

weights

)−α1 σ(x · w1 + b1)︸ ︷︷ ︸
φ1(x)

+α2 σ(x · w2 + b2)︸ ︷︷ ︸
φ2(x)

+ · · ·+αm σ(x · wm + bm)︸ ︷︷ ︸
φm(x)

.

Compare with the case whenH is a linear subspace, we are now havingφi(x) is also dependent
on wi and bi. We let the machine to learn the most efficient basis for the problem. So, this
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3 LEAST SQUARE 3.5 Nonlinear Least Squares

approach will be more adaptable in different contexts.

x

...

σ

σ

σ

y

w1

w2

w3

b1

b2

α1

b3

α2

α3

More generally, the least square problem when H is nonlinear can be written as

min
α

1

n

n∑
i=1

(
yi − φ(xi;α)︸ ︷︷ ︸

nonlinear

)
(7)

As φ(x;α) is nonlinear, we cannot write it as a matrix-vector product as given in (6).
(7) is called a nonlinear least square problem.

Remark 3.3 We obtain nonlinear least square problems when we fit data with square loss and
nonlinear model.

Problem: Data Classification Given (x1, y1), . . . , (xn, yn), find φ(x;α) s.t. φ(xi;α) ≈ yi ∀i.

Measuring Error: What does φ(x;α) ≈ yi mean?

• Distance – MSE:
1

n

n∑
i=1

(yi − φ(x;α))2. Or, more generally,
1

n

n∑
i=1

|yi − φ(xi;α)|p.

31



3 LEAST SQUARE 3.5 Nonlinear Least Squares

• Sign:
1

n

n∑
i=1

(yi − sign(φ(xi;α)))
2, where

sign(x) =


1, x > 0

0, x = 0

−1, x < 0.

• Alternatively, softmax, then the output will be φ(x;α) ∈ Rn, where n is the number of
classes, with φi(x;α) is the probability of x in class i. For example, take n = 2, then

φ(x;α) = (φ1(x;α), φ2(x;α))

where (1, 0) means 100% in class 1 and (0, 1) means 100% in class 2. Turning every-
thing into positive and probability values, we get(

eφ1(x;α)

eφ1(x;α) + eφ2(x;α)
,

eφ2(x;α)

eφ1(x;α) + eφ2(x;α)

)
.

Linear Least Square to Solve: Suppose there exists some lines dividing the classes. Those
lines are called hyperplanes with equation

w · x+ ν = 0.

Goal Find w, ν such that w · x+ ν > 0 for xi in red and w · x+ ν < 0 for xi in blue.

However, we can have multiple choices of the hyperplane. Which one is better? We will
evaluate them using the concept of margin.

Definition 3.5.1 (Margin). We define the margin of the hyperplane defined byw·x+ν = 0

as follows

ρ(w) = min
i

|w · wi + ν|
∥w∥

.

If the classification is successful, we should have w · xi + ν and yi to have the same sign,
so (w · xi + ν) · yi ≥ 0. Therefore, we want the hyperplane that

max
(w·xi+ν)·yi≥0

ρ(w) = max
(w·xi+ν)·yi≥0

min
i

|w · wi + ν|
∥w∥

= max
(w·xi+ν)·yi≥0

1

∥w∥
by homogeneity of w and ν

We can further show that the optimization problem can be written as the following least
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3 LEAST SQUARE 3.5 Nonlinear Least Squares

square problem with respect to w and ν:

min
(w·xi+ν)·yi≥0

∥w∥2

2
. (8)

Proof 1. In this proof, let’s get a sense why we are having a least square problem. Sup-
pose w ∈ Rd×1. Define

A =


1 0

. . .

0 1

0

0 0

 =

(
Id 0

0 0

)
.

Then,

A

(
w

ν

)
=

(
Id 0

0 0

)(
w

ν

)
=

(
w

0

)
, b =

(
0d
0

)
.

Therefore, we get

A

(
w

ν

)
− b =

(
w

0

)
=⇒

∥∥∥∥∥A
(
w

ν

)
− b

∥∥∥∥∥
2

=

∥∥∥∥∥
(
w

0

)∥∥∥∥∥ = ∥w∥2.

■

Nonlinear Least Square to Solve We can form the following nonlinear least square problem

min
w,ν

1

n

n∑
i=1

(yi − sign(w · xi + ν))2 + λ1∥w∥2 + λ2∥ν∥2 (9)

This is a nonlinear least square because sign(w ·i +ν) does not form a linear relationship
with w and ν. This nonlinear least square will fail, in fact. To ensure (9) works, we have
to add the constrain (w · xi + ν) · yi ≥ 1.

Nonlinearly Separable Classification If the classes are not linearly separable, neither (8) nor
(9) will work. We need to transform them into a higher dimension. For example, con-
sider the following mapping: (x, y) 7→ (x, y, x2 + y2). The map that makes data linearly
separable is the feature mapping. Find a feature mapping can be very difficult.
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4 CONSTRAINED OPTIMIZATION

4 Constrained Optimization

Goal: Constrained Optimal Problem

• figure out necessary conditions for optimality

• figure out sufficient conditions for optimality

• existence

• MATLAB function fmincon

We will mostly discuss: min
x∈C

f(x), whereC is closed and convex, and f can be either convex or
non-convex.

4.1 Convexity

Definition 4.1.1 (Convex Set). A set C ⊆ Rd is convex if ∀ x, y ∈ C and λ ∈ (0, 1), we have that
(1− λ)x+ λy ∈ C.

