Contents

Emory University
MATH 516 Numerical Analysis II
Learning Notes

Jiuru Lyu
June 18, 2025

Numerical Algorithms

1

Solving Nonlinear Equations

1.1 BisectionMethod
1.2 Fixed PointIteration e
1.3 Newton’s Method it
1.4 SecantMethod e
1.5 Convergence of Newton’s & Secant Methods

Optimization

2.1 Multivariable CalculusReview

2.2 Optimization Algorithms

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

Descent Direction e
GradientDescent i e
NewtonsMethod
BFGS (Quasi-Newton Method)
StepSize e

2.3 Nonlinear Least Squares and Gauss-Newton

Polynomial Interpolation

3.1 BasisSelection e e e e

3.2 Errorin Polynomial Interpolation

3.3 ChebyshevInterpolation

11
13
15
16

19
19
22
22
23
24
24
27
28

CONTENTS CONTENTS

3.4 Interpolation with Derivative Info (Hermite) 41

4 Piecewise Interpolation 43
4.1 Piecewise Polynomial Interpolation. 43
4.2 Cubic Spline Interpolation e 45
4.3 A Different Perspective on Piecewise Interpolation 47
4.3.1 Hat Functions (Finite Elements) Think of Lagrange polynomials 47

4.3.2 Hermite Cubic Basis Adding smoothness 48

5 Best Approximate 50
5.1 Continuous LeastSquares e 50
5.1.1 Continuous LinearAlgebra 50

5.1.2 Some Functional Analysis Background 51

5.1.3 Normal Equations of Continuous Least Squares 51

5.1.4 Orthogonal Basis Functions 54

5.2 Weighted LeastSquares e 55

6 Numerical Differentiation 59
6.1 TaylorSeries e 59
6.2 Interpolate, then Differentiate 60

7 Numerical Integration 62
7.1 BasicQuadratureRules e 62
7.2 ErrorinQuadrature e e e e 64
7.3 Composite QuadratureRules 66
7.4 Gaussian Quadrature e e e 66
7.5 Adaptive Quadrature e e 70

8 Numerical ODEs 73
8.1 Differential EqQuations. e 73

82 Euler'sMethod 74
8.3 Numerical Considerations in Euler's Method 75
8.4 Runge-KuttaMethods. 78

8.5 Absolute Stability and Stiffness oo o oo L 80

LIST OF ALGORITHMS LIST OF ALGORITHMS

List of Algorithms
1 BisectionMethod 9
2 Fixed PointIteration 11
3 NewtonsMethod 14
4 SecantMethod 16
5 GradientDescent (GD) 23
6 NewtonsMethod 24
7 BEGS, Gr =B, . 27
8 BacktrackingLineSearch o .. 28
9 Practical Lagrange Interpolation Through Barycentric Weights 33

LIST OF ALGORITHMS LIST OF ALGORITHMS

Numerical Algorithms

What is this course about?

* Nonlinear equations (root finding, fixed point iteration):

Find z s.t. f(z) = 0, where f(x) is nonlinear.

Optimization (multivariate):

min f(z)

First optimality condition: if f is differentiable, melﬂrg flz) = fl(z)=

Interpolation (“connecting the dots”):

Given (z;,y;). Find f s.t. y; = f(x;).

Differentiation and Integration:

b
f'(ay) and / f(x) da

ODEs:
Solve y' = f(y,t) with y(to) = yo.

Scientific Computing

Observation

Mathematical Model

\

On a Computer| Discritization Solutio; /Algorithm

Efficiency =~ Accuracy Robustness

/

Implementation

Code Design

LIST OF ALGORITHMS LIST OF ALGORITHMS

Errors

e Modeling Errors: (often intentional) simplifications of real phenomena to make compu-
tation feasible:
- Approximate of planets as spheres
- Ignore minor chemical reactions
- Ignore friction in Physics
- Approximate a function with (locally) linear models

- Add regularization
e Approximation errors:

— Discretize:

- Convergence: stop early
¢ Round-off errors:

- Floating ponts arithmetic

- Accumulation of error
Big-Oh and Big-O Notations
* h: discritization size
e(h) = O(h?) <= le(h)| < Ch? asymptotically as h — 0.
* n: size of the system/# of points:

w(n) = O(nlogn) <= |w(n)| < Cnlogn asn — oo
* o(n) =O((n)) <= c(n) < p(n) < CY(n).

Accessing an Algorithm
i ACCUI‘&CY: error, correctness

* Efficiency:

LIST OF ALGORITHMS LIST OF ALGORITHMS

— flops
- Rate of convergence
— Times

- Parallization/Memory Requirements/... (HPC things)

* Robustness: stability

Problem Conditioning

Let g be the problem:

ill-conditioned

well-conditioned

A stable algorithm yields an exact solution to a nearby problem.

stable 4 well-conditioned __ accurate
algorithm problem — computed solution-

LIST OF ALGORITHMS LIST OF ALGORITHMS

Some useful Calculus

Definition 0.0.1 (Taylor Series). Assume that f(x) has £ + 1 derivatives in an interval
containing =, and z + h. Then,

h2 hk * hk+1 (k1)
f(zo+h) = f(xo) + hf'(zo) + ?f (zo) + -+ + Hf (zo) + e+ 1)!f (),
where ¢ = ¢, , is some point between z, and z + h.
Remark 1. (Taylor Approximation).
h? h*
f(wo+) ~ f(wo) + H f(@0) + 5 f"(wo) + -+ + 77/ (wo).

Theorem 0.0.2 Intermediate Value Theorem (IVT)
Suppose f € Cla,b] and @, b € [a, b]. Let f(@) < s < f(b). Then, 3¢ € [a,b] s.t. f(c) = s.

Theorem 0.0.3 Mean Value Theorem (MVT)
Suppose f € C([a,b]) and f is differentiable on (a, b). Then, 3¢ € (a, b) s.t.

f(b) - f(a)

flop ==

Theorem 0.0.4 Integral Mean Value Theorem
Suppose f € C([a,b]), and w is non-negative and integrable on [a,b]. That is, w(x) >
0 Vaz € [a,b]. Then,

[w@s@ =16 [v as

for some ¢, € [a, b].

Remark 2. (Note). Take w(x) = 1. Then,

b
/ f(z) dz = F(E)(b— a).

By Fundamental Theorem of Calculus,

F(b) — F(a)

e—— f(&), where F(z) is the antiderivative of f(z).

1 SOLVING NONLINEAR EQUATIONS

1 Solving Nonlinear Equations

Goal: Solve f(x) = 0 (rooting finding) or solve g(z) = x (fixed point).

* One can convert root finding to fixed point by setting G(z) = = — f(x).

* Alternatively, fixed point problem is equivalent as a root finding problem if one
considers F(z) = g(x) — x.

Real World Examples:

* Studying planetary motion (Kepler)

r=a+bsinx (no analytical solution)

* Population growth models:
N'(t) = AN(t) + v,

where) is the growth rate and v is the immigration rate. Using ODE techniques, we
can solve this equation exactly:

N(t) = NoeM + ;(e’\t —1).

However, if one wants to find growth rate * s.t. N(1) = 1,000,000, they need to
solve

N(@) = Noe* + g(a — 1) = 1,000, 000.

This is a problem with no analytical solution.

1.1 Bisection Method

Goal: Solve f(x) = 0 over [a, b]. This method is also called the enclosure method or the brack-
eting method.

1

SOLVING NONLINEAR EQUATIONS 1.1 Bisection Method

Assumptions:

* feC([a,b])

* f(a)f(b) < 0: function has different signs at endpoints.

Remark. Why does f have a root in [a, b] under these assumptions? By IVT!

Algorithm 1: Bisection Method

1
2

3

Input: f € C([a,b]), a, b

begin
while not converged do

S +5b
compute midpoint ¢ = CLT;

// update brackets
if f/(b)f(c) < 0then
| @< c// pick the right half
else
| b4 c// pick the left half

b
Output: %

1. Stopping Criteria:
* [fle)l<e
e b—al<e

e number of iterations:

v = foe ()]

Proof 1. At k-th iteration, the length of the bracket is (b — a)2~*. When we stop, we

have
(b—a)27*

2
Then, |2* — ¢;| < . Solve for k, we have

h—
k > log, (an)

So we can form a bound for maximum iterations needed to achieve desired level of
accuracy. |

< E.

1 SOLVING NONLINEAR EQUATIONS 1.1 Bisection Method

2. Pros and Cons:

(+) Guaranteed convergence
(+) Convinient error bound
(-) Slow

(-) Can only find simple roots
3. Practical considerations

* Avoid re-computing f

* Adjusting tolerance carefully

Remark. In MATLAB, fzero uses a mix of bisection and interpolation methods.

Example 1.1.1

* Describe the convergence behavior of
flx) =(z=3)" on|[24]

for different choices of p > 0.

Solution 2.

1. p even: can't use bisection.

2. p odd: convergence |b — a| < ¢ will not depend on p. But if we use |f(c)| < ¢ as
the stopping criteria, the convergence will be dependent on p.

e Find a bracket for
g(A\) = det(A —),
where AR is SPD, that it is guaranteed to contain all roots.
Solution 3.

By the Gershgorin disk, we can choose [0, x|, where ¢g(0) > 0 (by SPD) and g(x) < 0.
One can pick « = || A||3 to ensure g(x) < 0. O

10

1 SOLVING NONLINEAR EQUATIONS 1.2 Fixed Point Iteration

1.2 Fixed Point Iteration

Algorithm 2: Fixed Point Iteration

Input: g € C([a, b]]), initial guess z, € [a, b];

1 begin

2 fork=0,1,... do

3 Tpy1 = g(l’k);

4 if stopping criteria then
5 t break;

Output: z;

Theorem 1.2.1 Fixed Point Theorem/Contraction Mapping Theorem

* Existence: If g € C([a, b]) with g(a) > a and ¢(b) < b, then 3 a fixed point z* € [a, b].

* Uniqueness: If, in addition, g is Lipschitz continuous with Lipschitz constant p
and0 < p < 1:
l9(z) —gW)| < plz -yl Va,y € la,b],

then the fixed point is unique in [a, b].

Proof 1.

» Existence: Define ¢(z) = g(x) — x. Then, ¢(a) > 0 and ¢(b) < 0. Note that ¢(-) is
continuous. By IVT, 3 z* € [a,] s.t. ¢(z*) = 0. Then, by definition of (), g(z*) — z* =0,
which implies g(z*) = z* is a fixed point.

* Uniqueness: Assume 3 another fixed point y* € [a, b]. Then, by definition of fixed point:

l9(z") — g(y")| < |z" — y7|.

11

1 SOLVING NONLINEAR EQUATIONS 1.2 Fixed Point Iteration

By Lipschitz continuity,
l9(z%) — g(y")| < pla” —y7].

So,
" —y*| < pla” =y

Since 0 < p < 1, we necessarily have z* = y*. So, the fixed point is unique.

Remark 2. (Another Way to Put Uniqueness). If g is differentiable, and |¢'(z)| < p for
all z, then we have unique fixed point.

1.2.2 Convergence. Assume g is differentiable and p = |¢/'(z*)| with 0 < p < 1.
Start with z sufficiently close to 2*, we have

Ty1 = g(Tk)
Tpr1 — " = g(zg) — x°
——
error
Tpy1 — = g(zx) — g(z") x* is a fixed point
Tpy1 — 2"~ g () (2, — 2¥) MVT

k1 — 27| & plag — =7

So, the error is always decreasing by a factor of p.

Example 1.2.3 Another way to Conduct Convergence Analysis
Main Idea: Show error decreases: e, = z* — z,,.

Assume g is differentiable.

ES
€n+l =T — Tp+4l

=" — g(zn)
= g(z*) — g(zn) z* is a fixed point
= ¢'(&) (" — an) MVT

Ent1 = gl(fn)en-

When do we converge? |¢'(¢,)| <1 Vn eventually.

