
Emory University

MATH 515 Numerical Analysis I

Learning Notes

Jiuru Lyu

June 18, 2025

Contents

1 Linear Algebra Review 4

1.1 The Basics . 4

1.2 Fundamental Subspaces of Matrices . 5

1.3 Inverse and Invertible Matrices . 8

1.4 Orthogonal Vectors and Matrices . 8

1.5 Vector and Matrix Norms . 10

1.6 Singular Value Decomposition (SVD) . 13

2 Conditioning and Stability 19

2.1 Conditioning & Condition Numbers . 19

2.2 Backward Stability . 20

2.3 Floating Point (FP) Numbers . 21

2.4 Fundamental Theorem of FP Arithmetic and Error . 23

3 Linear Systems of Equations 26

3.1 Gaussian Elimination & LU Factorization . 26

3.2 Pivoting . 31

3.3 Choleksy Factorization . 33

3.4 Other Special Matrices/Factorization . 34

4 Stability of Solving Linear Systems 36

4.1 (In)Stability of GE & GEPP . 36

4.2 Stability of Backward Substitution . 38

4.3 Perturbation Theory of Linear Systems . 39

4.4 More Practical Perturbation Theory . 42

4.5 Big-Oh Notation . 43

1

CONTENTS CONTENTS

5 Least Squares 45

5.1 Least Square Problems . 45

5.2 QR Factorization: Gram-Schmidt Orthogonalization . 48

5.3 QR Factorization: Householder Triangularization . 50

5.4 QR Factorization: Givens Rotations . 53

5.5 Rank Deficient Least Square . 55

5.6 Perturbation Theory of Least Squares . 57

6 Eigenvalues and Eigenvectors 59

6.1 Eigendecomposition . 59

6.2 Algebraic and Geometric Multipllicity . 60

6.3 Jordan Canonical Form . 64

6.4 General Eigenvalue Algorithms . 65

6.4.1 Power Iteration . 66

6.4.2 Shifted Power Method (Inverse Iteration) . 67

6.4.3 Variation of Inverse Iteration: Rayleigh Quotient Iteration (RQI) 68

6.4.4 Orthogonal Iteration/Simultaneous Iteration/Subspace Iteration 71

6.4.5 Two Phases Algorithm to Produce Shur Factorization 73

6.4.6 QR Algorithm . 74

6.4.7 Practical QR Iteration: Single-Shift QR Iteration . 76

6.5 Symmetric Eigenvalue Problem . 80

6.5.1 Divide-and-Conquer Algorithm . 80

6.5.2 Bisection Method (Finding a subset of Eigenvalues) 83

6.6 Eigenvalue Perturbation Theory . 84

7 Computing SVD 85

7.1 Phase I: Golub-Kahan (GK) Bidiagonalization . 85

7.2 Phase II: SVD of Bidiagonal Matrix . 86

8 Iterative Methods 90

8.1 Introduction . 90

8.2 Arnoldi Method . 91

8.3 Generalized Minimal Residual Method (GMRES) . 95

8.4 Lanczos Method . 97

8.5 Gradient Descent (GD) . 98

8.6 Conjugate Gradient (CG) . 99

8.7 Polynomial Approximation Perspective . 103

2

LIST OF ALGORITHMS LIST OF ALGORITHMS

List of Algorithms

1 LU Factorization . 28

2 Solve Linear System with GE . 29

3 An Unrealistic GEPP Algorithm . 32

4 GEPP in Practice . 32

5 Cholesky Facotrization . 34

6 Gram-Schmidt (Unstable) . 50

7 Modified Gram-Schmidt (Stable) . 50

8 Householder Triangularization . 52

9 Compute Q∗b from Householder Triangularization . 53

10 Power Iteration . 67

11 Inverse Iteration . 67

12 Rayleigh Quotient Iteration (RQI) . 68

13 Orthogonal Iteration . 71

14 Phase I to Produce Upper Hessenberg Matrix . 74

15 QR Algorithm (Real-Valued) . 74

16 Single-Shift QR Iteration . 76

17 Single-Shift QR Iteration with σk Choice Described in Theorem 6.4.12 77

18 GK Bidiagonalization . 86

19 A Mathematically Equivalent Algorithm: LR Iteration . 88

20 Arnoldi’s Method . 93

21 GMRES . 96

22 Lanczos Method . 97

23 Gradient Descent . 99

24 Conjugate Gradient . 99

3

1 LINEAR ALGEBRA REVIEW

1 Linear Algebra Review

Notation 1.1. Vector: x ∈ Cn : x =

x1
...

xn

, xi ∈ C

Notation 1.2. Matrix: A ∈ Cm×n : A =

a11 · · · A1,n

...
. . .

...

am1 · · · amn

, aij ∈ C

1.1 The Basics

Definition 1.1.1 (Matrix-Vector Product/Mat-Vec).

b = Ax

Linear Combination Perspective Vector addition and scalar multiplication.

b is a linear combination of the columns of A.

Suppose A =

| |
a1 · · · an

| |

, aj ∈ Cm, then

b = Ax =

| |
a1 · · · an

| |

x1
...

xn

= x1a1 + · · ·+ xnan

=
n∑

j=1

xjaj .

Entry-wise Perspective

bi =

n∑
j=1

aijxj

This perspective is useful in MATLAB: b(i) = A(i,:) * x(j).

Definition 1.1.2 (Matrix-Matrix Multiplication/Mat-Mat).

B = AX,

where B ∈ Cm×ℓ, A ∈ Cm×n, and X ∈ Cn×ℓ.

Standard Perspective mat-vec

bj = Axj ,

4

1 LINEAR ALGEBRA REVIEW 1.2 Fundamental Subspaces of Matrices

where bj is the j-th column of B and xj is the j-th column of X.

Outer Product mat-mat

B = AX =

| |
a1 · · · an

| |

− x⊤1 −

...

− x⊤n −

= a1x

⊤
1 + · · ·+ anx

⊤
n ,

where x⊤i is the i-th row of X.

1.2 Fundamental Subspaces of Matrices

Definition 1.2.1 (Transpose). The transpose of matrix A, denoted A⊤, swaps the rows and columns.

A ∈ Cm×n and A⊤ ∈ Cn×m.

Definition 1.2.2 (Conjugate Transpose). The conjugate transpose of a matrix A, denoted A∗ or AH ,

swaps the rows and columns, and then computes the complex conjugate (a+ bi = a− bi) of each entry.

Theorem 1.2.3 Properties of Transpose

(AB)⊤ = B⊤A⊤ and (AB)∗ = B∗A∗.

Remark 1.1 (Vector Space) The detailed definition of vector spaces are omitted here, but the key idea is

that math works on vector spaces. To put it simple, vector addition and scalar multiplication are defined

on vector spaces. For example, Cn or Rn are typical examples of vector spaces.

Theorem 1.2.4 Closure of Subspaces

If U is a vector subspace, U ⊆ Cn, then

x, y ∈ U =⇒ αx+ βy ∈ U, where α, β ∈ C.

Example 1.2.5 Non-Example of Subspace

Let U =

{[
α

1

]
: α ∈ C

}
. Note that

[
3

1

]
,

[
7− 8i

1

]
∈ U , but

[
3

1

]
+

[
7− 8i

1

]
=

[
10− 8i

2

]
/∈ U.

So, U is not a subspace of C2.

5

1 LINEAR ALGEBRA REVIEW 1.2 Fundamental Subspaces of Matrices

Definition 1.2.6 (Span). The span of vectors is all possible linear combinations.

span {a1, . . . , an} = {x1a1 + · · ·+ xnan | xi ∈ C} = {Ax | x ∈ Cn}.

Remark 1.2 A span of vectors always forms a subspace.

Definition 1.2.7 (Linear Independence/L.I.). {a1, . . . , an} is L.I. if x1a1 + · · · + xnan = 0 only when

xi = 0.

Definition 1.2.8 (Basis). A basis is a set of L.I. vectors that span a vector subspace.

Example 1.2.9

Consider U =

α

β

0

 : α, β ∈ R

. Evidently,

1

0

0

,

0

1

0

 is a basis, but

1

0

0

,

0

1

0

,

1

1

0

 is

NOT a basis because it is not L.I.. Also,

1

0

0

 is NOT a basis because it does not span U .

Remark 1.3 There is NO unique basis for U . For example,

1

1

0

,

1

−1
0

 is also a basis of U .

Definition 1.2.10 (Dimension). The dimension of a subspace is the number of vector in any basis.

Remark 1.4 For example, in Example 1.2.9, dim(U) = 2.

Definition 1.2.11 (Four Fundamental Subspaces ofA ∈ Cm×n).

• range(A) = col(A) = {Ax | x ∈ Cn} = span {columns of A} ⊆ Cm. This is a subspace of the

output space.

• null(A) = ker(A) = {x ∈ Cn | Ax = 0} ⊆ Cn. This is a subspace of the input space.

• range(A∗) ⊆ Cn

• null(A∗) ⊆ Cm

Theorem 1.2.12 Fundamental Theorem of Linear Algebra

range(A)⊕ null(A∗) = Cm and range(A∗)⊕ null(A) = Cn.

Remark 1.5 (The Notation ⊕) The notation A⊕B = C means that A ⊥ B and A ∪B = C.

6

1 LINEAR ALGEBRA REVIEW 1.2 Fundamental Subspaces of Matrices

Example 1.2.13

Consider

A =

1 2 0 −3 4

0 0 1 5 −6
0 0 0 0 0

 ∈ C3×5.

Then, range(A) =
{
Ax | x ∈ C5

}
= span {L.I. columns of A} = span

1

0

0

,

0

1

0

.

Also, null(A) =
{
x ∈ C5 | Ax = 0

}
= span {basic solutions} = span

−2
1

0

0

0

,

3

0

−5
1

0

,

−4
0

6

0

1

.

range(A∗) = span

1

2

0

−3
4

,

0

0

1

5

−6

and null(A∗) = span

0

0

1

.

Definition 1.2.14 (Rank and Nullity).

rank(A) = dim(range(A))

= # of L.I. columns/rows

= # of leading 1’s/pivots

= # of non-zero singular values

= the minimal # of rank-1 matrices that sum to A

A =

r∑
i=1

uiv
∗
i︸︷︷︸

rank-1 matrix

: if r is minimal, then rank(A) = r

nullity(A) = dim(null(A))

Theorem 1.2.15 Rank-Nullity Theorem

If A ∈ Cm×n, then

rank(A) + nullity(A) = n.

Definition 1.2.16 (Full Column/Row Rank). A matrix A is full column rank if rank(A) = n. A is full

row rank if rank(A) = m. It is full rank if rank(A) = min {m,n}.

7

1 LINEAR ALGEBRA REVIEW 1.3 Inverse and Invertible Matrices

Remark 1.6 If A has full column rank, null(A) = {0}, the trivial null space, and the only solution to

Ax = 0 is x = 0.

If A has full row rank, then range(A) = Cm, and Ax = b is always solvable.

1.3 Inverse and Invertible Matrices

Definition 1.3.1 (Inverse). A is nonsingular or invertible if it is square (A ∈ Cm×m) and it has full rank.

We denote the inverse as A−1.

Theorem 1.3.2

The following are equivalent (T.F.A.E.): If A ∈ Cm×m, then

• A is invertible: AA−1 = A−1A = I.

• rank(A) = m.

• range(A) = Cm.

• null(A) = {0}.

• 0 is not an eigenvalue of A.

• 0 is not a singular value of A.

• det(A) ̸= 0.

Proposition 1.3 : If A,B are invertible and of the same size, (AB)−1 = B−1A−1.

Inverse in MATLAB

1 % Do not use the following

2 inv(A);

3 % To solve Ax=b, use the "\" operator

4 x = A \ b;

1.4 Orthogonal Vectors and Matrices

Definition 1.4.1 (Adjoint/A∗). If A =

a11 · · · a1n

...
. . .

...

am1 · · · amn

, then its adjoint, denoted as A∗, is defined as

swapping the rows with columns and then taking the conjugate of each element:

A∗ =

a11 · · · am1

...
. . .

...

a1m · · · amn

.

8

1 LINEAR ALGEBRA REVIEW 1.4 Orthogonal Vectors and Matrices

Definition 1.4.2 (Inner Product). The operation ⟨·, ·⟩ : V × V → C is an inner product if it satisfies

• Conjugate symmetry: ⟨x, y⟩ = ⟨y, x⟩

• Homogeneity: α ∈ C : ⟨αx, y⟩ = α⟨x, y⟩, ⟨x, αy⟩ = α⟨x, y⟩.

• Additivity: ⟨x+ z, y⟩ = ⟨x, y⟩+ ⟨z, y⟩

• Positive definite: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇐⇒ x = 0.

Proposition 1.3 : ⟨Ax, y⟩ = ⟨x,A∗y⟩.
Definition 1.4.4 (Orthogonal Vector). x, y ∈ Cn are orthogonal if x∗y = 0.

Theorem 1.4.5

Non-zero orthogonal vectors are L.I..

Proof 1. Suppose {x1, . . . , xq} are non-zero orthogonal. Then, x∗ixj = 0 if i ̸= j. [WTS: xk is not a

linear combination of the remaining vectors for any k.]

WLOG, assume xq is a linear combination of x1, . . . , xq−1. Then, ∃c1, . . . , cq−1 ∈ C s.t.

xq = c1x1 + · · ·+ cq−1xq−1.

Then,

x∗qxq = x∗q(c1x1 + · · ·+ cq−1xq−1)

= c1x
∗
qx1 + · · ·+ cq−1x

∗
qxq−1

x∗qx1 = 0. [due to orthogonal]

As x∗qxq = 0 ⇐⇒ xq = 0, ⋇ this contradicts with our assumption that none of x1, . . . , xq is zero, So,

there must be no linear dependence. Q.E.D. ■

Definition 1.4.6 (Unitary Matrices). Q ∈ Cm×m is unitary if Q−1 = Q∗.

Remark 1.7 If Q is real-valued, Q ∈ Rm×m, then Q is orthogonal and Q−1 = Q⊤.

Remark 1.8 (Why the Name?) Note that

Q∗Q = Q−1Q = I =

1 0

. . .

0 1

Also,

Q∗Q =

− q∗1 −

...

− q∗m −

| |
q1 · · · qm

| |

 =
[
q∗i qj

]

9

1 LINEAR ALGEBRA REVIEW 1.5 Vector and Matrix Norms

So,

q∗i qj =

1 i = j (on diagonal, with unit length)

0 i ̸= j (off diagonal, orthogonal)

1.5 Vector and Matrix Norms

Definition 1.5.1 (Vector Norm). ∥ · ∥ : Cn → R is a vector norm if ∀x, y ∈ Cn, α ∈ C, the following

satisfies:

• positive definite: ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0.

• positive homogeneity: ∥αx∥ = |α|∥x∥, where |α| = |a+ bi| =
√
a2 + b2.

• triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proposition 1.2 Inner Product Induce Norm: If ⟨·, ·⟩ is an inner product, then ∥x∥ :=
√
⟨x, x⟩ is a norm.

Example 1.5.3 Examples of Vector Norms

• 1-norm:

∥x∥1 =
n∑

i=1

|xi|

• 2-norm:

∥x∥2 =

√√√√ n∑
i=1

|xi|2

• p-norm:

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p <∞.

• ∞-norm:

∥x∥∞ = max
i=1,...,n

|xi|.

Remark 1.9 When thinking of properties of norms, consider the following ball:

Br = {x ∈ Cn | ∥x∥ > r}.

Theorem 1.5.4 Unitary Invariance of 2-Norms

Suppose Q ∈ Cm×m si unitary. Then,

∥Qx∥2 = ∥x∥2.

10

1 LINEAR ALGEBRA REVIEW 1.5 Vector and Matrix Norms

Proof 1. Suppose Q ∈ Cm×m is unitary. Then, Q∗Q = I = QQ∗. Hence,

∥Qx∥22 = (Qx)∗(Qx) = x∗Q∗Q︸︷︷︸
I

x = x∗Ix = x∗x = ∥x∥22.

Q.E.D. ■

Remark 1.10 (Geometric Interpretation) Unitary matrices preserve length.

Proposition 1.5 Some Famous Inequalities:

• Hölder: ∀1 ≤ p, q ≤ ∞, if
1

p
+

1

q
= 1, then

|x∗y| ≤ ∥x∥p∥y∥q.

• Cauchy-Schwarz (consequence of Hölder):

|x∗y| ≤ ∥x∥2∥y∥2.

Definition 1.5.6 (Matrix Norms Induced by Vector Norms). Given two vector norms

∥·∥(n) : C
n → R acts on vectors from Cn [input space]

∥·∥(m) : C
m → R acts on vectors from Cm [output space]

Suppose A ∈ Cm×n, then

∥A∥(m,n) = sup
x∈Cn

x ̸=0

∥Ax∥(m)

∥x∥(n)
= sup

x∈Cn

∥x∥(n)=1

∥Ax∥(m).

Specially, if (n) and (m) are the same, say (n) = (m) = (p), then we write ∥A∥(p).

Theorem 1.5.7 Some Matrix Norms

• ∥A∥1 = max. column sum = max
j=1,...,n

m∑
i=1

|aij | = max
j=1,...,n

∥aj∥1.

• ∥A∥∞ = max. row sum = max
i=1,...,m

n∑
j=1

|aij |.

• ∥A∥2 = largest singular value =
√

largest eigenvalue of A∗A.

Remark 1.11 (General Proof Structure)

• Show RHS is an upper bound of the induced matrix norm definition.

• Find one vector that achieves this upper bound.

11

1 LINEAR ALGEBRA REVIEW 1.5 Vector and Matrix Norms

Proof 2. (of ∥A∥2) Recall: ∥A∥2 = sup
∥x∥2=1

∥Ax∥2.

Step 1 Find an upper bound of ∥Ax∥2 given ∥x∥2 = 1.

Note that A∗A is symmetric, so it is unitarily diagonalizable. Hence, A∗A = V ΛV ∗ from the Spec-

trum Theorem. Also, A∗A is positive semidefinite, so λi(A∗A) ≥ 0. Hence, we know

∥Ax∥22 = x∗A∗A︸︷︷︸x = x∗V ΛV ∗x = (x∗V)Λ(V ∗x).

Define V ∗x =: y. Then, ∥y∥2 = ∥V ∗x∥2 = ∥x∥2 = 1 as V is unitary and 2-norm is unitary invariant.

So,

∥Ax∥22 = y∗Λy(= y∗
√
Λ
∗√

Λy) =⇒ ∥A∥2 = sup
∥y∥2=1

∥∥∥√Λy∥∥∥
2

Further, as Λ is diagonal,

∥Ax∥22 = y∗Λy∗ =
n∑

i=1

λi|yi|2

≤ λmax∥y∥22 = λmax.

Step 2 Find one vector to achieve the equality.

Let xmax be unit eigenvector of A∗A, corresponding to λmax.Then,

∥Axmax∥22 = x∗maxA
∗A︸︷︷︸xmax

= x∗maxλmaxxmax

= λmax(x
∗
maxxmax)

= λmax ∥xmax∥22︸ ︷︷ ︸
=1

= λmax

Q.E.D. ■

Proposition 1.8 Bounding Induced Matrix Norms: Let A ∈ Cℓ×m and B ∈ Cm×n, then

∥AB∥(ℓ,n) ≤ ∥A∥(ℓ,m)∥B∥(m,n).

Remark 1.12 Hint to the Proof By definition,

∥A∥(ℓ,m) = sup
x ̸=0

∥Ax∥(ℓ)
∥x∥(m)

≥
∥Ax∥(ℓ)
∥x∥(m)

.