Remark 4.1 Convexity essentially means that if we know two points are in the set, then every-
thing on the line connecting the two points is also in the set.

x (λ = 0)

y (λ = 1)
(1− λ)x+ λy

Example 4.1.2 Example of convex and non-convex sets

C C

Example 4.1.3 Show that C = {x : ∥x− x0∥ ≤ r} = Bx0(r) is convex.
Proof 1. Let x, y ∈ C and λ ∈ (0, 1).
We have: ∥x− x0∥ ≤ r and ∥y − x0∥ ≤ r. We want: ∥(1− λ)x+ λy − x0∥ ≤ r.
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4 CONSTRAINED OPTIMIZATION 4.1 Convexity

Note that

∥(1− λ)x+ λy − x0∥ =

∥∥∥∥∥∥(1− λ)(x− x0)︸ ︷︷ ︸
a

+λ(y − x0)︸ ︷︷ ︸
b

∥∥∥∥∥∥
= ∥(1− λ)(x− x0)∥+ ∥λ(y − x0)∥ triangular inequality

= (1− λ)∥x− x0∥+ λ∥y − x0∥ homogeneity

≤ (1− λ)r + λr = r

We’ve shown ∥(1− λ)x+ λy − x0∥ ≤ r, implying C is convex. ■

Remark 4.2 In this example, ∥·∥ is an arbitrary norm. So, any Bx0(r) defined with an arbitrary
norm is convex.

Example 4.1.4 Unit Balls are Convex

• ∥x∥1 =
d∑

i=1

|xi|, x0 = (0, . . . , 0), r = 1, then the ℓ1 unit ball is defined by the following

convex set C = {(x1, x2) : |x1|+ |x2| ≤ 1}.

• ∥x∥2 =

(
d∑

i=1

x2
i

)1/2

, x0 = (0, . . . , 0), r = 1, and the ℓ2 unit ball (also known as the unit

circle) is defined by C = {(x1, x2) : x
2
1 + x2

2 ≤ 1} convex.

• ∥x∥∞ = max
1≤i≤n

|xi|, x0 = (0, . . . , 0), r = 1. The ℓ∞ unit ball is defined by the following

set C = {(x1, x2) : max {|x1|, |x2|} ≤ 1}.

If we put the unit balls together, ℓ1-ball is the smallest and ℓ∞-ball is the largest.

(1, 0)(−1, 0)

(0,−1)

(0, 1)

x1

x2
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4 CONSTRAINED OPTIMIZATION 4.1 Convexity

Remark 4.3 When solving the regularization problem min
x∈C

f(x)+ ∥x∥α, we can choose different

types of norms. The shape of the unit ball of the norms will inform which solution is selected.
Usually, the solution will be on the boundary of the unit ball. ℓ1-ball gives sparse solution and
using ℓ1-norm is called the LASSO method.

Definition 4.1.5 (Convex Function). A function f : Rd → R is called convex if ∀x, y ∈ Rd and
λ ∈ (0, 1), we have that f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y). Note that this condition is
equivalent to saying that f has positive second order derivatives.

f

x y

(1− λ)x+ λy

f(x)
f((1− λ)x+ λy) (1− λ)f(x) + λf(y)

f(y)

f

x y

f(x)

f(y)

epi(f) : epigraph, convex

Remark 4.4 The definition of a convex function is to say that the graph of the function is below
the straight line of connecting any two points on the graph.

Definition 4.1.6 (Epigraph of f). Define epi(f) :=
{
(x, z) ∈ Rd+1 : z ≥ f(x)

}
. Note that “epi”

means “up” in greek.

Theorem 4.1.7 Duality of Convexity
A function f : Rd → R is convex if and only if epi(f) is convex.

Example 4.1.8 A Nonexample

f

not in epi(f)
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4 CONSTRAINED OPTIMIZATION 4.1 Convexity

Proof 2. (⇒) Suppose f is convex. Let (x, z), (y, w) ∈ epi(f) and λ ∈ (0, 1). Our goal is to
show that (1− λ)(x, z) + λ(y, w) ∈ epi(f) as well. Note that

(1− λ)(x, z) + λ(y, w) = ((1− λ)x+ λy, (1− λ)x+ λw).

Since (x, z), (y, w) ∈ epi(f), we have z ≥ f(x) and w ≥ f(y). Therefore

(1− λ)z + λw ≥ (1− λ)f(x) + λf(y)

≥ f((1− λ)x+ λy) by convexity of f □

(⇐) Suppose epi(f) is a convex set. Note that ∀x, y ∈ Rd, by definition of epi(f), we have
(x, f(x)) ∈ epi(f) and (y, f(y)) ∈ epi(f). Then, by convexity, we know

(1− λ)(x, f(x)) + λ(y, f(y)) = ((1− λ)x+ λy, (1− λ)f(x) + λf(y)) ∈ epi(f).

Again, by definition of epi(f), we have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Therefore, f is convex. ■

Definition 4.1.9 (α-Level Set). Let f : Rd → R be an arbitrary function and α ∈ R. Then, the
α-level set of f is Lev(f, α) :=

{
x :∈ Rd : f(x) ≤ α

}
.

α

f1 f2

Lev(f1, α)

Lev(f2, α)

Theorem 4.1.10
If f is convex, then Lev(f, α) are convex ∀ α ∈ R.

Remark 4.5 By convention, we consider empty set as convex as well

Proof 3. Let x, y ∈ Lev(f, α) and λ ∈ (0, 1).
WTS: (1− λ)x+ λy ∈ Lev(f, α) ⇐= f((1− λ)x+ λy) ≤ α.
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4 CONSTRAINED OPTIMIZATION 4.1 Convexity

As x, y ∈ Lev(f, α), then f(x) ≤ α and f(y) ≤ α. So,

(1− λ)f(x) + λf(y) ≤ (1− λ)α + λα = α.

