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1 LINEAR ALGEBRA REVIEW

1 Linear Algebra Review

z1
Notation 1.1. Vector: z e C":z = | : |, 2, € C
I’n_
(a1 - A
Notation 1.2. Matrix: A C™*": A= | : -, i, ay€C
am1  Gn

1.1 The Basics

Definition 1.1.1 (Matrix-Vector Product/Mat-Vec).
b= Ax
Linear Combination Perspective Vector addition and scalar multiplication.

bis a linear combination of the columns of A.

Suppose A= |a; --- a,|,a; € C™, then

| Rk

| HEES

=101 + -+ Tpan

n
= Z TjQyj.
j=1
Entry-wise Perspective
n
bi = Z aij l’j
j=1

This perspective is useful in MATLAB: b(i) = A(i,:) * x(j).

Definition 1.1.2 (Matrix-Matrix Multiplication/Mat-Mat).
B = AX,

where B € C"™*¢, A € C™*", and X € C"*¢,

Standard Perspective mat-vec



1 LINEAR ALGEBRA REVIEW 1.2 Fundamental Subspaces of Matrices

where b; is the j-th column of B and z; is the j-th column of X.

Outer Product mat-mat

where 7 is the i-th row of X.

1.2 Fundamental Subspaces of Matrices

Definition 1.2.1 (Transpose). The transpose of matrix A, denoted AT, swaps the rows and columns.
AeCm*mand AT e Cv ™,

Definition 1.2.2 (Conjugate Transpose). The conjugate transpose of a matrix A, denoted A* or AY,
swaps the rows and columns, and then computes the complex conjugate (a + bi = a — bi) of each entry.

Theorem 1.2.3 Properties of Transpose

(AB)' =B"A" and (AB)* = B*A*.

Remark 1.1 (Vector Space) The detailed definition of vector spaces are omitted here, but the key idea is
that math works on vector spaces. To put it simple, vector addition and scalar multiplication are defined
on vector spaces. For example, C" or R" are typical examples of vector spaces.

Theorem 1.2.4 Closure of Subspaces
If U is a vector subspace, U C C", then

z,y €U = ax+ py e U, wherea,f e C.

Example 1.2.5 Non-Example of Subspace

LetU = { [a to € (C}. Note that [3], [7_81
1 1 1
3 7 — 8i 10 — 8i
_|_ =

€ U, but

¢U.

So, U is not a subspace of C2.




1 LINEAR ALGEBRA REVIEW 1.2 Fundamental Subspaces of Matrices

Definition 1.2.6 (Span). The span of vectors is all possible linear combinations.

span{ai,...,an} = {x1a1 + - +xpa, |z, € C} = {Az |z € C"}.

Remark 1.2 A span of vectors always forms a subspace.

Definition 1.2.7 (Linear Independence/L.1.). {a1,...,a,} is L.I. if z1a; + -+ + zpa, = 0 only when

Definition 1.2.8 (Basis). A basis is a set of L.I. vectors that span a vector subspace.

Example 1.2.9

«a 1 0 1 0 1
Consider U = B| :a,B €R ;. Evidently, of, 1 is a basis, but 0o, |1}, |1 is
0 0 0 0 0 0

NOT a basis because itis not L.I.. Also, ¢ |0| p is NOT a basis because it does not span U.

1 1
Remark 1.3 There is NO unique basis for U. For example, < |1|, | —1| ; isalso a basis of U.
0 0

Definition 1.2.10 (Dimension). The dimension of a subspace is the number of vector in any basis.

Remark 1.4 For example, in Example 1.2.9, dim(U) = 2.

Definition 1.2.11 (Four Fundamental Subspaces of A ¢ C"*").

e range(A) = col(A) = {Az |z € C"} = span{columns of A} C C™. This is a subspace of the
output space.

e null(A) = ker(A) = {z € C" | Az = 0} C C". This is a subspace of the input space.
* range(A*) C C"

e null(4*) C C™

Theorem 1.2.12 Fundamental Theorem of Linear Algebra

range(A) @ null(A*) =C™ and range(A*) @ null(4) = C".

Remark 1.5 (The Notation @) The notation A ® B = C meansthat A L Band AU B = C.
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Example 1.2.13
Consider
1 2 0 -3 4
A=10 0 1 5 —6|€cC¥.
000 O O
0
Then, range(A) = {Az | € C°} = span {L.I. columns of A} = span ¢ |0/, |1
0
( [ T B T B 1)
-2 -4
1 0
Also, null(A) = {z € C° | Az = 0} = span {basic solutions} =span{ | 0 |, |-5], | 6
0 1 0
0 0 1
\ L . L . L .
oo A
1 0
2 0
range(A*) = span 0f,|1 and null(A*) = span< |0
-3 )
4 —6
\ L J L J
Definition 1.2.14 (Rank and Nullity).
rank(A) = dim(range(A))
= # of L.I. columns/rows
= # ofleading 1’s/pivots
= # of non-zero singular values
= the minimal # of rank-1 matrices that sum to A
A= Z w;v; @ ifr is minimal, then rank(A) = r
=~

rank-1 matrix

nullity(A) = dim(null(4))

Theorem 1.2.15 Rank-Nullity Theorem
If A € C™*", then
rank(A) + nullity(A) = n.

Definition 1.2.16 (Full Column/Row Rank). A matrix A is full column rank if rank(A) = n. A is full
row rank if rank(A) = m. Itis full rank if rank(A) = min {m, n}.
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1 LINEAR ALGEBRA REVIEW 1.3 Inverse and Invertible Matrices

Remark 1.6 If A has full column rank, null(A) = {0}, the trivial null space, and the only solution to
Ax =0isx =0.
If A has full row rank, thenrange(A) = C™, and Ax = b is always solvable.

1.3 Inverse and Invertible Matrices

Definition 1.3.1 (Inverse). A is nonsingular or invertible if it is square (A € C™*™) and it has full rank.
We denote the inverse as A~ ".

Theorem 1.3.2
The following are equivalent (T.EA.E.): If A € C™*"™, then

e Aisinvertible: AA~1 = A"1A=1.
e rank(A) = m.

e range(A) = C™.

null(A) = {0}.

0 is not an eigenvalue of A.

0 is not a singular value of A.

det(A) # 0.

Proposition 1.3 : If A, B are invertible and of the same size, (AB)~! = B~1A~1,

Inverse in MATLAB

% Do not use the following

inv(A);

% To solve Az=b, use the "\" operator
x = A\ b;

1.4 Orthogonal Vectors and Matrices

ail v Alp
Definition 1.4.1 (Adjoint/A*). If A = : . |, then its adjoint, denoted as A*, is defined as

aml - Omn

swapping the rows with columns and then taking the conjugate of each element:

aiyp - aml

Aim ° OGmn




1 LINEAR ALGEBRA REVIEW 1.4 Orthogonal Vectors and Matrices

Definition 1.4.2 (Inner Product). The operation (-,-) : V. x V' — Cis an inner product if it satisfies

e Conjugate symmetry: (z,y) = (y, z)

* Homogeneity: a € C:  (ax,y) = a(z,y), (x,ay) = alx,y).
o Additivity: (z + z,y) = (x,y) + (z,7)

e Positive definite: (z,z) >0 and (z,z) =0 <= z=0.

Proposition 1.3 : (Ax,y) = (z, A*y).
Definition 1.4.4 (Orthogonal Vector). z,y € C" are orthogonal if z*y = 0.

Theorem 1.4.5
Non-zero orthogonal vectors are L.1I..

Proof 1. Suppose {z1,...,z,} are non-zero orthogonal. Then, z}z; = 0ifi # j. [WTS: 2, is not a
linear combination of the remaining vectors for any k.]
WLOG, assume z, is a linear combination of z1, ..., z,—1. Then, Jcy,...,¢4—1 € Cs.t.

Tg=CT1+ -+ Cg-1Tg—1-

Then,
Tyrg = ry(c1z1 + -+ cgo17g-1)
= 1oy + -+ 1Ty T
z,r1 = 0. [due to orthogonal]
Aszyr, = 0 <= x4 = 0, % this contradicts with our assumption that none of z1, ..., z, is zero, So,
there must be no linear dependence. QED. H

Definition 1.4.6 (Unitary Matrices). Q € C™*™ is unitary if Q= = Q*.

Remark 1.7 IfQ is real-valued, Q € R™ ™, then Q is orthogonal and Q="' = Q.

Remark 1.8 (Why the Name?) Note that

1 0
QQ=Q7'Q=1I=
0 1
Also,
- a || |
Q= : @ o Gm :[Q;Qj]
- g —|! |



1 LINEAR ALGEBRA REVIEW 1.5 Vector and Matrix Norms

So,

N 1 i =j (ondiagonal, with unit length)
9,495 =
’ 0 i +# j (off diagonal, orthogonal)

1.5 Vector and Matrix Norms

Definition 1.5.1 (Vector Norm). || - || : C* — R is a vector norm if Vz,y € C", a € C, the following
satisfies:

* positive definite: ||z|| > 0and ||z]| =0 <= z =0.
* positive homogeneity: ||az| = |a|||z|, where |a| = |a + bi| = Va2 + b2.
e triangle inequality: ||z + y|| < ||lz| + ||y

Proposition 1.2 Inner Product Induce Norm: If (-, -) is an inner product, then ||z|| :== /(x, z) is anorm.

Example 1.5.3 Examples of Vector Norms

e ]-norm: .
Izl = |ail
i=1
e 2-norm:
n
2
lzlly = ([ D |l
i=1
* p-norm:
n 1/17
Iz, = (Z Iwilp> , 1<p<oo.
i=1
* co-norm:

2]l = max [zg].
i=1,...,n

=1,...,

Remark 1.9 When thinking of properties of norms, consider the following ball:

B, ={zeC"| || >r}.

Theorem 1.5.4 Unitary Invariance of 2-Norms
Suppose @ € C™*™ sj unitary. Then,

1@y = [l

10



1 LINEAR ALGEBRA REVIEW 1.5 Vector and Matrix Norms

Proof'1. Suppose @ € C™*™ is unitary. Then, Q*Q = I = QQ*. Hence,

Q|2 = (Q2)*(Qz) = 2* Q*Qu = 2*Ix = x*z = ||z|2.
ol

Remark 1.10 (Geometric Interpretation) Unitary matrices preserve length.

Proposition 1.5 Some Famous Inequalities:

1 1
e Holder: V1 < p,q < oo, if - + — =1, then
P q

=%yl < [l llyll,-
e Cauchy-Schwarz (consequence of Holder):
=%yl < [lzlly [y,

Definition 1.5.6 (Matrix Norms Induced by Vector Norms). Given two vector norms

[ly : €* — R acts on vectors from C" [input space]

[l = €™ — R acts on vectors from C™ [output space]

Suppose A € C™*", then

1Az,
HAH(m,n) = sule HxH i = Supn HA‘TH(m)
zeC (n) zeC™
240 ]y =1

Specially, if (n) and (m) are the same, say (n) = (m) = (p), then we write [|A[|,,.