So,

∥Ax∥(ℓ) ≤ ∥A∥(ℓ)∥x∥(m).

12

1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

Definition 1.5.9 (General Matrix Norms). Frobenius:

∥A∥F =

√√√√ n∑
j=1

m∑
i=1

|aij |2 =
√
tr(A∗A) =

√√√√ n∑
j=1

∥aj∥22.

Proposition 1.10 Properties of Frobenius Norm:

• ∥AB∥F ≤ ∥A∥F ∥B∥F

• ∥QA∥F = ∥A∥F , if Q is an unitary matrix.

1.6 Singular Value Decomposition (SVD)

Definition 1.6.1 (Full SVD).

=A U
Σ

V ∗

m× n m×m m× n

n× n

U ∈ Cm×m and V ∈ Cn×n are unitary matrix, and Σ ∈ Rm×n with diag(Σ) = (σ1, σ2, . . . , σn)︸ ︷︷ ︸
singular values

, where

σi ∈ R is non-negative and ordered with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Definition 1.6.2 (Reduced SVD).

=A U
Σ

V ∗

m× n m× n
n× n

n× n

=A U

Σ

V ∗

m× n m×m
m×m

m× n

Proposition 1.3 : Singular values are square roots of non-zero eigenvalues of A∗A and AA∗.

Proof 1. Suppose A = UΣV ∗ in the induced form. Then,

A∗A = (UΣV ∗)∗(UΣV ∗) = V Σ∗ U∗U︸︷︷︸
I

ΣV ∗

= V Σ∗ΣV ∗

= V Σ2V ∗.

Note that Σ2 contains squared singular values. As A∗A is PSD, all eigenvalues are non-negative. So, we

can take the square root to recover singular values. Q.E.D. ■

13

1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

Theorem 1.6.4 Existence of SVD

Every matrix A ∈ Cm×n has an SVD.

Proof 2. In this proof, we will consider U∗AV = Σ (derived from A = UΣV ∗). Let σ1 = ∥A∥2.

• From a compactness argument, ∃ v1, ∥v1∥2 = 1 s.t. Av1 = σ1u1, where ∥u∥2 = 1.

Proof.

Theorem (Weirestrass) Continuous function over compact set attains maximum/minimum over

that set.

Define function f(x) = ∥Ax∥2, continuous. Then,

∥A∥2 = sup
∥x∥2=1

f(x).

Note that ∥x∥2 = 1 is a close and bounded domain (compact domain), so we attain a maximum.

Suppose v1 is the vector that attains the maximum, then,

∥Av1∥2 = σ1.

Hence, consider the unit vector

u1 =
Av1
∥Av1∥2

=
Av1
σ1

.

That is, Av1 = σ1u1 as desired. □

• Build orthonormal bases: {v1, v2, . . . , vn} ⊂ Cn and {u1, u2, . . . , um} ⊂ Cm, with Av1 = σ1u1.

Then, define matrices

V 1 =

| | |
v1 v2 · · · vn

| | |

 and U1 =

| | |
u1 u2 · · · um

| | |

.

14

1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

Now, consider

U∗
1AV1 =

− u∗1 −

...

− u∗m −

A

| |
v1 · · · vn

| |

 =

u∗1Av1 · · · u∗1Avn

...
. . .

...

u∗mAv1 · · · u∗mAvn

=

u∗1σ1u1 −w∗−

u∗2σ1u1(= 0)
...

u∗mσ1u1(= 0)

B

 [orthonormal]

=

[
σ1 −w∗−
0 B

]
.

• Show w = 0.

– Since U and V are unitary matrices, ∥U∗
1AV1∥2 = ∥A∥2 = σ1.

– Let S = U∗
1AV1, then

∥S∥2 ≥
∥Sx∥2
∥x∥2

, x ̸= 0.

Pick x =

[
σ1

w

]
. Then,

∥S∥2 ≥

∥∥∥∥∥
[
σ1 w∗

0 B

][
σ1

w

]∥∥∥∥∥
2∥∥∥∥∥

[
σ1

w

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
σ21 + w∗w

Bw

]∥∥∥∥∥
2∥∥∥∥∥

[
σ1

w

]∥∥∥∥∥
2

.

Suppose Bw = 0. Then,

∥∥∥∥∥
[
σ21 + w∗w

0

]∥∥∥∥∥
2

= σ21 + w∗w. If Bw ̸= 0, the norm will get larger. So,

σ21 + w∗w is a lower bound of the norm. Then,

∥S∥2 ≥
σ21 + w∗w√
σ21 + w∗w

=
√
σ21 + w∗w.

So, ∥S∥2 = σ1 ≥
√
σ21 + w∗w.

As w∗w ≥ 0, it must be that w∗w = 0 since w∗w = 0 ⇐⇒ w = 0. Then,

U∗
1AV1 =

[
σ1 0

0 B

]
.

15

1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

• By induction, if B = U2Σ2V
∗
2 , then

A = U1

[
1

U2

]
︸ ︷︷ ︸

[
σ1

Σ2

][
1

V ∗
2

]
V ∗
1︸ ︷︷ ︸ .

Q.E.D. ■

Proposition 1.5 Use SVD to Solve Linear System: Ax = b =⇒ Σ x′︸︷︷︸
V ∗x

= b′︸︷︷︸
U∗b

.

Proposition 1.6 Rank Revealing: rank(A) = # of non-zero singular values.

A = UΣV ∗ =
r∑

i=1

σi uiv
∗
i︸︷︷︸

rank-1

, if rank(A) = r.

Proposition 1.7 Connection to the Subspaces:

range(A) = range(U) = span {u1, . . . , ur}

null(A) = null(V) = span {vr+1, . . . , vn}.

Proposition 1.8 Connection to Matrix Norms:

∥A∥2 = σ1

∥A∥F =
√
σ21 + · · ·+ σ2r .

Proposition 1.9 Mapping Between Spaces: Note that Avi = σiui and A∗ui = σivi. Then,[
0 A

A∗ 0

][
ui

vi

]
= σi

[
ui

vi

]

Application of SVD: Low-Rank Approximation

Definition 1.6.10 (Truncated SVD).

A =

r∑
i=1

σiuiv
∗
i

low-rank←−−−−−−−−−
approximation

Ak =

k∑
i=1

σiuiv
∗
i , k ≤ r.

Theorem 1.6.11 Eckart-Yang

For k ≤ r, Ak is the best rank-k approximation to A:

∥A−Ak∥2 = inf
rank(b)≤k

∥A− b∥2 = σk+1.

Proof 3.

1. ∥A−Ak∥2 = σk+1

16

1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

As singular values are ordered,∥∥∥∥∥
r∑

i=1

σiuiv
∗
i −

k∑
i=1

σiuiv
2
i

∥∥∥∥∥
2

=

∥∥∥∥∥
r∑

i=k+1

σiuiv
∗
i

∥∥∥∥∥
2

= σk+1.

2. Show ∥A−B∥2 ≥ σk+1 ∀B s.t. rank(B) ≤ k.

As we know nothing on B, we want to eliminate the dependency on B.

∥A−B∥2 = sup
∥x∥2=1

∥(A−B)x∥2

≥ ∥(A−B)z∥2.

Choose z ̸= 0 s.t. z ∈ null(B) but z /∈ null(A) with ∥z∥2 = 1. Note that such z will always exists

because by rank-nullity theorem, B has a lower rank and A is of a higher rank. So,

∥A−B∥2 ≥

∥∥∥∥∥Az − Bz︸︷︷︸
=0

∥∥∥∥∥
2

= ∥Az∥2.

By SVD, A = UΣV ∗. As z /∈ null(A), then z = V (:, 1 : k + 1) ∗ c, ∥c∥2 = 1. Note that V (:, 1 :

k+1)∗ c is the linear combination of the first k+1 columns of V . Also, note tat null(A) = null(V) =

span {vk+1, . . . , vn}. Then, null(A)⊥ = span {v1, . . . , vk+1}, denotes everything not in null(A), and

dim(null(A)) = k + 1. Further, note that null(B) = span {x1, . . . , xn−k} and dim(null(B)) = n − k.

Because n− k + k + 1 = n+ 1 > n, ∃ z ∈ null(B) ∩ null(A)⊥. Hence, we have

∥Az∥22 = ∥UΣV ∗(V (:, 1 : k + 1) ∗ c)∥22

=

∥∥∥∥∥Σ
[
c

0

]∥∥∥∥∥
2

2

[U is unitary]

=

k+1∑
i=1

σ2i |ci|
2

= σ2k+1

k+1∑
i=1

(
σi
σk+1

)2

|ci|2 [σi has smaller indices, so is a larger singular value]

≥ σ2k+1

k+1∑
i=1

|ci|2︸ ︷︷ ︸
∥c2∥=1

[
As σi > σk+1, we have

σi
σk+1 > 1

]

= σ2k+1.

So, ∥Az∥2 ≥ σk+1. Hence,

∥A−B∥2 ≥ ∥Az∥2 ≥ σk+1.

17

1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

Q.E.D. ■

18

2 CONDITIONING AND STABILITY

2 Conditioning and Stability

2.1 Conditioning & Condition Numbers

Abstract-View: Problem: f : X → Y

1. Well-conditioned: small changes in input =⇒ small changes in output

2. Ill-conditioned: small changes in input =⇒ BIG changes in output

Definition 2.1.1 (Condition Number).

1. δx: perturbation of input. δf = f(x+ δx)− f(x): perturbation of output

2. Absolute Condition Number (κ̂): κ̂ = κ̂(x) of problem f at the input x is defined as

κ̂(x) := sup
δx

∥δf∥
∥δx∥

.

3. Tylor Approximation:

f(x+ δx) ≈ f(x) +
δf︷ ︸︸ ︷

J(x)︸︷︷︸
Jacobian: Jij=

∂fi
∂xj

δx

∥δf∥ ≈ ∥J(x)δx∥

≤ ∥J(x)∥ · ∥δx∥

κ̂(x) = sup
δx

∥δf∥
∥δx∥

=
∥J(x)∥ · ∥δx∥
∥δx∥

= ∥J(x)∥.

4. Relative Condition Number :

κ(x) := sup
δx

(∥δf∥/∥f(x)∥)(
∥δx∥/∥x∥

) =
∥J(x)∥(

∥f(x)∥/∥x∥
) .

Example 2.1.2 Conditional Number of Functions

1. f(x) =
1

2
x. J(x) =

1

2
.

κ(x) =
∥J(x)∥

∥f(x)∥/∥x∥
=

1/2

1/2
= 1.

2. f(x) =
√
x, x > 0. J(x) =

1

2
√
x

.

κ(x) =
∥J(x)∥

∥f(x)∥/∥x∥
=

1/(2
√
x)√

x/x
=

1

2
.

19

2 CONDITIONING AND STABILITY 2.2 Backward Stability

Definition 2.1.3 (Conditional Number of Matrices). Suppose f(x) = Ax, whereA ∈ Cn×n is invertible.

Then, J(x) = A, and

κ(A) =
∥J(x)∥

∥f(x)∥/∥x∥
= ∥A∥ · ∥x∥

∥Ax∥
≤ ∥A∥ ·

∥∥A−1
∥∥ = κ.

Proof 1. ∥x∥ =
∥∥A−1Ax

∥∥ ≤ ∥∥A−1
∥∥ · ∥Ax∥. So,

∥x∥
∥Ax∥

≤
∥∥A−1

∥∥ =⇒ ∥A∥ · ∥x∥
∥Ax∥

≤ ∥A∥ ·
∥∥A−1

∥∥.
Q.E.D. ■

1. If A ∈ Cm×n, then κ = ∥A∥ ·
∥∥A†∥∥, where A† = V Σ−1U∗ from SVD.

2. If ∥·∥ = ∥·∥2, then κ2 =
σ1
σr

=
largest singular value

smallest singular value
.

Remark 2.1 Conditioning is something inherited to problems. We have no control over them. What we

can control is the algorithm we use.

Definition 2.1.4 (Well-Conditioned & Ill-Conditioned).

1. Well-Conditioned: κ is small, κ ≈ 1.

2. Ill-Conditioned: κ is large: κ ≈ 1

numerical accuracy
.

2.2 Backward Stability

Definition 2.2.1 (Stability). How an algorithm performs under perturbations.

Definition 2.2.2 (Backward Stability). Let alg(x) be the algorithm we use to compute f(x). We say

alg(x) is backward stable for f(x) if ∀ x, ∃ small δx s.t.

f(x) ≈ alg(x) = f(x+ δx)

Remark 2.2 This definition indicates that we can approximate f(x) by exactly solving a nearby problem

using the algorithm.

exact

exact

x

x+ δx

backward

error

forward

error

f(x)

f(x+ δx)

computed

20

2 CONDITIONING AND STABILITY 2.3 Floating Point (FP) Numbers

2.3 Floating Point (FP) Numbers

Remark 2.3 (Main Takeaway) Computers only approximate numbers.

Definition 2.3.1 (Mathematically Representation of FP Numbers).

• F ⊂ R, the set of FP numbers.

• β, base (typically β = 2, 10, 16). β ≥ 2, integer.

• t, precision, integer.

• x ∈ F if x = 0 or is written as

x = ±
(
m

βt

)
βe,

where m is mantissa, significand, integer. For uniqueness,

βt−1 ≤ m ≤ βt − 1 =⇒ m

βt
< 1.

Also, e is the exponent, integer.

Example 2.3.2 x = 23.5

• Write x out in base β:

β = 10: x = 2× 101 + 3× 100 + 5× 10−1

β = 2: x = 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20 + 1× 2−1

• Write in scientific notation:

β = 10: x = (0.235)× 102

β = 2: x = (0.101111)2 × 105

• Write using the formula:

β = 10, t = 2, then 10 ≤ m ≤ 99.

m

βt
= 0.235 =⇒ m = 0.2235× 102 = 23.5

However, m must be an integer, so we have to round: m = 24. So,

x = +

(
24

102

)
× 102, # of significant digit: 2

OTOH, β = 10, t = 3, then 100 ≤ m ≤ 999. Then,

m

βt
= 0.235 =⇒ m = 0.235× 103 = 235.

21

2 CONDITIONING AND STABILITY 2.3 Floating Point (FP) Numbers

Then,

x = +

(
235

103

)
× 103, # of significant digit: 3

Definition 2.3.3 (Normalized Version).

x = ±
(
d0 +

d1
β

+ · · ·+ dt−1

βt−1

)
βe,

where 0 ≤ d0 < β, integer.

Rβ0 β1 β2

n FP numbers

n FP numbers

Definition 2.3.4 (IEEE Standard). IEEE standard stores FP numbers in three parts:

s(x) e(x) f(x) total

double precision (DP) 1 11 52 64

single precision (SP) 1 8 23 32

half precision (HP) 1 5 10 16

Example 2.3.5

s(x) = 0; e(x) = 10 · · · 0111; f(x) = 111010 · · · 0 in double prevision under IEEE.

The fraction bit is

m =
251 + 250 + 249 + 247

252
=

1

21
+

1

22
+

1

23
+

0

24
+

1

25
+ · · ·+ 0

252
≈ 0.90625.

The exponent bit:

e = 210 + · · ·+ 22 + 21 + 20 = 1031.

The sign bit:

(−1)sign bit = (−1)0 = 1.

So,

x = +(1 + 0.90625) · 28,

where 8 is the normalized exponent bit, e(x)− 1023.

6. Limitations of IEEE Standard

• Exponent Limitations:

– too large =⇒ overflow =⇒ Inf−→ fatal error, but usually avoidable with rescaling

22

2 CONDITIONING AND STABILITY 2.4 Fundamental Theorem of FP Arithmetic and Error

– too small =⇒ underflow =⇒ 0

Example 2.3.7

Let c =
√
a2 + b2. Suppose a = 10170 and b = 1. Then,

c =
√
Inf+ 1 = Inf =⇒ overflow

However, if we do rescaling:

c = s

√(a
s

)2
+

(
b

s

)2

= 10170
√
1 + 0 = 10170, =⇒ underflow

where s = max {a, b}.

• Fraction Limitations: rounding

2.4 Fundamental Theorem of FP Arithmetic and Error

Definition 2.4.1 (Machine Epsilon/εmach).

εmach =
1

2
β1−t

is

• the resolution of F;

• half the distance from 1 to the next largest FP number;

• maximum relative error due to rounding.

Theorem 2.4.2 Error Storing Numbers as FP

∀ x ∈ R, ∃ ε with |ε| ≤ εmach s.t.
fl(x) = x(1 + ε).

Remark 2.4 Rewrite, and we can get

fl(x) = x+ xε =⇒ fl(x)− x
x

= ε, relative error

Example 2.4.3

Suppose x = π ≈ 3.14159 . . . , and we have a computer base-10 with 3 significant digit. Then,

fl(x) = 3.14 and β = 10. Note that εmach =
1

2
10−3. Then,

fl(x)− x
x

≈ −5.07× 10−4 = ε. |ε| < εmach.

23

2 CONDITIONING AND STABILITY 2.4 Fundamental Theorem of FP Arithmetic and Error

Notation 2.4. Let ⋆ represent one of the four operations: +,−,×, and÷.

• Exact arithmetic: x, y ∈ R, x ⋆ y.

• FP arithmetic: x, y ∈ F, x⃝⋆ y = fl(x ⋆ y)

Theorem 2.4.5 Fundamental Theorem of FP Arithmetic

∀ x, y ∈ F, ∃ ε with |ε| ≤ εmach s.t.
x⃝⋆ y = (x ⋆ y)(1 + ε).

Remark 2.5

• relative error =
x⃝⋆ y − x ⋆ y

x ⋆ y
= ε.

• Occasionally, we have to redefine εmach with 2εmach.

• Complex arithmetic, similar analysis with larger εmach:

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i =⇒ more operations involved

Example 2.4.6 Is FP Arithmetic Stable?

Set-Up: f(x1, x2) = x1 + x2 and alg(x1, x2) = fl(x1)⊕ fl(x2).

Analysis: fl(x1) = x1(1 + ε1), with |ε1| ≤ εmach. Also, fl(x2) = x2(1 + ε2), with |ε2| ≤ εmach. Hence,

fl(x1)⊕ fl(x2) = (fl(x1) + fl(x2))(1 + ε3) with |ε3| ≤ εmach.

Combining everything, we have

fl(x1)⊕ fl(x2) =
[
x1(1 + ε1) + x2(1 + ε2)

]
(1 + ε3)

= x1(1 + ε1)(1 + ε3) + x2(x+ ε2)(1 + ε3)

= x1(1 + ε1 + ε3 + ε1ε3) + x2(1 + ε2 + ε3 + ε2ε3)

= x1(1 + ε4) + x2(1 + ε5)

Note that

|ε4| = |ε1 + ε3 + ε1ε3|

≤ |ε1|+ |ε2|+ |ε1ε3|

≤ 2εmach +O
(
ε2mach

)
.

So, alg(x1, x2) = f(x1, x2) + ε4x1 + ε5x5︸ ︷︷ ︸
forward error

24

2 CONDITIONING AND STABILITY 2.4 Fundamental Theorem of FP Arithmetic and Error

New Question: Is it backward stable? i.e., can we find nearby x̃1 and x̃2 s.t. alg(x1, x2) = f(x̃1, x̃2)?

Define x̃1 = x1(1 + ε4) and x̃2 = x2(1 + ε5). Then,

|x̃1 − x1|
|x1|

= O(εmach) −→ small

So, the algorithm is equal to performing exact arithmetic over nearby numbers.

25

3 LINEAR SYSTEMS OF EQUATIONS

3 Linear Systems of Equations

3.1 Gaussian Elimination & LU Factorization

1. Setting

We will have A ∈ Cm×m throughout this section.