12

1 SOLVING NONLINEAR EQUATIONS 1.3 Newton’s Method

Definition 1.2.4 (One-sides and Two-sided Convergence). If ¢'(z*) > 0, then the con-
vergence is one-sided. If ¢'(x*) < 0, then the convergence is two-sided.

Example 1.2.5

Consider g;(x) = e * and go(z) = — In(x). Both have a fixed point z* ~ 0.56.

Remark. If g is invertible,

f9(a*) =a" = g '(a%) = 2.

* Does FPI with ¢; converge?

L. |gi(z)| =|e "] <1 = trueifx > 0. So, we will converge if iterates are positive.

2. Suppose we started with a bad guess: =y < 0. Then,
1 = g(xg) = e > 0.
So, we will always converge, no matter what =, we choose.

* Does FPI with g, converge?

<1 = we will converge if |z| > 1.

1
L I = |1

2. However, z* =~ 0.56 is less than 1. So, we will never converge.

1.3 Newton’s Method
Goal: Findrootof f: f(z*) = 0.
Assumptions: f € C?([a,D]).
Idea of Newton’s Method:

* Consider Taylor Expansion about z,,:
(x) (z — xn)Q.

F(@) = flan) + f'@n)(@ = an) + [1(65)

13

1 SOLVING NONLINEAR EQUATIONS 1.3 Newton’s Method

* Find root of linear approximation:

F(on) + £ =) = 0

xn—f—l = xn - f/(,f[,‘)
n

linear approximation

/f

T
1 X0
1

Remark. It can also be viewed as a fixed point iteration with

f(z)
r) = — o
M=)
Algorithm 3: Newton’s Method
Input: f € C?([a, b)), initial guess z
1 begin
2 fork=0,1,2,... do
3 Th+1 = Tk — flzw))
f'(xk)
4 until stopping criteria met.
Output: z;
1.3.1 Potential Stopping Criteria.
e Function value:)]
Lk
x)| < & <e.

 Stagnate:

Tpy — x| < €

14

1 SOLVING NONLINEAR EQUATIONS 1.4 Secant Method

e Derivative:
|f (zp)] < e.

1.3.2 Pros and Cons.

(+) Fast, converges quadratically (when close to a root)
(+) Local convergence guaranteed

(+) Can find repeated roots

(-) Require smoothness of f

(-) Require derivative evaluations

(-) Sensitive to initial guess.

Remark. If we want to relax the requirement of smoothness of f and derivative evalu-
ations while enjoying the fastness of newton’s method, then we need to use the secant
method.

1.4 Secant Method

Main Idea: Newton’s method with derivative approximation:

fog) — f(xk—l)

I (zp) =~ = floy_1, 7] <« first-order difference
T — Tg—1
secant line
o f
X3 : :
/ xo xrl
Assumptions:
 feC([a,b])

15

1 SOLVING NONLINEAR EQUATIONS 1.5 Convergence of Newton’s & Secant Methods

* [(xo) # [lx).

Algorithm 4: Secant Method
Input: f € C'([a, b)), initial guesses zg, 7,

1 begin

2 fork=1,2,... do

, oy = 1y — f(zy) o f(@p) (@, — ﬂsz—l);
flar—y, zi] = f'(x) flar) = flzr-1)

4 until stopping criteria met

Output: z;
1.4.1 Pros and Cons.

(+) Fast, converges superlinearly

(+) Local convergence guaranteed

(+) Only required function evaluations; No need derivative information
(+) Can find repeated roots

(-) Require two initial guesses

(-) Sensitive to initial guesses

1.5 Convergence of Newton’s & Secant Methods

Definition 1.5.1 (Rate/Speed of Convergence). Suppose sequence {z, }, -, converges
to z* with z,, # z* V n. We denote this convergence as x,, — z*. If 3\ € (0, 00) for
a>land A € (0,1) fora =1 s.t.

|'T —.Tn+1| _ ’en-i-l’ _ A

lim = = =
n—oo |T* — Iy |enl

I

then z,, — =* with order/rate o.

Example 1.5.2 Linearly/Quadratically/Superlinearly Convergent

* Linearly convergent:

|2* — x| < Mzt — x|, A€ (0,1).

16

1 SOLVING NONLINEAR EQUATIONS 1.5 Convergence of Newton’s & Secant Methods

e Quadratically convergent:

2" — T | < Ma* — 2,2

 Superlinearly convergent:
|2 — pp1| < Aplz™ — @],

with A\, — 0. For example, \, = A|z* —z,_1| or A\, = Az* — z,| (this is actually
quadratically convergent! So, quadratically convergent is a special case of superlin-
early convergent).

Theorem 1.5.3 Convergence of Newton’s Method
Assume f'(z*) # 0. Newton’s method converges quadratically if z is sufficiently close

to z*.
Proof 1.
* Taylor’s series:
f(z) = f(xn) + f/(xn)(x — Tn) + f//(gn)w
Replace x with z*:
F) = flea) + Fa) — 2+ 16))
0= f(a) + Fa)a” = an) + (6) +*is a root
e] e @ =y
)| filn) 2
(S S—
. () (@ —)
T T T) 2
= |2" —zp| = /(&) |z — x| uadratically convergent
n+1l] — 2‘f,($n)‘ n q y g

* What does “sufficiently close” mean?

Let xy € Bs[x*] = [¢* — 0, 2* + 0]. Choose 0 small enough s.t. f'(z) #0 Vx € Bs[z*]. We

17

1 SOLVING NONLINEAR EQUATIONS

1.5 Convergence of Newton’s & Secant Methods

can do so because [’ is continuous. Define

max |f"(x

 ax |f*()]
M= min F@)]

TE€Bgs[z*]

Then,
2" — T | < M2 —)

Refining ¢: choose 6 small enough s.t. M -§ < 1.

Recall: when we start, |z* — zy| < 0. = convergence.

(the worst case constant)

Example 1.5.4 Importance of Initial Guess
f(z) = arctan(z) with z* = 0.

* What is the largest choice of § for which we converge?

- 5

¢ How do we find this §?

Define h(0) = 2§ — J{/i?) Find the root of h(J) = 0.

Use Newton’s method on & to find 6%, 0* ~ 1.39.

x0:5

= g — f(x0)
T = 0 0 f/(;CO)
o J(0)

0T)

Newton’s method will converge for any z, € (z* — J, z* + ¢), for 6 small enough.

If 36 s.t. Newton’s method oscillates, this is the largest one.

18

2 OPTIMIZATION

2 Optimization

Goal:

min ¢(z) where p(z) : R* = R, ¢ € C*

z€R™

2.1 Multivariable Calculus Review

Definition 2.1.1 (Directional Derivative). If it exists, the directional derivative of ¢ :
R™ — Ratx € R" in direction d € R", d # 0 is

v e+ td) — p(z)

Definition 2.1.2 (Partial Derivative). Partial derivative is a directional derivative in

coordinate direction e¢;, .
2 /
= ¢ (T;€).
3:131- 4’0 (1>

Definition 2.1.3 (Gradient). Gradient, Vy : R™ — R", is defined as

O¢
81’1
O
oz,

Lemma 2.4 Directional Derivative:
¢ (x;d) = V() d,

a linear combination of changes in each coordinate.

19

2 OPTIMIZATION 2.1 Multivariable Calculus Review

Theorem 2.1.5 Taylor Series in Several Variables
Given x € R™. Assume ¢ has bounded derivatives up to order at least e. Then, for
direction vector p € R", we can write

o(z +p) = (z) + Vo(z) p+ %pTV%(w)p +O(|Ipl).

Alternatively,

1 .
o(z +p) = p(x) + Vo(z) 'p+ épTVQgp(f)p, where ¢ is between = and = + p.

Definition 2.1.6 (Hessian/V>¢(x)). The Hessian of o(z), denoted V*¢(z), is given by

[p(x) 0%p() |
o3 92,02,
Vip(x)=| + . 1 | eRVM
P p(x) P p(x)
| 0x,0m, 022 |
2
where [V%(m)]” = g;ja(ij

Example 2.1.7

o Po(z)

T 2

p Vip(z)p = PiDj-
22 Grgm, P

j=1 i=1

20

2 OPTIMIZATION 2.1 Multivariable Calculus Review

Definition 2.1.8 (Jacobian). Suppose I’ : R” — R™, a vector-valued function,

fi(z)
F(z) = : , where f; : R" — R.
Then, the gradient of F(x) is
| | |
VF(x)= |Vfi(z) Vfa(z) -+ Vin(z)| € R™™.

The Jacobian is
J(z) = VF(z)" € R™*",

Example 2.1.9 Linear Approximation of F'(z)

Vfi(z)Tp
F(x+p)= F(z)+ J(z)p = F(z) + :
me(x)Tp

Remark.
V?p(x) = Jacobian of V¢ evaluated at x.

Example 2.1.10 Taylor Series for Testing Implementation
We can evaluate ¢ and Vo

1. Evaluate at some z:
wo=¢(x) and go= Vp(z).

2. Choose search direction p # 0.

3. Test the linear approximation

p1=p(x+hp), heR

erry = |po — ¢1|

erry = o + hgo p — 1]

21

2 OPTIMIZATION 2.2 Optimization Algorithms

4. Decrease h:
ol +p) =p(z)+O(h) (0-th Order Approx.)

= cut h in half, err, will be cut in half.
p(z +p) = o(x) + Vo(z) 'p+ O(h?) (1-st Order Approx.)

— cut & in half, err; will be divided by 4.

Theorem 2.1.11 Optimality Conditions

e First Order (Necessary) Optimality:
If z* is a local minimum, then V(z*) = 0 (or, 2* is a critical point).
* Second Order (Sufficient) Optimality:
If z* is a critical point, and
- V?p(x*) = 0, then z* is a local minimum;
- V?p(x*) < 0, then z* is a local maximum;

— V?p(x*) is indefinite, then z* is a saddle point.

2.2 Optimization Algorithms
General Algorithm:

. 2
min o(z), o) € C".

Tpi1 = Tk + QpDi,

where «, is the step size and p,, is the descent direction.

2.2.1 Descent Direction

For a descent direction p, we want ¢(z + p) < ¢(z). By Taylor’s Series, we have

oz +p) = () + Vo(z) 'p+ O(p|*).

22

2 OPTIMIZATION 2.2 Optimization Algorithms

Definition 2.2.1 (Descent Direction). If Vo(z)" # 0 and ||p| is sufficiently small (i.e.,
we have not met FOC), then a descent direction satisfies

Vo(z)'p<0.

Claim 2.2 Suppose p, = —B, 'W(x). If By, is SPD, then py is a descent direction.
Proof 1. Since By, is SPD, B, ' is also SPD. Then, y " B, 'y > 0 if y is nonzero.

V(xr) 'pr = V(ar) ' (—By V()
= —\Vgp(:pk)TBk_IVgo(xk) < 0.

J

>0

2.2.3 Ways to Choose Bj.

* Bj = I: gradient descent
P = — V().

e B, = V?p(z;): Newton’s method
pr = —Vp(x) ' Vio(zy).
* By: secant approximation to Hessian — BFGS (Quasi-Newton’s method).

2.2.2 Gradient Descent

Algorithm 5: Gradient Descent (GD)

1 begin

3 L pe = —Vo(ri);

2 L while not converged do

Pros and Cons:
(+) Simple, only need gradient information
(-) Slow

(-) Sensitive to step size

Remark. One can prove that GD convergence if ¢ is convex and if V is Lipschitz

continuous (smoothness).

23

2 OPTIMIZATION 2.2 Optimization Algorithms

2.2.3 Newton’s Method

Algorithm 6: Newton’s Method

1 begin

3

2 | while not converged do
o= —V2(e) Vo (an);

Proof 2. By FOC, we find the root of Vy(x) = 0. Build a linear approximation:
Vo(r +p) = Vo(z) + Vip(z)p =0
Then, in each iteration, we need to solve the system
Vp(x)p = —Vo(x). (Newton)

Remark. We can solve (Newton) using Krylov methods, and we don'’t need to form
Hessian explicitly.