QED. H

Theorem 1.5.7 Some Matrix Norms

m
* [[A]l; = max. column sum = max Z laij| = max |[lasl];.
Jj=1,..,n = Jj=1,...,n

n
* ||4|,, = max. row sum = max Z la].

i=1,....m 4
Jj=1

* ||A|, = largest singular value = ,/largest eigenvalue of A*A.

Remark 1.11 (General Proof Structure)
* Show RHS is an upper bound of the induced matrix norm definition.

* Find one vector that achieves this upper bound.

11



1 LINEAR ALGEBRA REVIEW 1.5 Vector and Matrix Norms

Proof 2. (of ||Al|,) Recall: ||A||, = sup |Az],.

f[=]l;=1

Find an upper bound of || Az||, given ||z, = 1.

Note that A* A is symmetric, so it is unitarily diagonalizable. Hence, A*A = VAV* from the Spec-
trum Theorem. Also, A* A is positive semidefinite, so \;(A*A) > 0. Hence, we know

|Az|3 = 2* A* Az = 2*VAV*z = (z*V)A(V*z).
-~

Define V*z =: y. Then, |ly||, = ||V*z||, = ||z||, = 1 as V is unitary and 2-norm is unitary invariant.
So,

|Az|? = y*Ay(= v VA VAy) = |Al|, = P H\/Ksz
Yllo=

Further, as A is diagonal,

n
|Az[|5 = y* Ayx = Ayl
=1

< )\maxHyHg = )\max'

Find one vector to achieve the equality.

Let z,.x be unit eigenvector of A* A, corresponding to Ay.x.Then,

*

HAxmaXHg = Tmax \A*A,"Emax
= l‘:nax)\maxl‘max
= )\max($:naxl'max)

= )\max ||:L'mang
=1

= )\max

QED. H
Proposition 1.8 Bounding Induced Matrix Norms: Let A € C**™ and B € C™*", then

IABIl g0y < 1Al (g.m) 1Bl (-
Remark 1.12 Hint to the Proof By definition,

[Azllg) _ [l Azl
>

sup > .
zH#0 Hﬁ?H(m) Hﬁ?H(m)

HAH(z,m) =

So,
| Azll gy < 1Al 12l o).

12



1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

Definition 1.5.9 (General Matrix Norms). Frobenius:

1Al =

D0 gl = Vir(A*4) =

j=1 i=1

n

2
> llajls-
j=1

Proposition 1.10 Properties of Frobenius Norm:
* |ABlp < [ AllplBllp

* |QA|lr = ||A]l g, if @ is an unitary matrix.

1.6 Singular Value Decomposition (SVD)

Definition 1.6.1 (Full SVD).

V*
A U nXxn
by
m Xn m X m mXn
U e C™™and V € C™"™ are unitary matrix, and ¥ € R"*" with diag(X) = (o1,09,...,0,), Where
| —

singular values
o; € Ris non-negative and ordered with oy > 09 > --- > 0, > 0.

Definition 1.6.2 (Reduced SVD).

V*
A_ U 3 nXxXn
nxn
mXxXn mxXmn
A — | U v
mXxXn mXxXm mXn
m X m

Proposition 1.3 : Singular values are square roots of non-zero eigenvalues of A*A and AA*.
Proof'1. Suppose A = UXV* in the induced form. Then,

A*A = (USVH(USVH) = VU U SV*
I
V85 )\ 4
= VX?V*,

Note that ¥:? contains squared singular values. As A* A is PSD, all eigenvalues are non-negative. So, we

can take the square root to recover singular values. QED. =

13



LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

Theorem 1.6.4 Existence of SVD
Every matrix A € C"*" has an SVD.

Proof 2. In this proof, we will consider U* AV = ¥ (derived from A = UXV™). Let o1 = || 4]|,.

* From a compactness argument, 3 vy, ||v1], = 1 s.t. Avy = oyug, where ||ul|, = 1.

Proof.

Theorem (Weirestrass) Continuous function over compact set attains maximum/minimum over
that set.

Define function f(z) = ||Az||,, continuous. Then,

[Ally = sup f(x).

llzll,=1

Note that ||z|, = 1is a close and bounded domain (compact domain), so we attain a maximum.
Suppose v; is the vector that attains the maximum, then,

[Avi]ly = o1.
Hence, consider the unit vector
Avq Avq
U =——"=—.
| Ava ]|, 01
That is, Av; = oqu; as desired. O
* Build orthonormal bases: {vi,vs,...,v,} C C" and {ui,ug,...,uy} C C™, with Av; = ojuy.
Then, define matrices
Vl = m V9 S Un, and Ul = Ul U e U, | -

14



1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

Now, consider

- ui —| | ] [urdv o widw,
UTA‘/v]_ == E A 'Ul e UTL =
- uy, - | | | up Avy - uy, Avy
[ ujoiug —w*—_
uso1u1(=0
= 2 =0 [orthonormal]
: B
I ur orui(=0) |
B -01 —w*—
0 B
e Showw = 0.
- Since U and V are unitary matrices, ||[UyAV1||, = ||Al, = o1.
- Let S = Uy AV;, then
(LIPS
151y = , x#0.
2 [E41P}
Pick z = [01] . Then,
w
o} + wrw

o

IS0, > 2 = 2,
o1 01

2 *
o1 Hwrwi | o? + w*w. If Bw # 0, the norm will get larger. So,

2
a% + w*w is a lower bound of the norm. Then,

2 *
1Sl > o rww [0? + ww.
Vot +wrw
So, ||S||, = 01 > \/o? + wrw.

As w*w > 0, it must be that w*w = 0 since w*w =0 <= w = 0. Then,

2 2

Suppose Bw = 0. Then,

op O

UfAV, = .
1 1 B

15



1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

* Byinduction, if B = Uy%, V5, then

01

A=U;

Us
——— ————

Proposition 1.5 Use SVD to Solve Linear System: Az =b — X 2/ = b .
—~ ~~

Ve  U*b
Proposition 1.6 Rank Revealing: rank(A) = # of non-zero singular values.

A=UXV* = o; wiv; , if rank(A) =
> (A)

i=1 rank-1

Proposition 1.7 Connection to the Subspaces:

range(A) = range(U) = span {uq,...,u,}
null(A) = null(V) = span{vy41,...,v,}.

Proposition 1.8 Connection to Matrix Norms:

[Ally = o1

1Al = y/o% + -+ a7

Proposition 1.9 Mapping Between Spaces: Note that Av; = o;u; and A*u; = o;v;. Then,

0 A U; U;
= O’i
A* 0 (3 U;
Application of SVD: Low-Rank Approximation
Definition 1.6.10 (Truncated SVD).
4 low-rank
A= U] S Ap = U7 <r.
Z it approxnnatlon F Z Titiv; =T

QED. H

Theorem 1.6.11 Eckart-Yang
For k < r, A, is the best rank-£ approximation to A:

A—Agll, = inf |JA-D|, = .
4~ Ay = inf A ~bl, = ok

Proof 3.

L A= Aglly = org1

16



1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

As singular values are ordered,

T
E aiuivf

1=k+1

= Ok+1-
2

T k
* 2
E oiU;v; — E O;U;;
i=1 =1

2

2. Show |[A — B||, > o441V Bs.t. rank(B) < k.

As we know nothing on B, we want to eliminate the dependency on B.

|A=Blly = sup [[(A—=B)xl,

zl[;=1

> [I(A = B)z|l,.

Choose z # 0 s.t. z € null(B) but z ¢ null(A) with ||z||, = 1. Note that such z will always exists
because by rank-nullity theorem, B has a lower rank and A is of a higher rank. So,

A= Bl > = [|Az],-
2

Az — Bz
=0

By SVD, A = UXV*. As z ¢ null(4), then z = V(;,1 : k+ 1) ¢, |||, = 1. Note that V (:,1 :
k+1)xc is the linear combination of the first k + 1 columns of V. Also, note tatnull(A) = null(V') =
span {Vg11,...,vn}. Then, null(A)* = span{vi,...,vps1}, denotes everything not in null(A), and
dim(null(A)) = k + 1. Further, note that null(B) = span{xy,...,z,_t} and dim(null(B)) = n — k.
Becausen —k+k+1=mn+1>n,3z € null(B) Nnull(A)+. Hence, we have

1Az]5 = IlUSV*(V(;, 12 k+ 1)+ o)l3

2
C

0

Dy

[U is unitary]

2
k+1

=> oflal?
=1

k+1 2
ag; . . . .
=074 E ( : > e [0; has smaller indices, so is a larger singular value]
. Ok+1
i=1
k41
2 2 ai
> Ojt1 |ci] As o; > o)1, we have
_l’_
P Op41 > 1
N——
lle2l|=1
_ 2
= Ok+1-

So, ||Az||, > ok+1. Hence,
A= Blly > [|Az[ly > o%41-

17



1 LINEAR ALGEBRA REVIEW 1.6 Singular Value Decomposition (SVD)

QED. ®m

18



2 CONDITIONING AND STABILITY

2 Conditioning and Stability

2.1 Conditioning & Condition Numbers
Abstract-View: Problem: f: X — Y

1. Well-conditioned: small changes in input = small changes in output

2. Ill-conditioned: small changes in input = BIG changes in output
Definition 2.1.1 (Condition Number).
1. dz: perturbation of input. 0f = f(x 4 dz) — f(x): perturbation of output

2. Absolute Condition Number (r): k = k(z) of problem f at the input x is defined as

sl
= sup

sx 16z

k(x) :

3. Tylor Approximation:

flx+dx) = f(x) + J(x) ox
——

ian: J,.=2fi
Jacobian: J;;= 3z,

161 =[] (2)d]|
< [lJ(@)] - [[ox|
_ oo MOSIE T - o]l

k(x) = sup = = ||J(z)||.
(z) =sup {57 e~ @

4. Relative Condition Number:

o1 @) @)

k(z) == sup

ox (1070 /yey) (M@ 0)

Example 2.1.2 Conditional Number of Functions

1. flz) = %m () = %
[J(@) _ 1/2
) = @y T 12
2. f(x) = V3, &> 0. J( ):2\1/5.

)= @I 1y 1

W@y Var 2

19



2 CONDITIONING AND STABILITY 2.2 Backward Stability

Definition 2.1.3 (Conditional Number of Matrices). Suppose f(xz) = Az, where A € C"*" is invertible.
Then, J(z) = A, and

17 ()l &l B
A) == oman = 14l < 1A[- A7 = &,
S = i@l = A g < 140147 =
Proof1. || = 471 Az|| < [|A7H]| - || A= So,
2l 41 1| »
A7 = [lAll- < ||A]l - [[A7Y.
pazy <147 = Al e < Al A7)

QED. H

1. If A€ C™*", then k = || Al - || AT||, where AT = VE~'U* from SVD.

o1 largest singular value
2. I || = |||l then sy = 7L = ~2BESTSING .
o,  smallest singular value

Remark 2.1 Conditioning is something inherited to problems. We have no control over them. What we
can control is the algorithm we use.

Definition 2.1.4 (Well-Conditioned & Ill-Conditioned).