By convexity of f , we know

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ≤ α.

So, (1− λ)x+ λy ∈ Lev(f, α). ■

Remark 4.6 Often, we have min
f(x)≤α

g(x). In this case, C = {x : f(x) ≤ α} = Lev(f, α). In fact,

every Lev(f, α) is corresponding to a certain convex function. Therefore, Theorem 4.1.10 can be
strengthen into an if-and-only-if statement.

Example 4.1.11 Example 4.1.3 Revisit
Consider Br(x0) =

{
x ∈ Rd : ∥x− x0∥ ≤ r

}
. If f(x) = ∥x− x0∥, x ∈ Rd, then Br(x0) =

Lev(f, r). Show that Br(x0) is convex.
Proof 4. To prove the statement, we first consider the convexity of f(x):
Claim. f is convex.
Proof. Let x, y ∈ Rd and λ ∈ (0, 1). WTS: ∥(1− λ)x+ λy∥ ≤ (1− λ)∥x∥+ λ∥y∥.

Note that

∥(1− λ)x+ λy∥ ≤ ∥(1− λ)x∥+ ∥λy∥ triangular inequality

= (1− λ)∥x∥+ λ∥y∥ homogeneity

So, f is convex. □

As f is convex and Br(x0) = Lev(f, r), by Theorem 4.1.10, Br(x0) is convex. ■

Remark 4.7 Example 4.1.11 offers another approach to prove a set is convex other than ap-
plying the definition: proving it is the level set of a convex function. This is a more powerful
approach and can be applied into different types of questions.

Theorem 4.1.12 Operations Preserving Convexity I
Assume that f1, f2, . . . , fp are convex functions. Then,

1. α1f1 + α2f2 + · · ·+ αpfp is convex ∀ α1, . . . , αp ≥ 0.

2. f(x) = max {f1(x), f2(x), . . . , fp(x)} is a convex function.

Proof 5. Here, we will offer a proof of Theorem 4.1.12 (2). Let x, y ∈ Rd and λ ∈ (0, 1). We
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4 CONSTRAINED OPTIMIZATION 4.1 Convexity

want to show f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y). Note that

fi((1− λ)x+ λy) ≤ (1− λ)fi(x) + λfi(y) convexity of fi

≤ (1− λ)f(x) + λf(x), ∀ i definition of f : fi(x) ≤ f(x)

So,
max

i
fi((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(x).

By definition of f , that is, f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y). ■

Theorem 4.1.13 Operations Preserving Convexity II
Let f be a convex function. Then, g(y) = f(Ay + b) is also convex, where A is a matrix
and b is a vector.

Proof 6. Let y, z ∈ dom(g), the domain of g. Then,

g((1− λ)y + λz) = f(A((1− λ)y + λz) + b)

= f((1− λ)Ay + λAz + (1− λ)b+ λb) linearity of A

= f((1− λ)(Ay + b) + λ(Az + b))

≤ (1− λ)f(Ay + b) + λf(Az + b) convexity of f

= (1− λ)g(y) + λg(z) definition of g

As g((1− λ)y + λz) ≤ (1− λ)g(y) + λg(z), g is convex. ■

Theorem 4.1.14 Operations Preserving Convexity III
Assume f : Rd → R is convex and g : R → R is an increasing convex function. Then,
h(x) = (g ◦ f)(x) = g(f(x)) is also convex.

Proof 7. Let x, y ∈ Rd and λ ∈ (0, 1). Then, by the convexity of f , we have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Further, due to g being monotonically increasing,

g(f((1− λ)x+ λy)) ≤ g((1− λ)f(x) + λf(y)).

Therefore,

h((1− λ)x+ λy) = g(f((1− λ)x+ λy)) ≤ g((1− λ)f(x) + λf(y))

≤ (1− λ)g(f(x)) + λg(f(y)) convexity of g

= (1− λ)h(x) + λh(y) definition of h
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As h((1− λ)x+ λy) ≤ (1− λ)h(x) + λh(y), h is convex. ■

Claim 4.15 Let C1, C2, . . . , Cp be convex sets. Then, C =

p⋂
i=1

= C1 ∩C2 ∩ · · · ∩Cp is also convex.

Remark 4.8 The union of convex sets, C =

p⋃
i=1

Ci = C1 ∪C2 ∪ · · · ∪Cp might not be a convex set.

Corollary 4.1.16 : Let f1, f2, . . . , fp be convex functions and α1, α2, . . . , αp ∈ R. Then,

C = {x : f1(x) ≤ α1, f2(x) ≤ α2, . . . , fp(x) ≤ αp}
= Lev(f1, α1) ∩ Lev(f2, α2) ∩ · · · ∩ Lev(fp, αp)

=

p⋂
i=1

Lev(fi, αi)

is also convex.

Remark 4.9 Consider an optimization problem min
f1(x)≤α1

f2(x)≤α2
···

fp(x)≤αp

g(x). If fi are convex, then the constrain

set of this problem is also convex as a result of Corollary 4.1.16.

Example 4.1.17 Techniques to Prove Convexity I: Turn “≥” into “≤”
Consider min

x2
1+x2

2≤1
2x1−x2≥0

L(x1, x2). The constrain set C = C1 ∩ C2 s.t.

C1 =
{
(x1, x2) : x

2
1 + x2

2 ≤ 1
}

and C2 = {(x1, x2) : 2x1 − x2 ≥ 0}.

Find the convexity of C.
Solution 8.
Define f1(x1, x2) = x2

1 + x2
2. Then, C1 is a level set:

C1 = {(x1, x2) : f1(x1, x2) ≤ 1}.