2. Gaussian elimination in picture

3. General Formulas and Two Strokes of Luck

• Look at kth column of A:

ak =

a1,k
...

ak−1,k

ak,k

ak+1,k

...

am,k

Lk−→ Lkak =

a1,k
...

ak−1,k

ak,k

0
...

0

In words, subtract lj,k (row k) from (row j):

lj,k =
aj,k
ak,k

(k < j ≤ m)

Lk =

1 0
. . .

1

−lk+1,k
. . .

...
. . .

0 −lm,k 0 1

26

3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

• Lucky Break #1: Lk is easy to invert: det(Lk) = 1.

L−1
k =

1 0
. . .

1

lk+1,k
. . .

...
. . .

0 lm,k 0 1

Another representation of Lk and L−1

k . Let

lk =

0
...

0

lk+1,k

...

lm,k

.

Then,

Lk = I − lke∗k and L−1
k = I + lke

∗
k.

• Lucky Break #2: L−1
k L−1

k+1 is still unit lower triangular.

Proof 1. Use the previously defined notation:

L−1
k L−1

k+1 = (I + lke
∗
k)(I + lk+1e

∗
k+1)

= I + lke
∗
k + lk+1e

∗
k+1 + lke

∗
klk+1e

∗
k+1

= I + lke
∗
k + lk+1e

∗
k+1 + (e∗klk+1)︸ ︷︷ ︸

=0

lke
∗
k+1

= I + lke
∗
k + lk+1e

∗
k+1

=

1 0
. . .

1

lk+1,k 1
... lk+2,k+1

. . .
...

...
. . .

0 lm,k lm,k+1 0 · · · 1

Q.E.D. ■

27

3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

• Punchline:

Lm−1 · · ·L2L1A = U

A = L−1
1 L−1

2 · · ·L
−1
m−1︸ ︷︷ ︸

=L

U

A = LU,

where L =

1 0

l2,1 1
... l3,2

. . .
...

...
. . . 1

...
... lk+1,k

. . .
...

...
...

. . .

lm,1 lm,2 · · · lm,k · · · · · · 1

, and lj,k =

aj,k
ak,k

.

Assumption: ak,k ̸= 0

Algorithm 1: LU Factorization

Input: U = A; L = I;

1 begin
2 for k = 1→ m− 1 do

// loop over columns

3 for j = k + 1→ m do
// loop over rows below diagonal

4 L(j, k) =
U(j, k)

U(k, k)
; /* building multiplier */

5 U(j, k : m) = U(j, k : m)− L(j, k) ∗ U(k, k : m);

4. How expensive is the algorithm? Operation Count (flops)

At k-th step, for row j,

U(j, k : m) = U(j, k : m)− L(j, k) ∗ U(k, k : m)

• number of ∗: m− k + 1

• number of−: m− k + 1

L(j, k) =
U(j, k)

U(k, k)

• number of division: 1

At k-th step, for all rows, j = k + 1 to m:

(m− k)(1 + (m− k + 1) + (m− k + 1)) flops

28

3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

For k = 1 to m− 1:

m−1∑
k=1

(m− k)(1 + (m− k + 1) + (m− k + 1)) flops

=
m−1∑
k=1

2k2 − 8mk − 3k + 3m+ 2m2

=

m−1∑
k=1

2(m− k︸ ︷︷ ︸
m−1 to 1

)2 + 3(m− k) =
m−1∑
k=1

2k2 + 3k.

As m→∞, ∫ m

1
2x2 + 3x dx =

2

3
m3 + smaller things =⇒ Work for GE: ∼ 2

3
m3 flops.

Algorithm 2: Solve Linear System with GE
Input: A = LU

1 begin
2 y := Ux;
3 Solve Ly = b // L: lower triangular; forward substitution ∼ m2

4 Solve Ux = y // U: upper triangular; backward substitution ∼ m2

Output: x s.t. Ax = b

Example 3.1.5

L =

1

2 1

3 4 1

; U =

2 1 0

10 3

7

; b =

−4
−5
7

.
• Solve Ly = b:

1

2 1

3 4 1

y1

y2

y4

 =

−4
−5
7

 =⇒

y1 = −4

2y1 + y2 = −5

3y1 + 4y2 + y4 = 7

=⇒

y1

y2

y3

 =

−4
3

7

.

• Solve Ux = y:

2 1 0

10 3

7

x1

x2

x3

 =

−4
3

7

 =⇒

2x1 + 2x2 = −4

10x2 + 3x3 = 3

7x3 = 7

=⇒

x1

x2

x3

 =

−2
0

1

.

29

3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

Example 3.1.6 Instability of GE

• Complete Failure: Suppose

A =

[
0 1

1 1

]
=⇒ κ2(A) =

3 +
√
5

2
=⇒ A is well-conditioned

but we still cannot apply GE on A. So, conditioning and stability are two different things.

• Slightly perturbed system: Suppose

A =

[
10−20 1

1 1

]
=

[
1 0

1020 1

][
10−20 1

0 1− 1020

]
= LU

However, on a computer with εmach = 10−6, we have

L̃ =

[
1 0

1020 1

]
, and Ũ =

[
10−20 1

0 −1020

]
.

Note that L̃ is close to L, and Ũ is close to U . So, GE (LU factorization) is forward stable.

However,

L̃Ũ =

[
10−20 1

1 0

]
̸≈ A.

As L̃Ũ is not close to input matrix A, GE is not backward stable.

Further, if we solve Ax = b, where b =

[
1

0

]
. Then,

LUx = b =⇒ x =

[
−1
1

]
; L̃Ũx = b =⇒ x =

[
0

1

]
.

The computed result is still not closed to exact arithmetic.

Theorem 3.1.7 Summary on (In)Stability of GE

GE computes LU stably (i.e., L̃ and Ũ are close to exact L and U), but it does not solve Ax = b

stably. Hence, LU factorization is stable but not backward stable.

30

3 LINEAR SYSTEMS OF EQUATIONS 3.2 Pivoting

3.2 Pivoting

Definition 3.2.1 (Pivot/Pivotting). Pivot is the number/entry we divide by to construct multiplier:

lj,k =
xj,k
xk,k

.

⋆ ⋆ ⋆ ⋆

0 xk,k ⋆ ⋆

0 ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆

Remark 3.1 We don’t have to always use diagonal as the pivot. We can permute.

2. Partial Pivotting

Overview: swap rows and create zeros

Lm−1Pm−1 · · ·L2P2L1P1A = U

3. Lucky Break #3

Lm−1Pm−1 · · ·L2P2L1P1︸ ︷︷ ︸A = U(
L′
m−1 · · ·L′

2L
′
1

)
(Pm−1 · · ·P2P1)A = U,

where

L′
m−1 = Lm−1, L′

m−2 = Pm−1Lm−2P
−1
m−1, . . .

Proof 1. Inthis proof, we aim to show that L′
m−2 = Pm−1Lm−2P

−1
m−1:

Lm−1Pm−1Lm−2Pm−2 · · ·L1P1 = Lm−1Pm−2Lm−2IPm−2 · · ·L1P1

= Lm−1Pm−1Lm−2

(
P−1
m−1Pm−1

)
Pm−2 · · ·L1P1

= Lm−1

(
Pm−1Lm−2P

−2
m−1

)
Pm−1Pm−2 · · ·L1P1

= Lm−1L
′
m−2Pm−1Pm−2 · · ·L1P1

31

3 LINEAR SYSTEMS OF EQUATIONS 3.2 Pivoting

Q.E.D. ■

Claim 3.4 L′
m−1, L

′
m−2, L

′
m−3, . . . , L

′
1 are still lower triangular matrices.

Theorem 3.2.5 GEPP

Lm−1Pm−1 · · ·L1P1A = U(
L′
m−1L

′
m−2 · · ·L′

1

)
(Pm−1 · · ·P1)A = U

PA = LU

Remark 3.2 (How to choose a privot?) Choose entry on or below diagonal in a column that has the

largest magnitude:

lj,k =
xj,k
xk,k

.

Note that if xk,k is large, we will have underflow, so lj,k = 0. If xk,k is small, we will have overflow, so

lj,k = Inf, which is fatal. However, as we pick xk,k, out pivot, as the largest magnitude entry in each

column, we know L has lower triangular entires with magnitude≤ 1.

Algorithm 3: An Unrealistic GEPP Algorithm

1 begin
2 Permute rows of A with P ;

// we don’t know the true value of P!

3 Use GE on PA = LU ;

Algorithm 4: GEPP in Practice
Input: U = A; L = I; P = I

1 begin
2 for k = 1 : m− 1 do
3 Select i ≥ k to maximize |U(i, k)|;

// on the k-th column; on or below diagonal entry

4 Swap rows:
5 U(k, k : m)←→ U(i, k : m)
6 P (k, :)←→ P (i, :)
7 L(k, 1 : k − 1) −→ L(i, 1 : k − 1)
8 Do j-loop in Algorithm (1)

Output: PA = LU

Remark 3.3

• Cost of GEPP is the same as GE in flops

• Representing matrix P : we don’t need to store the matrix. We only need the incides.

32

3 LINEAR SYSTEMS OF EQUATIONS 3.3 Choleksy Factorization

• Solving Ax = b with PA = LU :

– PAx = Pb

– Solve LUx = Pb.

• Complete Pivoting: Search for the largest entry in magnitude in the entire sub-matrix.

PAQ = LU,

where Q is responsible for columns swaps.

3.3 Choleksy Factorization

Remark 3.4 It is the “LU factorization for Hermitian matrices.”

Definition 3.3.1 (Hermitian). A ∈ Cm×m is Hermitian positive definite (symmetric positive definite,

SPD), if

• A = A∗, and

• x∗Ax > 0 ∀ x ̸= 0 −→ A has positive eigenvalues.

2. GE for SPD

Suppose A is SPD:

A =

[
1 w∗

w K

] [
w∈Cm−1

K∈C(m−1)×(m−1) is SPD

]

=

[
1 0

w I

][
1 w∗

0 K − ww∗

]

=

[
1 0

w I

]
︸ ︷︷ ︸

R∗
1

[
1 0

0 K − ww∗

][
1 w∗

0 I

]
︸ ︷︷ ︸

R1

[by symmetry]

Note that K − ww∗ is also SPD, so we can form a recursive algorithm.

Claim 3.3 K is SPD.

Proof 1. Note that [
0 y

][1 w∗

w K

][
0

y

]
= y∗Ky > 0

since A is SPD. Then, K must also be SPD. Q.E.D. ■

Theorem 3.3.4

Every SPD has a unique Cholesky factorization.

33

3 LINEAR SYSTEMS OF EQUATIONS 3.4 Other Special Matrices/Factorization

Theorem 3.3.5 Cholesky Factorization

Suppose A is SPD, then

A =

[
a11 w∗

w K

]
[a11 > 0]

=

[
α 0

w/α

]1
K − ww∗

α

[α w∗/α

0 I

]
[α =

√
a11]

= R∗
1A1R1

= R∗
1R

∗
2A2R2R1 [recursively doing the facotrization]

= (R∗
1R

∗
2 · · ·R∗

m)(Rm · · ·R2R1) [Ri : upper triangular matrix]

= R∗R [R = Rm · · ·R2R1, with ri,i > 0]

Algorithm 5: Cholesky Facotrization

Input: SPD matrix A R = triu(A);
// triu(A) returns a triangular matrix that retains the upper part of the matrix A

1 begin
2 for k = 1 : m do
3 for j = k + 1 : m do

4 R(j, j : m) = R(j, j : m)−R(k, j : m) · R(k, j)
R(k, k)

;

5 R(k, k : m) = R(k, k : m)/
√
R(k, k);

Remark 3.5 (Operation Count and Comparison with LU Facotrization)

Operation Count: ∼ 1

3
m3.

Operation count for LU is∼ 2

3
m3. As we have symmetry here, we get a cheaper algorithm.

3.4 Other Special Matrices/Factorization

• A = LDM∗

– L and M are unit upper/lower triangular matrices;

– D is a diagonal matrix.

Proof 1.

LU = LD
(
D−1U

)︸ ︷︷ ︸
M∗

Q.E.D. ■

34

3 LINEAR SYSTEMS OF EQUATIONS 3.4 Other Special Matrices/Factorization

• If A is Hermitian, A = LDL∗.

• Banded matrices:

– bL and bU denote the lower and upper bandwidth.

– aij = 0 for i > j + bL and i < j − bU .

Claim 3.1 A is banded and A = LU . Then, L and U are banded as well.

• Sparse Matrices: A has lots of 0 entries.

If A is sparse, A = LU , then L and U may not necessarily be sparse.

35

4 STABILITY OF SOLVING LINEAR SYSTEMS

4 Stability of Solving Linear Systems

4.1 (In)Stability of GE & GEPP

Remark 4.1 For an overview of Big-Oh notations and how to interprete it in the context of stability, refer

to Section 4.5.

Theorem 4.1.1 Stability of GE

Suppose A = LU , where A =∈ Cm×m, without pivoting.

IfA has LU factorization, then for sufficiently small εmach, the factorization can be done success-

fully in FP arithmetic, and L̃ and Ũ satisfy

L̃Ũ = A+ δA (δA = L̃Ũ −A = L̃Ũ − LU),

then
∥δA∥
∥L∥ · ∥U∥

= O(εmach),

which measures how close the product is to our original A.

• If ∥L∥ · ∥U∥ = O(∥A∥), then LU factorization is backward stable.

• If not, we could have instability.

Example 4.1.2 Example 3.1.6 – Revisit

A =

[
10−2 1

1 1

]
=⇒ L =

[
1 0

1020 1

]
, U =

[
10−20 1

0 1− 1020

]
.

Then,

∥L∥ · ∥U∥ ≫ O(∥A∥).

So, we have instability when solve Ax = b with LU factorization.

3. Growth Factors for GEPP

• ∥L∥ = O(1) (recall the construction of L, each entry is less than 1 magnitude). So, all we worry

about this
∥δA∥
∥U∥

= O(εmach).

Or, equivalently, if ∥U∥ = O(∥A∥), then GEPP is backward stable.

• Definition 4.1.4 (Growth Factor). Define the growth factor of PA = LU as

ρ =

max
i,j
|Ui,j |

max
i,j
|Ai,j |

=⇒ ∥U∥ = O(ρ∥A∥).

36

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.1 (In)Stability of GE & GEPP

In practice, we want ρ to be small, i.e., ρ ≈ 1.

Theorem 4.1.5 Stability of GEPP

Given PA = LU , then our computed solution

L̃Ũ = P̃A+ δA,

where
∥δA∥
∥A∥

= O(ρεmach).

• If |li,j | < 1, i > j, =⇒ no ties =⇒ unique pivot per column =⇒ P̃ = P .

• If ρ = O(1) uniformly for all matrices of a given dimension m, then GEPP is stable.

Example 4.1.6 Worst Case Instability

A =

1 1

−1 1
...

... −1 . . .
...

...
...

.
...

−1 −1 · · · −1 1

; U =

1 1

1 2
. . . 4

. . .
...

2m−1

; L =

1

−1 1

−1 −1 . . .
...

...
.

−1 −1 · · · −1 1

We do PA = LU , GEPP:

• What is the growth factor?

ρ =
2m−1

1
= 2m−1(= O(2m) ∼ O(1)), constant w.r.t. ∥A∥.

– Growth factorO(2m) corresponds to a loss on the order of m bits of precision.

∥δA∥
∥A∥

≤ cρεmach.

=⇒ δA can be perturb inputs by a magnitude around 2m.

This can be catastrophic: double precision= 64 bits.

We are in trouble when we get about 10× 10 matrix??!! No!

– This is an awkward part of the theorem. The theory was for fixed m. It never required

uniformty in m. We still have a constant bound in ρ. For example, the following is prob-

lematic:

ρ = 2∥A∥, ρ = 2∥A∥ ∼ O(∥A∥).

So, as long as ρ does not depend on ∥A∥, we are good.

37

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.2 Stability of Backward Substitution

– GEPP is backward stable even if we are in the worst case.

4.2 Stability of Backward Substitution

Theorem 4.2.1 Stability of Backward Substitution

Given Ux = b with U upper triangular. Backward substitution is backward stable.

(U + δU)x̃ = b,

with
∥δU∥
∥U∥

= O(εmach).

Specifically,
|δUi,j |
|Ui,j |

≤ mεmach +O
(
ε2mach

)
.

Proof 1.

• When m = 1. Solve U1,1x1 = b1:

x̃1 = b1 ⃝÷ U1,1

By the Fundamental Theorem of FP Arithmetic:

x̃1 =

(
b1
U1,1

)
(1 + ε1), |ε1| ≤ εmach

Write division with only perturbation on U1,1:

x̃1 =
b1

U1,1(1 + ε′1)
, ε′1 =

−ε1
1 + ε1

= −ε1
(
1− ε1 + ε21 − ε31 + · · ·

)
[Geometric Series]

Then, |ε′1| ≤ εmach +O
(
ε2mach

)
.

=⇒ |δU1,1|
|U1,1|

≤ εmach +O
(
ε2mach

)
.

• When m = 2. Solve

[
U1,1 U1,2

U2,2

][
x1

x2

]
=

[
b1

b2

]
.

x̃2 = b2 ⃝÷ U2,2 =
b2

U2,2(1 + ε′1)
,
∣∣ε′1∣∣ ≤ εmach +O(ε2mach).

38

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.3 Perturbation Theory of Linear Systems

Also,

x̃1 =
[
b1⊖ (U1,2 ⊗ x̃2)

]
⃝÷ U1,1

=
[
b1 ⊖ (U1,2x̃2(1 + ε2))

]
⃝÷ U1,1

= [(b1 − U1,2x̃2(1 + ε2))(1 + ε3)]⃝÷ U1,1

=

[(
b1 − U1,2x̃2(1 + ε2)

)
(1 + ε3)

U1,1

]
(1 + ε4)

=
b1 − U1,2x̃2(1 + ε2)

U1,1 (1 + ε′3)(1 + ε′4)︸ ︷︷ ︸
(1+2ε5)

=
b1 − U1,2x̃2(1 + ε2)

U1,1(1 + 2ε5)
, [|ε2|, |ε5| ≤ εmach +O

(
ε2mach

)
.]

Therefore,

|δU1,2|
|U1,2|

= |ε2| ≤ εmach +O
(
ε2mach

)
|δU1,1|
|U1,1|

= 2|ε5| ≤ 2︸︷︷︸
m

εmach +O
(
ε2mach

)

• When m = 3 onwards, error is accumulated when we do substitution more and more times.

Q.E.D. ■

4.3 Perturbation Theory of Linear Systems

Set Up:

Problem

Ax = b, where A is invertible, and x is the exact solution (P)

Perturbed Problem

(A+ δA)x̂ = b+ δb, where (A+ δA) assumed invertible, and x̂ computed solution (PP)

Error in Solution

δx = x̂− x. (E)

Goal: How big δx is relative to x (find an upper bound)

From (E), we have

x̂ = x+ δx.

39

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.3 Perturbation Theory of Linear Systems

Plug into (PP), we have

(A+ δA)(x+ δx) = b+ δb

��Ax︸︷︷︸
=b

+Aδx+ δAx+ δAδx = �b+ δb

(A+ δA)δx = δb− δAx [Assumption: A+ δA invertible]

δx = (A+ δA)−1(δb− δAx)

∥δx∥ ≤
∥∥(A+ δA)−1

∥∥ · ∥δb− δAx∥
∥δx∥
∥x∥

≤
∥∥(A+ δA)−1

∥∥ · ∥δb− δAx∥
∥x∥

(Goal)

Lemma 4.1 : If ∥X∥ ≤ 1, then

• I −X is invertible.