1. Well-Conditioned: « is small, x ~ 1.

1

2. Ill-Conditioned: r is large: k ~ . .
numerical accuracy

2.2 Backward Stability

Definition 2.2.1 (Stability). How an algorithm performs under perturbations.
Definition 2.2.2 (Backward Stability). Let alg(z) be the algorithm we use to compute f(z). We say
alg(x) is backward stable for f(x) ifV x, 3 small ézx s.t.

f(z) = alg(x) = f(z + dx)

Remark 2.2 This definition indicates that we can approximate f(x) by exactly solving a nearby problem

using the algorithm.
f(x)
T
backward forward
error error
T+ oz
f(z+dx)

20



2 CONDITIONING AND STABILITY 2.3 Floating Point (FP) Numbers

2.3 Floating Point (FP) Numbers
Remark 2.3 (Main Takeaway) Computers only approximate numbers.
Definition 2.3.1 (Mathematically Representation of FP Numbers).

e F C R, the set of FP numbers.

* 3, base (typically g = 2,10, 16). 8 > 2, integer.

* t, precision, integer.

e x € Fifz = 0 oris written as

-(3)

where m is mantissa, significand, integer. For uniqueness,

frlam<pt—1 — 2 <1,

ﬁt

Also, e is the exponent, integer.

Example 2.3.2 z = 23.5

e Write x out in base :
B=10:2=2x10"+3 x10°+5x 107!
B=2a2=1x224+0x224+1x224+1x20+1x204+1x 27!
e Write in scientific notation:
B =10: x = (0.235) x 10?
B =2:x=(0.101111)3 x 10°
* Write using the formula:
B8 =10,t=2,then 10 < m < 99.

M 0235 = m =0.2235 x 102 = 23.5

ﬁt

However, m must be an integer, so we have to round: m = 24. So,

24
x =+ (102> x 10%, # of significant digit: 2

OTOH, 8 = 10, ¢t = 3, then 100 < m < 999. Then,

% —0.235 — m = 0.235 x 103 = 235.

21



2 CONDITIONING AND STABILITY 2.3 Floating Point (FP) Numbers

Then,

2
x =+ (130§> x 103, # of significant digit: 3

Definition 2.3.3 (Normalized Version).

dq di—1 Le

where 0 < dy < 3, integer.

n FP numbers

< ¢00000— 00009
50 51 52 R

n FP numbers

Definition 2.3.4 (IEEE Standard). IEEE standard stores FP numbers in three parts:
| s(2) | e(2) | f(x) | total
1 11 52 64
single precision (SP) 1 8 23 32
1 5 10 16

double precision (DP)

half precision (HP)

Example 2.3.5
s(z) =0; e(x) =10---0111; f(x) = 111010---0 in double prevision under IEEE.
The fraction bit is

251_|_250+249+247 1 1 1 0

1 0
- ot + oz 4o+ == ~ 0.90625.

24 T 95 2

The exponent bit:
e=20 4 ... 422421 4+ 29 =1031.

The sign bit:
(71)signbit — (71)0 - 1.

So,
x = +(1 4 0.90625) - 28,

where 8 is the normalized exponent bit, e(z) — 1023.

6. Limitations of IEEE Standard

* Exponent Limitations:

- toolarge = overflow — Inf — fatal error, but usually avoidable with rescaling

22



2 CONDITIONING AND STABILITY 2.4 Fundamental Theorem of FP Arithmetic and Error

— too small = underflow = 0

Example 2.3.7
Let ¢ = Va2 + b2. Suppose a = 10" and b = 1. Then,

¢ =+Inf +1=Inf = overflow

However, if we do rescaling:

2 b\ 2
c=s (9) + <> =10'"°y/1+0=10'?, = underflow

where s = max {a, b}.

e Fraction Limitations: rounding

2.4 Fundamental Theorem of FP Arithmetic and Error

Definition 2.4.1 (Machine Epsilon/c,, ).
1 _,_
€mach — 5/61 t
is
¢ the resolution of F;

* half the distance from 1 to the next largest FP number;

e maximum relative error due to rounding.

Theorem 2.4.2 Error Storing Numbers as FP
Vx € R, Jewith |e] < epacn S-t.
fi(z) =z(1+¢).

Remark 2.4 Rewrite, and we can get

xr .
fi(z) =2 +2e = ———— =¢, relativeerror

Example 2.4.3

1 (z) —
fi(z) = 3.14 and S = 10. Note that eyacn = 510‘3. Then, M

Suppose z = 7 ~ 3.14159..., and we have a computer base-10 with 3 significant digit. Then,

~ —5.07 x 107% = . || < enacn.

23



2 CONDITIONING AND STABILITY 2.4 Fundamental Theorem of FP Arithmetic and Error

Notation 2.4. Let x represent one of the four operations: +, —, x, and +.
e Exact arithmetic: z,y € R, z x y.

e FP arithmetic: z,y € F,z ®y = fl(x x y)

Theorem 2.4.5 Fundamental Theorem of FP Arithmetic
Va,y € F, e with |e| < epacn s.t.
r®y=(zxy)(l+e).

Remark 2.5

TRY—T*xyY
— =¢
Txy

e relative error =

* Occasionally, we have to redefine € pgcp, With 2¢ pgch.

* Complex arithmetic, similar analysis with larger ¢ pgcn:

(a 4+ bi)(c +di) = (ac — bd) + (ad + bc)i = more operations involved

Example 2.4.6 Is FP Arithmetic Stable?
Set-Up: f(z1,22) = x1 + x2 and alg(zy, z2) = fl(z1) ® fl(x2).
Analysis: fl(z1) = x1(1 + £1), with |e1] < epacn. Also, fl(x2) = x2(1 + e2), with |ea| < epacn- Hence,
fl(z1) @ fl(z2) = (A(z1) + fl(z2))(1 + e3) with |e3] < epach-
Combining everything, we have

A(z1) ® A(z2) = [21(1 + 1) + 22(1 +€2)] (1 + &3)
=x1(14+¢e1)(1+e3) +z2(z+e2)(1 +€3)
=x1(1+¢e1 +e3+¢e1e3) + x2(1 + 2 + €3 + 2¢€3)
=x1(1+¢e4) + 22(1 + €5)

Note that

lea] = |e1 + €3+ €1€3]
< le1| + le2| + [e1es]

< 2€pach + O(Eiach) :

So, alg(x1,xe) = f(x1,x2) + 421 + €525
—_———

forward error
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2 CONDITIONING AND STABILITY 2.4 Fundamental Theorem of FP Arithmetic and Error

New Question: Is it backward stable? i.e., can we find nearby z; and 7 s.t. alg(z1, z2) = f(71,72)?

Define z; = xl(l -+ 64) and 7, = wg(l + 65). Then,
= O(epacn) — small

So, the algorithm is equal to performing exact arithmetic over nearby numbers.

25



3 LINEAR SYSTEMS OF EQUATIONS

3 Linear Systems of Equations

3.1 Gaussian Elimination & LU Factorization

1. Setting
We will have A € C"™*™ throughout this section.
2. Gaussian elimination in picture

X X X X X X X X X X X X X X X X
X X X X 0 x x x 0 x x x 0 x x x
X X X X 10 x x x 10 0 x x =10 0 x x| upper triangular
X X X X 0 x x x 0 0 x x 00 %
A [,A Loy A LLA=U
1 1
x 1 01
x 0 1 0 x 1
x 001 0 x 01
unit lower triangular unit lower triangular
3. General Formulas and Two Strokes of Luck
e Look at k™" column of A: i i i i
alk a1k
Ak—1.k . Qk—1,k
ar=| app | —> Leap = | apy,
Ak+1,k 0
_am,k_ . O -
In words, subtract /; ;, (row k) from (row j):
ik = PE (k< j <m)
Q. k
g N
1
Ly =
—lgt1,k
0 i O 1]




3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

* Lucky Break #1: L, is easy to invert: det(Ly) = 1.

g 0
L= !
etk
0 lmi O 1]

Another representation of L, and L; *. Let

Then,
Lp=TI—1lke; and L;' =T+l

o Lucky Break #2: L, 'L ', is still unit lower triangular.

Proof 1. Use the previously defined notation:

L' Ly = I+ lep) (L + lrregy)
=TI +1lgey, + lppr€pyq + lkeplirier g

= I+ ey, + lesr€g + (eplirr) leerg
=0

=TI +lgey + let1€54

g .
1
= le+1,k 1
L2, k41
10 L i L k41 0o - 1]

QED. H
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3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

¢ Punchline:

=L
A= LU,
o 0 ]
l271 1
PP
where L = | . 1 ,and [, = Gik
Qf k
g1,k
g Imz o b e e 1]
Assumption: ay, j, # 0
Algorithm 1: LU Factorization
Input: U=A; L=1I
1 begin
2 fork=1—-m—1do
// loop over columns
3 forj=k+1— mdo
// loop over rows below diagonal
4 L(j, k) = g((lilllz)) ; /* building multiplier */
5 U@, k:m)=U(j,k:m)— L(j, k) «U(k, k : m);

4. How expensive is the algorithm? Operation Count (f1ops)
At k-th step, for row j,

U(j,k:m)=U(j,k:m)—L(j, k) «U(k,k:m)
e numberof«x:m —k+1

e numberof —:m —k +1

e number of division: 1

At k-th step, for all rows, j = k£ + 1 tom:
(m—k)(1+(m—-k+1)+(m—k+1)) £flops

28



3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

Fork=1tom — 1:

(m—k)(14+(m—-k+1)+(m—k+1)) flops

k=1
m—1 m—1
=Y 2lm—k)?+3m—Fk) =Y 2k*+3k.
N——
k=1 m—-1to1l k=1

Asm — oo,

m 2 2
/ 222 + 3z dx = gmg + smaller things =— Work for GE: ~ §m3 flops.
1

Algorithm 2: Solve Linear System with GE

Input: A = LU
1 begin
2 y=Ux;
3 Solve Ly=b// L: lower triangular; forward substitution ~ m?
4 Solve Uz =y // U: upper triangular; backward substitution ~ m?

Output: x s.t. Az = b

Example 3.1.5
2 1 —4
L= 1 ;o U= 10 3|; b= |-5
3 4 1 7
e Solve Ly = b:
1 Y1 —4 (1 =—4 n —4
2 1 y2| = | =8| = §2y1 + 2 =—-5 = |y2| = | 3
3 4 1| |ya 7 Syt +4dys tys =7 Y3
e Solve Ux = y:
2 1 0| |z —4 2r1 + 212 =4 T —2
10 3| |z = | 3 = 10x9+32z3 =3 = |x2| =10
I3 7.7?3 =7 I3 1
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3 LINEAR SYSTEMS OF EQUATIONS 3.1 Gaussian Elimination & LU Factorization

Example 3.1.6 Instability of GE
e Complete Failure: Suppose

01
11

3+5

= ka(4) = — A is well-conditioned

A=
2

but we still cannot apply GE on A. So, conditioning and stability are two different things.

e Slightly perturbed system: Suppose

10720 1 1 0]|10720 1
= =LU
1 1 1020 1 0 1-10%
However, on a computer with ey, = 1075, we have
- 1 0 -
L= , and U=
[1020 1]

Note that L is close to L, and U is close to U. So, GE (LU factorization) is forward stable.