Pros and Cons:
(+) Fast, locally quadratic convergence

(+) Scale invariant (we have the curvature information, so —V*¢(x)~! is rescaling our V ()
to the right scale. Theoretically, we don’t need a line search.)

(-) Existence of Hessian
(-) Evaluating Hessian is expensive
(-) Solving a linear system at each iteration

(-) Hessian may not be SPD — negative curvature (non-descent direction)

2.2.4 BFGS (Quasi-Newton Method)

Definition 2.2.4 (Quasi-Newton Method). The quasi-Newton method family approxi-
mates the Hessian (so that we don’'t encounter situations when Hessian does not exist
or Hessian is not SPD).

2.2.5 Building up BFGS.

24

2 OPTIMIZATION 2.2 Optimization Algorithms

® Tpp1 = Tk + pr and p = T — T4
 Taylor’s expansion on V:
V(i) = Vo(er) + Vip(ar)p

We want to estimate the action of Hessian on p;.

e Iteratively update B, to create better and better estimates of V2 (z;):

Assume we already have By, and we have computed
Ty = T, + By 'pr.
* We want By to satisfy the secant approximation:
Bii1(zp1 — o) = Vo(@g1) — Vp(zy).
In 1-D, we have

@' (Tp41) — @' (1)
Tr+1Tk

br+1 =
is an estimation for ¢"(¢).
* What properties do we want B, to satisfy?

- SPD

Easy to solve

Easy to update

Not too far from B;,_;.

2.2.6 Nocedal and Wright Derivation of BFGS.

Main Idea:

mén |B — BkHWv

such that B = BT and B(g:kﬂ — 3:;3) = Y¢(xk+1 — o(xg).

J/

-

Pk Yk

25

2 OPTIMIZATION 2.2 Optimization Algorithms

Definition 2.2.7 (Weighted Frobenius Norm). We choose the weighted Frobenius
norm as follows:
1Ay = [W2AW 2|

ok

so that we get unique solution for B and scale invariant rule for WW:

W -V = pp=Wy.

The BEGS choice of W can be derived from MVT
1
Vo(r +p) = Vo(z) + / V2o(z +tp)p dt = Vp(z) + V20 (&)p.
0

Then,)
0

In this way, W, captures the curvature information of .
2.2.8 Updating B,.
Given By, we have

Bii1 = ([— Pkykp;)Bk ([— pkykp;)T + PRYkYn »

where 1
=——, and y = Vo(zr) — V()
Y. Pk

Pk

Then, 4/ pr = (Vo(zrs1) — Vo(xr)) (2r41 — 24) indicates how much V¢ changes over the
step, and thus is an indication of the curvature information.

26

2 OPTIMIZATION 2.2 Optimization Algorithms

Algorithm 7: BFGS, G, = B,
Input: 2 V§07 Zo, GO = lu‘[

1 begin

2 fork=0,1,... do

3 pr = —GpV(xr);

4 Find step size ay;

5 Tht1 = T + OPk;

6 Wk = QPk;

7 Yr = V<1P(€Fk+1) = V(zk);

o I

9 | Gy = (I - Pkwky;)TGk (I - Pkwky;)T + prwpwy ;

Output: x4

2.2.5 Step Size

Goal: Choose « s.t.
oz + apr) < o).

We need to satisfy:

e Sufficient decrease condition (Armijo Condition):

p(xx + apy) < (o) + aVo(ry) 'pr, € (0,1).
N’ (& ~ J/
Tht1 linear approximation

Y(a) = Y(xx + ap)

P(0) = ¢xr)

Linear Approximation

accept o

accept _/ a

Usually, we take c; very small: ¢; = 1074,

27

2 OPTIMIZATION 2.3 Nonlinear Least Squares and Gauss-Newton

Remark. If ¢, is small, we accept more «o. If ¢, is large, we reject more a.

Problem: we can take tiny step sizes —- We need a second condition to avoid so.

e Curvature condition (Wolfe Condition):

Vo(x + apy) pr > ¢ Vo(zp) pr , 0<co <<l
w,\(rct) slope of linear approximation

P(a) = Y(x +api)

P(0) = lxr)

Linear Approximation
accept

reject

Usually, we take ¢, close to 1: ¢, = 0.9.

Algorithm 8: Backtracking Line Search
Input: z, pr, ¢, Vi

1 begin

2 ar = 1;

3 while frue do

4 if (2 + dupr) < o(xr) + Vo) p

5 and ¥V p(zy, + aypr) 'pr > 2 Vp(zy) T py, then
6 ap = Qi;

7 Break;

8 else

9 Set ay, = ax/2;

2.3 Nonlinear Least Squares and Gauss-Newton

Set-up:
lg(z) —b]2, whereg:R" — R™ (NLS)

N | —

min prs () =

28

2 OPTIMIZATION 2.3 Nonlinear Least Squares and Gauss-Newton

e Linear Least Square: g(x) = Az

e General case:
Vois(z) = Vg(x)(g(z) —b) = VZeis(z) = Vg(z)Vg(z)" + L(x)

e But whatis L? Let’s rewrite V5 element-wise:
Vois(z) = Y Vg(a)r;(z), wherer(z) = g(x) —b.
j=1

Then,
V3pis(r) = Vg(z)Vg(z)" + Z Vi (z)r;(x).

S

L(x)

We can view the L(x) as the messy part of Hessian.
2.3.1 Newton’s Method for NLS.
T -1
p=—(Vyg()Vg(x)" + L(z)) V().

2.3.2 Gauss-Newton: Just use the nice stuff.

p=—(Vy(@)Vy()T) Ve(a).
where Vg(2)Vg(z)" is a Hessian approximation.
(+) Hessian approx. is symmetric positive semidefinite =—- guaranteed descent direction.
(+) Only need Jacobians Vg(x)" = only first-order derivatives
(+) Converge fast (like Newton) when residual is small

(-) Slower than Newton.

Remark. If the problem is underdetermined, i.e., n >> m, we will get many 0 eigenval-
ues for Vg(z)Vg(x)" . Then, we can introduce regularization

. 1 2 A 2
min prs(2) = 5llg(@) = bl + Fllzllz,

and Gauss Newton becomes p = —(Vg(z)Vg(z) " + \) “'W(z), where Vg(2)Vg(z)T+
Al is SPD.

29

3 POLYNOMIAL INTERPOLATION

3 Polynomial Interpolation

Goal: Given data points {z;, f(x;)},_, (n + 1 data points and f is unknown). We want to find a
polynomial of degree less than or equal to n, p,,, s.t. p,(x;) = f(x;), i=0,1,...,n.

Procedure:

¢ Collect the data

* Choose alinearly independent polynomial basis {¢q, ¢1, - . . , ¥, }, Where ¢; is a poly-
nomial of degree < n.

* Construct p, by fining coefficients ¢y, . .., ¢, s.t.

n

pul(z) = chgoj(x) and ?n(%) = f(z;), i=0,...)

NV
interpolation condition

J=0

To do so, solve a linear system:

wo(xo) @1(x0) wa(mo) - (o) | |co f(z0)
wo(r1) wi(z1) w2(z1) -+ wulz1)] | _ f(x1) '
wo(zn) w1(Tn) @2(Tn) -+ @u(Tn)] [Cn f(zn)

 Evaluate p,, at any point z.

Theorem 3.0.1 Uniqueness of Interpolants
For real data points {(z;, v;)}_, with distinct abscissa z;, 3 a unique polynomial of
degree at most n, p,, which interpolates the data.

3.1 Basis Selection

3.1.1 Monomials.
e Basis: {1,z,2?%, ..., 2"}.

¢ Construct Coefficients: Vandermonde matrix and solve:

2 n
1 2y xj T
1 oz 22 7
X =)
2 n
1 z, x T,

3 POLYNOMIAL INTERPOLATION 3.1 Basis Selection

¢ One can show:

det(X) = 1:[LH (z; — xi)] .

=0 =i+1

When is det(X) = 02 When 3 j # i s.t. x; = z;. i.e., when z;’s are not distinct.
* Pros and Cons:

(+) Simple and intuitive

(+) Evaluate is cheap in nested form (Horner’s form): ~ O(2n). For example, 32% + 2z +
1 = z(3x + 2) + 1. In each layer, we only need 2 operations.

(-) Coefficients are hard to interpret

(-) Have to resolve with slight modification of data points

(-) Construction is expensive: ~ O (§n3) , especially for large n. Think of using Gaussian-
Elimination.

(-) Vandermonde matrix is often ill-conditioned. (When the interpolation interval is
side (round-off or magnitude error) or large n or close x;’s).

3.1.2 Lagrange.
* Basis: {Lo(z), L1(z), ..., L,(z)}, where

() = (@ —xo)(x —m1) - (2 — @i 1) (@ — @iga) -+ (7 — @)
Lilz) (zi — @o)(zi — 1) -+ (T — 1) (%5 — Tiga) -+ (25 —)

* Properties:

— degreeof L;: n
- LZ(Z‘]) :0f01'j7é@

 “Standard basis polynomial”:

Ly(x) /

5
N

Xo X1

Ly(x)

31

3 POLYNOMIAL INTERPOLATION 3.1 Basis Selection

¢ Construct Coefficients:

Lo(zo) Li(xo) -+ Ln(z0)| |co Yo
Lo(%) L1($1) T Ln(xl) S N
LO(xn) Ll (xn) Tt Ln<xn)_ Cn Yn
0 0] [eo] Yo
0 |a (7
: . . = .
oo --- 1 Cn_ Un

So,

e The interpolant:

pu(z) = Z yiLi(z)

* Practice Implementation: Barycentric Weights

i#£]
= (v; —wo)(xj — 1)+ (x5 — xjm1)(xj — zj1) -+ (25 — @)
wj = i, 3 =0, N
Pj
L) = w2 where 1 (x) - IS
Then,

_ WY
PO =) 2 G

Imagine f(z) =1, y; = 1, p,(z) = 1 (by uniqueness of interpolants). Then,

3 POLYNOMIAL INTERPOLATION 3.1 Basis Selection

Algorithm 9: Practical Lagrange Interpolation Through Barycentric Weights

1 Construct barycentric weights w; and precompute w;y; // ~ O(n?)
2 Evaluate

i WiY;

= @) : :

pul(z) = (Barycentric Interpolation)
w

= (=)

// In numerator and denominator, involves n subtraction, n division, and n

summation. So, in total, we have 2 X 3n = 6n operations. Thus, ~ O(n)

3.1.3 Newton Polynomials.

* Basis: {¢q, 1, - -, pn}, Where

Jj—1

pile) = [J(z —a0).

=0

For example, po(z) =1, p1(z) = (x — x0), and p(x) = (x — zo)(x — 1)

Pa(x) = (x = x0)(x — x1)
Hh(x) = (x—x0)
\ / do(x) =1
|
Rb\ X1 X2
* Constructing Coefficients:
wo(zo) @1(wo) -+ @alwo)| | o Y1
wo(r1) @i(w1) -+ oula1) | | | Y2
g . -
1 (21 — x0) Co Y1
1 Y2 .
— = | lower-triangular system
n—1 : :
1 H(xn_xj) cn Ui
i j=1

3 POLYNOMIAL INTERPOLATION 3.1 Basis Selection

¢ Divided Differences:

f(x1) — f(x0)

flxo,x1] = - Secant Line
1= Zo
flxo, x1,29) = flr wa) = flwo, v Approximation of second derivative
To — X
f[$0,$’1, o 7-77]4;] _ f[xl,flfg, cee 7Ik] - f[.l’(),l‘l, e 7xk—1]

T — Xo

* Connecting divided differences with Newton polynomial:

co = flro] = f(x0)
c1 = flxo, 1]

Co = f[$0,$1>$2]

Cp = f[x(), L1y ,Qj’n]_
Specifically, if 0 < i < j < n:
fler, ..., z] = fleivn, - oxg] = floi, oo 5]
Tj—Ti

e Then, we can rewrite Newton’s polynomial as

pn(iﬁ) = Z f[$0, S 7xj] H(l’ - :L‘Z)

* An analogy to Taylor’s approximation:

f(n) (o)

n!

f//(x(])
2

n

(x—20)® + -+ (x — x)".

pn(x) = fwo) + f'(w0)(x — 20) +

Newton’s polynomial is a secant-like Taylor approximation:

pn(x) = flro]+flro, z1](x—20)+ flx0, T1, 2| (T—20) (x—21)+ - -+ f[20, - . ., TW) (x—20) (x— (1)
——— S —

secant curvature info

When x,...,x,1 — w0, flro,z1] — f'(xo) and (x — xo)(x — 1) — (xv — x0)%. Also,
flzo, x1, x2) — f"(x0), but we differ from Taylor’s approximation by the coefficients.