Note that ∇2f1(x1, x2) =

[
2 0

0 2

]
≻ 0, so f1(x1, x2) is convex and so is C1.

Define f2(x1, x2) = −2x1 + x2. Then, C2 is also a level set:

C2 = {(x1, x2) : −2x1 + x2 ≤ 0} = {(x1, x2) : f2(x1, x2) ≤ 0} [a ≥ 0 ⇐⇒ −a ≤ 0]

Note that ∇2f2(x1, x2) =

[
0 0

0 0

]
⪰ 0. Thus, f2(x1, x2) is convex and so is C2.

Hence, C = C1 ∩ C2 is also convex. □
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Remark 4.10 Every linear function f(x) = c0 + c1x1 + c2x2 + · · · + cdxd always has Hessian
semidefinite, and so they are all convex. Having a strict positive definition Hessian implies a
strict convexity.

Example 4.1.18 Techniques to Prove Convexity II: Turn “=” into “≤”
Consider min

ex1+x2−x3≤1
4x1−2x2+7x3=2

L(x1, x2, x3).

Let C be the constrain set. Determine the convexity of C.
Solution 9.
Note that C = C1 ∩ C2 s.t.

C1 = {(x1, x2, x3) : f1(x2, x2, x3) ≤ 1} where f1(x1, x2, x3) = ex1 + x2 − x3

and

C2 = {(x1, x2, x3) : f2(x2, x2, x3) = 2} where f2(x1, x2, x3) = 4x1 − 2x2 + 7x3.

In fact, we can decompose C2 into the following conditions:

C2 = {(x1, x2, x3) : f2(x2, x2, x3) ≤ 2} where f2(x1, x2, x3) = 4x1 − 2x2 + 7x3.

and

C3 = {(x1, x2, x3) : f3(x2, x2, x3) ≤ −2} where f3(x1, x2, x3) = −4x1 + 2x2 − 7x3.

Therefore, C = C1 ∩ C2 ∩ C3, with C1, C2, C3 both level sets.
For C1, note that

∇2f1(x1, x2, x3) =

ex1 0 0

0 0 0

0 0 0

 ⪰ 0.

So, f1 is convex and so is C1.
Alternatively, ex1 is convex and x2 − x3 is also convex. So, f1(x1, x2, x3) is a sum of two

convex functions.
For C2 and C3, f2 is linear, and so f2 and f3 = −f2 are both linear and so convex. Then,

C2 and C3 are convex.
Therefore, C = C1 ∩ C2 ∩ C3 is convex. □

4.2 Conditions for Constrained Optimal Problems

Problem
Consider min

x∈C
f(x), where C ⊆ Rd is a convex set. (P)
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Definition 4.2.1 (Stationary Point). A point x∗ ∈ C is called a stationary point for (P) if

∇f(x∗)⊤(x− x∗) ≥ 0 ∀x ∈ C.

x∗

∇f (x∗)
x1

x2

α
α ≤ 90◦ =

π

2

Theorem 4.2.2 Necessary Condition for Constrained Optimization
If x∗ is a solution of (P), then x∗ is a stationary point.

Proof 1. Assume that x∗ is a solution of (P), but ∃ x ∈ C s.t. ∇f(x∗)⊤(x− x∗) < 0.
Consider φ(t) = f(x∗ + t(x− x∗)). Note that

φ′(0) = lim
t→0

φ(t)− φ(0)

t
= lim

t→0

f(x∗ + t(x− x∗))− f(x∗)

t

[Directional derivative of f in direction of x− x∗] = f ′(x∗;x− x∗)

= ∇f(x∗)⊤ · (x− x∗) < 0.

So, φ′(0) = ∇f(x∗)⊤ · (x− x∗) < 0 by our assumption. So, ∃ t∗ ∈ (0, 1) s.t. φ(t∗) < φ(0). That is,

f(x∗ + t∗(x− x∗)) < f(x∗)

f((1− t∗)x∗ + t∗x) < f(x∗)

Denote (1− t∗)x∗ + t∗x = x′, we know x′ ∈ C by convexity of C. So, we’ve found a x′ ∈ C s.t.

f(x′) < f(x∗).

⋇ This contradicts with our assumption that x∗ is a solution of (P). Hence, our assumption
is incorrect, and the proof is complete. ■

Remark 4.11 When x∗ ∈ int(C), then x∗ is stationary if and only if ∇f(x∗) = 0. In particular,
when C = Rd, all x∗ ∈ int(C) and stationary means ∇f(x∗) = 0.

Example 4.2.3 Use the Necessary Condition to Derive a KKT Condition
Consider C = Rd

+ = {(x1, . . . , xd) : xi ≥ 0 ∀ i}. Show that x∗ is a stationary point if and
only if ∀ i,

∂f

∂xi

≥ 0, x∗
i ≥ 0,

∂f

∂xi

x∗
i = 0.
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Proof 2. The necessary condition for x∗ ∈ C to be stationary is given by

∇f(x∗)⊤(x− x∗) ≥ 0 ∀ x ∈ Rd
+

∇f(x∗)⊤x−∇f(x∗)⊤x∗ ≥ 0.

Claim. a⊤x+ b ≥ 0 ∀ x ∈ Rd
+ if and only if a ≥ 0 and b ≥ 0.

Using the Claim, we have that x∗ is a stationary point if and only if

∂f

∂xi

≥ 0 ∀ i

and

∇f(x∗)⊤x∗ =
d∑

i=1

∂f

∂xi

x∗
i ≤ 0.