However,

A=

0 —10%

10720 1 ]

10720 1
1 0

LU = # A.

As LU is not close to input matrix A, GE is not backward stable.

1
Further, if we solve Az = b, where b = [O] . Then,

1 .
LUx=b = x = [1]; LUx=b = x = [(1)]

The computed result is still not closed to exact arithmetic.

Theorem 3.1.7 Summary on (In)Stability of GE
GE computes LU stably (i.e., L and U are close to exact L and U), but it does not solve Az = b
stably. Hence, LU factorization is stable but not backward stable.
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3 LINEAR SYSTEMS OF EQUATIONS 3.2 Pivoting

3.2 Pivoting

Definition 3.2.1 (Pivot/Pivotting). Pivot is the number/entry we divide by to construct multiplier:

[ Tk

Jyk - °
Tk k

* kK x

0 xpp * *

0 % * %

0 % * %

Remark 3.1 We don't have to always use diagonal as the pivot. We can permute.

2. Partial Pivotting

Overview: swap rows and create zeros

X X X X X X X X X X X X
X P4 X®XXL1 X () x x
X ) x x ~ | x X
X X X X X X X X X

A P, A L,P1A

Ly 1 Ppo1--- LoPbL1PLA=U

3. Lucky Break #3

Ly 1Pp1---LoPoLiPLA=U

(L1 L5LY) (P - PAP)A =T,

m

where

, Lm—h L,

m—1 — m—2 —

Pp—1Lm 2P,

Proof 1. Inthis proof, we aim to show that L/ Pm,le,gPygil:

m—2 —

Ly—1Ppn—1Lym—2Pp—2---LiPi = Ly 1Py 2Ly 2l Ppyo--- L1 Py
= Lin—1Pm-1Lim—2(P,,  { Pm1) P2+ L1 Py
= Lin—1(Pm—1Lm—2P,,% ) Pn—1Prn—2--- L1 P
= Lin-1L)y_oPm-1Pmo--- L1 Py
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3 LINEAR SYSTEMS OF EQUATIONS 3.2 Pivoting

QED. ®m
L/

/
Lm72’ m—3’

Claim 3.4 I/

19 .., L are still lower triangular matrices.

Theorem 3.2.5 GEPP

Ly 1Py LiPIA=U
(Eppor g I5) (P YA = U
PA=LU

Remark 3.2 (How to choose a privot?) Choose entry on or below diagonal in a column that has the

largest magnitude:
Ljk

likx = .
J
xk,k

)

Note that if xy,, is large, we will have underflow, so l;;, = 0. If x,;, is small, we will have overflow, so
l;r = Inf, which is fatal. However, as we pick xy, i, out pivot, as the largest magnitude entry in each
column, we know L has lower triangular entires with magnitude < 1.

Algorithm 3: An Unrealistic GEPP Algorithm
1 begin
2 Permute rows of A with P;

// we don’t know the true value of P!

3 Use GEon PA = LU;

Algorithm 4: GEPP in Practice
Input: U=A4; L=I1; P=1

1 begin
2 fork=1:m—-1do
3 Select i > k to maximize |U (i, k)|;
// on the k-th column; on or below diagonal entry
4 Swap rows:
5 U(k,k:m)«— Ui,k :m)
6 P(k,:) «— P(i,:)
7 L(k,1:k—1) — L(i,1: k—1)
8 Do j-loop in Algorithm (1)

Output: PA = LU

Remark 3.3
* Cost of GEPP is the same as GE in £ 1lops

* Representing matrix P: we don't need to store the matrix. We only need the incides.
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3 LINEAR SYSTEMS OF EQUATIONS

3.3 Choleksy Factorization

* Solving Ax = b with PA = LU:

— PAx = Pb
— Solve LUx = Pb.

» Complete Pivoting: Search for the largest entry in magnitude in the entire sub-matrix.

PAQ = LU,

where Q) is responsible for columns swaps.

3.3 Choleksy Factorization

Remark 3.4 It is the “LU factorization for Hermitian matrices.”

Definition 3.3.1 (Hermitian). A € C™*™ is Hermitian positive definite (symmetric positive definite,

SPD), if
e A= A* and

e x*Ax >0 Vx#0 — Ahaspositive eigenvalues.

2. GE for SPD
Suppose A is SPD:
_1 w* weC™ 1
A=

w K] KeC(m=1x(m=1)  jsSpD

oot w

B (w I]]0 K — ww*
1 O] [1 0 [1 w*] [by symmetry]

= Y 8y y
w 1) o 0 1
—_—— ——

R} Ry

Note that K — ww* is also SPD, so we can form a recursive algorithm.
Claim 3.3 K is SPD.
Proof 1. Note that

S

since A is SPD. Then, K must also be SPD.

QED. ®m

Theorem 3.3.4

Every SPD has a unique Cholesky factorization.

33



3 LINEAR SYSTEMS OF EQUATIONS 3.4 Other Special Matrices/Factorization

Theorem 3.3.5 Cholesky Factorization
Suppose A is SPD, then
a;; w*
A= ;)1 K] [(111 > ()}
[ o o] |1 a w'/a
— * o = a
w/a ] K- [0 I ] o= Vo)
- (6
= RIAIR,
= RIR5A2Ro Ry [recursively doing the facotrization]
=(RiR5 - R} ) (R RoRy) [R; : upper triangular matrix]
= R'R [R =Ry, RoRy, withry; > 0]

Algorithm 5: Cholesky Facotrization

Input: SPD matrix A R = triu(A);

// triu(A) returns a triangular matrix that retains the upper part of the matrix A

1 begin

2 for k=1:mdo

3 for j=k+1:mdo

' LR(jj:m>=R<jj:m>—R<kj:m>~ k),
| | P Ry

5 R(k,k:m) = R(k,k:m)/\/R(k,k);

Remark 3.5 (Operation Count and Comparison with LU Facotrization)

. 1
Operation Count: ~ §m3.

. .2 . .
Operation count for LU is ~ gms_ As we have symmetry here, we get a cheaper algorithm.

3.4 Other Special Matrices/Factorization
e A=LDM*

— L and M are unit upper/lower triangular matrices;

- D is a diagonal matrix.

Proof 1.
LU = LD (D7'U)
M*

Q.E.D.
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3 LINEAR SYSTEMS OF EQUATIONS 3.4 Other Special Matrices/Factorization

e If Ais Hermitian, A = LDL*.

¢ Banded matrices:

— bz, and by denote the lower and upper bandwidth.

- ajj =0fori>j+byandi < j — by.
Claim 3.1 A is banded and A = LU. Then, L and U are banded as well.

e Sparse Matrices: A has lots of 0 entries.

If Ais sparse, A = LU, then L and U may not necessarily be sparse.
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4 STABILITY OF SOLVING LINEAR SYSTEMS

4 Stability of Solving Linear Systems

4.1 (In)Stability of GE & GEPP

Remark 4.1 For an overview of Big-Oh notations and how to interprete it in the context of stability, refer
to Section 4.5.

Theorem 4.1.1 Stability of GE

Suppose A = LU, where A = C™*™, without pivoting.

If Ahas LU factorization, then for sufficiently small ey, the factorization can be done success-
fully in FP arithmetic, and L and U satisfy

LU=A+0A (JA=LU-A=LU- LU),
then 16A]
T T O(gmac )7
L0 - 11U ’
which measures how close the product is to our original A.

o If||L|| - |U|| = O(||A]|), then LU factorization is backward stable.

* If not, we could have instability.

Example 4.1.2 Example 3.1.6 — Revisit

1072 1
1

A=

1 0 10~20 1
L= ., U= .
1020 1 0 1—102%0

1L - 11U1] > o[ AlD)-

Then,

So, we have instability when solve Az = b with LU factorization.

3. Growth Factors for GEPP

* |L|| = O(1) (recall the construction of L, each entry is less than 1 magnitude). So, all we worry

about this
I0A]

[l
Or, equivalently, if | U] = O(]|A4||), then GEPP is backward stable.

O(gmach) .

* Definition 4.1.4 (Growth Factor). Define the growth factor of PA = LU as

max |Uj ;|

Z7]
P= mmray = IU11=00l4l)

)
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STABILITY OF SOLVING LINEAR SYSTEMS 4.1 (In)Stability of GE & GEPP

In practice, we want p to be small, i.e., p ~ 1.

Theorem 4.1.5 Stability of GEPP
Given PA = LU, then our computed solution

LU = PA + 6A,
where 15A]
—— = O(penach)-
JA] — Olpemact)

e If|l; ;| < 1,7 > j, = noties = unique pivot per column = P=P.

* If p = O(1) uniformly for all matrices of a given dimension m, then GEPP is stable.

Example 4.1.6 Worst Case Instability

1 1] 1 1] 1 |
1 1 1 2 -1 1

A: _1 ; U: 4 3 L: _1 _1
-1 -1 -~ -1 1 2m—1 -1 -1 -+ -1 1

We do PA = LU, GEPP:
e What is the growth factor?

2m—1
p= 1

=2m"1(= O(2™) ~ O(1)), constant w.r.t. || A|.

— Growth factor O(2") corresponds to a loss on the order of m bits of precision.

oAl _
> CPEnach-

1Al

—> 0A can be perturb inputs by a magnitude around 2.
This can be catastrophic: double precision= 64 bits.
We are in trouble when we get about 10 x 10 matrix??!! No!
— This is an awkward part of the theorem. The theory was for fixed m. It never required
uniformty in m. We still have a constant bound in p. For example, the following is prob-

lematic:
p =241 p =214 ~O(A]).

So, as long as p does not depend on || A||, we are good.

37



4 STABILITY OF SOLVING LINEAR SYSTEMS 4.2 Stability of Backward Substitution

— GEPP is backward stable even if we are in the worst case.

4.2 Stability of Backward Substitution

Theorem 4.2.1 Stability of Backward Substitution
Given Uz = b with U upper triangular. Backward substitution is backward stable.
(U+0U)x =1b,
with 1501
—— = O(Enach)-
IU] ’
Specifically,
10U 2
w7 = mac O mach/*
U] = MEpach + (5 h)
Proof'1.

e When m = 1. Solve U171:131 = bll
21 =b1© U1

By the Fundamental Theorem of FP Arithmetic:

Ui1

- b1
T = ( )(1“‘51)7 |51| < €mach
Write division with only perturbation on U ;:

- b
Tl = T /1 I\
YT UL+ )

/ _51 2 3 . .
gy = =—ci(l—e1+e]f—¢e]+--- Geometric Series
14 t(l-er e ) | ]

Then, |5/1| < Emacn + O(egach)'

|0U1 1] 2
’ S emac + O 8l’nac: *
U1l 2+ Olenacn)
b
e When m = 2. Solve Urp Uiz o — 7M.
Uso| |22 ba
~ o b2 / 2
To = by © U272 = ‘51‘ < €mach + O(gmach)'

Ugo(1+¢h)’
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4 STABILITY OF SOLVING LINEAR SYSTEMS 4.3 Perturbation Theory of Linear Systems

Also,

T1=[b1e(U2®%)] © Ui
= [b1 © (U1222(1 + £2))] ©® U1
= [(bl — Ul,zfg(l +e9))(1+ 63)] SEUR

_ (bl —U172f2([}+€2))(1+83) (1—}—84)
1,1

)

_ b - Ui 2Z2(1 + €2)
U1 (1+e5)(1+¢))
(142e5)
_ by~ Uiafa(l +e2)
Ura(1+ 2e5)

Therefore,

10U 2
[U12|

oU
‘ 1’1‘ = 2‘85’ < €mach T O(Eiach)
U1 1] ~~

m

= ‘62| < €mach + O(sr?lach)

e When m = 3 onwards, error is accumulated when we do substitution more and more times.