• (I −X)−1 =
∞∑
i=0

Xi

•
∥∥(I −X)−1

∥∥ ≤ 1

1− ∥X∥
Proof 1.

• By contradiction, (I −X)z = 0, z ̸= 0 =⇒ null(I −X) = ∅

• Show

(∞∑
i=0

Xi

)
(I −X) = I −XN+1.

∥∥∥Xk
∥∥∥ ≤ ∥X∥k =⇒ as k →∞,

∥∥∥Xk
∥∥∥→ 0.

• Consider

∥∥(I −X)−1
∥∥ =

∥∥∥∥∥
∞∑
i=0

Xi

∥∥∥∥∥
[∞∑
i=0

Xi converges, so we can use triangle inequality safely.

]

≤
∞∑
i=0

∥X∥i

Note that
∞∑
i=0

∥X∥i is a geometric series, then

∞∑
i=0

∥X∥i = 1

1− ∥X∥
.

So, we have ∥∥(I −X)−1
∥∥ ≤ 1

1− ∥X∥
.

Q.E.D. ■

40

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.3 Perturbation Theory of Linear Systems

Use Lemma 3.1 to simply (Goal)∥∥(A+ δA)−1
∥∥ =

∥∥∥(A(I +A−1δA
))−1

∥∥∥ ≤ ∥∥A−1
∥∥ · ∥∥∥(I +A−1δA

)−1
∥∥∥

Assumption:
∥∥A−1δA

∥∥ ≤ ∥∥A−1
∥∥ · ∥δA∥ < 1 (In order to use Lemma 3.1)

Now, we can apply Lemma 3.1:

∥∥(A+ δA)−1
∥∥ ≤ ∥∥A−1

∥∥ · ∥∥∥(I +A−1δA
)−1
∥∥∥

≤
∥∥A−1

∥∥ · 1

1− ∥A−1δA∥

≤
∥∥A−1

∥∥ · 1

1− ∥A−1∥ · ∥δA∥

Now, let’s go back to (Goal):

∥δx∥
∥x∥

≤
∥∥(A+ δA)−1

∥∥ · ∥δb− δAx∥
∥x∥

≤

(∥∥A−1
∥∥

1− ∥A−1∥ · ∥δA∥

)
·
(
∥δb− δAx∥
∥x∥

)
[Lemma 3.1]

≤

(∥∥A−1
∥∥

1− ∥A−1∥ · ∥δA∥

)
·
(
∥δb∥+ ∥δA∥ · ∥x∥

∥x∥

)
[Triangle Inequality & Multiplicity]

=

∥∥A−1

∥∥
1− ∥A−1∥ · ∥δA∥

(
∥A∥
∥A∥

)
 · (∥δb∥+ ∥δA∥ · ∥x∥∥x∥

)
·
(
∥A∥
∥A∥

)
[multiply by magic 1]

=

︷ ︸︸ ︷
∥A∥ ·

∥∥A−1
∥∥

1− ∥A∥ ·
∥∥A−1

∥∥︸ ︷︷ ︸ ·∥δA∥∥A∥
 · (∥δb∥

∥A∥ · ∥x∥
+
∥δA∥
∥A∥

)

=

 κ(A)

1− κ(A) · ∥δA∥
∥A∥

 · (∥δb∥
∥A∥ · ∥x∥

+
∥δA∥
∥A∥

)
[Definition of Condition #]

Recall Ax = b, we have

∥b∥ ≤ ∥A∥ · ∥x∥ =⇒ 1

∥b∥
≥ 1

∥A∥ · ∥x∥
.

So,

∥δx∥
∥x∥

≤

 κ(A)

1− κ(A)∥δA∥
∥A∥

 · (∥δb∥∥b∥ +
∥δA∥
∥A∥

)
,

where

•
∥δx∥
∥x∥

: the relative error of solution (typically unknown).

41

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.4 More Practical Perturbation Theory

•
κ(A)

1− κ(A)∥δA∥
∥A∥

: how hard the problem is to solve.

If ∥δA∥ is small, this term≈ κ(A).

•
∥δb∥
∥b∥

+
∥δA∥
∥A∥

: relative perturbation of the problem.

Example 4.3.2 Is this bound pessimistic or tight?

Consider

A =

[
1 0

0 10−6

]
, b =

[
1

10−6

]
, x =

[
1

1

]
.

Then, κ2(A) = 106. Consider

• δb =

[
10−6

0

]
, we have x̂ =

[
1 + 10−6

1

]
when solving Ax = b+ δb. Then,

∥δx∥∞
∥x∥∞

≤ κ∞(A) ·
(
∥δb∥∞
∥b∥∞

)
[no perturbation on A, ∥δA∥ = 0]

10−6

1
≤ ∥A∥∞

∥∥A−1
∥∥
∞

(
10−6

1

)
=⇒ 10−6 ≤ 1.

• δb =

[
0

10−6

]
, so x̂ =

[
1

2

]
. Then,

∥δx∥∞
∥x∥∞

≤ κ∞(A) ·
(
∥δb∥∞
∥b∥∞

)
=⇒ 1 ≤ 1.

In this case, we attain the upper bound.

So, theo bound is tight.

4.4 More Practical Perturbation Theory

Remark 4.2 (Problem in our previous perturbation theory) We don’t know perturbations δb and δA.

Definition 4.4.1 (Residual). We define residual as

r := Ax̂− b.

Then, we have the following:

x̂ = A−1r +A−1b

δx = x̂− x = x̂−A−1b = A−1r [Ax = b =⇒ x = A−1b]

∥δx∥ ≤
∥∥A−1

∥∥ · ∥r∥.
42

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.5 Big-Oh Notation

Theorem 4.4.2 More Practical Perturbation Theory

∃ δA s.t. (A+ δA)x̂ = b with

∥δA∥ ≤ ∥r∥
∥x̂∥

.

• If A is well-conditioned and residual norm is small, then x̂ is a good approximation of x.

Theorem 4.4.3 Point-wise Analysis

If |δAij | ≤ ε|Aij |, |δbi| ≤ ε|bi|, and εκ(A) < 1, then

∥δx∥∞
∥x∥∞

≤ 2ε

1− εκ(A)
∥∥∣∣A−1

∣∣ · |A|∥∥∞,
where

∥∥∣∣A−1
∣∣ · |A|∥∥∞ = max

i,j

∣∣∣A−1
ij

∣∣∣|Aij | is the component-wise relative condition number.

Example 4.4.4 Condition Number and Component-Wise Relative Condition Number

Suppose

A =

[
α 0

0 1

]
, b =

[
α

1

]
, x =

[
1

1

]
, with α > 1.

Then,

A−1 =

[
1/α 0

0 1

]
.

So,

κ∞(A) =
∥∥A−1

∥∥
∞∥A∥∞ = α −→ could be large

κCR(A) =
∥∥∣∣A−1

∣∣ · |A|∥∥ = 1 −→ much tighter

4.5 Big-Oh Notation

Definition 4.5.1 (Big-Oh Notation). If

φ(t) = O(ψ(t)),

then ∃ c > 0 such that ∀t sufficiently close to an understood limit (e.g. t→ 0 or t→∞),

|φ(t)| ≤ cψ(t).

Example 4.5.2

∥x− x̃∥
∥x∥

= O(εmach) =⇒ ∥x− x̃∥
∥x∥

≤ cεmach,

43

4 STABILITY OF SOLVING LINEAR SYSTEMS 4.5 Big-Oh Notation

where c cannot depend on εmach. So, we have

∥x− x̃∥ ≤ cεmach∥x∥.

If ∥x∥ is large, we have more wiggle room.

Example 4.5.3 GE vs. GEPP

Consider

A =

[
ε 1

1 1

]
, L =

[
1 0

1/ε 1

]
, U =

[
ε 1

0 1− 1/ε

]
.

When ε→ 0, then ∥A∥1 → 2, ∥L∥1 →∞, and ∥U∥1 →∞.

By Theorem 3.3.1 and Theorem 3.3.5, we have

∥δA∥ ≤ cεmach ∥L∥︸︷︷︸
→∞

∥U∥︸︷︷︸
→∞

.

Hence, GE is not stable because it allows large ∥δA∥.
To have backward stable, we require ∥L∥ · ∥U∥ = O(∥A∥).

44

5 LEAST SQUARES

5 Least Squares

5.1 Least Square Problems

1. Least Square as an Optimization Problem

Set-Up: A ∈ Cm×n with m ≥ n (usually m > n). We call A is overdetermined.

Goal: find x that minimizes the 2-norm of the residual

r = b−Ax or r = Ax− b.

As an Optimization Problem:

min
x
∥Ax− b∥22 = min

x

m∑
i=1

|A(i, :)x− bi|2 (Problem)

Example 5.1.2 Polynomial Data Fitting/Interpolation

• Given:

– Data: (xi, yi), i = 1, . . . ,m.

– Polynomial: we choose degree d = m− 1

pd(x) = c0 + c1x+ · · ·+ cdx
d.

• Goal: determine coefficients ci s.t.

pd(xi) = yi, i = 1, . . . ,m.

• The system has m equations and has d+ 1 unknowns. So,

d+ 1 = m =⇒ d = m− 1.

Thus, we can form the system
1 x1 x21 · · · xm−1

1

1 x2 x22 · · · xm−1
2

...
...

...
. . .

...

1 xm x2m · · · xm−1
m

︸ ︷︷ ︸
A∈Cm×m, Vandermonde matrix

c1

c2
...

cm

 =

y1

y2
...

ym

.

• In terms of least square: ∥Ac− y∥2. But we can choose c to make ∥Ac− y∥2 = 0.

45

5 LEAST SQUARES 5.1 Least Square Problems

Example 5.1.3 Best-Fit Polynomial

• Given:

– Data: (xi, yi), i = 1, . . . ,m

– Polynomial: we choose degree d beforehand, d≪ m− 1.

pd(x) = c0 + c1x+ · · ·+ cdx
d.

• Goal: determine coefficients ci s.t.

pd(xi) ≈ yi, i = 1, . . . ,m.

• Form a linear system:

d+ 1 = m =⇒ d = m− 1.

Thus, we can form the system

1 x1 x21 · · · xd1

1 x2 x22 · · · xd2
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

1 xm x2m · · · xdm

︸ ︷︷ ︸

A∈Cm×(d+1), Vandermonde-like matrix

c1

c2
...

cm

 ≈

y1

y2
...

ym

.

This system is exactly solvable when y ∈ range(A). However, this is very unlikely to happen

in practice.

• Now, we are really in the case of least squares:

min
c
∥Ac− y∥22 =

m∑
i=1

(pd(xi)− yi)2.

• Solving this least square in MATLAB:

1 c = A \ y;

4. How to solve a Least Square Problem: A Geometric and Linear Algebra Story

1. For any x, Ax ∈ range(A).

46

5 LEAST SQUARES 5.1 Least Square Problems

2. b ∈ Cm may not be in range(A).

3. Residual: r = b−Ax.

4. When is ∥r∥2 as small as possible?

When Ax is “closest” to b: Ax ⊥ r.

Hence, our goal is to find x such that Ax ⊥ (b−Ax). That is,

(Ax)∗(Ax− b) = 0

x∗
[
A∗(Ax− b)

]
= 0

Apparently, x = 0 is a trivial solution. It is uninformative, so we ignore it. Suppose x ̸= 0, we have

A∗(Ax− b) = 0

A∗Ax = A∗b (Normal Equations)

• A∗A is symmetric positive semi-definite (SPSD)

• (Assumption) If A has full column rank, A∗A is SPD =⇒ unique solution.

5. Ways to Solve Normal Equations

1. GEPP of A∗A: P (A∗A) = LU

2. Cholesky Factorization: A∗A is SPD =⇒ A∗A = R∗R.

Problems:

• Conditioning: κ2(A∗A) = κ2(A)
2

• A∗A could be dense even if A is sparse.

• More rounding errors

47

5 LEAST SQUARES 5.2 QR Factorization: Gram-Schmidt Orthogonalization

3. SVD of A:

Suppose A = UΣV ∗. Then,

A∗A = V Σ2V ∗

A∗b = V ΣU∗b

=⇒ x = V Σ−1U∗b.

SVD is a great and stable option, but expensive.

Operation counts: ∼ 2mn2 + 11n3

4. QR Factorization: workhorse

A = QR,

where Q has orthogonal columns, and R is upper triangular invertible matrix.

A∗A = R∗Q∗QR = R∗R

A∗b = R∗Q∗b

=⇒ ��R
∗Rx =��R

∗Q∗b

x = R−1Q∗b

Operation counts: ∼ 2mn2 − 2

3
n3

5.2 QR Factorization: Gram-Schmidt Orthogonalization

Definition 5.2.1 (Orthogonal Projector).

• P is a projector if it is square and P 2 = P (idempotent).

• I − P is a complementary projector : Pv ∈ range(P) and (I − P)v ∈ null(P).

• P is an orthogonal projector if P ∗ = P . A non-orthogonal projector is called an oblique projector.

48

5 LEAST SQUARES 5.2 QR Factorization: Gram-Schmidt Orthogonalization

Remark 5.1 P is not necessarily an orthogonal matrix.

Goal: Find {q1, . . . , qn},orthogonal, that span the same space as {a1, . . . , an}, L.I..
Claim 5.2 q is unit vector =⇒ qq∗ is an orthogonal projector.

Proof 1.

• (qq∗)2 = (q��q
∗)(�q︸ ︷︷ ︸ q∗) = qq∗

• (qq∗)∗ = (q∗)∗q = qq∗.

Q.E.D. ■

Figure 1: Decomposing a with respect to q

Claim 5.3 Q has orthogonal columns =⇒ QQ∗ is an orthogonal projector.

Theorem 5.2.4 Gram-Schmidt Procedure

Start with
v1 = a1

q1 =
v1
∥v1∥2

=⇒

v2 = a2 − q1q∗1a2 (Link to 5.2)

q2 =
v2
∥v2∥2

=⇒

v3 = a3 − q1q∗1a3 − q2q∗2a3

q3 =
v3
∥v3∥2

· · ·

In general, in the j-th step:
vj = aj −

j−1∑
k=1

qkq
∗
kaj

qj =
vj
∥vj∥2

5. From Gram-Schmidt toQR

A = QR

| | |
a1 a2 · · · an

| | |

 =

| | |
q1 q2 · · · qn

| | |

∥v1∥2 q∗1a2 · · · · · ·
0 ∥v2∥2 q∗2a3 · · ·
...

...
. . .

...

0 0 0 ∥vn∥2

49

5 LEAST SQUARES 5.3 QR Factorization: Householder Triangularization

In general,

ri,j =

q∗i aj i < j

∥vi∥2, i = j

0, i > j.

Computation cost: ∼ 2mn2,

where m comes from q∗i aj and n2 comes from the number of columns sum and outer loop.

Algorithm 6: Gram-Schmidt (Unstable)

1 begin
2 for j = 1 : n do
3 vj = aj ;

// Inner loop: re-orthogonalize

4 for i = 1 : j − 1 do
5 ri,j = q∗i aj ;
6 vj = vj − ri,jqi;
7 rj,j = ∥vj∥2;
8 qj = vj/rj,j ;

Algorithm 7: Modified Gram-Schmidt (Stable)

1 begin
2 for i = 1 : n do
3 vj = aj ;

4 for i = 1 : n do
5 ri,i = ∥vi∥2;
6 qi = vi/ri,i;

// Orthogonalize on the way

7 for j = i+ 1 : n do
8 ri,j = q∗i vj ;
9 vj = vj − ri,jqi;

5.3 QR Factorization: Householder Triangularization

Remark 5.2 This is what MATLAB is doing.

Example 5.3.1 Householder Triangularization

Consider A ∈ C5×3. The idea is to find 3Qi’s suc that

A = Q∗
1Q

∗
2Q

∗
3︸ ︷︷ ︸

Q

[
R

0

]

50

5 LEAST SQUARES 5.3 QR Factorization: Householder Triangularization

2. How to chooseQ?

• We want:

Q

x

x

x

x

 =

∗
0

0

0

.

• Main idea: use reflections:

– How to describe line L in higher dimension?

If we are given a normal vector u, then L = {x | u∗x = 0}.

– From the diagram, we get

Qx = x− 2(projection of x onto {u})

= x− 2(u∗x)u

= (I − 2uu∗)︸ ︷︷ ︸
Q

x

51

5 LEAST SQUARES 5.3 QR Factorization: Householder Triangularization

This is the Householder reflection. If u is not normal,

Q = I − 2
uu∗

u∗u
.

• How to find u?

– We know: x and Qx =

∥x∥2
0
...

0

– A normal vector to line L will be

u = ∥x∥2e1 − x.

– In code:

u = sign(x1)∥x∥2e1 − x,

where

sign(z) =

1, z ≥ 0

−1, z < 0.

– We choose the sign for stability and avoid catastrophic cancellation.

3. Back to Triangularization

Q1 = I − 2
u1u

∗
1

u∗1u2
; Q2 =

1
I − 2

u2u
∗
2

u∗2u2

; Q3 =

[
1 0

0 1

]
I − 2

u3u
∗
3

u∗3u3

Algorithm 8: Householder Triangularization

Input: Matrix A ∈ Cm×n

1 begin
2 for k = 1 : n do
3 x = A(k : m, k);
4 uk = sign(x1)∥x∥2e1 − x;

5 uk =
uk
∥uk∥2

;

6 A(k : m, k : n) = A(k : m, k : n)− 2uk

(
u∗kA(k : m, k : n)

)
// matrix-vector product is

more efficient than matrix-matrix product. So, we do the inner multiplication

first and not the outer product.

Output: Upper triangular matrix R ∈ Cm×n

4. What aboutQ?

We only need to store uk’s in practice. If we want to solve min ∥Ax− b∥2 using A = QR, we aim to

solve Rx = Q∗b. To find Qx, we can do something similar to Algorithm 9. So, we can store Q implicitly.

52

5 LEAST SQUARES 5.4 QR Factorization: Givens Rotations

Algorithm 9: Compute Q∗b from Householder Triangularization

1 begin
2 for k = 1 : n do
3 b(k : m) = b(k : m)− 2uk(u

∗
kb(k : m))

Output: Q∗b

Computation cost to form R: ∼ 2mn2 +
2

3
n3.

5.4 QR Factorization: Givens Rotations

Example 5.4.1 Givens Rotations Step #1

2. How do we findG?

Consider the 2× 2 rotation matrix: if we want to rotate a vector clockwise by θ:[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
=

[
C −S
S C

]
,

53

5 LEAST SQUARES 5.4 QR Factorization: Givens Rotations

where

C = cos(θ) =
x1√
x21 + x22

and S = sin(θ) =
x2√
x21 + x22

.

Further, G =

[
C S

−S C

]
.

Proof 1.

Gx =

[
C S

−S C

][
x1

x2

]

=

[
Cx1 + Sx2

−Sx1 + Cx2

]

=

[√
x21 + x22

0

]

Q.E.D. ■

3.

In general,

G12 =

C S

−S C

1
. . .

1

, G13 =

C S

1

−S C

1
. . .

1

.

Gij =

I

C S

I

−S C

I

,

where the first C appears on the i-th row and i-th column, S appears on the i-th row and j-th column,

−S is on the j-th row and i-column, and the second C is on the j-th row and j-th column.

4. Comparison of Householder and Givens

• Householder is more stable and cheaper for dense matrices.

• Givens is cheaper is each step and has its benefits.