Hence, x∗ is a stationary point if and only if

∀ i,
∂f

∂xi

≥ 0, x∗
i ≥ 0,

∂f

∂xi

x∗
i = 0.

The three conditions, altogether, is called the Karush–Kuhn–Tucker (KKT) Condition for

C = Rd
+. The last condition,

∂f

∂xi

x∗
i = 0 ∀ i is called the Complementary Slackness Condi-

tion, which indicates that for each i, either

∂f

∂xi

= 0 −→ x∗ ∈ int(C) or x∗
i = 0 −→ x∗ is on the boundary

■

Theorem 4.2.4 First-Order Characterization of a Convex Function
f ∈ C1(Rd) is convex if and only if f(y) ≥ f(x) +∇f(x)⊤(y − x)︸ ︷︷ ︸

first-order approximation

, ∀ x, y ∈ Rd.

f1 f2

x y

f1(x) + (y − x)⊤∇f1(x)

x

f2(x) + (y − x)⊤∇f2(x)

Proof 3. (⇒) Suppose f ∈ C1(Rd) is convex. Fix some x, y ∈ Rd.
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4 CONSTRAINED OPTIMIZATION 4.2 Conditions for Constrained Optimal Problems

If x = y, then f(y) ≥ f(x)+∇f(x)⊤(y−x) is trivially true. So, WLOG, we can assume x ̸= y.
By convexity,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ∀ λ ∈ (0, 1)

f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x))

f(y)− f(x) ≥ f(x+ λ(y − x))− f(x)

λ
∀ λ ∈ (0, 1)

lim
λ→0+

f(x+ λ(y − x))− f(x)

λ︸ ︷︷ ︸
Direction derivative along y−x

≤ f(y)− f(x)

f ′(x; y − x) ≤ f(y)− f(x)

∇f(x)⊤(y − x) ≤ f(y)− f(x) f is smooth

f(y) ≥ f(x) +∇f(x)⊤(y − x). □

(⇐) Assume f(y) ≥ f(x)+∇f(x)⊤(y−x) is true. WTS: f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y).
Denote z := (1− λ)x+ λy, then by assumption,

f(x) ≥ f(z) +∇f(z)⊤(x− z) (10)

and
f(y) ≥ f(z) +∇f(z)⊤(y − z) (11)

Then, (1− λ)(10) + λ(11) for some λ ∈ (0, 1) gives us

(1− λ)f(x) + λf(y) ≥ (1− λ)f(z) + (1− λ)∇f(x)⊤(x− z) + λf(z) + λ∇f(z)⊤(y − z)

(1− λ)f(x) + λf(y) ≥ f(z) +∇f(x)⊤((1− λ)(x− z) + λ(y − z)).

Note that

(1− λ)(x− z) + λ(y − z) = (1− λ)(x− (1− λ)x− λy) + λ(y − (1− λ)x− λy)

= (1− λ)λ(x− y) + λ(1− λ)(y − x)

= (1− λ)λ(x− y)− (1− λ)λ(x− y)

= 0

So,
(1− λ)f(x) + λf(y) ≥ f(z) + 0 = f((1− λ)x+ λy).

■

Remark 4.12 The zero-order characterization of the convex function is the definition

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).
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The second-order characterization of a convex function is the Hessian being semidefinite. These
three characterizations are equivalent.

Theorem 4.2.5 Sufficient Condition for Constrained Optimization
Assume that C is convex, f is convex, and x∗ ∈ C is a stationary point for (P). Then, x∗ is
a minimum point or solution.

Proof 4. Let x ∈ C. By convexity, we have that

f(x) ≥ f(x∗) +∇f(x∗)⊤(x− x∗).

Since x∗ is a stationary point, we have that, by definition,

∇f(x∗)⊤(x− x∗) ≥ 0.

So,
f(x) ≥ f(x∗) +∇f(x∗)⊤(x− x∗) ≥ f(x∗).

■

Remark 4.13 (View Convexity from Another Perspective) If f is linear (affine), stationary points
satisfy:

∇f(x∗)⊤(x− x∗) = f(x)− f(x∗) ≥ 0 =⇒ x∗ is minimum.

If f is nonlinear,

C

f(x)

L(x) = f (x∗) +∇f (x∗)⊤ (x− x∗)

x∗

Let L(x) be the affine function s.t. L(x∗) = f(x∗) and ∇L(x∗) = ∇f(x∗).
Now, consider min

x∈C
L(x):

∇L(x∗)⊤(x− x∗) ≥ 0 ∀x ∈ C

∇f(x∗)⊤(x− x∗) ≥ 0 ∀x ∈ C.

So, x∗ is the minimum of f if and only if it is also the minimum of L,
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Further, as x∗ is a minimum of L,

∇L(x∗)⊤(x− x∗) = L(x)− L(x∗) ≥ 0 =⇒ L(x) ≥ L(x∗) ∀x ∈ C.

Now, the convexity of f guarantees that f(x) ≥ L(x). So, we have

f(x) ≥ L(x) ≥ L(x∗) = f(x∗).

4.3 The Karush-Kuhn-Tucker (KKT) Conditions

4.3.1 KKT Conditions for Linear Inequality Constrains

Constrain Set: C =
{
x ∈ Rd : a⊤i x ≤ bi, i = 1, 2, . . . ,m

}
.

Example 4.3.1 Informal Discussion
Let’s consider C =

{
x ∈ Rd : a⊤1 x ≤ b1, a

⊤
2 x ≤ b2

}
.

a⊤2 x = b2

a⊤1 x = b1

a1

a2

Cx∗
I

a1

a2

x∗
II

x∗
III

x∗
IV

−∇f (x∗
II)

−∇f (x∗
III)

−∇f (x∗
IV )

Case I a⊤1 x
∗
I < b1 and a⊤2 x

∗
I < b2.