QED. =
4.3 Perturbation Theory of Linear Systems
Set Up:
Problem
Axr = b, where Aisinvertible, and x is the exact solution P)
Perturbed Problem

(A4+d6A)x = b+ b, where (A + 0A) assumed invertible, and z computed solution  (PP)

Error in Solution

~

ox=7—x. (B)

Goal: How big iz is relative to = (find an upper bound)

From (E), we have

T =ux+0x.
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4 STABILITY OF SOLVING LINEAR SYSTEMS 4.3 Perturbation Theory of Linear Systems

Plug into (PP), we have

(A+6A)(x + 0x) = b+ b

(A;@—i—A(h + 6Ax +6ASx =F+ 6b
—b

(A4 dA)ox = db— dAx [Assumption: A + J A invertible]
b = (A+6A)"1(0b— dAx)
o] < [|(A+54)7| - b — 5 Az

71 . _
|d|] < H<A+5A) H 166 — 5 Az]| (Goal)
[Ed| [z

Lemma4.1: If | X|| < 1, then

e | — X isinvertible.
[oe)

Gy
i=0

o - X)) < —

11 X]]

Proof'1.

e By contradiction, (/ — X)z =0, 2 #0 = null({ — X) =

* Show <§:X> (I—X)=1-XxN",

1=0

HX’“H < ||X||k — ask — oo, HX’“H — 0.

* Consider
H (I-Xx)t H = Z X' [Z X' converges, so we can use triangle inequality safely.
=0 i=0
o .
X
i=0

o
Note that Z | X||" is a geometric series, then
1=0

Z” T

So, we have .

_ -1
=207 =y

QED. ®m
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4 STABILITY OF SOLVING LINEAR SYSTEMS

4.3 Perturbation Theory of Linear Systems

Use Lemma 3.1 to simply (Goal)
la+oa)7 = (a

Assumption: ||A~15A[ <
Now, we can apply Lemma 3.1:

1A+ 07| < [[a~] -
<A™

< [l

Now, let’s go back to (Goal):

6] _
fell =

_ A~ . <H5b—6Aw||>
= \ 1= JA] - Jla4] IE]

- A7 . <H5bH + [|5A] - ||x||)
=\l o4 &

1]

[(A+38A)7H| - (66— 6 Ax|

]

(I+A7154))

YAty o+ atea)

|A7Y| - [|6A]|l < 1 (In order to use Lemma 3.1)

|(r+a7t54)7"
1
L—[lA=H] - (16 A]

[Lemma 3.1]

[Triangle Inequality & Multiplicity]

1Al

[160]]

oA oAl 51 .(Hébm""if”"'x")'<j”)

[multiply by magic 1]

1
S N TR W
a 0A All -
\ﬁ,_/

AT
B OV N A 7 B 7
[0A] [A[[ - fl=) (Il
1—r(A) - ——
IA]
Recall Az = b, we have
ol < 1A]l - [[z]| =
So,
5| K(A)
[ — [6A]l
1— k(A=
WA
where

. oz,
ell”

41

||5A||>

1A]]

[Definition of Condition #|

1

1
>
1ol = 1AL - ]

,<6b+ ~ >
IR

: the relative error of solution (typically unknown).



4 STABILITY OF SOLVING LINEAR SYSTEMS 4.4 More Practical Perturbation Theory

k(A)

[ 4]
1]
If||0 Al is small, this term ~ k(A).

o l1ooll - [loA],
el Al

: how hard the problem is to solve.
1—k(A)

relative perturbation of the problem.

Example 4.3.2 Is this bound pessimistic or tight?

R P

Then, ro(A) = 10°. Consider

Consider

1076 14106
e )b = [ 0 ] ,we havez = + when solving Az = b + 6b. Then,
) ob
|||| xH‘OO < Koo(A) - <|Hb|’°°) [no perturbation on A4, ||[6 A|| = 0]
T (o) o0

10-¢ 10-¢
< ||A||OOHA‘1HOO<1> — 109 < 1,

0 1
e )h = ,S07T = . Then,
106 2

el 18]l oo

In this case, we attain the upper bound.

So, theo bound is tight.

4.4 More Practical Perturbation Theory

Remark 4.2 (Problem in our previous perturbation theory) We don’t know perturbations b and § A.

Definition 4.4.1 (Residual). We define residual as

r = Az — b.
Then, we have the following:
T=A"1r4+A471
Sr=F—r=2—Ab=A"1r [Az =b = 2 = A"

o] < JATH[ - lirl)
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STABILITY OF SOLVING LINEAR SYSTEMS 4.5 Big-Oh Notation

Theorem 4.4.2 More Practical Perturbation Theory

364 5.4, (A+6A)7 = bwith
joal < I
B

e If Ais well-conditioned and residual norm is small, then z is a good approximation of .

Theorem 4.4.3 Point-wise Analysis
If|(5AU’ < €|Aij|, |(5bz| < €’bi|, and EK(A) <1, then

ool 2
el ~1-¢

€ 1
© pllan ]l

where |||A7"] - |4]|| , = max |4 ’ |A;;| is the component-wise relative condition number.
27.7

Example 4.4.4 Condition Number and Component-Wise Relative Condition Number

Suppose
a 0 «o 1 )
A= ], b:[], x:[ , witha > 1.
0 1 1 1
Then,
e 1/« 0.
0 1
So,

koo(A) = ||A7Y| Al =a — couldbelarge

ker(A) = [[|[A7 - Al =1 — much tighter

4.5 Big-Oh Notation

Definition 4.5.1 (Big-Oh Notation). If

Example 4.5.2

> C€nach;,
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4 STABILITY OF SOLVING LINEAR SYSTEMS 4.5 Big-Oh Notation

where ¢ cannot depend on ey,cn. SO, we have
|z — Z|| < cenacnllz]|-

If || z|| is large, we have more wiggle room.

Example 4.5.3 GE vs. GEPP
Consider

e 1]’ L_[l 0]7 U_[e 1 ]
11 1/e 1 0 1-1/e

When e — 0, then ||A||; — 2, || L||; = oo, and ||U||; — oc.
By Theorem 3.3.1 and Theorem 3.3.5, we have

H(;AH < C€nach HLH HUH :
NN
—00 —00

Hence, GE is not stable because it allows large ||JA||.
To have backward stable, we require ||L|| - || U] = O(||4])).
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5 LEAST SQUARES

5 Least Squares

5.1 Least Square Problems

1. Least Square as an Optimization Problem

Set-Up: A € C™*" with m > n (usually m > n). We call A is overdetermined.

Goal: find x that minimizes the 2-norm of the residual
r=b—Ax or r=Ax —b.
As an Optimization Problem:

min || Az — b||3 = minz |A(i, ) — by|? (Problem)
i=1

Example 5.1.2 Polynomial Data Fitting/Interpolation
e Given:

- Data: (z;,y;), i=1,...,m.

— Polynomial: we choose degree d = m — 1
pa(x) = co + crz + -+ + cqr.
¢ Goal: determine coefficients ¢; s.t.
pa(xi) =y, i=1,...,m.
* The system has m equations and has d + 1 unknowns. So,
d+1l=m = d=m—1.

Thus, we can form the system

_ ) AT _
1 o =z - x c1 U1
2 m—1
1 zo x5 -+ Co Y2
1z, 2 a1 e Ym

AeCm>xm Vandermonde matrix

* In terms of least square: || Ac — y||,. But we can choose c to make || Ac — y||, = 0.
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5 LEAST SQUARES 5.1 Least Square Problems

Example 5.1.3 Best-Fit Polynomial

e Given:

— Data: (ZL’i,yi), 1=1,....m

— Polynomial: we choose degree d beforehand, d < m — 1.
pa(z) = co + crz + -+ + cqr.
e Goal: determine coefficients c; s.t.
pa(zi) =y, 1=1,...,m.

e Form a linear system:
d+1=m — d=m — 1.

Thus, we can form the system

1 2z 2?2 - a2
2 d r T
1 =z 25 --- x5 1 n
€2 Y2
: Cm Ym

1y 22 xd

AeCmx(d+1) Vandermonde-like matrix

This system is exactly solvable when y € range(A). However, this is very unlikely to happen

in practice.

* Now, we are really in the case of least squares:
m

mcin | Ac — yH% = Z (pa(zi) — yi)2'
i=1

* Solving this least square in MATLAB:

1 |c=A\y;

4. How to solve a Least Square Problem: A Geometric and Linear Algebra Story

1. For any z, Ax € range(A).
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5 LEAST SQUARES 5.1 Least Square Problems

2. b € C"™ may not be in range(A).
3. Residual: r = b — Ax.

4. When is |||, as small as possible?

When Az is “closest” to b: Az L r.

/b

Ax”
range(A)

Hence, our goal is to find z such that Az 1 (b — Ax). That s,

(Az)*(Az —b) =0
o [A*(Ax - b)] =0
Apparently, x = 0 is a trivial solution. It is uninformative, so we ignore it. Suppose = # 0, we have
A*(Ax —b) =0
A*Ax = A*b (Normal Equations)
» A*Ais symmetric positive semi-definite (SPSD)
* (Assumption) If A has full column rank, A*A is SPD — unique solution.
5. Ways to Solve Normal Equations
1. GEPPof A*A: P(A*A)=LU
2. Cholesky Factorization: A*Ais SPD — A*A = R*R.
Problems:
 Conditioning: ky(A*A) = ka(A)?
* A*A could be dense even if A is sparse.

* More rounding errors
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5 LEAST SQUARES 5.2 QR Factorization: Gram-Schmidt Orthogonalization

3. SVD of A:
Suppose A = UXV*. Then,

A*A = VX2V*
A*b = VXU*b
— z=VXU*.

SVD is a great and stable option, but expensive.

Operation counts: ~ 2mn? + 11n3

4. QR Factorization: workhorse
A=CQR,

where @) has orthogonal columns, and R is upper triangular invertible matrix.

A*A=R'Q*QR=R'R

A*b = R*Q™b
— R'Rz = R Q*b
z=R1Q*b
: 2 2 3
Operation counts: ~ 2mn* — gn

5.2 QR Factorization: Gram-Schmidt Orthogonalization

Definition 5.2.1 (Orthogonal Projector).