34

3 POLYNOMIAL INTERPOLATION 3.2 Error in Polynomial Interpolation

Table 1: Summary of Bases

Basis @;(x) Construction Cost | Evaluation Cost Pros
Monomial 2’ §n3 2n Simple
Lagrange L;(x) n? 5n ¢; = y;; most stable
Newton ﬁ (T — 1'1) §n2 m Adaptive (adding new points,
pale 2 no need to reconstruct

3.2 Error in Polynomial Interpolation
Notation 3.1.
 Divided Differences:

flzas -z — flzos ooy 2k-1]
Zk — 20

flzos 21, -+ 2k] =

* Degree n + 1 magic polynomial:

Theorem 3.2.2 Helper Theorem
Let f be defined and have k& bounded derivatives in an interval [a,b]. Suppose

20,21, - - -, 2r b€ k + 1 distinct points in [a, b]. Then, there is a point ¢ € [a,] s.t.
(k)
f[z()vzh”'azk] = f k|(C>

Remark 1. (Intuition). Suppose we have z, and z;:

flzo, 1] = f(C)
f(ZZ : 50(20) = #(C) [by MVT!]

Proof 2. Note that divided differences are invariant to the order of z;’s :

o~

f[Z07zlu"'7Zk] :f[/z\mgla"'?zk]a

35

3 POLYNOMIAL INTERPOLATION 3.2 Error in Polynomial Interpolation

where (2y, 21, . . ., zx) is @a permutation of (zg, z1, .. ., zx). One can prove this claim using induc-
o Fe) = F0) _ SGo) = 121
21) — J (20 20) — J(z1
f[Zo,Zl] = = :f[ZhZo]-
%1 = 20 20 — %1

Because we can re-order, we can assume: a < zp < z; < --- < 2z < b. Our approach: con-
struct a Newton interpolant and differentiate. Let p, be the Newton interpolant with degree
at most k. Then,

pr(zi) = f(z) fori=0,... k.
Denote the error e, (z) = f(x) — pr(x). + We will differentiable this!
* Notethat ex(z;) = 0as px(z;) = f(zy)

2 zp e Zi

* Note that p,(x) is of degree at most k:

() = cpr® + g1 (2)

Then, p,(ck)(x) = klex = k! f[z0, 21, - ., 2] WTS: e,(f)(:z:) = f(k)(:lr)—p;k) (x)and 3¢ € [a, b] s.t. e,(f‘)(g) =
0. That is,

» Scratch: ex(z;) has at least zy, z1, .. ., 2, as its roots. So, we have k£ — 1 interval. In each
interval, we can apply the Rolle’s Theorem to find a z* s.t. ¢!)(2*) = 0. Continuing doing
so, we evaluate e*), and there mustbe a ¢ € (a,b) s.t. e®)(¢) = 0.

Theorem 3.2.3 Error in Polynomial Interpolation
If p, interpolates f atn + 1 points xy, . . ., =, and f has n + 1 bounded derivatives in [a, b],
then for each = € [a,b], 3¢ = &(x) € [a, b] s.t.

frD(E(@))

(),

where ¢, (z) = (x — zo)(z — 1) - -+ (x —).

36

POLYNOMIAL INTERPOLATION 3.2 Error in Polynomial Interpolation

Proof 3.

 Error function: e(x) = f(x) — p,(z). Minimum # of roots of e(x): n + 1 root at xg, ..., z,.
Thatis, e(z;) =0fori=0,...,n.

* Special function:
Un(t)

t is fixed, and we want an expression for e(t) in terms of ¢. x is the helper variable.

g(x) =e(x) — e(t), tela,b]

- g(z;) =0fori=0,...,n.

ola) = elr) = S el
Tt (1)
ol1) = elt) = S 55elt) = eft) = elt) =0

- Ift = x;, g(t) is not defined, but we define it to be g(¢) = 0.

lim ¢g(t) = 0.

t—x;

- Ift # x;, we have (n + 2) roots of g.

- g is differentiable on (a, b). Composition of differentiable functions: e(x) and v, (x)
are differentiable.

o If g has at least n + 2 roots, then ¢’ has at least n + 1 roots. Continuing, we know ¢+
has at least 1 root (repeat Rolle’s Theorem). Thatis, 3¢ = £(¢) € [a, b] s.t.

g (E() = 0.

Note that
(+1)() (+1)() £ln+1)(x) ()
() = e (1) — T——e(t).
g n?)

Since e(z) = f(x) — p,(x) and p, (x) has degree at most n,

() = 0 (@) = pi)
=0

_ f(nJrl)(:L,)

37

3 POLYNOMIAL INTERPOLATION 3.3 Chebyshev Interpolation

Since ¥, (z) = (x — zo)(x — 1) -+ - (x — z,) = 2" + ¢, (), we know

Pt = (4 1)!

So,
(n 1),
() = () = B e
=) - B e
Plug-in aroot £(t), we have
" (e0) = 1o e0) - 2 et -
Hence, s
ety = L),)

(n+1)!

Theorem 3.2.4 Worst Case Error
The worst case error of polynomial interpolation is given by

1
— < .m (n+1) — '
argg%{b |f(x) pn(m)| B (n ol 1)‘ aS?éXb |f <t>‘ aS?%{b W)n(s)l

3.3 Chebyshev Interpolation

Can we choose z;’s to get smaller error?

Definition 3.3.1 (Chebyshev Points/Nodes). On interval [—1, 1],

20 4= 1l ,
r;=cosS| ——m |, +=0,...,n.
2(n+1)

On a general interval [a, b], we apply an affine transformation:

(b—a)
2

r=a+ (t+1), tel-1,1].

38

3 POLYNOMIAL INTERPOLATION 3.3 Chebyshev Interpolation

3.3.2 Goal: Minimize maximum absolute error.

max. |f(z) — pp(x)] (Worst Case Error)

From Theorem 3.2.4, we know

Yn (6)=(t—z0)--(t—x0), We
get to choose zom...,zn,
We can control this

1
_ < (n+1) .
-, 1) =l < oy s, VG|,)
Hard to predict and
hard to control
So, we want to minimize
max ()| = max |z —a0)(z —) (0 a0)]

With Chebyshev points zq, . .., x,,

= mi — — coi(p — —_9l-n
= min max |(z—20)(® — 1) (T - @) =27

Definition 3.3.3 (Chebyushev Polynomial). On the interval [—1, 1]:
* Closed form: 7,,(z) = cos (ncos™!(x))

* Recursive form: Ty(z) = 1, Ti(x) = z, and

Toi1(x) = 22T, (z) — T,—1(x) forn=1,2,...

Example 3.3.4 Chebyshev Polynomial

e To(x)=1,Ti(z)=1-x

Ty(x) = 22T (x) — To(x) = 222 — 1

Ty(x) = 22T5(x) — Ty (x) = 42 — 3z

Ty(x) = 22T3(x) — Ty(x) = 8x* — 822 + 1.

The coefficient of the leading term increase by 2 each time.

39

POLYNOMIAL INTERPOLATION 3.3 Chebyshev Interpolation

Remark 1. (Why Chebyshev Polynomial?).

Ti1(x) = cos ((n+ 1) cos™'(z;)) + degreen + 1, hasn + 1 roots.

2t +1
T; = COS 7r
2(n+1)

Tpi1(z) = cos ((n +1)cos™ (COS (2?2? 11)7T))>

- ((n+). 2?;*;11)70

= cos <(22 + 1)%)
= 0.

So,

Chebyshev points are roots of Chebyshev polynomials.

Then, one can write

Trnii(z) = alz —x)(x —x1) -+ (T —),

where z¢, 71, . .., z,, are Chebyshev points and o = 271,

Theorem 3.3.5 Chebyshev Polynomial is the Best
Let p,, be a monic polynomial (leading coefficient = 1) of degree n. Then,

—1<z<1

“n 1
MLl |pn(x)| > 2! (: 2n—1)'

Remark. We are essentially showing that V p,, max|p,(z)| has a lower bound, and
we attempt to show Chebyshev polynomials attain this lower bound. So, we minimize
max |p,(z)| with Chebyshev polynomials. This only proves existence and we are not
showing uniqueness here.

Proof 2. (by contradiction).
Suppose p,, is monic of degree n, and

Ipn(z)] <2V Vo e[-1,1].

40

3 POLYNOMIAL INTERPOLATION 3.4 Interpolation with Derivative Info (Hermite)

e Let ¢,(z) = 27T, (z) (normalized Chebyshev polynomial). Note that

_ 9l-n _ ol-n
_max |gn(w)] = 27" max [To(z)] =277

Why we normalize Chebyshev polynomial? Because ¢, needs to be monic of degree n.

4 .
Foryi:COS<—7T>, i=0,...,nwehave
n

|@n ()| = 217"

* Look at polynomial ¢, (z) — p,(z), degree n — 1. Both monic, the n-th degree cancels.
* At y,-’s,

+1, iiseven

(—1)'qu(:) = pu(y:) > 0 T, (y;) = cos(im) = .
Y Y —1, disodd.

=21—n <21—n
(_1)1'[%(%) —pa(yi)] >0, i=0,...,n.
* ¢, — p, changes signs at least n times in [—1, 1].

e — ¢, — p, has n roots. ¥ This contradicts with the fact that ¢, — p, is degree n — 1.

3.4 Interpolation with Derivative Info (Hermite)
Given ty, ..., t, abscissae and non-negative integers my, . .., m.

Goal: Find the unique osculating polynomial of lowest degree s.t.
p,ﬁlk)(tz):f(k)(m), izO,...,qandk:mo,...,mi.
So, each abscissa could have different # of derivative information available.

3.4.1 What is the Minimal Degree n ?.

e m; =0fori=0,...,q. Only interpolate f, not derivatives

—> lowest degree n = ¢ (regular old interpolation).

* ¢ = 0. Only one abscissa t,

—> Taylor approximation of degree m.

41

3 POLYNOMIAL INTERPOLATION

3.4 Interpolation with Derivative Info (Hermite)

e n=2¢+ 1and m; = 1. Evaluate f and f" at each ¢,

—> Hermite interpolation

 In general:

3.4.2 Hermite Cubic Interpolation.

q
n:q—l—ka.
k=0

» We want to construct ps(t) = cy + cit + cot? + cst.

- Inregular interpolation: use cubic interpolant for 4 abscissae ¢, t1, t2, t3.

— In Hermite cubic interpolation: only need 2 abscissae ¢, and ¢;. my = 1 and m; = 1.
Then,n =q¢+mo+m; =1+ 1+ 1= 3 (¢qcounts from 0).

* Finding coefficients:

;

co + cito + oty + st
Co + Cltl + CQt% + Cgti’
c1 + 202t0 + 30375%

c + 202t1 + 3Cgt%

42

4 PIECEWISE INTERPOLATION

4 Piecewise Interpolation

Previously, we do global interpolant: only one polynomial to connect all dots. Interpolation
error is given by
Fr(E)

(x —zo)(x —21) -+ - (T —).
(-) Higher order polynomials ten to oscillate

(-) Data may only be piecewise smooth, but polynomial is infinitely smooth.

(-) No locality: changing one data point can drastically change entire interpolant.