54

5 LEAST SQUARES 5.5 Rank Deficient Least Square

5.5 Rank Deficient Least Square

Set-Up: A ∈ Cm×n with m > n. rank(A) = r < n.

1. Approaches to Solve the System

• QR with column pivotting:

We can further write

AP = QR = Q

[
R11 R12

0 0

]
,

where R11 is a non-singular matrix with rank(R11) = r.

– Find column of A with largest 2-norm and swap with first column. Perform QR step:

Q∗
1AP1 =

α1 x · · · x

0
... A(2 : m, 2 : m)

0

– Repeat on submatrix:

Q∗
k−1 · · ·Q∗

2Q
∗
1AP1P2 · · ·Pk−1

– Stop when largest column of A has zero norm

– To solve least square problems:

∥Ax− b∥22 =
∥∥∥AP︸︷︷︸P ∗x− b

∥∥∥2
2

= ∥QRP ∗x− b∥22

=
∥∥∥RP ∗x︸︷︷︸−Q∗b

∥∥∥2
2

=

∥∥∥∥∥
[
R11 R12

0 0

][
y

z

]
−

[
c

d

]∥∥∥∥∥
2

2

= ∥R11y +R12z − c∥22 + ∥d∥
2
2,

where z is arbitrary, and ∥d∥22 does not depend on x. Hence, we will have∞-many solutions.

Often, z = 0 gives the minimum norm solution.

55

5 LEAST SQUARES 5.5 Rank Deficient Least Square

2. SVD Approach (Pseudoinverse Approach)

∥Ax− b∥22 = ∥UΣv∗x− b∥22

=

∥∥∥∥∥∥ΣV ∗x︸︷︷︸
y

−U∗b

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥Σy − U∗b︸︷︷︸
z

∥∥∥∥∥
2

2

= ∥

σ1
. . .

σr

0
. . .

0

yr

y′

−

zr

z′

∥22 yr, zr ∈ Cr, y′, z′ ∈ Cn−r

= ∥

σ1

. . .

σr

︸ ︷︷ ︸

Invertible Σr

yr − zr︸︷︷︸
U(:,1:r)b

∥22 + ∥ z′︸︷︷︸
U(:,r+1:n)b

∥22

Note that z′ does not depend on x or y. Further, yr = Σ−1
r zr =⇒ y′’s entries are free (and we usually

set them to 0)

V (:, 1 : r)∗x = Σ−1
r U(:, 1 : r)∗b

x = V (:, 1 : r)Σ−1
r U(:, 1 : r)∗b︸ ︷︷ ︸

pseudoinverse of truncated SVD to rank r

More generally, x = A†b = A+b, where A† or A+ are pseudoinverse of A, defined by

A† = V Σ†U∗,

where

Σ† =

1/σ1
. . .

1/σr

0
. . .

0

56

5 LEAST SQUARES 5.6 Perturbation Theory of Least Squares

5.6 Perturbation Theory of Least Squares

1. Stability

Normal Equation + Cholesky < QR (Householder) < SVD

Theorem 5.6.2

Suppose A ∈ Cm×n with m ≥ n and rank(A) = n. Denote

True solution: xLS = argmin
x
∥Ax− b∥22, A∗AxLS = A∗b

Computed solution: x̃LS = argmin
x
∥(A+ δA)x− (b+ δb)∥22

Residual: rLS = AxLS − b

Assume

ε = max

{
∥δA∥2
∥A∥2

,
∥δb∥2
∥b∥2

}
<

1

κ2(A)

Then,

∥x̃LS − xLS∥2
∥xLS∥2

≤ ε
(
2κ2(A)

cos(θ)
+ tan(θ)κ22(A)

)
︸ ︷︷ ︸
=κLS, condition # of least square

+O(ε2)

= εκLS +O(ε2),

where sin(θ) =
∥r∥2
∥b∥2

.

Remark 5.3 (Geometric Interpretation of θ) θ is the angle between b and range(A).

Proof 1. (Intuition)

57

5 LEAST SQUARES 5.6 Perturbation Theory of Least Squares

Case I θ is small, θ ≈ 0.

b is almost in range(A)

=⇒ r is small

=⇒ almost solve a linear system, so the error should mostly depend on κ2(A) and ε

κLS =
2κ2(A)

cos(A) ≈ 1
+ (tan(θ) ≈ 0)κ22(A)

≈ 2κ2(A)

Case II θ is not small nor close to
π

2
.

r is moderate in size

=⇒ condition number could be a bigger problem

κLS =
2κ2(A)

cos(A)
+ tan(θ) κ22(A)︸ ︷︷ ︸

non-negligible

.

Case III θ ≈ π

2
.

b is almost perpendicular to range(A)

=⇒ true solution xLS ≈ 0

=⇒ κLS explodes: κLS =∞.

κLS =
2κ2(A)

cos(A) ≈ 0
+ tan(θ)κ22(A)

Q.E.D. ■

Remark 5.4 In the κLS term,

• κ2(A) indicates “can we solve a linear system.”

• cos(θ) indicates “are we completely unable to solve / do we get completely different solutions.”

• tan(θ)κ22(A) indicates “do we need to project.”

58

6 EIGENVALUES AND EIGENVECTORS

6 Eigenvalues and Eigenvectors

6.1 Eigendecomposition

Definition 6.1.1 (Eigenvalues & Eigenvectors). A ∈ Cm×m, a nonzero vector x ∈ Cm is an eigenvector

of A and λ ∈ C is its corresponding eigenvalue if Ax = λx.

Definition 6.1.2 (Spectrum ofA). The spectrum of A is the set of all eigenvalues of A, denoted Λ(A).

Definition 6.1.3 (Eigenspace). Eigenspace of A, Eλ, is a subspace of Cm, where the action of A mimics

scalar multiplication:

Eλ = {x ∈ Cm | Ax = λx}.

Theorem 6.1.4 Eigendecomposition

A = XΛX−1 or AX = XΛ,

where

X =

| | |
x1 x2 · · · xm

| | |

 and Λ =

λ1

λ2
. . .

λm

,
where xi’s are eigenvectors and λi’s are eigenvalues.

Remark 6.1 Not all matrices have an eigendecomposition.

Example 6.1.5 Matrix without an Eigendecomposition

A =

[
1 1

0 1

]

6. Computing Eigendecomposition by Hand

Ax = λx

⇐⇒ (A− λI)x = 0︸ ︷︷ ︸
null space problem

or (λI −A)x = 0

Step #2 ⇐⇒ Find a basis for null(A− λI).

⇐⇒ Eigenvectors are non-zero, so null(A− λI) must be non-trivial

⇐⇒ A− λI must be singular

Step #1 ⇐⇒ Choose λ s.t. det(A− λI) = 0

59

6 EIGENVALUES AND EIGENVECTORS 6.2 Algebraic and Geometric Multipllicity

Definition 6.1.7 (Characteristic Polynomial/“Eigenpolynomial”). The characteristic polynomial of

A ∈ Cm×m is denoted as

pA(z) = det(zI −A).

Theorem 6.1.8

λ is an eigenvalue of A ⇐⇒ pA(λ) = 0.

Example 6.1.9 Example 6.1.5 Revisit

A =

[
1 1

0 1

]
=⇒ pA(z) = det

([
z − 1 1

0 z − 1

])
= (z − 1)2.

Therefore, the only eigenvalue is λ = 1.

6.2 Algebraic and Geometric Multipllicity

Theorem 6.2.1 Fundamental Theorem of Algebra

If pA(z) is a degree-m polynomial, then

pA(z) = (z − λ1)(z − λ2) · · · (z − λm).

Definition 6.2.2 (Algebraic Multiplicity of an Eigenvalue). The algebraic multiplicity of an eigenvalue

is the multiplicity of roots of pA.

Example 6.2.3 Example 6.1.9 Revisit

A =

[
1 1

0 1

]
=⇒ pA(z) = (z − 1)2. Hence, λ = 1 with algebraic multiplicity of 2.

Remark 6.2 For simple eigenvalue, alg.mult. = 1.

Definition 6.2.4 (Geometric Multiplicity of λ).

geo.mult. = dim(Eλ) = dim(null(λI −A).

Example 6.2.5 Examples of geo.mult.

• A =

[
1 1

0 1

]
. For λ = 1,

E1 = null(I −A) = null

([
0 −1
0 0

])
= span

{[
1

0

]}

60

6 EIGENVALUES AND EIGENVECTORS 6.2 Algebraic and Geometric Multipllicity

So, geo.mult.(λ) = dim(E1) = 1.

• A =

1

2 1

2 1

3

4

4

4

. Then, pA(z) = (z − 1)(z − 2)2(z − 3)(z − 4)3. So, we have

λi alg.mult. geo.mult.

1 1 1

2 2 1

3 1 1

4 3 3

Definition 6.2.6 (Defective Eigenvalues and Matrices). λ is defective if its alg.mult. > geo.mult.. A

matrix with at least one defective eigenvalue is called defective.

Example 6.2.7 Example of Defective Matrix

• A =

2

2

2

, B =

2 1

2 1

2

.

A and B have the same characteristic polynomial, but B has only one L.I. eigenvector.

• A =

[
1 1

0 1

]
is defective. pA(z) = (z − 1)2 =⇒ alg.mult. = 2. By Example 6.2.5, we have

geo.mult.(λ) = 1. Therefore, λ = 1 is defective. This implies that we only have one “eigendi-

rection” when multiplying by A:

A3

[
0

1

]
= A2

[
1

1

]
= A

[
2

1

]
=

[
3

1

]
.

Definition 6.2.8 (Similarity Transformations/Similar). If X is non-singular, the map A 7→ X−1AX is

called a similarity transformation. Two matrices A,B are similar if ∃ non-signular X s.t. B = X−1AX.

61

6 EIGENVALUES AND EIGENVECTORS 6.2 Algebraic and Geometric Multipllicity

Theorem 6.2.9 Properties of Similarity Transformations

A and X−1AX have the same

• characteristic polynomial

• eigenvalues

• alg.mult. and geo.mult.

• (and more...)

Proof 1. We will show the characteristic polynomials are the same.

pX−1AX(z) = det
(
zI −X−1AX

)
= det

(
zX−1X −X−1AX

)
= det

(
X−1(zI −A)X

)
=�����

det
(
X−1

)
det(zI −A)����det(X)

[
det
(
X−1

)
=

1

det(X)

]
= det(zI −A)

= pA(z).

Then, we have eigenvalues and alg.mult. are the same. For geo.mult., if Eλ is an eigenspace of A, then

X−1Eλ =
{
X−1y | y ∈ Eλ

}
is the eigenspace of X−1AX. Suppose y ∈ Eλ. Then, Ay = λy. Let z = X−1y. Then,

X−1AX z = X−1A��X(���X−1︸ ︷︷ ︸ y)
= X−1 Ay︸︷︷︸
= X−1(λy)

= λ(X−1y︸ ︷︷ ︸)
= λ z.

So, z ∈ X−1Eλ, and thus X−1Eλ is an eigenspace of X−1AX. Then,

dim(X−1Eλ) = dim(Eλ) =⇒ same geo.mult.

Q.E.D. ■

62

6 EIGENVALUES AND EIGENVECTORS 6.2 Algebraic and Geometric Multipllicity

Theorem 6.2.10

In general, alg.mult. ≥ geo.mult.

Proof 2. Let n be geo.mult. of λ for A. Let {v1, . . . , vn} be orthonormal basis of Eλ,

V̂ =

| |
v1 · · · vn

| |

 ∈ Cm×n.

We can extend V̂ to an unitary matrix

V =
[
V̂ V⊥

]
∈ Cm×m,

where V⊥ is computed by Gram-Schmidt. Then,

B = V ∗AV︸ ︷︷ ︸
similarity transformation

=

[
V̂ ∗

V ∗
⊥

]
A
[
V̂ V⊥

]
=

[
V̂ ∗

V ∗
⊥

][
λV̂ AV⊥

]
=

[
λIn C

0 D

]

If we can derive alg.mult. from B, we can compare it with n as similar matrices share them.

The characteristic polynomial of B is

pB(z) = det(zI −B)

= det(zI − λI) det(zaI −D)

= (z − λ)n det(zI −D)

Then, the alg.mult. of λ is at least n. Q.E.D. ■

Definition 6.2.11 (Diagonalibility). A is nondefective ⇐⇒ A is similar to a diagonal matrix. In such

case, we call A diagonalizable and A = X−1ΛX.

Theorem 6.2.12

det(A) =
m∏
j=1

λj and tr(A) =
m∑
j=1

λj

63

6 EIGENVALUES AND EIGENVECTORS 6.3 Jordan Canonical Form

Definition 6.2.13 (Unitarily Diagonalizable). A is unitarily diagonalizable if ∃ unitary Q s.t.

A = QΛQ∗.

Theorem 6.2.14

A Hermitian matrix is unitarily diagonalizable.

Theorem 6.2.15

A matrix is unitarily diagonalizable ⇐⇒ it is normal (A∗A = AA∗)

Example 6.2.16 Eigenvalues can be Complex even whenA is Real-Valued

A =

[
cos θ − sin θ

sin θ cos θ

]
=

[
1 1

−i i

][
eiθ

e−iθ

][
X−1

]
,

where eiθ = cos θ + i sin θ.

6.3 Jordan Canonical Form

Theorem 6.3.1

For any matrix A ∈ Cm×m, ∃ non-singular X s.t.

X−1AX =

J1

J2
. . .

Jk

,

where Ji =

λ1 1

λi 1
.

. . . 1

λi

∈ Cmi×mi is called a Jordan block, andm1+m2+· · ·+mk = m.

Example 6.3.2 Each Jordan Block Corresponds to a Single Eigenvector

A =

1 1

1

2

3 1

3 1

3

. Then, J1 =

[
1 1

0 1

]
=⇒ x1 =

1

0
...

0

.

64

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Meanwhile, we have

J2 =
[
2
]

=⇒ x2 =

0

0

1

0

0

0

. and J3 =

3 1 0

0 3 1

0 0 3

 =⇒ x3 =

0

0

0

1

0

0

.

Remark 6.3 It is not good numerically to compute the Jordan Form.

Theorem 6.3.3 Shur Triangularization (Numerically Friendly Factorization)

For any A ∈ Cm×m, A = QTQ∗, unitarily similar to an upper triangular matrix. That is, Q is

unitary and T is upper triangular.

Proof 1.

• m = 1: trivial to show.

• m ≥ 2: let x be eigenvector of A with ∥x∥ = 1. Write U =
[
x U⊥

]
unitary. Compute

U∗AU =

[
λ B

0 C

]
.

By induction, assume C ∈ C(m−1)×(m−1) can be written as V TV ∗, then let

Q = U

[
1 0

0 V

]
.

We have

Q∗AQ =

[
λ BV

0 T

]
, upper triangular.

Q.E.D. ■

6.4 General Eigenvalue Algorithms

1. Find roots of characteristic polynomial

(−) : ill-conditioned to find polynomial roots (even if eigenvalue problem is well-conditioned).

(−) : expensive (computing determinant).

65

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

2. Companion matrix

p(z) = zm + am−1z
m−1 + · · ·+ a1z + a0 (characteristic polynomial)

• Build the companion matrix:

A =

−z −a0
1 −z −a1

1
. . .

...
.

...

1 −z −am−1

= B − zI.

pA(z) = (−1)mp(z) =⇒ roots of pA(z) = roots of p(z).

Roots of p(z) are eigenvalues of

B =

0 −a0
1 0 −a1

1
. . .

...
. . . 0

...

1 −am−1

.

• However, it is impossible to solve.

Theorem 6.4.3 Galoi’s Impossibility Theorem

No formula to determine roots of polynomial from its coefficients (such as quadratic for-

mula) for polynomials of degree 5 or more.

• An eigenvalue solver must be iterative. We don’t have deterministic method such as LU factor-

ization. We have to approximate the eigenvalues in some way.

6.4.1 Power Iteration

Definition 6.4.4 (Rayleigh Quotient). If x is eigenvector of A, then Rayleigh quotient is

ρ(x,A) =
x∗Ax

x∗x
=
x∗(λx)

x∗x
=
λx∗x

x∗x
= λ.

Remark 6.4 In Algorithm (10), as we have normalized vk+1, we don’t need to divide by x∗x.

• Does this converge? And to what?

Assume A has dominant eigenvalue: |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λm| ≥ 0.

• When doe we stop iterating? How do we measure convergence?

66

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Algorithm 10: Power Iteration

Input: A ∈ Cm×m, x0 ∈ Cm

1 begin
2 while not converged do
3 vk+1 = Axk // dominant cost O(n2)

4 xk+1 =
vk+1

∥vk+1∥2
// normalization

5 λk+1 = x∗k+1Axk+1

Output: (x, λ), dominant eigenpair

User defined “small:”

1. ∥xk+1 − xk∥2 is small

2. |λk+1 − λk| is small

• Drawbacks:

– |λ1| > |λ2| is not always true, and how do we know if it is true?

– Slow

– Starting guess is important: if x0 doesn’t contain any part in the eigenspace Eλ1 , then we

don’t converge to λ1.

– Only get one eigenpair.

6.4.2 Shifted Power Method (Inverse Iteration)

• Consider A− σI, where σ ∈ C. The eigenvalues of A− σI are λ− σ, where λ′s are eigenvalues of

A. Also, eigenvalues of (A− σI)−1 is
1

λ− σ
.

– Magnify eigenvalues of A near σ

– Shifting σ, we make different eigenvalues of A dominant.

Algorithm 11: Inverse Iteration

Input: σ ∈ C, x0 ∈ Cm, A ∈ Cm×m

1 begin
2 while not converged do
3 Solve (A− σI)v = xk. Denote the output as vk+1;

4 xk+1 =
vk+1

∥vk+1∥2
;

5 λk+1 = x∗k+1Axk+1;

Output: (x, λ), eigenpair closes to σ

67

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Theorem 6.4.5 Convergence of Inverse Interation

Suppose we try to capture (xJ , λJ), the eigenpair closest to σ. If |λJ − σ| < |λk − σ| ≤ |λj − σ| for

all J ̸= j, then inverse iteration converges to λJ with convergence rate
|λJ − σ|
|λk − σ|

, and

∥xk − xJ∥2 ≤ c
∣∣∣∣λJ − σλk − σ

∣∣∣∣k

Proof 1. Suppose A = XΛX−1. Let v0 = xy = y1x1 + y2x2 + · · · + ymxm. Let |λk − σ| be smallest.

That is, |λk − σ| ≤ |λj − σ| for j ̸= k. Assume yk ̸= 0:

vi = (A− σI)−iv = X(Λ− σI)−iX−1v0 = X

(λ1 − σ)−iy1

(λ2 − σ)−iy2
...

(λm − σ)−iym

 = yk(λk − σ)−i︸ ︷︷ ︸
largest in magnitude

→1

X

y1
yk

(
λk − σ
λ1 − σ

)i

...

ym
yk

(
λk − σ
λm − σ

)i

︸ ︷︷ ︸
≤1 and =1 for k-th entry

→ek as k→∞
i→∞−−−→ = yk · 1Xek = yk xk︸︷︷︸

k-th eigenvector

So, the inverse iteration converge to eigenvector corresponding to λk at the convergence rate

∣∣∣∣λk − σλj − σ

∣∣∣∣
close to 1, slow convergence

close to 0, fast convergence

Q.E.D. ■

6.4.3 Variation of Inverse Iteration: Rayleigh Quotient Iteration (RQI)

Algorithm 12: Rayleigh Quotient Iteration (RQI)

Input: A, real and symmetric; x0

1 begin

2 ρ0 = ρ(x0, A) =
x∗0Ax0
x∗0x0

;

3 while not converged do
4 yk = (A− ρk−1I)

−1xk−1 // Potential stopping criterion: |Axk − ρkxk| < tolerance

5 xk =
yk
∥yk∥2

;

6 ρk = ρ(xk, A);

68

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Theorem 6.4.6 Convergence of RQI

RQI converges to eigenpair for all but a set of measure zero starting vectors x0. When it con-

verges, the convergence is ultimately cubic. That is, if λJ is the eigenvalue of A and x0 is suffi-

ciently close to qJ (true eigenvector), then

∥xk+1 − (±qJ)∥ = O
(
∥xk − (±qJ)∥3

)
and

|λk+1 − λJ | = O
(
|λk − λJ |3

)
as k →∞.