 Pisa projector if it is square and P? = P (idempotent).
* [ — Pisacomplementary projector: Pv € range(P) and (I — P)v € null(P).

* Pisan orthogonal projector if P* = P. A non-orthogonal projector is called an oblique projector.

10
P =
[—1 0] P_1[1 —1]
. . Tol-1 1
\\ I v \\ / v
R l Py
P'U\\\ \\\
“range(P) " range(P)
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5 LEAST SQUARES 5.2 QR Factorization: Gram-Schmidt Orthogonalization

Remark 5.1 P is not necessarily an orthogonal matrix.

Goal: Find {q¢i, ..., q,},orthogonal, that span the same space as {ay,...,a,}, L.I.
Claim 5.2 ¢ is unit vector = ¢q¢* is an orthogonal projector.
Proof'1.

* (99")* = ()4 q") = aq*
N

* (9¢*)" = (¢*)"q = qq".

QED. H

Figure 1: Decomposing a with respect to ¢

q9°a = (q°a)q

Claim 5.3 @ has orthogonal columns — QQ* is an orthogonal projector.

Theorem 5.2.4 Gram-Schmidt Procedure
Start with
v = ap ve = ag — q1¢jaz (Linkto 5.2) U3 = a3 — q1¢7a3 — q2¢5a3
v1 = U2 = U3
q1 = q2 = q3 =
vzl [[vz2l, l|vs]lo
In general, in the j-th step:
7j—1
vj = aj— Y aria
k=1
q; = S
7 ol
5. From Gram-Schmidt to QR
A=QR
o | o | [villy  giaz
0 ool g3a3
ay a2 - Gp| = |41 42 - (Qn . .
| | . ! ' ' ' '
0 0 0 ol
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5 LEAST SQUARES 5.3 QR Factorization: Householder Triangularization

In general,
q; a; 1< ]
rig = lvilly, 1=
0, 1> 7.

Computation cost: ~ 2mn?,

where m comes from ¢} a; and n? comes from the number of columns sum and outer loop.

Algorithm 6: Gram-Schmidt (Unstable)

1 begin
2 forj=1:ndo
3 v = aj;

// Inner loop: re-orthogonalize

fori=1:j—-1do

Tij = 4; 45

Vj = V5 = T4i,j%5
rig = llvjlly;
| 4= 0i/754

Algorithm 7: Modified Gram-Schmidt (Stable)

1 begin

2 fori=1:ndo

3 L Vj = aj;

4 fori=1:ndo
rii = [villys
qi = vi/Ti,i;

// Orthogonalize on the way
forj=i+1:ndo

5.3 QR Factorization: Householder Triangularization

Remark 5.2 This is what MATLAB is doing.

Example 5.3.1 Householder Triangularization
Consider A € C°*3. The idea is to find 3 Q;’s suc that

R
- g
T 0
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5 LEAST SQUARES 5.3 QR Factorization: Householder Triangularization

X X X X X X X X X X X
X X X Q 0 x x Q, 0 x x Qs 0 x x
XX X|—7— = [0 x x| ——=|(00x| —=1(00
X X X 0 x x 0 0 x 00
X X X 0 x x 00 x 00 R
A Q1A Q2014 Q3014 = [ 0]
2. How to choose Q2
e We want:
X %
X 0
Q=1
X 0
X 0
e Main idea: use reflections:
X
X
- ==~ X =
//’ ‘-\\ X
// ) X
// \\ L
/ \
i u y —2U
| ]
1 1
' [Ix[]
0
X =
Q 0
0

— How to describe line L in higher dimension?

If we are given a normal vector u, then L = {z | u*z = 0}.

— From the diagram, we get

Qx = x — 2(projection of x onto {u})

=z —2u"z)u

= - 2wz
Q
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5 LEAST SQUARES 5.3 QR Factorization: Householder Triangularization

This is the Householder reflection. If u is not normal,

*

Q=1-2"".
u u
e How to find u?
=l
0
- Weknow:xz and Qz=
0

— A normal vector to line L wiil be ]

u=|lz|e1 — .

— In code:
u = sign(xy)||z|l,e1 — x,
where
1, z>0
sign(z) =
-1, z < 0.

— We choose the sign for stability and avoid catastrophic cancellation.

3. Back to Triangularization

1 0
uut 1 1
1
Qr=1-2—-—; Q2 = Uy | Q3= |0
uju I—-2— uzu3
UgU2 I—-2——=
Uzu3
Algorithm 8: Householder Triangularization
Input: Matrix A € C™*"
1 begin
2 fork=1:ndo
3 x = Ak :m,k);
1 uy, = sign(z1) ||z 61 — @
U,
5 U = ’
[l
6 Ak :m,k:n)=Ak:m,k:n)— 2uk<‘?1}§A(k? :myk:n) D // matrix-vector product is
more efficient than matrix-matrix product. ©So, we do the inner multiplication
B first and not the outer product.

Output: Upper triangular matrix R € C"™*"

4. What about ()?

We only need to store u;’s in practice. If we want to solve min || Az — b||, using A = QR, we aim to

solve Rx = Q*b. To find Qz, we can do something similar to Algorithm 9. So, we can store  implicitly.

52



5 LEAST SQUARES

5.4 QR Factorization: Givens Rotations

Algorithm 9: Compute Q*b from Householder Triangularization

1 begin
2 fork=1:ndo
3 L b(k:m) =b(k:m) — 2uk(upb(k : m))

Output: Q*b

3 2
Computation cost to form R: ~ 2mn? + 3"

5.4 QR Factorization: Givens Rotations

3

Example 5.4.1 Givens Rotations Step #1
X X X X X X X X X
x x x| G 0 x x| G 0 x x| Gu 0 x x
X X X X X X 0 x x 0 x x
X X X X X X X X X
4 G124 G13G124 G14G13G12 A = GA
N ——, re—
G
2. How do we find G?
’//”—_‘\\\\x:[xl]
/, {";’L \ X2
’ n X : \\
/ 5, R
.’ o "2
| xl 1
| Gx=[\/x%+x§
0

Consider the 2 x 2 rotation matrix: if we want to rotate a vector clockwise by 6:

C
S

[cos(&) —sin(6)
sin(f)  cos(6)
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5 LEAST SQUARES

5.4 QR Factorization: Givens Rotations

where
1
C =cos(0) =
( ) JJ% + :U%
Further, G = s .
-5 C
Proof'1.
Go — C S T
_—S C X9
_ [ Cx1 + Sxo
_—Swl + Czo
I 0
3.
In general, i
_ - C
c S
-5 C
Gio = 1 , Giz=
- 1_
b
C S
-5 C

and S =sin(f) =

L2

2 2°
V] + x5

QED. H

where the first C' appears on the i-th row and i-th column, S appears on the i-th row and j-th column,

—S'is on the j-th row and i-column, and the second C is on the j-th row and j-th column.

4. Comparison of Householder and Givens

* Householder is more stable and cheaper for dense matrices.

* Givens is cheaper is each step and has its benefits.
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5 LEAST SQUARES 5.5 Rank Deficient Least Square

5.5 Rank Deficient Least Square
Set-Up: A c C"*"withm >n. rank(A)=r <n.
1. Approaches to Solve the System

* QR with column pivotting:

ia n-—r
y
AP=QR=Q w
0 0 n—r
We can further write
Ri1 Ris
AP =QR = ,
Q Q 0 0

where Ry, is a non-singular matrix with rank(R;;) = r.

- Find column of A with largest 2-norm and swap with first column. Perform QR step:

R X x|

. 0
Aidh = ’A(22m72:m)‘
|0 _

— Repeat on submatrix:
Q1 Q3QTAPIPy - Py

— Stop when largest column of A has zero norm

— To solve least square problems:

2
Az — b2 = | AP P*2 —b ‘

~~ 2

= |QRP*xz — b3

2

—||RP*x —Q*b ‘2

-

= ||[Ri1y + Riaz — c[f3 + [|d|l5,

2
Ri1 Ry

0 0

where  is arbitrary, and ||d||5 does not depend on z. Hence, we will have co-many solutions.
Often, z = 0 gives the minimum norm solution.
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5 LEAST SQUARES 5.5 Rank Deficient Least Square

2. SVD Approach (Pseudoinverse Approach)

14z — bl = [IlUSv* 2 — b]}3

2
=||2V*z-U"b
—~
Yy 2
2
= ||Xy — U"b
~~
z ll2
_01 i - - _ -
o Yr Zr
= | " — 3 Yr,zr €C" o) 2 € CMT
O y/ Z/
. O = ) ) ) )
01
_ . _ 2 ! 2
= | : Yr z 2+ =2 2
o U(:,1:r)b U(,r+1m)b
-
—_—————

Invertible X,

Note that 2’ does not depend on z or y. Further, . = ¥, 12, = 3/’s entries are free (and we usually
set them to 0)

V(1) 'e =101 :7)%
= V(1:mZ'UG1:r)%

~
pseudoinverse of truncated SVD to rank r

More generally, z = A'b = ATb, where AT or A+ are pseudoinverse of A, defined by
At =vEiU*,

where )
1/o1
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5 LEAST SQUARES 5.6 Perturbation Theory of Least Squares

5.6 Perturbation Theory of Least Squares

1. Stability

Normal Equation + Cholesky < QR (Householder) < SVD

Theorem 5.6.2
Suppose A € C"™*"™ with m > n and rank(A) = n. Denote

True solution: rrs = argmin || Az — b|3, A*Axy g = A*D
x

Computed solution: T1s = argmin ||(A + 6 A)x — (b + 0b) |3

Residual: rs = Axris — b
Assume
10A]] H5sz} 1
€ = max . <
{ Al "~ Il r2(A)
Then,

|ZLs — w15l <e (2@(14)

I tan(@)n%(A)) +0(e?)
lzeslly

~
=krs, condition # of least square

= eKLs + (’)(52),

_ vl
1611,

where sin(6)

Remark 5.3 (Geometric Interpretation of 0) 0 is the angle between b and range(A).

Proof 1. (Intuition)
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5 LEAST SQUARES 5.6 Perturbation Theory of Least Squares

0 is small, 6 ~ 0.

bis almost in range(A)
= rissmall

— almost solve a linear system, so the error should mostly depend on x2(A4) and ¢
2/&2 (A)
cos(A) ~ 1

~ 2ko(A)

6 is not small nor close to g

KLs = + (tan(f) ~ 0)k3(A)

r is moderate in size

— condition number could be a bigger problem

_ 2k2(4) 2
LS = cos(A) +tan(0) k5(A)
non-negligible

(Caselil]o = .

bis almost perpendicular to range(A)
= true solution z1g ~ 0

= ks explodes: k1 g = 0.

s — m + tan(0)x2(A)

QED. =
Remark 5.4 In the kg term,
* ro(A) indicates “can we solve a linear system.”
* cos(0) indicates ‘are we completely unable to solve / do we get completely different solutions.”

o tan(f)k3(A) indicates “do we need to project.”
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6 EIGENVALUES AND EIGENVECTORS

6 Eigenvalues and Eigenvectors

6.1 Eigendecomposition

Definition 6.1.1 (Eigenvalues & Eigenvectors). A € C"*™, a nonzero vector z € C™ is an eigenvector
of Aand X € Cis its corresponding eigenvalue if Az = \z.
Definition 6.1.2 (Spectrum of A). The spectrum of A is the set of all eigenvalues of A, denoted A(A).
Definition 6.1.3 (Eigenspace). Eigenspace of A, E, is a subspace of C", where the action of A mimics
scalar multiplication:

Ey={xz e C™| Az = \z}.