4.1 Piecewise Polynomial Interpolation

4.1.1 Overview.

(x0,Yo)
(ns Yn)

subinterval | 1 t 2 } t !

|S1(x)|82(x)| I |S,,(x)|
a=ty ti bootj oty t=b

e t;: break points. From ¢, . .., t,, we have r 4+ 1 break points.
e r: number of subintervals [¢;_;,t;], wherei =1,...,r.
* s;(z): polynomial piece,i = 1,...,r.

e v(x): interpolant
v(z) =si(x) fortiy <ax<t, i=1,...r

4.1.2 Piecewise Linear.
e Break points: t; = z;

43

4 PIECEWISE INTERPOLATION 4.1 Piecewise Polynomial Interpolation

e Interpolant:
v(x) = f(xio1) + floim, xl(z — ximq), @ € [2-1, 2.
(+) Simple
(+) Max/Min of v(z) are data points —- No “fake” extrema
(-) Not differentiable (Give up some smoothness)

(-) How to extrapolate? (Hard to go beyond the data points)

e Claim (Error of Piecewise Linear Interpolant)

2

(@) —v(@)] < max | £€)],

T 8 a<e<h

whereh = max (t; — t;_1), max subinterval length.

i=1,...,r
Proof 1. On subinterval [¢;_;,t;], we have a linear interpolant. The error is given by
f"(&)

f(x) —v(z) = T(ﬂf —tia)(z —t;)

ti + tifl So

Consider w(z) = (x — t;_1)(x — t;). w(x) is minimized at

mmﬂzwx—mg@_hﬂg(z;;ﬂ)Q

h2
< i)
— 4
where h denotes the largest length of subinterval.
Now, combine everything on interval [a, b]:
"¢ 2
1) o) < mas LA
h2 1"
= 3 ax [/7(§)]

Remark 2. (Implication of This Error Bound). If we double the points, we get
quadratic decrease on the error bound.

4.1.3 Piecewise Constant.

Ti—1 +T;

e Break points: ty = a, t;1; = 5

fori=1,...,n,and t,,; = b.

44

4 PIECEWISE INTERPOLATION 4.2 Cubic Spline Interpolation

e Interpolant:

(+) Cheap

(-) No smoothness

¢ Error bound:

4.1.4 Piecewise Cubic Hermite (Derivative Information).

e Interpolant:
U(I‘) = SZ<1’) :CLZ—FbZ(I—tz_l) +Ci((L’—ti_1)2+di($—ti_1)3, x € [ti—lati]; 1= 1,...,7".

¢ Error bound:

h4
@) P ()
421 52?%‘ O =35 52?%” ©]

|[f(z) = v(z)] <

e number of unknowns: 4r. So, we need 4r conditions to solve:

1. Interpolate condition:

2. Continuity condition:

si(ti) = siv1(ts) = f(t:)
With 1 and 2, we have 2r conditions.

3. Additional condition: Derivative information:
si(ti) = si (L) = f'(t:)
This yields another 2r conditions. So, we can solve.
4.2 Cubic Spline Interpolation
4.2.1 What is a Spline?. Consider a spline of order m:

e Knots;a=zo<t1<---<x,=5>

* v(x) is a polynomial of degree < m on every subinterval [z;_;, x;].

45

4 PIECEWISE INTERPOLATION 4.2 Cubic Spline Interpolation

e v(") (1) is continuous on (a,b) forr = 0,...,m — 1. Thatis, v € C™ ![a, b].

Example 4.2.2 Cubic Spline

si(x) = a; + bi(x — 2i-1) + (@ — x-1)? + di(@ — 251)°.
We impose the following conditions:
e Continuous: s;(x;) = s;41(x;)

¢ Global smoothness:

si(x;) = 3§+1(13i) and s} (z;) = 5§’+1(5’3i)-

4.2.3 Cubic Spline Interpolation.

si(r) = a; + bi(r — xi1) + ci(w — xi71)2 +di(z — %71)37 t=1,...,n.

In total, we have 4r unknowns.

Interpolate condition (left endpoint):

si(xi1) = f(xi—q). (r conditions)

Continuity condition (right endpoint):

si(zi) = flxy). (r conditions)

Additional condition: (global) smoothness at interior points:

1. First derivative condition:
si(x:) = 841 (74) (r — 1 condition)

2. Second derivative condition:
S;’(ﬂfi) = 32;1(5171') (r — 1 condition)

Totally, we have r +r +r — 1 +r — 1 = 4r — 2 conditions. So, we need 2 more conditions.

e The last two conditions: (Why we need 2 more? We don’t have smoothness at endpoints)

46

4 PIECEWISE INTERPOLATION 4.3 A Different Perspective on Piecewise Interpolation

1. Free boundary (Natural spline):
V'(zg) =0 and v"(x,)=0
2. Clamped boundary (Complete spline):

V'(xo) = f(xo) and '(x,) = f'(zn).

Remark. If we don’t have derivative information, this approach does not
work. We can also use second order derivative information if we have it.

3. Not-a-knot:

S'(w1) = s5'(1) and s (wn1) = 57 (@0)-

Remark. This condition makes s; and s, upto 3 derivatives at x;. Therefore,
the four conditions of s; and s, match at ;. Therefore, s; and s, form a simple
cubic, and z; is not a knot anymore.

Interpolant Local? | Order | Smooth? Selling features
Piecewise constant yes 1 bounded Accommodates general f
Broken line yes 2 Co Simple, max and min at data values
Piecewise cubic Hermite yes 4 ct Elegant and accurate
Spline (not-a-knot) not quite 4 C? Accurate, smooth, requires only f data

4.3 A Different Perspective on Piecewise Interpolation
v(z) = ch%’(ﬂ?)
=0

Goal: Choose basis functions ¢, that lead to a piecewise approximation. That is, each ¢, has
compact support.
4.3.1 Hat Functions (Finite Elements) Think of Lagrange polynomials
1 i=j
i(z;) = and ¢; has compact support,
0 i7#j

Having compact support means ¢; is non-zero on a compact set.

47

4 PIECEWISE INTERPOLATION 4.3 A Different Perspective on Piecewise Interpolation

Xi_q Xi Xi+1

T — Tj—
—21 x 6 [zi—17aji]

Ty — Tj—1
_) T =Tt
SDJ(‘T) - —— T € [l‘i,mzqu]
Ty — Tiy1
0 otherwise

To interpolate (z;, f(x;)),

(+) Simple, no need to solve coefficient

(+) Equivalent to linear piecewise interpolation

(-) No smoothness

4.3.2 Hermite Cubic Basis Adding smoothness

Goal: :
v(z) = Z [f(xj) &) + f(zy) - mi(x)| st

=0
v(z;) = f(z;) and '(x;) = f'(z;) fori=0,...,r

Some properties that would be good:

To find the basis, let’s start on [0, 1]:

48

4 PIECEWISE INTERPOLATION 4.3 A Different Perspective on Piecewise Interpolation

Let 11, 1, 13, 14 be cubic polynomials that satisfy:

1(0) =1, ¢1(0) =0, ¥1(1) =0, ¢i(1)=0
P2(0) =0, ¢5(0) =1, ¥2(1) =0, ¥5(1)=0
¥3(0) =0, 95(0) =0, v3(1) =1, ¥4(1)=0
©a(0) =0, ¢4(0) =0, ¥4(1) =0, ¢y(1) =1

Each ¢;(z) = a; + bjx + ¢;2* + d;ia® = 4 unknowns. In total, we have 16 unknowns and 16
conditions, so we can solve this system:

01(2) =1 — 3% + 223

Po(2) = 2 — 222+ 23
=

P3(z) = 322 — 223

Py(2) = =22+ 28

Xi+1

([T — 1z
Y3\ —— S [I,;,l./ll,'}
Ty — Tj—1

, r — I
Y| ———— T € Xy, Tia]
Tig1 — X

0 otherwise

\

and n; =

T —x;
V| ———— | 7w € [z, 7011
Lit1l — Ty

0 otherwise

49

5 BEST APPROXIMATE

5 Best Approximate

5.1 Continuous Least Squares

Recall: Least squares:

min || Az — b||.
To solve, we solve a normal equation: AT Az = ATb.

Goal: Approximate a function f € F with v € F that minimizes

min || f —v]|.

5.1.1 Continuous Linear Algebra

e Originally, given b = Az, where b € R™*!, A € R™*", and = € R"*!, we can write

b(i) = A(i,)z = Z A, Hz(G) fori=1,... ,m.

e Suppose z(j) € [¢,u] form a uniform discretization. Then,

“_f)(j—n forj=1,...,n.

o) =+ (

At the limit n — oo, we capture the entire interval (continum). So,
. Al V() — Al _
tin 374G 3)e) = [Al do

7=1
We can view b continuously as well:

b(y) = / A(y,xz)xrdz < function of y.
¢

In this case, we call A(y, =) akernel function. To solve for x under this continuous setting,
we have

r= / " Gy, 2)bly) dy,

where G(y, x) is the Green’s function and can be viewed as = A~'b in the discrete case.

50

5 BEST APPROXIMATE 5.1 Continuous Least Squares

5.1.2 Some Functional Analysis Background

Definition 5.1.1 (Norm). A norm for functions on [a, b], ||-||, is a scalar function for all
appropriately integrable functions g, f on [a, b] s.t.

* llgll > 0and flgl| =0 = g =0.

* |lag|l = |a| - |lg|]] V scalar «

* llg+ £ < gl + 1 £

Example 5.1.2 Examples of Norms on |a, b
The following norms form functional spaces.

e [, norm:
2 1/2
lglly = (/ g(x)? dl‘) (least squares)
e [, norm:
b
loll = [lo(@)] do
e [norm:
9]l = max l9()] (maximum)

Remark. The higher power we require, we have more regularity on functions (i.e.,
smoother). So, L, is the most restrict one.

Definition 5.1.3 (Orthogonality). Two square-integrable functions, f, g € L,, are or-
thogonal if (f, g) = 0, where

(f,g) = / f(z)g(x) dz.

5.1.3 Normal Equations of Continuous Least Squares
Goal: Given f € Lo,

min ||f —v|} — infinite dimensional,
veEV CL2

51

5 BEST APPROXIMATE 5.1 Continuous Least Squares

where V' = span {¢9, 1, . . ., ¢, } is a subspace of L,. So,
veV < v(x)= chmpj(:c).
The optimization problem becomes

min — finite dimensional,

ceRntl

n 2
F=Y cips
i=0 2

where f — Z cjp; is called residual, denoted as .
j=0
2

* Define ¢c) = H f— Z cj;|| By first order optimality condition: Vi (c) =

=0 9
w0 " ’
8ck 8Ck f B]ZO €%
- 2

-2 _ A (f(x) - zn;wj(x))de}
:/b (Zc]goj >2dx

o (
(chsom) (~oule) da

of o Ermi

So, by optimality condition, set

g_;i - _2/a (f(x) - j;ocj%'(x)> () dx = 0.

e Form alinear system to solve for c: Normal Equations

n

Zocj [/absovam(x) dx} Z/abf(x)gok(x) dz, k=0,....n

Bc:g,

52

5 BEST APPROXIMATE 5.1 Continuous Least Squares

where

Example 5.1.4

Suppose we are given problem ||Az —b|2, where A = [gpo(t) ©1(t)
Then, the normal equation is AT Az = A'b, with

Bjy = (ATA),, = ¢i(8) " orlt) = (s, 0m)

e Claim (Property of B) B is SPD if{, ..., ¢y} isL.L.

* Residual perspective to solve the system:

0¢(c)
8Ck

= (r,pr) = 0.

This implies that residual is orthogonal to basis at the least square solution.

Example 5.1.5 Motivation of Working with Continum
Suppose monomial basis ¢;(x) = z7 on [0, 1]. Then,

1
BMZ(%':%%):/ 2/ da = for j, k=0,...,n.
0

Jj+k+1
So,) i
1 1/2 1/3 1/4
1/2 1/3 1/4
Ej,k: 1/3 1/4 --- — Hilbert matrix; ill-conditioned
1/4

Advantage of continuous case: construct better bases.