Recall that the gradient should form all acute angles with all possible directions
such that we can more from x∗. So, the possible way is to take gradient = 0. So,
stationary means

∇f(x∗
I) = 0.

Case II a⊤1 x
∗
II = b1 and a⊤2 x

∗
II < b2.

Again, the only possible way for the gradient to form acute angles is to take gra-
dient orthogonal to the hyperplane a⊤1 x = b1. Note that a1 is also orthogonal to
the hyperplane. So, stationary means a1 and −∇f(x∗

II) are collinear,

−∇f(x∗
II) = λ1a1, λ1 ≥ 0.

Case III a⊤1 x
∗
III < b1 and a⊤2 x

∗
III = b2.

Similar to Case II, we have −∇f(∗III) = λ2a2, λ2 ≥ 0.
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Case IV a⊤1 x
∗
III = b1 and a⊤2 x

∗
III = b2.

Being stationary means:

−∇f(x∗
IV ) = λ1a1 + λ2a2, λ1, λ2 ≥ 0.

In call cases, we have

KKT Conditions

−∇f(x∗) = λ1a1 + λ2a2, λ1, λ2 ≥ 0.

λ1

(
b1 − a⊤1 x

∗) = λ2

(
b2 − a⊤2 x

∗) = 0︸ ︷︷ ︸
Complementary Slackness Condition

This indicates that whichever inequality is strict, its coefficient (λ) should be 0.

b1 − a⊤1 x
∗ ≥ 0, b2 − a⊤2 x

∗ ≥ 0.

Definition 4.3.2 (Active Constrain). If a⊤i x = bi, we say that this constrain is active.

Problem: We consider the following optimization problem:

min
x∈C

f(x), C =
{
x ∈ Rd : a⊤i x ≤ bi, i = 1, . . . ,m

}
(P)

We know that if x∗ is a solution of (P), then x∗ is a stationary point satisfying:

∇f(x∗)⊤(x− x∗) ≥ 0 ∀x ∈ C. (S)

Goal: Simply (S) for linear inequality constrains.

Example 4.3.3 Intuition of Farkas’ Lemma

Consider the set of inequalities

x1 + 5x2 ≤ 0

−x1 + 2x2 ≤ 0
. Does it imply −x1 + 9x2 ≤ 0?

Solution 1.
It does. Noe that

(x1 + 5x2) + 2(−x1 + 2x2) = −x1 + 9x2 ≤ 0.

In another perspective, let’s denote a1 =

[
1

5

]
, a2 =

[
−1

2

]
, c =

[
−1

9

]
, x =

[
x1

x2

]
. Then,
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we can rewrite the problem into:

Problem: “Do a⊤1 x ≤ 0 and a⊤2 x ≤ 0 imply c⊤x ≤ 0?”

Our previous work show that it does since

c = a1 + 2a2 =

[
1

5

]
+ 2

[
−1

2

]
=

[
−1

9

]
.

So, it seems that if c = λ1a1 + λ2a2, with λ1, λ2 positive, then a⊤1 x ≤ 0 and a⊤2 x ≤ 0 imply
c⊤x ≤ 0. We can extend this conclusion and form the Farkas’ Lemma. □

Lemma 4.3.4 Farkas’ Lemma: Let a1, . . . , am, c ∈ Rd. Then, exactly one of the following state-
ment is true:

• c = λ1a1 + λ2a2 + · · ·+ λmam, λi > 0 ∀i = 1, 2, . . . ,m.

• ∃x ∈ Rd s.t. a⊤i x ≤ 0 ∀i = 1, 2, . . . ,m and c⊤x > 0.

Remark 4.14 Farkas’ Lemma does not impose any condition on ai’s. If the first statement is
true, then a⊤i x ≤ 0 ∀1, 2, . . . ,m =⇒ c⊤x ≤ 0. If the second statement is true, then we know c

is not a linear combination of ai’s with positive coefficients.

Remark 4.15 With Farkas’s Lemma, we can regard (S) as a series of inequalities imply another:

a⊤i x ≤ bi (x ∈ C) =⇒ ∇f(x∗)⊤(x− x∗) ≥ 0.

Theorem 4.3.5 KKT Conditions for Linear Inequality Constrains
Let x∗ ∈ Rd be a solution of (P). Then, ∃λ1, λ2, . . . , λm ≥ 0 s.t.

KKT Conditions

−∇f(x∗) =
m∑
i=1

λiai,

Complementary Slackness Conditions: (a⊤i x
∗ − bi)λi = 0 ∀i = 1, 2, . . . ,m,

λ1, λ2, . . . , λm ≥ 0,

a⊤i x
∗ − bi ≤ 0.

In this case, we say that i-th constraint is active if a⊤i x
∗ = bi. Hence, −∇f(x∗) is a linear

combination of ai’s corresponding to activated constriants.
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Proof 2. We know that x∗ must be a stationary point; that is,

∇f(x∗)⊤(x− x∗) ≥ 0 ∀ x s.t. a⊤i x ≤ bi ∀ i = 1, . . . ,m.

Define y = x− x∗. (Change of variable so Farkas’ Lemma is applicable). Then,

−∇f(x∗)⊤y ≤ 0 ∀ y s.t. a⊤i y ≤ bi − a⊤i x
∗ ∀i = 1, . . . ,m.