Theorem 6.1.4 Eigendecomposition

A=XAX"! or AX = XA,

where

A1

o .
2
X = T1 Xy - T and A= . )

where z;’s are eigenvectors and \;’s are eigenvalues.

Remark 6.1 Not all matrices have an eigendecomposition.

Example 6.1.5 Matrix without an Eigendecomposition

11
A= ]
0 1

6. Computing Eigendecomposition by Hand

Ax = \x
<~ (A—A)xz=0 or (AMl—A)z=0
null space problem
Step #2 <= Find a basis for null(A — A\I).
<= Eigenvectors are non-zero, so null(A — \I) must be non-trivial
<= A — A must be singular

Step #1 <= Choose A s.t. det(A —AI) =0
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6 EIGENVALUES AND EIGENVECTORS 6.2 Algebraic and Geometric Multipllicity

Definition 6.1.7 (Characteristic Polynomial/“Eigenpolynomial”). The characteristic polynomial of
A e C"™* ™ is denoted as
pa(z) = det(zI — A).

Theorem 6.1.8
Ais an eigenvalue of A <= pa(\) = 0.

Example 6.1.9 Example 6.1.5 Revisit
11 z—1 1
A= = z) = det =(z—1)>2
o = memw ([ L ]) e

Therefore, the only eigenvalue is A = 1.

6.2 Algebraic and Geometric Multipllicity

Theorem 6.2.1 Fundamental Theorem of Algebra
If p4(2) is a degree-m polynomial, then

pa(z) =(z—=A1)(z=X2) -+ (2 — A\p)-

Definition 6.2.2 (Algebraic Multiplicity of an Eigenvalue). The algebraic multiplicity of an eigenvalue
is the multiplicity of roots of p 4.

Example 6.2.3 Example 6.1.9 Revisit

11

A= 0 1] = pa(z) = (2 — 1)%. Hence, A = 1 with algebraic multiplicity of 2.

Remark 6.2 For simple eigenvalue, alg. mult. = 1.

Definition 6.2.4 (Geometric Multiplicity of )\).

geo. mult. = dim(F)) = dim(null(A] — A).

Example 6.2.5 Examples of geo. mult.

o A=

1
.For\=1,
1

0 -1 !
By = null(I — A) = null ([0 0 D :Span{ H}
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6 EIGENVALUES AND EIGENVECTORS 6.2 Algebraic and Geometric Multipllicity

So, geo. mult.(A) = dim(Ey) = 1.

1
2 1
2 1
e A= 3 . Then, pa(z) = (z — 1)(z — 2)%(z — 3)(z — 4)3. So, we have
4
4

L 4_
Ai | alg. mult. | geo. mult.
1 1 1
2 2 1
3 1 1
4 3 3

Definition 6.2.6 (Defective Eigenvalues and Matrices). ) is defective if its alg. mult. > geo. mult.. A
matrix with at least one defective eigenvalue is called defective.

Example 6.2.7 Example of Defective Matrix

2 2 1
OA: 2 ,B: 21

A and B have the same characteristic polynomial, but B has only one L.I. eigenvector.

11
* A= 01 is defective. pa(z) = (2 — 1)> = alg.mult. = 2. By Example 6.2.5, we have

geo. mult.(\) = 1. Therefore, A = 1 is defective. This implies that we only have one “eigendi-
rection” when multiplying by A:

0

A3 2
1

1

1
— A2 — A
1

Definition 6.2.8 (Similarity Transformations/Similar). If X is non-singular, the map A — X 'AX is

called a similarity transformation. Two matrices A, B are similar if 3 non-signular X s.t. B = X 'AX.
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Theorem 6.2.9 Properties of Similarity Transformations
Aand X~'AX have the same

e characteristic polynomial
* eigenvalues
¢ alg. mult. and geo. mult.

e (and more...)

Proof 1. We will show the characteristic polynomials are the same.

px-1ax(2) = det(2I — X_lAX)
=det(2X'X — X TAX)
= det(X (2] — A)X)

) 1

= det{¥*] det (] — A)det(XT det(X) = 4
=det(z] — A)

= pa(2).

Then, we have eigenvalues and alg. mult. are the same. For geo. mult., if £, is an eigenspace of A, then
X'BEy={X"'y|yeE\}

is the eigenspace of X "' AX. Suppose y € E). Then, Ay = \y. Let z = X~ y. Then,

(X tax] = xtax(eTy)
N——

=X! Ay
—

=X""(w)
= MX"y)
——

Sy

So, z € X 'E,, and thus X ! E, is an eigenspace of X "' AX. Then,
dim(X'E)) = dim(Ey) = same geo. mult.

QED. H
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Theorem 6.2.10
In general, alg. mult. > geo. mult.

Proof 2. Let n be geo. mult. of A for A. Let {v1,...,v,} be orthonormal basis of E},

V=1v, - w,|eC™"

We can extend V to an unitary matrix
V= [‘7 VL} e (mem’
where V) is computed by Gram-Schmidt. Then,

B = V*AV
——

similarity transformation

V*
Vi

Alv vy

~

*

Ipﬁmq

If we can derive alg. mult. from B, we can compare it with n as similar matrices share them.
The characteristic polynomial of B is

= det(zI — AI)det(zal — D)
= (z—A\)"det(zI — D)

Then, the alg. mult. of \ is at least n.

QED. N

Definition 6.2.11 (Diagonalibility). A is nondefective <= A is similar to a diagonal matrix. In such

case, we call A diagonalizableand A = X 'AX.

Theorem 6.2.12
det(d) = A and tr(4) =) ")
j=1 '

J=1
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6.3 Jordan Canonical Form

Definition 6.2.13 (Unitarily Diagonalizable). A is unitarily diagonalizable if 3 unitary @ s.t.

A= QAQ".

Theorem 6.2.14

A Hermitian matrix is unitarily diagonalizable.

Theorem 6.2.15

A matrix is unitarily diagonalizable <= itis normal (A*A = AA¥)

Example 6.2.16 Eigenvalues can be Complex even when A is Real-Valued

—sin6 1 1]|€?
X1,
cos b ] [—i i] [ 6_1‘9] [ }

Ao cos

sin @

where ¢l = cos + isin 6.

6.3 Jordan Canonical Form

7

Theorem 6.3.1
For any matrix A € C™*™, 3 non-singular X s.t.

J1

X 1AX = J2

Jk

where J; = € C™ixmi g called a Jordan block, and mi +ms+

+mk:m_

Example 6.3.2 Each Jordan Block Corresponds to a Single Eigenvector
Sl -

1
.Then,J1: [0 ] - 1 =

wp
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Meanwhile, we have

0 0

0 0
3 10

1 0

J2=[2]2>$2= 0. and J3= 1|0 3 1| = z3= 1.

00 3

0 0

0 0

Remark 6.3 It is not good numerically to compute the Jordan Form.

Theorem 6.3.3 Shur Triangularization (Numerically Friendly Factorization)
For any A € C™*"™, A = QTQ*, unitarily similar to an upper triangular matrix. That is, @ is
unitary and 7" is upper triangular.

Proof'1.
e m = 1: trivial to show.

* m > 2: let z be eigenvector of A with ||z| = 1. Write U = [m U L] unitary. Compute

A B
0 C

U*AU =

(m—1)x(m—1)

By induction, assume C' € C can be written as VT'V*, then let

1 0
Q=U :
0V
We have
A BV
Q AQ = 0 , upper triangular.

QED. H

6.4 General Eigenvalue Algorithms

1. Find roots of characteristic polynomial

(—) :ill-conditioned to find polynomial roots (even if eigenvalue problem is well-conditioned).

(—) : expensive (computing determinant).
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2. Companion matrix

p(2) = 2"+ am_12" "+ a1z + ag (characteristic polynomial)

e Build the companion matrix:
—z —a

1 —z —aq

A= 1 - : =B —zI.

1 —z —am_1

pa(z) = (—=1)"p(2) = roots of p4(z) = roots of p(z).

Roots of p(z) are eigenvalues of

_ g _
0 —al
B = 1 :
0 :
1 —am—

* However, it is impossible to solve.

Theorem 6.4.3 Galoi’s Impossibility Theorem
No formula to determine roots of polynomial from its coefficients (such as quadratic for-
mula) for polynomials of degree 5 or more.

* An eigenvalue solver must be iterative. We don’'t have deterministic method such as LU factor-
ization. We have to approximate the eigenvalues in some way.

6.4.1 Power Iteration
Definition 6.4.4 (Rayleigh Quotient). If x is eigenvector of A, then Rayleigh quotient is

¥ Ax () A\r*z
o, 4) = ZA2 Q)

x*x x*r x*r

=\

Remark 6.4 In Algorithm (10), as we have normalized vy 1, we don’t need to divide by x*x.

* Does this converge? And to what?

Assume A has dominant eigenvalue: |\1| > [A2| > [A3] > -+ > |\, > 0.

* When doe we stop iterating? How do we measure convergence?
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Algorithm 10: Power Iteration
Input: A € C"*™, xg € C™

1 begin
2 while not converged do
3 Vg+1 = Axg // dominant cost O(n?)
Vk+1 . .
4 Tk41 = 7———— // normalization
[or41ll2

9]}

>\k+1 = ZL'Z+1A$]€+1

Output: (z, \), dominant eigenpair

User defined “small:”
1. ||zg41 — xk]|, is small
2. |Akr1 — Ag| is small

e Drawbacks:

- |A\1] > |A2| is not always true, and how do we know if it is true?

— Slow

- Starting guess is important: if =y doesn’t contain any part in the eigenspace E),, then we
don’t converge to A;.

— Only get one eigenpair.
6.4.2 Shifted Power Method (Inverse Iteration)
e Consider A — oI, where o € C. The eigenvalues of A — oI are A\ — o, where )\'s are eigenvalues of

A. Also, eigenvalues of (A — o)~ tis L
— 0

— Magnify eigenvalues of A near o

- Shifting o, we make different eigenvalues of A dominant.