5.1.6 Two Schools and Thoughts.

e DTO: discretize then optimize.

e OTD: optimize then discretize.

53

5 BEST APPROXIMATE 5.1 Continuous Least Squares

5.1.4 Orthogonal Basis Functions

Goal:

If we can find such a basis, then B is diagonal.

Definition 5.1.7 (Legendre Polynomials). On [—1, 1], Legendre polynomials are de-

fined recursively as
wo(z) =1
pi(z) =z
27 +1 j ‘
: - (z) — ——¢;_ =1,2,...
pj+1() j+1w%@ﬁ j+1¢7ﬂﬂ, i=12,

Theorem 5.1.8 Properties of Legendre Polynomials

e Orthogonality:
0, JjFk
{pjrr) =9 2 _
_ , J=k.
2j+1

So, the solution to continuous least square is
L 21t
;= 5 f(x)p;(z) dz|.
—1

Inverting B is easy. The work is in computing RHS integrals.

e Calibration: |¢;(z)| < 1for —1 <z <1, and ¢;(1) = 1.

 Oscillation: ¢; is degree j, and all zeros are simple and lie inside (—1, 1); higher
degree, more oscillations.

54

5 BEST APPROXIMATE 5.2 Weighted Least Squares

5.2 Weighted Least Squares

Definition 5.2.1 (Weight Function). A weight functionis w : [a,b] — R s.t.
* non-negative: w(z) > 0, z € [a, b].

e vanishes (w(z) = 0) only at isolated points (a few scattered points in [a, b)), if at
all.

If w(x) vanishes, it is usually at the endpoints.

Focus: Weighted inner product:

b
(fs9) = / w(z) f(z)g(z)dx (Intergral mean value theorem)

Proof1. (f, g),, is avalid inner product:

* positive definiteness: vanishing at isolated points

* symmetry and linearity — as we are integrating.

Goal: Find the best approximation v ~ f:

veV

b
i (f = v.f = o), = [w@)(f@) - o) do
If w(z) = 1, then we are back to the continuous least square setting.

o IfV =span{pg,...,p,}, thenv(z) = Z cj;(z).
=0

iy [0l (f(a:) -

e Weighted normal equation: Bc = b, where

Bk = {©5, Pr)
by = (@5, [, -

We do almost everything the same as before. The only change is that we do a
weighted inner product.

95

5 BEST APPROXIMATE 5.2 Weighted Least Squares

» To make B diagonal, choose orthogonal basis:

(@5, 0r), =0 forj# k.

Then,
<90j ' Pj >w
Solving is cheap. Computing inner products is where the cost comes in.

Cj:

Question: How does w(x) impact orthogonal basis?
5.2.2 Gram-Schmidt Process to Build an Orthogonal Basis of Functions.

e Recall: Gram-Schmidt process on vectors:

=1,
a 5 = = qr, 5)
{ar,....a,} :>Qj:aj—§ <_.’_,]>Qka

where the inner product for vectors: (u, v) = u' V.

* Claim (Build an Orthogonal Set of Polynomial based on (-, -),) The following procedure

works:

po(r) =1

p1(z) =7 — B

wj(r) =20, 1(x) — Bjpj_1(x) — v0j-2(x) forj=2,3,...,
where (>

TP;—1,Pj-1)
B = v forj=1,2,...,
’ <80j—17 90j71>w

and

;= <x¢j—17 90]'—2>w
’ <90]'*27 90]'72)“)
Then, {¢y, ..., p,} isorthogonalin (-,), .

Proof 2. We will prove by induction.

Base Case

(o, 1), = (L,z = B1),,
= (1,z), — B (L, 1),
= (L, 2), — (&, 1),
0

5 BEST APPROXIMATE 5.2 Weighted Least Squares

where 61 _ <‘r9007900>w _ <I7 1>w

(0: ©0) (1, 1>w.
Inductive Steps |Assume the claim holds for {¢y, ..., ¥;_1}.

Let pj(x) = zp;_1(x) — Bjpj_1(x) — vj¢j—2(z). Then, if k < j,

<90j7 ‘Pk>w = <$90j—1 = Bijpj—1 — Vjpi-2, <Pi<:>w
= <$<Pj—1, 90k>w - 5;’ <90j—1; %)w -7 <90j—2, <Pk>w

<9390j—1>90j—1>w <95<Pj—1»90j—2>w
<S0j—1790j—1>w <¢j—2,¢j—2>w

= <$<Pj—1, 90k>w - (@j—h <Pk>w - <90j727 S%)w

- k = j — 1. Then, v; (p;—2, ¢x),, = 0 by orthogonality. So,
(0, or)y, = (@0j-1,905-1),, — (T¥j-1,9j-1),, = 0.

- k = j — 2. Then, 3; (p;—1, ¥x), = 0 by orthogonality. So,
(@155 Pr)y = (TPj—1, Pj—2)y, — (TPj-1,Pj-2), = 0.

- |Case Il |k < j — 2. Then, by orthogonality,

Bi (@j—1, Pk)y = Vi (Lj—2:Pk),, = 0.

Then,

(050 = (TPj—1, Pk,

:/ w(x)rp;_1(x)pp(r) dz
b
:/ w(z)pj—1(z) [z, (z)] dz

= <%0j71a $¢k>w .

vy, is degree-k by construction. So, xy¢;, has degree < j — 2. Then,

j—2
T = Z d;pi(x).
i=0

S7

5 BEST APPROXIMATE

5.2 Weighted Least Squares

So,

[\

J

<90j7 %0k>w

<90j—17 dz’%>
2

di (Pj-1,Pi)

I
=)

i

I
<.

[e=]

<.
Il

by orthogonality.

Example 5.2.3 Different Orthogonal Polynomials with Weighted Functions

e Legendre Polynomial: w(z) =1, |[a,b] =[-1,1].
wolr) =1, ¢1(x) =2z
2j + 1 j
pj(x) = (j+1)%’—1(93) - (m) pj—2(T).

e Non-compact intervals (Lagaene Polynomial): w(z) = e,
p1(x)=1—x

e N e]

J+1
* Hermite Polynomials (not the same as Hermite cubic): w(x)

900<x) =1,

T

)

©;(

—x

e

(—00, 00).

wo(z) =1, ¢1(z) =2z
@i(r) = 2wp;_1(7) — 2jp;_1(x).

e Chebyshev Polynomials: w(z) = \/11—7332’ la,b] = [—1,1].
wo(x) =1, ¢1(x) =22

pj(x) = 2zp;-1(x) — pja(z).

2

[a,b] — [0, 00).

. la,b] —

58

6 NUMERICAL DIFFERENTIATION

6 Numerical Differentiation

6.1 Taylor Series

Definition 6.1.1 (Derivative).

Problem in numerical differentiation: we don’t know how to evaluate limit. So, we will
use finite differencing of function evaluations.

General Setting: We can evaluate f but we don’t know f’ or it is expensive to evaluate f.

6.1.2 Two-Point Formulas.

¢ Backward Difference:

Flao —) = flao) ~ hf (o) + 2 f1(6) € €0 — o]
f/(xo) _ f(l’()) — {L(ZEO — h) + gf”(é)

truncation error

This method is first order accurate: associated truncation error is O(h). In other words,
if 1 is cut in half, the error is also cut in half.

e Forward Difference
6.1.3 Three-Point Formulas.

¢ Centered Formula:

h? h3

fzo+h) = f(zo) + hf'(zo) + Ef//(l"o) + Efm(gl) (1)
2 3

Flo = 1) = o) — hf' (o) + o " (20) — o 7(62) @

1) - @):

oo+ h) — g — h) = 20 (ao) + = [77(6) + (@)

=2f"""(&) for some
§€[$0+h,a)o—h] by IVT

f/(xo) _ f(IO + h)z_hf(xo — h) _ %f///(é»)'

This method is second order accurate: truncation error ~ O(h?).

59

6 NUMERICAL DIFFERENTIATION 6.2 Interpolate, then Differentiate

» Higher Order One-Sided Formula:

2 3
o h) = Flan) + hf (o) + o " (ao) + o (61 0
/ 4h2 1 8h3 "
f(xo +2h) = f(x0) + 2hf'(z0) + Tf (zo) + 7f (&2) (2)
4(1) — (2):
! 2h3 n
4f(xo+ h) — fxo+ 2h) = 3f(x0) + 2hf (x0) — Tf €3]
_ _ 2
f,(ZBO) _ 4f(l'0 + h) 3];(;;0) f(mt) + Qh) + %f”/(f)-

This method is also second order accurate.
6.1.4 More Points Formula.
* n-points formula: ~ O(h"~!) for odd n.
* We can also try even number of points, but the truncation error can be different.

* We can use Taylor series for higher order derivatives too!

6.2 Interpolate, then Differentiate
Motivation:

* Not all functions are nicely differentiable.

* Taylor series is painful with many points and non-equispaced points.

General Idea: interpolate with Lagrange polynomial, and then differentiate the interpolant.

* pu(r) = Zf(%)Lj(l“)-
e p(2) = Zf(%’)L}(CC)-

* p(wo) = Z f(@;)L(20).

No Matter Which Method We Use, We Will Get the Same Formula.

60

6 NUMERICAL DIFFERENTIATION

6.2 Interpolate, then Differentiate

Example 6.2.1

e Abscissae: xg, 71 = xg + h:

pi(x) = f(xo) + flzo, 21)(z — 20) (one-sided formula)

* Interpolation error:

As we know that

F@) ~mla) = (o~ o) — 2 1)
f//2(§) = flxo, z1, x]. Then, we have

p(z) + (z — xo)(x — x1) flzo, 21, 7]
pi() + (& = x0) + (z — 21)) flao, 21, 2] + (& — 20) (2 — $1)%f[$07 1, 7]
Pi(x0) + (2 — 20) fl20, 71, 70]

—_——

G
2

61

7 NUMERICAL INTEGRATION

7 Numerical Integration

e Basic Quadrature Rules:
b n
10) = [fa)dem 3w
a =0

where z;’s are abscissae and w;’s are weights.

- Interpolate, then integrate
- Newton-Cotes formula (e.g., midpoint, trapezoidal, Simpson’s)

- Stability and DOP.
* Composite Quadrature: integrate in pieces.
e Gaussian Quadrature:

- Maximize precision by choosing good abscissae.

- Legender polynomials (orthogonal polynomials).

7.1 Basic Quadrature Rules
711f~p, = I(f)~I(pn)-

* Recall: Lagrange interpolation:

B 5 (x—)
Lj(z) = /go (z; — z1)

* Integration:

62

7 NUMERICAL INTEGRATION 7.1 Basic Quadrature Rules

Example 7.1.2 Trapezoidal Rule
Suppose n = 1, g = a, and x; = b. Then,

r—2b r—a
Lo(l’) = P and Ll([E) = b
So,
b br—b b—a
woz/aLo(x)dx:/a a—bdx: 5
b b
_ h—
wl—/aLl(x)dx—/a i_sdx: 2a
Then,
I(f) =) wif(x;)
3=0
b—a b—a
= @ +)
= b;a(fla) + f(b). (Trapezoidal Rule)

This method uses linear interpolant and abscissae include endpoints

Theorem 7.1.3 Midpoint Rule

n b
1)~ > wif(ay) = 6 - a)f (52
=0
 Constant interpolant (p;)

* Abscissae do not include endpoints.

Theorem 7.1.4 Simpson’s Rule

* Quadratic interpolant

* Abscissae include endpoints.

63

7 NUMERICAL INTEGRATION 7.2 Error in Quadrature

Definition 7.1.5 (Newton-Cotes Formula). Newton-Cotes formulas refers to the
quadrature rules that are based on interpolation with equispaced abscissae.

e Closed: abscissae include endpoints.

e Open: abscissae exclude endpoints.