Theorem 6.4.7 Another Perspective of Cubic Convergence

RQI is locally cubically convergence: # of correct digits triples once error is small enough and

eigenvalue is simple

Proof 2. Assume A = Λ = diag(λ1, λ2, . . . , λm) is diagonal. Then, ei’s are the eigenvectors.

WLOG, assume xk is converging to e1. Then,

xk = e1 + dk, where ∥dk∥2 =: ε≪ 1

To prove cubic convergence, we need to show

xk+1 = e1 + dk+1, where ∥dk+1∥2 = O(ε
3)

• As we normalize xk is algorithm,

1 = x∗kxk

= (e1 + dk)
∗(e1 + dk)

= e∗1e1 + 2e∗1dk + d∗kdk

= 1 + 2dk1 + ε2, where dk1 is the first entry of dk.

So,

dk1 = −ε
2

2
.

• Consider the Rayleigh quotient:

ρk = x∗kAxk = (e1 + dk)
∗Λ(e1 + dk)

= e∗1Λe1︸ ︷︷ ︸
λ1

+2e∗1Λdk + d∗kΛdk︸ ︷︷ ︸
−η:=−λ1ε2+d∗kΛdk

69

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

• By triangular inequality and other properties, we have

|η| ≤ |λ1|ε2 + ∥Λ∥2 ∥dk∥
2
2︸ ︷︷ ︸

ε2

≤ 2∥Λ∥2ε
2.

Back to the algorithm: in the next iteration:

λ1 − ρk

λ2 − ρk
. . .

λmρk

−1

, we have

yk+1 = (Λ− ρkI)−1xk

=
[xk1
λ1 − ρk

xk2
λ2 − ρk

· · · xkm
λm − ρk

]∗
xk = e1 + dk

=

[
1 + dk1
λ1 − ρk

dk2
λ2 − ρk

· · · dkm
λm − ρk

]∗
dk1 = −ε

2

2

=

 1− ε2

2
λ1 − ρk

dk2
λ2 − ρk

· · · dkm
λm − ρk

∗

ρk − λ1 − η

=

1− ε2

2
η

dk2
λ2 − λ1 + η

· · · dkm
λm − λ1 + η

∗

=
1− ε2

2
η

1 dk2(
1− ε2

2

)
(λ2 − λ1 + η)

· · · dkm(
1− ε2

2

)
(λm − λ1 + η)

∗

=
1− ε2

2
η

(
e1 + d̂k+1

)
[WTS:

∥∥∥d̂k+1

∥∥∥
2
= O(ε3)] Define gap(·, ·) as follows: Suppose A has eigenvalues λ1 ≥ · · ·λm, then

gap(i, A) = min
j ̸=i
|λj − λi|.

So, we have

∥∥∥d̂k+1

∥∥∥
2
≤

a little more than the numerators:
1 more entry︷ ︸︸ ︷
∥dk∥2

shared︷︸︸︷
|η|(

1− ε2

2

)
︸ ︷︷ ︸

shared

(gap(1,Λ)− |η|)︸ ︷︷ ︸
small denominator

≤
2∥Λ∥2ε3(

1− ε2

2

)
(gap(1,Λ)− |η|)

∥dk∥2 = ε, |η| ≤ 2∥Λ∥2ε
2.

70

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Note, we have

|λj − λi + η| ≤ |λj − λi|+ |η|,

and by definition of gap(1,Λ), we know that if the eigenvalues are close to each other, the fraction is

larger. When ε is small:

∥∥∥d̂k+1

∥∥∥
2
≤

constant︷ ︸︸ ︷
2∥Λ∥2 ε3(

1− ε2

2

)
︸ ︷︷ ︸

≈1

(gap(1,Λ)− |η|)︸ ︷︷ ︸
≈gap(1,Λ)

∼ O
(
ε3
)

Finally,

xk+1 = e1 + dk+1 =
e1 + d̂k+1∥∥∥e1 + d̂k+1

∥∥∥
2

normalized version

One can form a similar argument to show ∥dk+1∥2 = O
(
ε3
)

.

If A is real and symmetric, A is unitarily diagonalizable: A = QΛQ∗. One can show:

ρ(xk, A) = ρ(x̂k,Λ), where x̂k = Q∗xk.

So, if RQI converges cubically for diagonal matrices, it also converges cubically for a general real and

symmetric matrix. Q.E.D. ■

6.4.4 Orthogonal Iteration/Simultaneous Iteration/Subspace Iteration

Algorithm 13: Orthogonal Iteration

Input: A, Z0 ∈ Cm×p with unitary columns

1 begin
2 while not converged do
3 Yk = AZk−1;
4 [Zk, Rk] = QR(Yk) // reduced QR factorization of Yk

• If p = 1: power iteration; If p > 1: find dominant p eigenvectors all at once.

• Why the algorithm work?

Key assumption: |λ1| ≥ |λ2| ≥ · · · ≥ |λp|︸ ︷︷ ︸
p dominant eigenvalues

> |λp+1| ≥ · · · ≥ |λm| > 0

Proof 3. Note that

range(Zk) = range(Yk) = range(AZk−1) by QR factorization

= range(AkZ0) AZk−1 = AkZ0

= range(XΛkX−1Z0) Diagonalization

71

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Then, we have

XΛkZ−1Z0 = λkpX︸︷︷︸
factoring

(
λ1
λp

)k

. . .

1 (
λp+1

λp

)k

. . . (
λm
λp

)l

︸ ︷︷ ︸

Lk
p

X−1Z0,

where the blue boxed parts are fractions with absolute value ≥ 1, which stick around as k → ∞.

On the other hand, green boxed parts are fractions with absolute value< 1, which→ 0 as k →∞.

So,

Lk
p →

X
. . .

1

0
. . .

0

.

=⇒ X ΛkX−1Z0︸ ︷︷ ︸
Wk

= λkp

X(:, 1 : p)W k(1 : p, :) +X(:, p+ 1 : m)W k(p+ 1 : m, :)︸ ︷︷ ︸
→0 as k→∞

The idea behind this step is partition:

[
Xp Xm−p

][Wp

Wm−p

]
, where Wm−p → 0 as k →∞.

In the long run (k →∞):

range(XΛkX−1Z0) = range
(
X(:, 1 : p)W k(1 : p, :)

)
Assumption: W k(1 : p, :) is full column rank

= range (X(:, 1 : p)).

Q.E.D. ■

72

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

6.4.5 Two Phases Algorithm to Produce Shur Factorization

• Recall: Shur Factorization and Diagonalization: A = QTQ∗, where Q is unitary and T is upper

triangular. We have some key observations:

– Eigenvalues of A and T are the same (due to properties of similarity transformation).

– The eigenvalues of T are its diagonal entries.

• Overview of two Phases Algorithms:

Remark 6.5 If A is Hermitian, phase I produces a tridiagonal matrix (symmetric), and phase II

will be more efficient.

• Overview of Phase I:

73

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Algorithm 14: Phase I to Produce Upper Hessenberg Matrix

Input: A ∈ Cm×m

1 begin
2 for k = 1 : m− 2 do
3 x = A(k + 1 : m, k);
4 vk = sign(x1)∥x∥2e1 + x // from Householder

5 vk =
vk
∥vk∥2

;

6 A(k + 1 : m, k : m) = A(k + 1 : m, k : m)− 2vk(v
∗
kA(k + 1 : m, k : m)) // Q∗

k·
7 A(1 : m, k + 1 : m) = A(1 : m, k + 1 : m)− 2(A(1 : m, k + 1 : m)vk)v

∗
k // ·Ak

• Computational cost:

O
(
m ·m2

)
= O

(
m3
)
∼ 10

3
m3,

where the first m comes from the loop, and the second m2 comes from matrix-vector multiplica-

tion (Lines 6 and 7).

Remark 6.6 With Hermitian matrix, if we go from tridiagonal to diagonalization, we may “un-

zero” some terms. So, we need to be careful.

6.4.6 QR Algorithm

Algorithm 15: QR Algorithm (Real-Valued)
Input: A

1 begin
2 A(0) = A;
3 while not converged do

/* Potential stopping criteria:
∥∥A(k) −A(k−1)

∥∥ < tol or Q∗AQ→ T */

4 A(k−1) = Q(k)R(k) // QR factorization

5 A(k) = R(k)Q(k);

Output: A = QTQ∗, Shur complement

• Why this algorithm works?

Proof 4. Note that

A(0) = A = Q(1)R(1).

Then,

A(1) = R(1)Q(1) =
(
Q(1)

)∗
Q(1)R(1)︸ ︷︷ ︸Q(1) =

{
Q(1)

}∗
A(0)Q(1) by similarity transformation

A(2) =
(
Q(2)

)∗
A(1)Q(2) =

(
Q(2)

)∗(
Q(1)

)∗
A(0)Q(1)Q(2) by similarity transformation

Q.E.D. ■

74

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

• Pro: converges cubically

• Con: “bad idea:” Shur form in one step

Theorem 6.4.8 Relationship Between QR Algorithm and Orthogonal Iteration

Suppose Ak is from the QR Algorithm (Algorithm (15)) and Zk, Z0 are from Orthogonal Iteration

(Algorithm (13)). Then,

Ak = Z∗
kAZk, if Z0 = I,

and Ak → Shur form (upper triangular) if eigenvalues all have different magnitude.

Proof 5. (by Induction)

Base Case : Suppose k = 0. Then, A0 = A and Z0 = I. So,

A0 = Z∗
0AZ0 = IAI = A.

Inductive Steps : Assume Ak = Z∗
kAZk is true. [WTS: Ak+1 = Z∗

k+1AZk+1.]

From orthogonal iteration, we have

AZk = Zk+1︸ ︷︷ ︸
orthogonal

upper
triangular︷︸︸︷
Rk .

So,

Z∗
k AZk︸︷︷︸ = Z∗

kZk+1︸ ︷︷ ︸
=Q

Rk+1︸ ︷︷ ︸
=R

product of orthogonal matrices are still orthogonal.

By assumption, we have

Ak = Z∗
kAZk = QR.

Then, by uniqueness of QR factorization (though up to some small changes), we have the following

from QR algorithm as Step #1:

Ak = QR.

Now, consider

Z∗
k+1AZk+1 = Z∗

k+1A (ZkZ
∗
k)︸ ︷︷ ︸

=I

Zk = Zk+1AZk︸︷︷︸
=Z∗

kZk︷︸︸︷
Q [Yk+1 = Zk+1Rk+1]

= Z∗
k+1Zk+1︸ ︷︷ ︸

=I

Rk+1Q

= Rk+1︸ ︷︷ ︸
=R

Q = RQ.

Therefore, Ak+1 = RQ. Q.E.D. ■

75

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Corollary 6.9 : Because orthogonal iteration converges, and QR algorithm is essentially the same as

orthogonal iteration. They both converge in the same way.

6.4.7 Practical QR Iteration: Single-Shift QR Iteration

Example 6.4.10 Motivation

Perform unshifted QR (Algorithm (15)) on

A =

[
0 1

1 0

]
.

• A0 = A.

• factorL: A0 = Q1R1 =

[
0 1

1 0

][
1 0

0 1

]

• multiply: A1 = R1Q1 =

[
1 0

0 1

][
0 1

1 0

]
=

[
0 1

1 0

]
= A =⇒ We do not converge.

Algorithm 16: Single-Shift QR Iteration

Input: A ∈ Rm×m

1 begin
2 A0 = Q0AQ

∗
0 // upper Hessenberg reduction

3 while not converged do
4 Choose shift σk close to eigenvalue of A // How to choose σk? We will discuss this

later.

5 Factor Ak − σkI = Qk+1Rk+1;
6 Multiply Ak+1 = Rk+1Qk+1 + σkI;

Claim 6.11 Ak, Ak+1 are orthogonal similar.

Proof 6.

Ak+1 = Rk+1Qk+1 + σkI

= Q∗
k+1Qk+1︸ ︷︷ ︸(Rk+1Qk+1 + σkI)

= Q∗
k+1Qk+1Rk+1︸ ︷︷ ︸Qk+1 + σkQ

∗
k+1Qk+1

= Q∗
k+1(Qk+1Rk+1 + σkI)Qk+1

= Q∗
k+1(Ak −��σkI +��σkI)Qk+1

= Q∗
k+1AkQk+1.

Q.E.D. ■

76

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Theorem 6.4.12 Choose the shift σk: Rayleigh Quotient

We will set

σk =
x∗kAkxk
x∗kxk

with specific choice of xk based on Qk. Our choice here is to pick the last column of Qk, i.e.,

σk = Qk(:,m)∗AkQk(:,m) =⇒ σk = Ak(m,m).

Algorithm 17: Single-Shift QR Iteration with σk Choice Described in Theorem 6.4.12

Input: A ∈ Rm×m

1 begin
2 H0 = Q0AQ

∗
0 // upper Hessenberg

3 while not converged do
4 Choose shift σk = Hk−1(m,m);
5 Factor Hk − σkI = Qk+1Rk+1;
6 Multiply Hk+1 = Rk+1Qk+1 + σkI;

Theorem 6.4.13 Convergence of Single-Shift QR Algorithm

If we order eigenvalues of A s.t.

|λ1 − σ| ≥ |λ2 − σ| ≥ · · · ≥ |λm − σ|, for fixed σ,

then the p-th sub-diagonal entry of Hk converges to 0 with rate∣∣∣∣λp+1 − σ
λp − σ

∣∣∣∣k

Remark 6.7 Each time, we cut the sub-diagonal entry by this rate. Hence, we want

∣∣∣∣λp+1 − σ
λp − σ

∣∣∣∣k to

be small (that is, smaller than 1 and close to 0).

Definition 6.4.14 (Unreduced/Irreducible Matrix). A matrix is unreduced (or irreducible) if and only

if its off-diagonal entries are nonzero.

77

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Theorem 6.4.15

Let σ be an eigenvalue of H , upper Hensenberg (unreduced/irreducible). In each iteration,

H − σI = QR

H̃ = RQ+ σI

Then, H̃(m,m− 1) = 0 and H̃(m,m) = σ.

Proof 7.

• H is unreduced =⇒ first m− 1 columns are L.I..

• H − σI = QR =⇒ R(i, i) ̸= 0 for i = 1, . . . ,m− 1.

• If H − σI is singular, then R(1, 1) · · ·R(m,m) = 0.

• By ②, it must be R(m,m) = 0 =⇒ last row of H̃ = σe∗m.

RQ =

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

0

Q =

 ∗

0 · · · 0

 =⇒ RQ+ σI =

 ∗

0 · · · σ

Q.E.D. ■

Theorem 6.4.16 ImplicitQ Theorem

IfH is upper Hessenberg, unreduced, andH = Q∗AQ, then columns 2 tom ofQ are determined

uniquely (up to sings), by the first column of Q.

Proof 8. (“Chase the Bulge”) Suppose

H =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

78

6 EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

• Q∗
1 =

c1 s1

−s1 c1

1

1

1

=⇒ Q∗

1H =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

.

=⇒ H1 = Q∗
1HQ1 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
♢ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

This is a similarity transformation.

This ♢ is the “bulge.” Because we alter the first two columns using Householder reflection, we

introduce unexpected nonzero entry. Hence, we will restore the upper Hessenberg form by op-

erating the second and the third rows.

• Restore upper Hessenberg:

Q∗
2 =

1

c2 s2

−s2 c2

1

1

=⇒ Q∗

2H =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

H1 = Q∗
2HQ2 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
♢ ∗ ∗ ∗

∗ ∗

• Continuing this process, we have

Q∗
3 =

1

1

c3 s3

−s3 c3

1

and Q∗

4 =

1

1

1

c4 s4

−s4 c4

.

So, we have

H4 = Q∗
4Q

∗
3Q

∗
2Q

∗
1︸ ︷︷ ︸

Q∗

H Q1Q2Q3Q4︸ ︷︷ ︸
Q

= Q∗HQ.

79

6 EIGENVALUES AND EIGENVECTORS 6.5 Symmetric Eigenvalue Problem

Then, the general Q will be given by

Q =

c1 ∗ ∗ ∗ ∗
s1 ∗ ∗ ∗ ∗
0 s2 ∗ ∗ ∗
0 s3 ∗ ∗
0 s4 ∗

,

where the first column is the normalized first column of H (which is also the first vector of the QR

factorization). Meanwhile, s2, s3, and s4 are defined based on c1, s1. Q.E.D. ■

Remark 6.8 We can also have Doubly-Shifted QR Iteration.

6.5 Symmetric Eigenvalue Problem

Assumption: A ∈ Rm×m, symmetric.

Remark 6.9 Ussing Householder reflection, we can convert and A to a triangonal matrix T . The algo-

rithms will be based on T .

6.5.1 Divide-and-Conquer Algorithm

T =

a1 b1

b1 a2 b2

b2
.
. . . ak−1 bk−1

bk−1 ak bk

bk ak+1 bk+1

bk+1
.
. bm−1

bm−1 am

=

. . .

ak − bk
ak − bk

. . .

+

 bk bk

bk bk

=

[
T1

T2

]
+ bkvv

∗,

80

6 EIGENVALUES AND EIGENVECTORS 6.5 Symmetric Eigenvalue Problem

where v = ek + ek+1 =

0
...

1

1
...

0

.

Assume we have eigendecomposition of T1 and T2; that is,

T1 = Q1Λ1Q
∗
1 and T2 = Q2Λ2Q

∗
2.

Then,

T =

[
T1

T2

]
+ bkvv

∗ =

[
Q1Λ1Q

∗
1

Q2Λ2Q
∗
2

]
+ bkvv

∗

=

[
Q1

Q2

]([
Λ1

Λ2

]
+ bkuu

∗

)[
Q∗

1

Q∗
2

]
,

where u =

[
Q∗

1

Q∗
2

]
v.

Rewrite [
Λ1

Λ2

]
+ bkuu

∗ = D︸︷︷︸
diagonal

+

rank 1 update︷ ︸︸ ︷
ρuu∗

Goal: Find eigenvalues of D + ρuu∗.

Assume D − λI is nonsingular, then characteristic polynomial of D + ρuu∗ is

pD+ρuu∗(λ) = det(D + ρuu∗ − λI)

= det

(
(D − λI)︸ ︷︷ ︸

̸=0 by non-singularity

identity+rank 1︷ ︸︸ ︷(
I + ρ(D − λI)−1uu∗

))

From Homework 1, we have

det
(
I + ρ(D − λI)−1uu∗

)
= 1 + ρu∗(D − λI)−1u

= 1 + ρ
m∑
i=1

u2i
di − λ

=: f(λ) (Secular Equation)

Goal (updated): Find the roos of f(λ).

81

6 EIGENVALUES AND EIGENVECTORS 6.5 Symmetric Eigenvalue Problem

λ

di−1 di di+1

y = 1

To find f(λ): use Newton’s method on each interval (di, di+1).

Computational cost:

• Find one root: O(m).

• Find all roots: O(m2).