Denote I(x∗) =
{
i : bi − a⊤i x

∗ = 0
}

. So, if i /∈ I(x∗), bi − a⊤i x
∗ > 0. When i ∈ I(x∗), then

a⊤i y ≤ bi − a⊤i x
∗ means a⊤i y ≤ 0. Summarizing, we have thata⊤i y ≤ 0, ∀ i ∈ I(x∗)

a⊤i y ≤ bi − a⊤i x
∗, ∀ i /∈ I(x∗)

=⇒ −∇f(x∗)⊤y ≤ 0.

Claim 4.6 a⊤i y ≤ 0 ∀ i ∈ I(x∗) =⇒ −∇f(x∗)⊤y ≤ 0.

This claim is asserting that we only need those i ∈ I(x∗) to attain −∇f(x∗)⊤y ≤ 0. Once
this claim is proved, we can apply Farkars’ Lemma to conclude that −∇f(x∗) is a linear
combinations of ai’s.

Proof. (of the claim). Let y be such that a⊤i y ≤ 0 ∀i ∈ I(x∗).
Since bi − a⊤i x

∗ > 0 ∀ i /∈ I(x∗), we know that ∃ α > 0 s.t.

a⊤i (αy) ≤ bi − a⊤i x
∗, ∀ i /∈ I(x∗).

So, for α > 0 small enough, we have that

a⊤i (αy) ≤ 0 ∀ i ∈ I(x∗) and a⊤i (αy) ≤ bi − a⊤i x
∗ ∀ i /∈ I(x∗).

But then, −∇f(x∗)⊤(αy) ≤ 0 =⇒ −∇f(x∗)⊤y ≤ 0. □

Thus, by Farkas’ Lemma, ∃ λi > 0, ∀ i ∈ I(x∗) s.t.

−∇f(x∗) =
∑

i∈I(x∗)

λiai.

For i /∈ I(x∗), simply take λi = 0. Hence,

−∇f(x∗) =
m∑
i=1

λiai .

This is the first condition in KKT.
By construction, we have that λi ≥ 0, ∀ i = 1, . . . ,m , which is the third condition in KKT.
If i ∈ I(x∗), then a⊤i x

∗ − bi = 0, and so λi

(
a⊤i x

∗ − bi
)
= 0. If i /∈ I(x∗), then λi = 0, and
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λi

(
a⊤i x

∗ − bi
)
= 0 as well. Hence, λi

(
a⊤i x

∗ − bi
)
= 0, ∀ i = 1, . . . ,m . This is the second con-

dition in KKT.
Finally, the fourth condition is just the feasibility condition of x∗. This means that x∗ ∈ C.

We hereby complete the proof. ■

Remark 4.16 Those λi’s are also called the Lagrange Multipliers.

Theorem 4.3.7 Sufficiency of KKT Conditions
When f is convex, KKT conditions for (P) is sufficient.

Proof 3. Let x∗ satisfy KKT conditions. First, let’s make sure x∗ is a stationary point; that is,

∇f(x∗)⊤(x− x∗) ≥ 0, ∀ x s.t. a⊤i x ≤ bi, i = 1, 2, . . . ,m

We have that

∇f(x∗)⊤(x− x∗) = −
m∑
i=1

λia
⊤
i (x− x∗) KKT Conditions

=
m∑
i=1

λia
⊤
i x

∗ −
m∑
i=1

λia
⊤
i x distribute λia

⊤
i

=
m∑
i=1

λibi −
m∑
i=1

λia
⊤
i x complementary slackness

=
m∑
i=1

λi︸︷︷︸
≥0

(
bi − a⊤i x

)︸ ︷︷ ︸
≥0

factorization

≥ 0 λi ≥ 0 by KKT ; bi − a⊤i x ≥ 0 by constraint

Hence, x∗ is indeed a stationary point. The convexity of f guarantees that f(x) ≥ f(x∗). ■

4.3.2 KKT Conditions for Linear Inequality and Equality Constraints

Problem: Consider the following problem:

min
x∈C

f(x), where C =
{
x : a⊤i x ≤ bi ∀ i = 1, . . . ,m, c⊤j x = dj ∀ j = 1, . . . , k

}
. (Q)
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Theorem 4.3.8 KKT Conditions for Linear Inequality and Equality Constraints
Suppose x∗ ∈ Rd be a solution of (Q). Then, ∃λ1, λ2, . . . , λm ≥ 0 and µ, µ, . . . , µ ≥ 0 s.t.

KKT Conditions

−∇f(x∗) =
m∑
i=1

λiai +
k∑

j=1

µjcj,

Complementary Slackness Conditions : λi(a
⊤
i x

∗ − bi) = 0

λ1, λ2, . . . , λm ≥ 0, µj ∈ R, a⊤i x
∗ − bi ≤ 0 and c⊤j x

∗ = dj.

Proof 4. Rewrite C in (Q) into inequalities:

C =
{
x : a⊤i x ≤ bi ∀ i = 1, . . . ,m, c⊤j x ≤ dj, −c⊤j x ≤ −dj, ∀ j = 1, . . . , k

}
.

So, the KKT condition will be

−∇f(x∗) =
m∑
i=1

λiai +
k∑

j=1

µ+
j cj︸︷︷︸

corresponding
to c⊤j x≤dj

−
k∑

j=1

µ−
j cj︸︷︷︸

corresponding
to −c⊤j x≤−dj

, λi, µ
+
j , µ

−
j ≥ 0

=
m∑
i=1

λiai +
k∑

j=1

(
µ+
k − µ−

j

)︸ ︷︷ ︸ cj Denote µj := µ+
j − µ−

j can be any real numbers

=
m∑
i=1

λiai +
k∑

j=1

µjcj, λi ≥ 0, µj ∈ R.