7.2 Error in Quadrature

() = 1() = Y wif ()

= I(f) — I(pn)

=I1(f —pn) [Integration is linear]
b

= / flzo, -y xn, x] (x — zo)(x — 1) -+ (2 —) da [Interpolation error]

Pn(z)

Example 7.2.1 Error of Trapezoidal Rule

b
E(f) :/ fla,b,z] (x — a)(x — b) dz

¥1(2)<0 Vz€la,b]

= fla,b, €] /b(x —a)(x —b)dz forsome¢ € [a,b] [Integral MVT]
—)

- f[aabag] <_(b 6))

——

()

-2

S ()

= —Ta) — a)3.

» The negative sign indicates that if f”(n) > 0, E(f) < 0, we are over estimating the
integral. On the other hand, if f”(n) < 0, E(f) > 0, then we are under estimating.

* (b— a)?: If the interval is cut in half, the accuracy will be improved by 8 times.

64

7 NUMERICAL INTEGRATION 7.2

Error in Quadrature

Theorem 7.2.2 Errors in Quadrature Rules

e Midpoint:

_f”(n) 3
=3 079

E(f)

e Simpson’s:

Example 7.2.3 Midpoint Rule is Superconvergence

tive show up in the error term.

7 2

gree 1 polynomials. We call this property superconvergence.

Note that for midpoint rule: 7(f) = I(po). So, we don’t make mistakes for linear terms
and functions. We start to make mistakes for quadratic functions since the second deriva-

Therefore, we are using a degree 0 interpolant to exactly interpolate the integral of de-

Definition 7.2.4 (Precision/Degree of Accuracy/Degree of Precision (DOP)). The de-

gree of precision is the largest integer p s.t.
E(g.) =0 Vn<p,

where ¢, is a degree-n polynomial.

In other words, we have I(q,) — I(px) = 0, where p;, is a degree-£ interpolant of ¢,.

65

7 NUMERICAL INTEGRATION 7.3 Composite Quadrature Rules

Theorem 7.2.5 Precision of Quadrature Rules

* Trapezoidal Rule: p = 1;
e Midpoint Rule: p = 1; and
e Simpson’s Rule: p = 3.

The midpoint rule and Simpson’s rule have superconvergence.

7.3 Composite Quadrature Rules

r t
=Y [s
i=1 Y ti-1
r t; '
~ Z / p'(z) dz
i=1 Yti-1

T N——

some quadrature

7.4 Gaussian Quadrature

Goal: Maximize precision by choosing the right abscissae.

I(f) =) wif(x).
=0
n+1 abscissae T
n+1 weights w;

2n + 2 degree of freedom
— exactly integrate degree (2n + 1) polynomial

This degree-(2n + 1) polynomial is our target max precision.

7.4.1 Error and Precision.

e A quadrature rule has DoP= m if
b n
E(qr) = / () dz — Zwi%(%) =0
a =0

66

7 NUMERICAL INTEGRATION

7.4 Gaussian Quadrature

for k =0,...,m, where ¢ is a degree-k polynomial.

e So,

E(f):/[f(x)—pn(x)}dx:/ flzo, 1, .., Tn, 2] H(I—%) dz

N
degree n+1
¢n+1(z) Legendre poly.

* We will choose abscissae to be the roots of Legendre polynomial ¢, ().

* Observation: Suppose f|xg, 1, . .

Then, E(f) = 0.
Proof 1.

., Tn, 2] is a polynomial of degree n or less.

1
Ck/ P (2)ns1(x) dz =0
1 N—

orthogonal

e If f is a polynomial, what degree will ensure f|xg, 21, ..., z,, x] is degree n?

Solution 2.

flro, 1, ..., xp,] =

(.

Vv
degree n

degree n+1
—_—

flz1, - o,) = flxo, - - -, x4
(x — xp)

degree n+2

N

}[xg, e T, T —
(x — 1)
(x — x0)

degree 2n+1

=
flz] —constant

C(r—z)(x—21) - (2 —xp)

O

* If we choose z, ..., x, toberoots of ¢, (), then our interpolatory quadrature rule has

DoP of 2n + 1. This way to choose the abscissae is called Gauss Quadrature.

67

7 NUMERICAL INTEGRATION

7.4 Gaussian Quadrature

Theorem 7.4.2 Properties of Legendre Polynomials

e Orthogonal:

* ¢;(x) is degree-j.
* ©,(z)hasn real simple roots in (—1, 1).

e Interlacing property:

| aoei@ar=0 ki

X roots for ¢, (x)

— e
-1 1

X roots for @3(x)

Example 7.4.3 Gauss Quadrature
Oninterval [—1, 1], Legendre polynomials:

DO | —

po(z) =1, ¢i(z) =2, @o(z)=
1. n = 0: abscissae: z,, weight wy.

* x¢: root of ¢ (x): 2o = 0.

e Target DoP:2n 4+ 1 = 1.

1
E(z%) = / ldzr — wy
— ~~

1

1

1

So, Gauss quadrature with n = 0:

This is the midpoint rule.

2. n = 1. Abscissae: z, and z;; weights wy and w;.

(33:2 — 1), p3(z) =

=wo f(z0)

BE(z') = / rdr — wowg =0 = always true

/_11 f(x)de ~

(5ZE3 — Bx) .

DN | —

=0 = wy=2.

2£(0).

68

7 NUMERICAL INTEGRATION 7.4 Gaussian Quadrature

V3, A
i

1
* Root of p,(z) = 5(3$2 —1)=0 = 5= g =

e Target DoP:2n + 1 = 3.

1
E(xo)—/ 1dz — wer) — wia) =0 = wo + w; = 2
-1

1
E(@"l):/ rdr —wyrg —wir1 =0 = —wy+w; =0

1

1 1 2

E(z?) :/ v*dr — worh — wir] =0 = 3Wo + WL =73
-1

1
E(z?) = / ¥ dr — wer) — wirt =0 = —w +w; = 0.
We only need to solve

wo—l—w1:2 wozl

—wo +wy; =0 wy =1

So, Gauss quadrature with n = 1:

/_jf(x)dxxf<_%§>+f<§>.

* Recall: Simpson’s method also have DoP= 3. We used quadratic interpolant that
requires 3 abscissae. However, with Gauss quadrature, we only need 2 abscissae.

3. Another way to derive Gauss quadrature: solve z, x|, wp, w; from the system.

Theorem 7.4.4 Weights of Gauss Quadrature

W — 2(1 — xj)2
T o+ Den(a))P?

forj =0,...,n.

To compute the Gauss Quadrature on [a, b], we consider abscissae ¢; € [a,b]. Lett € [a, b] such

that
b—a b+ a
t—< 5 >x—|—(5), z € [—1,1]

ar=("5") as

69

S

N}

7 NUMERICAL INTEGRATION

7.5 Adaptive Quadrature

Then,

h—
2a)dx

Definition 7.4.5 (Weighted Gauss Quadrature). when computing weighted integrals,

we will use weighted Gauss quadrature. Procedure:

* Choose orthogonal basis based on weighted integral.

* Abscissae: roots of o7, | ()

e General quadrature rule:

n

b
/ f(x)w(x)dz = Zajf(xj).

J=0

7.5 Adaptive Quadrature

Main Idea: We will continuing refining the partition on regions where the error is the largest.

Question: How do we compute error?

E(f) = E(f;h) = Kh? + O(h*),

70

K =|[f™]

7 NUMERICAL INTEGRATION 7.5 Adaptive Quadrature

Let’s choose two quadrature rules on each partition. One with step size i and the other

. . h
with a finer step size 5 Then,

Then,
large: we need to refine

Ry — Ry
small: we are close.

Goal: Choose abscissae as we go such that

[I(f) — Q(f;to,...,t-)| < tolerance,

error

where (+) is any quadrature rule, and ¢, . . ., ¢, are abscissae.

.....

E(f;h) = I(f) = Q(f;h).

e Main idea: Use error estimates E(f;h) = Kh? + O(h?"!), where K depends on f, f’, a,
and b, but K is independent of h.

Example 7.5.1 Priori Error Estimates

1. Composite trapezoid:

TN
B(f:h) < L= — a2

—_——
K

2. Composite midpoint:

_ 1"l
E(f;h) < 25200 —a)?

3. Composite Simpson:
1

Y
180 (b—a)h®.

E(f;h) <

These are called a priori error estimates (before computation). However, they are not

useful in practice because we don’t know much about f

71

7 NUMERICAL INTEGRATION 7.5 Adaptive Quadrature

. h
¢ We can relate error estimates for 47 and 5:

h 1
E(f; 5) ~ 5 E(fih).

So, if E(f;h) ~ Kh4, then

h Kht
E(f;—) R TR

* Manipulating Error:

~ %E(f; h) + (Q(f;g) - Q(f;h))-

s~ (57) (@) -eum)

TV
a posteriori error estimate

(computable)

e Implementation: Recursive Process. For each subinterval:

1. check: ‘Q(f; g) — Q(f;h)’ < tolerance.

2. If true: we are good;
3. If false: we need to refine abscissae. Cut the subinterval in half and repeat.

4. Stop when all subintervals satisfy the tolerance condition.
* Good implementation practice:

1. Reuse computation

2. Parallelism

72

8 NUMERICAL ODES

8 Numerical ODEs

8.1 Differential Equations

%:f(t,y), a<t<b. (ODE)

* (ODE) is a non-autonomous equation since f depends on ¢.

e If f(t,y) = f(y) is not dependent on ¢, we call it autonomous.

Example 8.1.1 Solving ODE Analytically

y = —y+t, t>0.

Solution 1.
A solution:
y(t) =t —1+ae™.

This is a family of solutions. It is not unique as a can be anything. To verify this is the
solution, we compute
Y =1—ae'=—y+t.

To make the solution unique, we need an initial condition y(0) = C. O

Theorem 8.1.2 General Procedure to Solve ODEs
t
yt)=C+ [flsiu(s) ds,

t
where C is a constant, and / f(s,y(s))ds is the numerical integrator. t is a moving
a

bound.

e Initial value problem (IVP):

y(a)is given = C = y(a).

e Terminal value problem (TVP):
y(b) is given

This can be transformed into IVP using mapping: 7 = b — ¢t where 0 < 7 < a. So,

y(r)=C — /O f(s,y(s))ds.
73

8 NUMERICAL ODES 8.2 Euler’s Method

* Boundary value problem (BVP): Given information about y at multiple time points.

Example 8.1.3 Go-To Example

v =Xy, y(0)=1, t>0.

Solution: y = e*.

8.2 Euler’s Method

8.2.1 Approximatey;, then update. Suppose we have an approximation y(¢;) ~ y; . Whatis
~—

~—
exact approx.
y(tiv1)?
Assume t;,1 = t; + h. Then, by Taylor’s approximation,
h2
Y(tivr) = y(tisn) = y(t:) +h y'(t) +5?J"(§z‘)‘
——
=f(tiy(t:))
Vi1 = Yi + hf(ti,y:) (Forward Euler)
8.2.2 Approximate y,, then update.
Yit1 — Y o . .
f(ti,ys) = == [derivative approximation]

h

Example 8.2.3 Test Problem

y, = /\y; yex<t> = y(O)eM, y(O) =1,t>0.

¥(0)

74

8 NUMERICAL ODES 8.3 Numerical Considerations in Euler’s Method

8.2.4 Explicit vs. Implicit Methods.

e Forward Euler: forward difference

Flt,y(t:) = o/ () ~ M

Yir1 = i + hf(ti, vi) (FE)
Explicit method: we can evaluate/compute. Only using information we have pre-computed.

(+) Faster to integrate
(+) Easy to implement
¢ Backward Euler: backward difference

fliv, y(tinn)) =y (tip1) = Mh_y(m

Yivr = Yi + hf(tiv1, Yitr) (BE)

Implicit method: we cannot evaluate/compute. We are trying to solve for y;.;. (we can
use fixed point iteration or other root finding methods).

(+) Other numerical benefits.