To write this algorithm, we use recursion. Define

[Q, Λ] = dcEig(T, Q,Λ︸︷︷︸
optional

), T = QΛQ∗

• 1× 1 Case:

T =
[
a1

]
[Q, Λ] = [1, a1] = dcEig(T)

• 2× 2 Case:

T =

[
a1 b1

b1 a2

]
=

1×1︷ ︸︸ ︷

a1 − b1 0

0 a2 − b1︸ ︷︷ ︸
1×1

+ b1

[
1

1

][
1 1

]
︸ ︷︷ ︸

vv∗

=

[
T1 0

0 T2

]
+ b1vv

∗.

So, we can solve two 1× 1 cases:

[Q1, Λ1] = [1, a1 − b1] = dcEig(T1) and [Q2, Λ2] = [1, a2 − b1] = dcEig(T2).

– Build D + ρuu∗:

D =

[
Λ1

Λ2

]
, u =

[
Q∗

1

Q∗
2

]
︸ ︷︷ ︸

=I

v = v

=⇒ D + ρuu∗ =

[
Λ1

Λ2

]
+ b1uu

∗.

82

6 EIGENVALUES AND EIGENVECTORS 6.5 Symmetric Eigenvalue Problem

– Find eigenvalues of D + ρuu∗ by finding roots of the secular equation.

– Find eigenvectors of D + ρuu∗: (D − λI)−1u are eigenvectors, where λ is an eigenvalue of

D + ρuu∗. However, this method is not numerically stable.

– Orthogonalize eigenvectors and form Q′

– Q =

[
Q1

Q2

]
Q′

– Return Q, Λ (eigenvalues of D + ρuu∗).

• 4× 4 Case:

T =

a1 b2

b1 a2 b2

b2 a3 b3

b3 a4

 =

2×2︷︸︸︷
T1

T2︸︷︷︸
2×2

+ b2

0

1

1

0

[
0 1 1 0

]
.

So, we can solve two 2× 2 cases:

[Q1, Λ1] = dcEig(T1) and [Q2, Λ2] = dcEig(T2).

6.5.2 Bisection Method (Finding a subset of Eigenvalues)

Assumption: T is tridiagonal, symmetric, irreducible (off-diagonal entires are non-zero)

Remark 6.10 If we have a reducible matrix,

∗ ∗
∗ ∗
∗ ∗ 0

0 ∗ ∗
∗ ∗

=

[
T1

T2

]
,

we can perform the algorithm in each submatrix.

Definition 6.5.1 (Principal Minor). Given an m×m matrix T , the upper left k × k sub-matrix is called

the k-th principal minor and is denoted by T (k).

Example 6.5.2 Principal Minor

Consider a 3× 3 matrix

T =

a1 b1

b1 a2 b2

b2 a3
. . .

. . . bm−1

bm−1 am

.

83

6 EIGENVALUES AND EIGENVECTORS 6.6 Eigenvalue Perturbation Theory

Then the principal minors are

T (1) =
[
a1

]
, T (2) =

[
a1 b1

b1 a2

]
, T (3) =

a1 b1

b1 a2 b2

b2 a3

.

Proposition 6.3 : Eigenvalues of T and T (k) are distinct. For T (k),

λ
(k)
1 < λ

(k)
2 < · · · < λ

(k)
k .

One can also show, eigenvalue strictly interlace. i.e.,

λ
(k+1)
j < λ

(k)
j < λ

(k1)
j+1 .

Definition 6.5.4 (Sturm Sequence (As a Consequence of Proposition)). The Sturm sequence is defined

as

1, det
(
T (1)

)
, det

(
T (2)

)
, . . . ,det

(
T (m)

)
.

Note that

of negative eigenvalues = # of sign changes in Sturm sequence.

So, given T − xI, we can determine # of eigenvalues in any interval [a, b) by

(# of negative eigenvalues of T − bI)− (# of negative eigenvalues of T − aI).

6.6 Eigenvalue Perturbation Theory

Question: If we perturb A, how much do eigenpairs change?

Theorem 6.6.1 Gershgorin Circles/Disks

Suppose A = D + F , where A = diag(d1, . . . , dm) and F has 0’s on tis diagonal. Then,

Λ(A) ⊆
m⋃
i=1

Di,

where

Di =

z ∈ C
∣∣∣∣|z − di| ≤ m∑

j=1

|fij |

 = ().

84

7 COMPUTING SVD

7 Computing SVD

Generally speaking, computing SVD is a two phases algorithm framework.

Given A ∈ Cm×n with m > n.

• Reduction to bidiagonal form B. (Deterministic;O
(
mn2

)
)

• SVD of B. (Iterative; infinite number of steps in theory; in practice,O(n log |log εmach|))

7.1 Phase I: Golub-Kahan (GK) Bidiagonalization

The computation cost

∼ 4mn2 − 4

3
n3 flops.

85

7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

Algorithm 18: GK Bidiagonalization

Input: A ∈ Rm×n with m ≤ n

1 begin
2 w = randn(n, 1) // create first normalized column of W randomly

3 W (:, 1) =W/∥w∥2;
// main loop

4 for k = 1 : m do
// update Q

5 Q(:, k) = AW (:, k);
6 if k ≥ 1 then
7 Q(:, k) = Q(:, k)−B(k − 1, k)Q(:, k − 1);

8 B(k, k) = ∥Q(:, k)∥2;

9 Q(:, k) =
Q(:, k)

B(k, k)
;

// update W

10 if k < m then
11 W (:, k + 1) = A∗Q(:, k)−B(k, k)W (:, k);
12 B(k, k + 1) = ∥W (:, k + 1)∥2;

13 W (:, k + 1) =
W (:, k + 1)

B(k, k + 1)
;

Output: Q ∈ Rm×m unitary; B ∈ Rm×n upper bidiagonal; W ∈ Rn×m unitary (W ∗W = Im)

• Other (potentially faster) Approach: Lawson-Hanson-Chan (LHC):

A
m×n
m>n

QR−−−→ R
n×n

→ B

– LHC is less expensive when m >
5

3
n.

– We can do this with GK. We run LHC for a huge matrix for some iterations, and then run GK

on the submatrix.

7.2 Phase II: SVD of Bidiagonal Matrix

• Overview:

A
Phase I−−−−−−→ B

U∗
AAVA

Phase II−−−−−−→ UBΣV
∗
B

=⇒ A = UABV
∗
A = UA(UBΣV

∗
B)V

∗
A = (UAUB)Σ(VAVB)

∗.

• A simple idea: leverage eigendecomposition algorithms.

– Consider C =

[
0 B∗

B 0

]
∈ C(2n)×(2n). Define

P =
[
e1 en+1 e2 en+2 · · · en e2n

]
. (Perfect Shuffle)

86

7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

Then, T = P ∗CP is symmetric and tridiagonal with the following properties:

* all zeros on main diagonal of T (traceless).

* off-diagonal alternate entries in B. That is,

B =

a1 b1

a2 b2
.

. . . bn−1

an

=⇒ T =

0 a1

a1 0 b1

b1 0 a2

a2 0
. . .

. an

an 0

Then, we can apply algorithms such as divide-and-conquer or bisection algorithm to calcu-

late the eigenvalues of T .

Permutation matrices are orthogonal. So, T = P ∗CP is similar to B.

– If xi is eigenvector of T , Txi = αixi, then αi = ±σi(B) and

pxi =
1√
2

[
vi

±ui

]
,

where vi and ui are left and right singular vectors of B.

– Warning: Running divide-and-conquer or QR iteration on C is impractical.

* We only need non-negative eigenvalues of T (might do 2 times more work).

* Small numerical problems with small singular values.

• Idea # 2:

– Consider T = BB∗ ∈ Cn×n, symmetric, tridiagonal. Then,

T =

a21 + b21 a2b1

∗ a22 + b22 a3b2

∗
.

∗ a2n−1 + b2n−1 anbn−1

∗ a2n

.

– Singular values of B are square roots of eigenvalues of T .

However, we only get left singular vectors of B. i.e, B = UΣV ∗ =⇒ T = UΣ∗U∗.

• Idea # 3: T = B∗B

– T looks similar as in idea # 2, but slightly different.

– Problem: only get right singular vectors of B.

87

7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

– Even worse: ill-conditioning. It is numerically unstable to build BB∗ or B∗B.

Example 7.2.1

Consider B =

[
1 1

1
√
η

]
, where η is small. Then, σ(B) ≈

{√
2,

√
η

2

}
. On the other hand,

B∗B =

[
1 1

1 1 +
√
η

]
=

[
1 1

1 1

]
will give us wrong singular values.

• Idea # 4: Differential Quotient-Difference Algorithm with Shift (DQDS)

Algorithm 19: A Mathematically Equivalent Algorithm: LR Iteration

Input: any symmetric tridiagonal T0

1 begin
2 while not converged do
3 Choose a shift τ2k smaller than the smallest eigenvalue of Tk;
4 Compute Cholesky factorization Tk − τ2k I = B∗

kBk;
// We never want to form B∗

kBk explicitly

5 Update Tk+1 = BkB
∗
k + τ2k I;

Output: a (tri)diagonal matrix Tk

– One can show: Tk and Tk+1 are similar.

– Two steps of LR with τk = 0 is the same as QR iteration.

– Bk is upper bidiagonal:

Bk =

a1 b1

a2 b2
.

an−1 bn−1

an

, Bk+1

â1 b̂1

â2 b̂2
.

ân−1 b̂n−1

ân

.

and

Tk+1 = BkB
∗
k + τ2k I (update at k-th iteration)

Tk+1 = B∗
k+1Bk+1 + τ2k+1I (factorization at (k + 1)-th iteration)

So,

B∗
k+1Bk+1 + τ2k+1I = BkB

∗
k + τ2k I.

On the diagonal, we have

â2j + b̂2j−1 + τ2k+1 = a2j + b2j + τ2k (n equations)

88

7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

On the sub-diagonal, we have

â2j b̂
2
j = a2k+1bj (n− 1 equations)

Goal: Write âj , b̂j in terms of aj , bj .

Remark 7.1 When solving, we have to assume b̂0 = b0 = bn = b̂n = 0. As we have, in total,

2n − 1 unknowns (n for aj and n − 1 for bj) and 2n − 1 equations. We can solve formulas for

âj and b̂j .

89

8 ITERATIVE METHODS

8 Iterative Methods

8.1 Introduction

Definition 8.1.1 (Direct Methods). Direct methods have explicit procedure with known stopping point.

(For example, Gaussian elimination or QR factorization.) Typically, it requiresO(m3) flops.

(−) too expensive when matrix size is large.

(−) only needO(m2) in storage of A, but need many more flops.

Definition 8.1.2 (Iterative Methods).

• Rules: we don’t form A. We can only apply A (or A∗) to a vector. That is, we know Ax (and A∗y).

• If A is sparse, compute Ax costsO(νm), where ν = # of entries per row, and ν ≪ m.

Example 8.1.3

Consider

A =

1 −1
−1 2 −1

−1 2 −1
.

 =⇒ ν = 3 =⇒ ∼ O(3m).

Table 1: Applications of Iterative Methods
Solve Ax = b Solve Ax = λx

Symmetric A = A∗ CG (Conjugate Gradient) Lanczos
Non-symmetric A ̸= A∗ GMRES, CGN, BCG Arnoldi

Example 8.1.4 SolvingAx = b Iteratively: Two Schools of Thoughts (there are others)

• Split A = M − K, where M is non-singular. For example, Jacobi, Gauss-Seidel, Successive

over-relaxation (SoR)

• Krylov subspace method. For example, CG, GMRES, . . .

Definition 8.1.5 (Krylov Subspace). The Krylov subspace,Kn(A, b), is defined by

Kn(A, b) = span
{
b, Ab,A2b, . . . , An−1b

}
.

90

8 ITERATIVE METHODS 8.2 Arnoldi Method

Example 8.1.6 How do we useKn(A, b) to (approximately) solveAx = b?

• We try to find the “best” solution in Krylov subspace

min
x∈Kn(A,b)

∥Ax− b∥2.

That is,

x = c0b+ c1Ab+ · · ·+ cn−1A
n−1b

= (c0I + c1A+ · · ·+ cn−1A
n−1)b

= p(A)b.

For example, MINRES for symmetric matrix A, and GMRES for non-symmetric matrix A.

• If A is SPD, we could use

min
x∈Kn(A,b)

∥Ax− b∥A−1 ,

where ∥r∥A−1 =
(
r∗A−1r

)1/2
.

For example, CG.

8.2 Arnoldi Method

Definition 8.2.1 (Krylov Matrix). Recall the Krylov subspace is defined by

Kn(A, b) = span
{
b, Ab,A2b, . . . , An−1b

}
.

Think power method:

y1 = b = b

y2 = Ay1 = Ab

...

ynAyn−1 An−1b

Then, the Krylov matrix, K ∈ Rm×n, is defined as

K =
[
y1 y2 · · · yn

]
.

2. Properties of Krylov Matrix and a Theoretic Idea

• AKn+1(A, b) = span
{
Ab,A2b, . . . , Anb

}
=⇒ AK(A, b) ⊆ Kn+1(A, b).

91

8 ITERATIVE METHODS 8.2 Arnoldi Method

Proof 1.

AK =
[
Ay1 Ay2 · · · Ayn

]
=
[
y2 y3 · · · Any1

]
.

Q.E.D. ■

• AK = KC, where

C =
[
e2 e3 · · · en −c

]
=

0 0 −c1

1 0
...

0 1
...

... 0
. . .

...
...

... 0 −cm−1

0 0 · · · 1 −cm

, upper Hessenberg.

Further,

c = −K−1Any.

This may be a good idea: AK = KC =⇒ K−1AK = C.

• Danger:

– K is likely to be ill-conditioned (hard to invert).

– Solving for C, we apply A n times, which is slow.

3. A Practical Idea

Kn(A, b) = span
{
b, Ab,A2b, . . . , An−1b

}
= span{q1, q2, q3, . . . , qn︸ ︷︷ ︸

orthogonal basis

.}

We find q1, . . . , qn by a Gram-schmidt-ish procedure. Note that col(K) = Kn(A, b). Suppose K = QR,

we have

K−1AK = (QR)−1A(QR) = C

=⇒ R∗Q∗AQR = C

Q∗AQ = RCR−1 = H another upper Hessenberg

4. Arnoldi Algorithm

Q∗AQ = H =⇒ AQ = QH.

92

8 ITERATIVE METHODS 8.2 Arnoldi Method

• Orthonormal basis for {b}:

q1 =
b

∥b∥2
.

• Orthonormal basis for {b, Ab}:

q1 =
b

∥b∥2
from Gram-Schmidt

Aq1 = h11q1 + h21q2 from Krylovian

q∗1Aq1 = h11���*
1

q∗1q1 + h21���*
0

q∗1q2

h11 = q∗1(Aq1) Rayleigh Quotient

=⇒ v := h21q2 = Aq1 − h11q1 =⇒ v is parallel to q2

h21 = ∥v∥2, q2 =
v

h21
=

v

∥v∥2
.

So,

Aq1 =
[
q1 q2

][h11
h21

]

• Continuing this process, we should get

AQn = QnHn + wne
∗
n︸ ︷︷ ︸

left-over
“Avn−Anv”

= Qn+1 H(n+1,n)︸ ︷︷ ︸
upper Hessenberg

Algorithm 20: Arnoldi’s Method

Input: unit vector q, linear operator A : Rm → Rm

1 begin
2 for j = 1, 2, . . . , n do
3 wj = Aqj // next column in Kn(A, q1)

4 for i = 1, . . . , j do
// orthogonalization: Gram-Schmidt

5 hij = q∗iwj ;
6 wj = wj − hijqi;
7 h(j+1),j = ∥wj∥2;

8 qj+1 =
wj

h(j+1),j
;

Output: Qn+1, Hn

• How to use Arnold to Solve Ax = b?

– Let x0 be an initial guess for solution, and let r0 = b−Ax0.

– BuildKn(A, r0) = span
{
r0, Ar0, A

2r0, . . . , A
n−1r0

}
.

93

8 ITERATIVE METHODS 8.2 Arnoldi Method

– Goal: Find solution xn ∈ x0 +Kn(A, r0) s.t.

b−Axn ⊥ Kn(A, r0).

Remark 8.1 x0 + Kn(A, r0) means: xn = x0 + QnCn, where Qn is a m × n matrix whose

columns form orthonormal basis ofKn(A, r0), from Arnoldi’s Method.

– Snapshot of solution:

AQn = Qn+1Hn = QnHn + wn · e∗n,

where wn is multiple of qn+1.

By orthogonality of columns of Qn, we have

Q∗
nAQn = Hn.

– End product: good approximate solution is

xn = x0 +Qn

(
H−1

n βe1
)︸ ︷︷ ︸

∈Kn(A,r0)

, β = ∥r0∥2

– Benefits of using Arnoldi’s method:

(+) Hn is n× n , small and upper Henssenberg =⇒ easy to invert.

(+) βe1 is a basis vector =⇒ easy to work with

(+) Punchline: with Krylov methods, we do the work in small spaces (n× n).

• Arnoldi & Eigenvalues:

– Main idea: estimate eigenvalues of A using Hn at each iteration. Usually, we find extreme

eigenvalues first. We might not get all eigenvalues.

– Some algebraic intuition:

Recall: x ∈ Kn(A, b) ≡ span
{
b, Ab, . . . , An−1b

}
. Then, we have

x = c0b+ c1Ab+ · · ·+ cn−1A
n−1b

=
(
c0I + c1A+ · · ·+ cn−1A

n−1
)
b

= q(A)b,

where q(·) is a polynomial, where q(z) = c0 + c1z + · · ·+ cn−1z
n−1.

– Arnoldi Approximation Problem:

min ∥pn(A)∥2, s.t. pn is a degree n polynomial with cn = 1 (monic)

(Arnoldi Approxmation)

94

8 ITERATIVE METHODS 8.3 Generalized Minimal Residual Method (GMRES)

That is, pn(z) = c0 + c1z + · · ·+ cn−1z
n−1 + 1 · zn. By Arnoldi’s method, we can have

pn(A)b = Anb−Qny, y ∈ Cn,

where Qn is from Arnoldi, with columns being orthonormal basis ofKn(A, b).

Equivalently, (Arnoldi Approxmation) can be written as a least square problem:

min
y∈Cn

∥Anb−Qny∥2 (Arnoldi Approximation II)

Theorem 8.2.5

If Arnoldi Iteration does not break down (i.e., dim (Kn(A, b)) = n), then the characteristic

polynomial of Hn minimizes (Arnoldi Approxmation) Problem.

8.3 Generalized Minimal Residual Method (GMRES)

1. Main Idea

Approximate solution to Ax = b via xn ∈ Kn(A, b). We will do this in a least square way:

min
x∈x0∈Kn(A,r0)

∥b−Ax∥2, (P)

where r0 := b−Ax0.
2. Equivalent Problem Statement: Change of Variables

Define x = x0 + z, (P) becomes an easier constrained problem:

min
z∈Kn(A,r0)

∥b−A(x0 + z)∥2 = ∥r0 −Az∥2 (P)

3. Rewrite (P) using Arnoldi

If z ∈ Kn(A, r0), using Arnoldi, ∃ y ∈ Cn s.t. z = Qny, where Qn is from Arnoldi. Then, (P) becomes

an unconstraineed least square

min
y∈Cn

∥r0 −AQny︸︷︷︸ ∥2 (P)

95

8 ITERATIVE METHODS 8.3 Generalized Minimal Residual Method (GMRES)

From Arnoldi: AQn = Qn+1Hn, so

min
y∈Cn

∥∥r0 −Qn+1Hby
∥∥
2

(P)

Recall that we can view Arnoldi as Gram Schmidt onKn(A, r0) = span
{
r0, Ar0, . . . , A

n−1r0
}

. Then,

Qn+1(:, 1) =
r0
∥r0∥2

.