Now, let’s consider the complementary slackness conditions:

λi

(
a⊤i x

∗ − bi
)
= µ+

j

(
c⊤j x

∗ − dj
)
= µ−

j

(
c⊤j x

∗ − dj
)︸ ︷︷ ︸

Since c⊤j x∗=dj ∀ j, ignoring these,
we don’t lose generalities.

= 0

Finally, we have our feasible conditions:

a⊤i x
∗ − bi ≤ 0 and c⊤j x

∗ = dj.

■

Theorem 4.3.9 Sufficiency of KKT Conditions
When f is convex, the KKT conditions for (Q) is also sufficient.
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4.4 Lagrange Multiplier

Problem: Considering the following minimization problem min
g(x)=0

f(x). We can rewrite it as

min
x

max
λ

f(x) + λg(x) since max
λ

f(x) + λg(x) =

f(x) if g(x) = 0

∞ o/w.

Further, denote h(λ) := min
x

{f(x) + λg(x)}. Though not true in general, we can assume

the following to be true for now (a formal reasoning will be given later):

min
g(x)=0

f(x) = min
x

max
λ

f(x) + λg(x) = max
λ

min
x

f(x) + λg(x) = max
λ

h(λ).

So, we have turned a constrained problem into an unconstrained one. λ is the Lagrange
Multiplier, and f(x) + λg(x) is usually denote as L(x, λ).

Example 4.4.1 An Inspirational Example on Lagrange Multiplier
Consider the following optimization problem

min
x2
1+x2

2=1
x1 + x2 = min

x1,x2

max
λ

(x1 + x2) + λ
(
x2
1 + x2

2 − 1
)

= max
λ

min
x1,x2

x1 + x2 + λ
(
x2
1 + x2

2 − 1
)
.

Now, define

h(λ) := min
x1,x2

{
x1 + x2 + λ

(
x2
1 + x2

2 − 1
)}

=

−∞, λ ≤ 0

− 1

2λ
− λ λ > 0⋆.

⋆ From first order condition, we have 1 + 2λx1 = 1 + 2λx2 = 0 =⇒ x1 = x2 = − 1

2λ
.

Then, we have

h′(λ) =
1

2λ2
− 1

set
= 0 =⇒ λ =

1√
2

=⇒ x1 = x2 = −
√
2

2
.

Problem: Consider min
g(x)≤0

f(x) = min
x

max
λ≥0

{f(x) + λg(x)}. Note that

max
λ≥0

{f(x) + λg(x)} =

∞ if g(x) > 0

f(x) if g(x) ≤ 0.
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Then,

min
g(x)≤0

f(x) = min
x

maxλ ≥ 0{f(x) + λg(x)}

= max
λ≥0

min
x

{f(x) + λg(x)}

= max
λ≥0

h(λ), h(λ) := min
x

{f(x) + λg(x)}.

Denote L(x, λ) := f(x) + λg(x), the Lagrangia. Then, we are solving the problem

max
λ≥0

min
x

L(x, λ).

The first order optimality condition (FOC) with respect to x is

∇xL(x, λ) = ∇f(x) + λ∇g(x) = 0

The FOC with respect to λ is given by

∂

∂λ
L(x, λ) = g(x) ≤ 0, λg(x) = 0, λ ≥ 0.

In summary, we have the following conditions (This is exactly the KKT conditions):

∇f(x) + λ∇g(x) = 0

g(x) ≤ 0, λ ≥ 0

Complementary Slackness Condition: λg(x) = 0

Further, if we assume that g(x) = a⊤x − b, then ∇g(x) = a. So, the conditions above are
reduced to

∇f(x) = −λa

a⊤x− b ≤ 0, λ ≥ 0

λ
(
a⊤ − b

)
= 0,

which are, precisely, the KKT conditions for min
a⊤x≤b

f(x).
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Theorem 4.4.2 KKT Conditions for a General Case
Consider the optimization problem

min
gi(x)≤0, ∀ i=1,...,m
hj(x)=0, ∀ j=1,...,k

f(x).

Then, the KKT conditions are given by

−∇f(x) =
m∑
i=1

λi∇gi(x) +
k∑

j=1

µj∇hj(x)

λi ≥ 0, ∀ i = 1, . . . ,m

Complementary Slackness Conditions: λigi(x) = 0, ∀ i = 1, . . . ,m.

Remark 4.17 When {gi} and {hj} are linear (affine), then KKT conditions alone are necessary
for minimizers. When {gi} or {hi} contain nonlinear functions, only minimizers that satisfy
constraints qualification conditions satisfy KKT conditions.

Definition 4.4.3 (Regular Points [A commonly used constraints qualification conditions]).
Let’s say x∗ is a minimizer and I(x∗) = {i : gi(x∗) = 0}. Then, we say that x∗ is a regular point
if {∇gi(x

∗)}i∈I(x∗) are linear independent.

Example 4.4.4 A counterexample of Regular Point

x∗

∇g1

∇g2

g2 = 0

g1 = 0

g2 < 0

g2 > 0

g1 < 0

g1 > 0

Feasible Set

A point satisfying
KKT but not regular

In this example, the point x∗ is a potential minimizer because it satisfies the KKT condi-
tions. However, it does not ensure a minimizer because if we move around it, we will im-
mediately be outside of the feasible set. One key assumption of KKT is that we can move
around the point to check that −∇f(x) is pointing outside of the feasible set. Hence, in
this case, we are not able to make sure this assumption is met anymore, and so KKT does
not imply a minimizer.
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Key Takeaway: KKT requires the −∇f(x) to be pointing outside of the feasible set if the
minimizer is at the boundary. If the minimizer is at the interior of the feasible set,
then −∇f(x) = 0.
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