Example 8.2.5 Test Problem
Yy = \y; y(0) =1, t>0.
* FE:yir1 = yi + hAy; = (1 4+ hA\)y;

* BE:y,1 =y + hA\yin1 = Y1 =

8.3 Numerical Considerations in Euler’s Method

Definition 8.3.1 (Local Truncation Error). The amount by which the exact solution
fails to satisfy the difference equation at integration step .

g, = Werd 2V g,y).
————

75

8 NUMERICAL ODES 8.3 Numerical Considerations in Euler’s Method

Remark. For FE: d;, ~ O(h). Thatis, if we cut step size by half, the local truncation error
decreases by half.

Definition 8.3.2 (Order of Accuracy). The smallest positive integer q s.t.

max |d;| = O(h?).

Definition 8.3.3 (Global Error).

ei = y(ti) — yi.

Remark. Generally, order of accuracy is the same as local truncation error (when we
have nice functions). For example, for FE, max |e;| ~ O(h).

Definition 8.3.4 (Convergence). A numerical ODE integrator is said to converge if the
maximum global error — 0 when 2 — 0.

Theorem 8.3.5 FE Convergence
Suppose:
e f(t,y) have bounded partial derivatives in D = {a <t <b, |y| < co}.

This implies Lipschitz continuity iny:
[f(ty) = fEDI < Ly -yl V(ty),(t7) €D.

* y(t) has bounded second derivative:

Iyl < constant.

Then, FE converges and global error decreases linearly in £. i.e.,

1=0,...,

| = N | <

max |e;| = max |y(t:) —ui| < Bh,

where y(t;) is the true solution, y; is the approximation by FE (y; = v; 1 + hf(ti—1,vi-1)),
(b—a)L __ 1 ” //”

e vl

L 2

and B = is a constant.

76

8 NUMERICAL ODES 8.3 Numerical Considerations in Euler’s Method

Proof 1.

€ = y(tz) — Y
. . y' () L

d; y(tis l)h_ y(t) fts,y(t)) = §y”(§i) @ [Local truncation error (LTE)]

d(h) = max |d;|

0— yz‘+1h— Yi F(tsyi) @ [from FE: y;11 = yi + hf(t:, vi)]

t; t; i1 — Yi
@ d = M) TV) - SR gy

So,

eir1 = e+ h(f(ti,y(t:) — f(ts,yi) + hd;
lei1| = |ei + h(f(ti, y(t:) — f(ti yi)) + hds]

< el + h|f(ti, y(t:)) — f(ti,yi)| + hld;| [Triangle inequality]
< lei| + hL |y(t;) — yi| +h|di] [Lipschitz]
—_——

les
= (14 hL)|e;| + h|d;]

< (1+ hL)|e;| + hd(h). d(h) = max |d;|
If we iterate:

leiva] < (14 hL)|ei| + hd(h)
< (1+hL)[(1+ hL)|ej—1| + hd(h)] + hd(h)
= (1+ hL)?le;1| + hd(h)[1 + (1 + hd(h))]

< \(1 + hL)H_lleol—l—hd(h) : l (1 + hL)k [Wlth IVP: €y = y(to) — Yo = O]
= hd(h) - Z (1+ hL)*

k=0
— hd(h) - (1 - (E};FLhL)Z) _ d(Lh)

1—r"

(1—r)

[(1+hL) —1]. |finite geometric sum:

77

8 NUMERICAL ODES 8.4 Runge-Kutta Methods

Lemma 8.6 : For any real x:
1+ax<e”

and if x > —1, then
0< (1+a)™ <em.

2
Proof. ex:1+x+%65>1+x. O
So, by this Lemma,
(1+ hL)i < el < NBL — pb-a)L

Further,
d(h) = max |d;| = max ﬁy”(f-)
i=0,..., 0, N |2 !
h
< 2N
Then,
h elb-a)l _ 1
) < g/ B
el < 515" ||

L 2
~ O(h).

_ [e(ba)L _ 1} ' Hy//Hoo 0

8.4 Runge-Kutta Methods
Motivation: Higher order explicit method.

8.4.1 Implicit Trapezoidal Method.

tit1

Y(tiv1) = y(ts) + f(s,y(s))ds

t;

Vv
quadrature rules

e Use trapezoidal rule for integrals:

f(s,y(s)) ds =

tit1 h
§(f(tiv yi) + f(tiv1, yir1))

t;

Yit1 = Yi + E(f(twyz) + f(ti+17yi+1))-

2

78

(True solution)

8 NUMERICAL ODES 8.4 Runge-Kutta Methods

e Claim 8.2 The LTE

d, = M — %(f(ti,y(ti)z—l- f(ti—l-lay(ti—l-l)Z)

~~ -~

y'(t) Y (tit1)

is of order h2.

Proof 1.

2 3

h h
y(tiva) = y(t:) + hy'(t:) + ?y"(ti) + gym(fi)
2

/ ! 1 h
Y (tip1) = y' () + hy"(t:) + —

5 y"' () (Taylor expansion on derivative)

Then,

dzzw ;(f(tuy() +f +1,Y Z+1

h
"‘/2}//'1’ -y /// fz 2)/(/—2—)/(/ /2/!// h2 /// nz

h h2
— /l/(gl) o /”(ni)

~ O(hQ).

8.4.3 Explicit Trapezoidal Methods.

{?//\iJrl =y +hf(ti,y)

h
=(f(ti, y:) + f (i1, Gitr))

Yie1 = Yi + 5

Order: O(h?).
8.4.4 Midpoint Methods.

e Implicit Midpoint:
tit1

f(s,y(s))ds = hf(tiv1/2, Yir1/2),

ti

+ lit1 Y +y+1.So,

wheret; 1/, = 5

and Yit1/2 =

ti+lisr Yi +Yin
Yit1 = Yi + hf(

2 ’ 2
=Y + hf(tiv1/2, Yir1/2)-

79

8 NUMERICAL ODES 8.5 Absolute Stability and Stiffness

* Explicit Midpoint:

~ h
Yiy1)2 =Yi + §f(ti, Yi)
Yiv1 = Yi + hf (tiva/2, Yit1/2)
Explicit midpoint and explicit trapezoidal methods are 2 stage methods.
 Order: O(h?)

8.4.5 Runge-Kutta (RK) 4 Method.

Y1 =y ~ y(t:)
Yo =ui+ gf(ti, Y1) ~ Y(tivy2)
Y3 =y + gf(ti-i—l/% Ys) ~ Y(tiy1/2)
Yi=vyi+hf(tiz1/2,Ys3) ~ Y(tiz1)

h
Yir1 = Yi T 6(f(ti; Vi) 4 2f (tig1j2, Ya) + 2 (tigay2, Ya) + f(tig1, Ya)).

Order: O(h*).

8.5 Absolute Stability and Stiffness

Definition 8.5.1 (Test Equation).
y=Xxy, AeC, y(0)=uy.

Exact solution: y(t) = yoe*. (Recall: (" = e (cos(bt) + isin(bt)))

Definition 8.5.2 (Absolute Stability). A numerical integrator has absolute stability if
the solution does not diverge in magnitude as ¢t — oco. i.e.,

ly(tiv1)] < |y(t:)] eventually.

Example 8.5.3

e In test problem:
[y(8)] = yole" ™.

If Re(\) < 0, the solution is absolutely stable.

80

8 NUMERICAL ODES 8.5 Absolute Stability and Stiffness

* FE stability:
Yir1 = Yi + hf(ti, vi).

For the test equation, we have
Yir1 = Yi + hAy; = (L + hA)y;.
To make it absolutely stable: |y;.1| < |y;|. This happens when
|14+ hA < 1.

This is the condition for absolute stability for FE.

1. A > 0: no absolute stability at all.

2. X\ < 0: need to choose h carefully to have absolute stability.

Definition 8.5.4 (Region of Stability). The set of complex numbers for which numeri-
cal solution is absolutely stable (z = kA € C).

Example 8.5.5

e FE:R={2€C:|1+z2| <1}.

e BE:

Yigr = Vi + hf(tiz1, Yis1)

1
Yi+1 = myi

81

8 NUMERICAL ODES 8.5 Absolute Stability and Stiffness

1
Stability requires: =

<1 1— B\ > 1.
h)\‘_ = | |2

Denote =z = h\ € C. Then, the region of stability: R={z€ C: |1 — z| > 1}.
* Some other explicit method (suspicious RK2 method):
Yirr1 = (1 + h\)y;
Yirr = Yi + hf(tis1, Vi)
= (14 hX + (hA)?)y;

Take z = h\ € C. Then, the region of stability is

R:{ZEC:|1+Z+22‘§1}.

Definition 8.5.6 (A-Stable Method). If the region of stability contains the entire left-
half plane, the method is called A-stable.

Example 8.5.7

e BE is A-stable.

* In general, implicit methods tend to have A-stable property, but they are hard to
implement.

Example 8.5.8
Consider ¢y = f(y), autonomous.
Suppose y(t) and y(t) are two solutions. If y(¢) and y(¢) are absolutely stable, then

lim y(t) — y(t) = 0.
t%ooa/_/
w(t)

82

8 NUMERICAL ODES 8.5 Absolute Stability and Stiffness

Form a new ODE:

A
.

Using Taylor’s expansion of f(y) around f(y)

of

fly) = f©)+ 8—yw(t) + higher order terms
So,
/ of .
(t) = a—w(t) +higher order terms.
N
=\(1)
That is,

Punchline: the test equation can be applied to a more general setting.

Definition 8.5.9 (Stiffness). An IVP is stiff if the step size needed to maintain abso-
lute stability of FE is much smaller than the step size needed to represent the solution
accurately.

Example 8.5.10

y' = —1000(y — cos(t)) — sin(t), y(0) = 1.

Exact solution: y(t) = cos(t).

The solution looks good for h = 0.1 i.e., by plotting y(¢;).

1
However, for stability of FE, we look at y/ = —1000y, we require h = 500"

So, this is a stiff problem.

83

8 NUMERICAL ODES 8.5 Absolute Stability and Stiffness

Remark 1. (Connection Between Optimization and ODE).

Tit1 = z; — aVo(z;) (Gradient Descent)
Z'(t) = —=V(z;) (Gradient Flow)

So, GD is a FE discretization to gradient flow. One can even try other methods to solve
the gradient flow problem.

84

	Numerical Algorithms
	1 Solving Nonlinear Equations
	1.1 Bisection Method
	1.2 Fixed Point Iteration
	1.3 Newton's Method
	1.4 Secant Method
	1.5 Convergence of Newton's & Secant Methods

	2 Optimization
	2.1 Multivariable Calculus Review
	2.2 Optimization Algorithms
	2.2.1 Descent Direction
	2.2.2 Gradient Descent
	2.2.3 Newton's Method
	2.2.4 BFGS (Quasi-Newton Method)
	2.2.5 Step Size

	2.3 Nonlinear Least Squares and Gauss-Newton

	3 Polynomial Interpolation
	3.1 Basis Selection
	3.2 Error in Polynomial Interpolation
	3.3 Chebyshev Interpolation
	3.4 Interpolation with Derivative Info (Hermite)

	4 Piecewise Interpolation
	4.1 Piecewise Polynomial Interpolation
	4.2 Cubic Spline Interpolation
	4.3 A Different Perspective on Piecewise Interpolation
	4.3.1 Hat Functions (Finite Elements) Think of Lagrange polynomials
	4.3.2 Hermite Cubic Basis Adding smoothness

	5 Best Approximate
	5.1 Continuous Least Squares
	5.1.1 Continuous Linear Algebra
	5.1.2 Some Functional Analysis Background
	5.1.3 Normal Equations of Continuous Least Squares
	5.1.4 Orthogonal Basis Functions

	5.2 Weighted Least Squares

	6 Numerical Differentiation
	6.1 Taylor Series
	6.2 Interpolate, then Differentiate

	7 Numerical Integration
	7.1 Basic Quadrature Rules
	7.2 Error in Quadrature
	7.3 Composite Quadrature Rules
	7.4 Gaussian Quadrature
	7.5 Adaptive Quadrature

	8 Numerical ODEs
	8.1 Differential Equations
	8.2 Euler's Method
	8.3 Numerical Considerations in Euler's Method
	8.4 Runge-Kutta Methods
	8.5 Absolute Stability and Stiffness