Then, (P) is further reduced to

min
y∈Cn

∥ Qn+1︸ ︷︷ ︸
orthonormal

(βe1 −Hny)∥2, where β = ∥r0∥2. (P)

By 2-norm unitary invariance, (P) is equivalent to

min
y∈Cn

∥βe1 − Hn︸︷︷︸
(n+1)×n

y∥2 (GMRES)

We can easily solve for y.

Algorithm 21: GMRES

Input: A ∈ Cm×m, x0 ∈ Cm, b ∈ Cn

1 begin
2 r0 = b−Ax0;
3 [Qn+1, Hn] = arnoldi(A, r0, n);
4 Solve y∗ ∈ argmin

y

∥∥βe1 −Hny
∥∥
2
;

5 Update x∗ = x0 +Qny
∗;

4. Convergence of GMRES

• Main question: How many steps n do we need to reach desired accuracy of
∥rn∥2
∥b∥2

?

• Observation:

– ∥rn+1∥2 ≤ ∥rn∥2, where rn = b−Axn and xn is returned from GMRES(n)

Intuition: Kn(A, r0) ⊆ Kn+1(A, r0).

– How many steps until ∥rn∥2 = 0? (in exact arithmetic): m steps (i.e., we exactly solveAx = b).

• Assume A is diagonalizable: A = XΛX−1. Then,

∥rn∥2 ≤ κn(X)︸ ︷︷ ︸
how orthogonal

the eigenvectors are

∥p(Λ)∥2 ∥r0∥2︸ ︷︷ ︸
initial guess

,

where p is a degree n polynomial with p(0) = 1 (i.e., c0 = 1).

96

8 ITERATIVE METHODS 8.4 Lanczos Method

Remark 8.2 (Intuition for pn)

min
p:degree n
p(0)=1

∥p(A)r0∥2 = ∥(I −Aqn−1(A))b∥2 = ∥b−Aqn−1(A)b∥2

Proof 1. If x ∈ Kn(A, b), then

∥b−Ax∥2 = ∥p(A)r0∥2 =
∥∥Xp(Λ)X−1r0

∥∥
2
≤ ∥X∥2

∥∥X−1
∥∥
2︸ ︷︷ ︸

κ2(X)

∥p(Λ)∥2∥r0∥2.

Q.E.D. ■

8.4 Lanczos Method

1. Overview: Arnoldi for Symmetric Matices

AQn = Qn+1Tn,

where Tn is tridiagonal.

A

| | |
q1 q2 · · · qn

| | |

 =

| | | |
q1 q2 · · · qn qn+1

| | | |

α1 β1

β1 α2 β2

β2
. . . βn−1

βn−1 αn

∗

; Note: T (:, j) =

...

βj−1

αj

βj
...

Aqj = Qn+1T (:, j)

Aqj = βj−1qj−1 + αjqj + βjqj+1

where βj−1 and αj are computable, and qj−1 and qj are known

βjqj+1 = Aqj − βj−1qj−1 − αjqj (3 Term Recurrsion)

Algorithm 22: Lanczos Method

1 begin

2 q1 =
b

∥b∥2
, β0 = 0, q0 = 0;

3 for n = 1, 2, . . . do
4 v = Aqn;
5 αn = q∗nv;
6 v = v − βn−1qn−1 − αnqn // orthogonalization

7 βn+1 = ∥v∥2;

8 qn+1 =
v

βn+1
;

97

8 ITERATIVE METHODS 8.5 Gradient Descent (GD)

8.5 Gradient Descent (GD)

Remark 8.3 In this section and the next, assume A to be real and SPD.

1. Problem Set-up

min
x
f(x) ≡ 1

2
x⊤Ax− b⊤x.

Gradient:

∇f(x) = Ax− b.

2. In each iteration

xn = xn−1 − αn∇f(xn−1) (GD)

Claim 8.3 Connection with Solving Linear System

GD solves this problem by solving the system Ax = b.

Proof 1. By first order condition: ∇f(x) = 0 =⇒ Ax− b = 0. Q.E.D. ■

4. Rewrite (GD) using residual: r = b−Ax
Define ∇f(x) = Ax− b = −r, negative residual. Then, GD iteration gives

xn = xn−1 + αnrn−1 (GD)

5. Can we update rn iteratively?

That is, can we rewrite rn = rn−1 + update. Note that

rn ≡ b−Axn
= b−A(xn−1 + αnrn−1)

= b−Axn−1︸ ︷︷ ︸−αnArn−1

= rn−1 − αnArn−1

6. Hoe to choose αn? Pick the optimal one

Define φ(α) ≡ f(xn−1 + αrn−1).

Goal: Find α s.t. φ′(α) = 0.

φ(α) =
1

2
(xn−1 + αrn−1)

⊤A(xn−1 + αrn−1)− b⊤(xn−1 + αrn−1)

= f(xn−1) + αx⊤n−1Arn−1 +
1

2
α2r⊤n−1Arn−1 − αb⊤rn−1.

φ′(α)∗ = x⊤n−1Arn−1 + αr⊤n−1Arn−1 − b⊤rn−1
set
== 0

α∗
n =

b⊤rn−1 − x⊤n−1Arn−1

r⊤n−1Arn−1

98

8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

Algorithm 23: Gradient Descent
Input: A, b, x0

1 begin
2 r0 = b−Ax0;
3 for n = 1, 2, . . . do

4 αn =
b⊤rn−1 − x⊤n−1 Arn−1

r⊤n−1 Arn−1

;

5 xn = xn−1 + αnrn−1;

6 rn = rn−1 − αn Arn−1 ;

// Computing Arn−1 is expensive, but we can store its values and avoid repeated

computation.

8.6 Conjugate Gradient (CG)

Algorithm 24: Conjugate Gradient
Input: A, b, x0

1 begin
2 r0 = b−Ax0;
3 p0 = r0;
4 for n = 1, 2, . . . do

5 αn =
r⊤n−1rn−1

p⊤n−1 Apn−1

;

6 xn = xn−1 + αnpn−1;

7 rn = rn−1 − αn Apn−1 ;

8 βn =
r⊤n rn

r⊤n−1rn−1

;

9 pn = rn + βnpn−1;

// Improve computational cost: store those boxed values to avoid repeated

computation

Definition 8.6.1 (A-norm). Let A be real-valued SPD matrix. Then, the A-norm of x is given by

∥x∥A =
√
x⊤Ax.

2. What is pn’s? Conjugate Gradient

• Conjugate: pn’s are A-conjugate: orthogonal w.r.t. inner product ⟨·, ·⟩A.

⟨pk, pj⟩A = p⊤k Apj = 0 if k ̸= j

• Gradient: search direction to update xn.

99

8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

3. Properties of CG

• xn ∈ Kn(A, b).

• Residual are orthogonal:

r⊤k rj = 0 for k ̸= j =⇒ rn ⊥ Kn−1(A, b),

allows CG to converge fast if at most m iterations (under some assumptions).

• Search directions are A-conjugate:

p⊤k Apj = 0 for k ̸= j =⇒ efficient search through space.

4. How do we ensure orthogonal residual?

Goal: r⊤n rn−1 = 0

r⊤n rn−1 = (rn−1 − αApn−1)
⊤rn−1 Line #7 from Algorithm (24)

= r⊤n−1rn−1 − αp⊤n−1Arn−1
set
== 0 A = A⊤ since A is symmetric

Solve for α, we get

αn =
r⊤n−1rn−1

p⊤n−1Arn−1
.

To get αn matching Algorithm (24), plug pn−1 = rn−1 + βn−1pn−2 into αn.

5. How to ensureA-conjugate search direction?

Goal: p⊤n−1Apn = 0.

p⊤n−1Apn = p⊤n−1A(rn + βpn−1) Line #9 of Algorithm (24)

= p⊤n−1Arn + βp⊤n−1Apn−1
set
== 0

Solve for β:

βn =
p⊤n−1Arn

p⊤n−1Apn−1
.

To get βn exactly matching Algorithm (24), plut rn = rn−1 − αnApn−1 into βn.

Theorem 8.6.6

If A is SPD, and CG has not already converged (i.e., rn ̸= 0), then xn ∈ Kn(A, b) is unique that

minimizes ∥x∗ − xn∥A.

Remark 8.4 Note that xn is the best approximation to the solution of Ax = b that lives inKn(A, b).

Proof 1. Pick arbitrary x = xn −∆x ∈ Kn.

Goal: ∆x = 0.

100

8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

Consider error: e = x− x∗ = en +∆x. Then,

∥x∥2A = (en +∆x)⊤A(en +∆x)

= ∥en∥2A + 2r⊤n (∆x) + ∥∆x∥
2
A expand and simplify

Recall that residuals are constructed such that rn ⊥ Kn(A, b) =⇒ rn ⊥ ∆x

=⇒ ∥e∥2A = ∥en∥2A + ∥∆x∥2A is mallest when ∆x = 0. Q.E.D. ■

7. Intuition: BuildingA-conjugate basis

Given {q1, . . . , qn} orthonormal. How to build {p1, . . . , pn}, A-conjugate, where A is SPD?

Since A is SPD, by Cholesky Facotrization, we have A = LL⊤. Define pi = L−⊤qi. Then,

p⊤i Apj = q⊤i L
−1
(
LL⊤

)
L−⊤qj = q⊤i qj = 0 for i ̸= j.

SupposeKn(A, b) = span {p1, . . . , pn}. Then,Kn+1(A, b) = Kn(A, b) ∪ span {Anb}. So, we have

p⊤j (A
nb) = p⊤j A

(
An−1b

)︸ ︷︷ ︸
∈Kn(A,b)

= p⊤j A(c1p1 + · · ·+ cnpn) almost everything cancels by orthogonality

= cjp
⊤
j Apj

However, if we directly consider q⊤j (A
nb) = q⊤j A(c1q1 + · · · + cnqn) =??? This is why we relay on A-

conjugate bases in CG.

Theorem 8.6.8 Connect Residual with Error

∥rn∥A−1 = ∥en∥A

Remark 8.5 Intuitively, this connection makes sense: en lives in the input space so we can compute its

A-norm, whereas rn lives in the output space so we need to compute its A−1-norm.

Proof 2.

∥rn∥2A−1 = r⊤nA
−1rn = (b−Axn)⊤A−1(b−Axn)

= (Ax∗ −Axn)⊤A−1(Ax∗ −Axn) Ax∗ = b

= (A(x∗ − xn))⊤A−1(A(x∗ − xn)) en = x∗ − xn
= e⊤n A

⊤A−1︸ ︷︷ ︸
AA−1=I

Aen A is SPD, A⊤ = A

= e⊤nAen

= ∥en∥2A

Q.E.D. ■

101

8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

Theorem 8.6.9 Convergence of CG

∥rn∥A−1

∥r0∥A−1

=
∥en∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)n

,

where en = x∗ − xn if x∗ denotes the true solution, and κ = κ2(A).

Remark 8.6

(identity matrix, CG solves instantly) 0 ≤
√
κ− 1√
κ+ 1

≤ 1 (large κ, slow convergence)

10. Polynomial Approximation of Error for CG & Proof of Theorem 8.6.9

Let f(z) = ∥b−Az∥2A−1 . Consider the following optimization problem:

f(xn) = min
z∈Kn(A,b)

f(z), (CG Problem)

where z ∈ Kn(A, b) =⇒ z = pn−1(A)b = pn−1(A)A︸ ︷︷ ︸
qn(A)

x∗ = qn(A)x∗.

Now, we can write (CG Problem) as

f(xn) = min
z∈Kn(A,b)

f(z)

= min
z∈Kn(A,b)

(x∗ − z)⊤︸ ︷︷ ︸
[(I−qn(A))x∗]⊤

A(x∗ − z) ∥en∥A = ∥rn∥A−1

f(xn) = min
pn∈Pn

pn(0)=1

x⊤∗ pn(A)Apn(A)x∗

= min
pn∈Pn

pn(0)=1

∥pn(A)e0∥A, (Polynomial Approx. of Error for CG)

with x0 = 0 and thus e0 = x∗ − x0 = x∗.

Since A is SPD, we can orthogonally diagonalize it: A = QΛQ⊤. Denote ∥rn∥2A−1 = ∥en∥2A = f(xn).

f(xn) = min
pn∈Pn,pn(0)=1

y⊤ pn(Λ)Λpn(Λ)︸ ︷︷ ︸
diagonal

y y = Q⊤x∗

= min
pn∈Pnpn(0)=1

m∑
i=1

y2i λipn(λi)
2 λi:eigenvalue

m:# of eigenvalues

≤ min
pn∈Pnpn(0)=1

(
max

λi∈Λ(A)
pn(λi)

2

) m∑
i=1

y2i λi
If x0=0,boxed part=f(x0)

∥r0∥2A−1 or ∥e0∥2A

f(xn)

f(x0)
≤ min

pn∈Pnpn(0)=1

(
max

λi∈Λ(A)
pn(λi)

2

)
take square root

∥en∥A
∥e0∥A

≤ min
pn∈Pm,pn(0)=1

(
max

λi∈Λ(A)
|pn(λi)|

)
≤ max

λi∈Λ(A)
|p̂n(λi)| We don’t solve the problem exactly,

We just want to find an upper bound

102

8 ITERATIVE METHODS 8.7 Polynomial Approximation Perspective

It turns out that Chebyshev polynomial is a good choice.

Definition 8.6.11 (Chebyshev Polynomial). For x ∈ [−1, 1], the Chebyshev polynomial is given by

Tn(x) = cos
(
n cos−1(x)

)
, with |Tn(x)| ≤ 1.

After shifting the polynomial to fit in Λ(A), we have that ξ ∈ [λmin, λmax], and

q̂n(ξ) = Tn

(
λmax + λmin − 2ξ

λmax − λmin

)
.

8.7 Polynomial Approximation Perspective

1. Arnoldi: Gram-Schmidt-ish method to find the next qn+1

min
pn∈Pn,monic

∥pn(A)b∥2

Note that pn(A)b = Anb − Qny. The closest vector in Kn(A, b), Qny, to next vector Anb. Form normal

questions:

A∗
nA

nb =����Q∗
nQny =⇒ y = Q∗

nA
nb.

Closest vector: Qny = QnQ
∗
nA

∗b can be viewed as an orthogonal projection. Next qn+1:

qn+1 = (Im −QnQ
∗
n)A

nb

A Further Explanation

• Arnoldi’s method finds q1, . . . , qn, an orthonormal basis of the Krylov subspace Kn(A, b) =

span
{
b, Ab,A2b, . . . , An−1b

}
.

• Arnoldi Relation:

AQn = Qn+1Hn,

where Qn =
[
q1 . . . qn

]
and Hn is an upper Hessenberg matrix.

By construction of Qn, we know that Qny ∈ Kn(A, b).

For the next iteration, we add Anb to the Krylov subspace, and seek qn+1 s.t.

qn+1 ⊥ Kn(A, b) ∪ {Anb}.

That is, we minimize the distance between Anb and the Krylov subspace.

• Optimization Problem:

As Qny ∈ Kn(A, b), rewrite the problem as minimizing the residual rn = Anb−Qny:

min
y∈Cn

∥rn∥2 = min
y∈Cn

∥Anb−Qny∥2. (Arnoldi Approx.)

103

8 ITERATIVE METHODS 8.7 Polynomial Approximation Perspective

• Polynomial Representation: Since Qny ∈ Kn(A, b) = span
{
b, Ab,A2b, . . . , An−1b

}
, rewrite

Qny as a linear combination of b, Ab, . . . , An−1b:

Qny = y1b+ y2Ab+ · · ·+ ynA
n−1b.

Substituting into (Arnoldi Approx.), we have:

min
y∈Cn

∥rn∥ = min
y∈Cn

∥Anb−Qny∥2

= min
y∈Cn

∥∥Anb− (y1b+ y2Ab+ · · ·+ ynA
n−1b)

∥∥
2

= min
y∈Cn

∥∥(−y1b− y2Ab− · · · − ynAn−1b+Anb)
∥∥
2

= min
y∈Cn

∥(−y1I − y2A− · · · − ynAn−1 +An︸ ︷︷ ︸
pn(A)

)b∥2

= min
pn∈Pn

pn monic

∥pn(A)b∥2.

2. GMRES: SolveAx = b

min
pn∈Pn,pn(0)=1

∥pn(A)b∥2

pn(A)b = (I −Aqn−1(A))b = b−Aqn−1(A)b qn−1(A)b ∈ Kn(A, b)

= b−AQny Qny ∈ Kn(A, b)

Find coefficients y s.t. A Qny︸︷︷︸
solution

is as close as possible to b.

3. CG: SolveAx = b

min
pn∈Pn,pn(0)=1

∥pn(A)e0∥A where e0 = x∗ − x.

104

	1 Linear Algebra Review
	1.1 The Basics
	1.2 Fundamental Subspaces of Matrices
	1.3 Inverse and Invertible Matrices
	1.4 Orthogonal Vectors and Matrices
	1.5 Vector and Matrix Norms
	1.6 Singular Value Decomposition (SVD)

	2 Conditioning and Stability
	2.1 Conditioning & Condition Numbers
	2.2 Backward Stability
	2.3 Floating Point (FP) Numbers
	2.4 Fundamental Theorem of FP Arithmetic and Error

	3 Linear Systems of Equations
	3.1 Gaussian Elimination & LU Factorization
	3.2 Pivoting
	3.3 Choleksy Factorization
	3.4 Other Special Matrices/Factorization

	4 Stability of Solving Linear Systems
	4.1 (In)Stability of GE & GEPP
	4.2 Stability of Backward Substitution
	4.3 Perturbation Theory of Linear Systems
	4.4 More Practical Perturbation Theory
	4.5 Big-Oh Notation

	5 Least Squares
	5.1 Least Square Problems
	5.2 QR Factorization: Gram-Schmidt Orthogonalization
	5.3 QR Factorization: Householder Triangularization
	5.4 QR Factorization: Givens Rotations
	5.5 Rank Deficient Least Square
	5.6 Perturbation Theory of Least Squares

	6 Eigenvalues and Eigenvectors
	6.1 Eigendecomposition
	6.2 Algebraic and Geometric Multipllicity
	6.3 Jordan Canonical Form
	6.4 General Eigenvalue Algorithms
	6.4.1 Power Iteration
	6.4.2 Shifted Power Method (Inverse Iteration)
	6.4.3 Variation of Inverse Iteration: Rayleigh Quotient Iteration (RQI)
	6.4.4 Orthogonal Iteration/Simultaneous Iteration/Subspace Iteration
	6.4.5 Two Phases Algorithm to Produce Shur Factorization
	6.4.6 QR Algorithm
	6.4.7 Practical QR Iteration: Single-Shift QR Iteration

	6.5 Symmetric Eigenvalue Problem
	6.5.1 Divide-and-Conquer Algorithm
	6.5.2 Bisection Method (Finding a subset of Eigenvalues)

	6.6 Eigenvalue Perturbation Theory

	7 Computing SVD
	7.1 Phase I: Golub-Kahan (GK) Bidiagonalization
	7.2 Phase II: SVD of Bidiagonal Matrix

	8 Iterative Methods
	8.1 Introduction
	8.2 Arnoldi Method
	8.3 Generalized Minimal Residual Method (GMRES)
	8.4 Lanczos Method
	8.5 Gradient Descent (GD)
	8.6 Conjugate Gradient (CG)
	8.7 Polynomial Approximation Perspective