Algorithm 11: Inverse Iteration
Input: 0 € C, 2 € C™, A € C™*™

1 begin
2 while not converged do
3 Solve (A — oI)v = xj. Denote the output as vy 1;
4 Tpal = Vk+1
- l[vk+1 Hz’

3]

Akt1 = $Z+1A$k+1;

Output: (z, )\), eigenpair closes to o
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Theorem 6.4.5 Convergence of Inverse Interation
Suppose we try to capture (z s, Ay), the eigenpair closest to . If |\; — 0| < [\ — 0| < |A\; — o] for

. . . . A7 —O
all J # j, then inverse iteration converges to )\ ; with convergence rate H, and
L—O
u I < 2=
T — X C
k Tz = A, — O

Proof 1. Suppose A = XAX 1. Letwvy = oy = y1o1 + 3222 + - - - + YmTm. Let |\, — o| be smallest.
Thatis, |\y — o| < |A\; — 0| for j # k. Assume y;, # 0:

[ (M — o) iy | [ @/1<W)
i A1 —
y o (Mo — o)y p Yk 1. o
vi=A—-0cl)v=XA—-0l)'X Tvy=X . = yM—0)" X :

: N——— i

) largest in magnitude Ym [ A — O

— o)t 1 —

_()\m U) ym_ - L g <)\m _ O') i

<1 and =1 for k-th entry
—ep as k—oo

1—00
— =y 1Xer =y Tk
~—~
k-th eigenvector

So, the inverse iteration converge to eigenvector corresponding to ) at the convergence rate

close to 1, slow convergence

A, — O
ANj—o

close to 0, fast convergence

QED. ®m

6.4.3 Variation of Inverse Iteration: Rayleigh Quotient Iteration (RQI)

Algorithm 12: Rayleigh Quotient Iteration (RQI)
Input: A, real and symmetric; zg

1 begin
xhAxg
2 | po=plro,A)=——;
while not converged do
Yk = (A — pr_1I)"'zp_1 // Potential stopping criterion: |Azj — prpai| < tolerance

5 T = Yr__
Hka2,
6 pr = p(xk, A);
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Theorem 6.4.6 Convergence of RQI

RQI converges to eigenpair for all but a set of measure zero starting vectors zy. When it con-
verges, the convergence is ultimately cubic. That is, if A is the eigenvalue of A and z is suffi-
ciently close to ¢ (true eigenvector), then

loxs1 = (el = O(llz — (a1

and
Mst — Ag| = (9(|>\k _ AJ|3)

as k — oo.

Theorem 6.4.7 Another Perspective of Cubic Convergence
RQI is locally cubically convergence: # of correct digits triples once error is small enough and
eigenvalue is simple

Proof 2. Assume A = A = diag(\1, A2, ..., \p,) is diagonal. Then, ¢;’s are the eigenvectors.
WLOG, assume zj, is converging to e;. Then,

r,, = e1 +di, where ||d,1<;”2 =K1
To prove cubic convergence, we need to show

Tpy1 = e1 +dpy1, Wwhere ||dk:+1H2 = 0(53)

e As we normalize zy, is algorithm,

1 =azjxy
= (e1 +dy)"(e1 + di)
= eje; + 2ejdy + djdy
=14 2dg, + €%, where dy, is the first entry of dj.

So,

* Consider the Rayleigh quotient:

pr = xp Az, = (e1 + dg) " Aler + dy)
= ejAey + 2e7Ady, + dj Ady,
——

A1 —77::—)\1£2+d;;Adk
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6.4 General Eigenvalue Algorithms

By triangular inequality and other properties, we have

2
Il < ale® + [[Ally ldll3 < 2[[All,e*,
N——"

2
- 1-1
A1 — Pk
. . o A2 = P
Back to the algorithm: in the next iteration: , we have
| Ampk_
Y1 = (A — pel) "ty
_ [ TR The 0 _Thkm )7 _
LA e Ao — Am—ﬂk] e = et dy
[ 14dy, di, dk,, ]* d _é
M =P A2 — Pk Am — Pk M 2
-~ . f .
= 2 di, d, Pk — A1 =1
A =Pk A2 — p Am — Pk
- ) .
9
) A, A,
L 7 Az —A1+7 A — A1 +7
2
_ 2 ) 2
n <1—2>()\2—)\1+77) (1— >()\m—)\1+77)
= (61 + dk+1)
[WTS: Hcfkﬂ H2 = O(&?)] Define gap(-, -) as follows: Suppose A has eigenvalues \; > - - - \,,,, then

gap(i, A) = min |A; — \|.
JFi

So, we have
a little more than the numerators:
1 more entry shared
| Ul
~ k n
], < ==
(1-5) @t n) — o)
N——————— small denvominator
shared
2||Al[,€?
< A il =e.

(1 _ f)<gap<1,A> ~ Jn)

70
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Note, we have
IAj = A+ < A= Xil + [l

and by definition of gap(1, A), we know that if the eigenvalues are close to each other, the fraction is
larger. When ¢ is small:

constant
2[|All, €2
- 9
Hdk+1H2 < = 2 ~ O(e?)
(1-5) e -l
e
Finally, R
d . .
Tpr1 = €1 +dgy1 = M normalized version
Jex + i

One can form a similar argument to show ||dx1][, = O(?).

If A is real and symmetric, A is unitarily diagonalizable: A = QAQ*. One can show:
p(wk, A) = p(Tr, A), where Ty = Q xy.

So, if RQI converges cubically for diagonal matrices, it also converges cubically for a general real and
symmetric matrix. QED. =

6.4.4 Orthogonal Iteration/Simultaneous Iteration/Subspace Iteration

Algorithm 13: Orthogonal Iteration

Input: A, Z, € C"™*? with unitary columns

1 begin

2 while not converged do

3 Yy = AZy_1;

4 L [Zk, Rix] = QR(Y%) // reduced QR factorization of Y

e If p = 1: power iteration; If p > 1: find dominant p eigenvectors all at once.

e Why the algorithm work?

Key assumption: [A;| > |X2| > -+ > [Ap| > [Apg1| = > | A >0

p dominant eigenvalues

Proof 3. Note that

range(Zy) = range(Yy) = range(AZ;_1) by QR factorization
= range(AkZO) AZ,_, = A¥Z,
= range(XA*X12) Diagonalization
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Then, we have

()
)\p
1
XA Z7'Zy = AEX R X127,
~—— p+1
factoring )\p
A\, l
| (5)
Ly

where the blue boxed parts are fractions with absolute value > 1, which stick around as k£ — ~c.
On the other hand, green boxed parts are fractions with absolute value < 1, which — 0 as k£ — oc.
So,

X

— X Afx~lz, :/\l; XG1:pWrF1ip, )+ X(Cp+1:m)WF(p+1:m,:)

Wk —0 as k—oo

The idea behind this step is partition:

W,
[Xp Xm_p} [ P ] , where W,,_, —» 0ask — oc.
W,

m—p

In the long run (k — o0):

range(XA*X~1Zy) = range <X(:, 1L:p)W¥k(1:p, )) Assumption: W¥(1 : p, :) is full column rank

= range (X (:,1: p)).

QED. H
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6.4.5 Two Phases Algorithm to Produce Shur Factorization

e Recall: Shur Factorization and Diagonalization: A = QT'Q*, where Q) is unitary and 7 is upper
triangular. We have some key observations:

- Eigenvalues of A and T are the same (due to properties of similarity transformation).

— The eigenvalues of 7" are its diagonal entries.

e Overview of two Phases Algorithms:

X X X X X X X X X X
X X X X X X X X X X
Phase | Phase Il
X X X X X|—> X X X X| ———>
X X X X X X X X
X X X X X X X
A+ A H Shur Factorization
not Hermitian upper Hessenberg

upper triangular + first subdiagonal

Remark 6.5 If A is Hermitian, phase I produces a tridiagonal matrix (symmetric), and phase I1
will be more efficient.

¢ Overview of Phase I:

X X X X X X X X X X X X X X X
X X X X X Q- X X X X X ol X X X X X
X X X X X 0 x X x x| —————> |0 x x x x
x x x x x|  Householder 0 X X X X Preserve 0 Xx X X X
X X X X X 1 0 x X X X Eigenvalue 0 x X X X
I-2uju] — —
A Q1A Q1AQ,
x x 000
If Ais Hermitian: | X X x x X
Tridiagonal 0 x x x x
0 x x x Xx
0 x x x X
X X X X X X X
X X X X X|——s | X X
0 0
0 0
0 0
Q; AQ; Q1AQ
IffﬁnlsHermltlan. < x 000
Tridiagonal X x
0
0
0
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Algorithm 14: Phase I to Produce Upper Hessenberg Matrix

Input: A € C™*™

1 begin

2 fork=1:m—-2do

3 r=Ak+1:m,k);

4 v = sign(z1)||z||ye1 + 2 // from Householder

5 Ve = Uik;

o2

Alk+1:mk:m)=Ak+1:m,k:m)—=2v,(vA(k+1:m,k:m))// Q;
Al:m,k+1:m)=A1:m,k+1:m)—2(A01 :m,k+1:m)vg)vi // A

e Computational cost:
O(m . m2) = O(mg) ~—m3

where the first m comes from the loop, and the second m? comes from matrix-vector multiplica-
tion (Lines 6 and 7).

Remark 6.6 With Hermitian matrix, if we go from tridiagonal to diagonalization, we may “un-
zero” some terms. So, we need to be careful.

6.4.6 QR Algorithm

Algorithm 15: QR Algorithm (Real-Valued)

Input: A
1 begin
3 while not converged do
/* Potential stopping criteria: H/l“’) — AU"*UH <tol or Q*AQ — T */
4 Alk=1) — Q(k)R(k) // QR factorization
5 Ak) = RF)Qk),

Output: A = QT'Q*, Shur complement

e Why this algorithm works?

Proof 4. Note that
A0 — 4 — Q(l)R(l)_

Then,

QED. ®m
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* Pro: converges cubically

e Con: “bad idea:” Shur form in one step

Theorem 6.4.8 Relationship Between QR Algorithm and Orthogonal Iteration
Suppose Ay, is from the QR Algorithm (Algorithm (15)) and Zy, Z, are from Orthogonal Iteration
(Algorithm (13)). Then,

Ay =ZiAZy, ifZg=1,

and A;, — Shur form (upper triangular) if eigenvalues all have different magnitude.

Proof'5. (by Induction)

: Suppose k = 0. Then, Ag = Aand Z, = I. So,

Ag = Z3AZy = TAI = A.

‘Inductive Steps ‘: Assume Ay = Z; AZy is true. [WTS: Ay = 2 | AZj 4]
From orthogonal iteration, we have

upper
triangular
=~
AZy = Zpyr Ry
~——
orthogonal

So,
Zy AZy = Z; Zx+1 Rk+1 product of orthogonal matrices are still orthogonal.

=Q =R
By assumption, we have
Ay = Z;AZKL = QR.

Then, by uniqueness of QR factorization (though up to some small changes), we have the following
from QR algorithm as Step #1:

Ay = QR.
Now, consider
—21 7,
* * * /\
Zps1AZy = Zp A2y Zy) Zr = Zi1 AZy,. Q Yit1 = Zpy1Rp1]

=/

= Zp1Zk1 Rp1Q
T

= Ri+1Q = RQ.
=R

Therefore, Ax 1 = RQ. QED. n
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Corollary 6.9 : Because orthogonal iteration converges, and QR algorithm is essentially the same as
orthogonal iteration. They both converge in the same way.

6.4.7 Practical QR Iteration: Single-Shift QR Iteration

Example 6.4.10 Motivation
Perform unshifted QR (Algorithm (15)) on

A_lo 1].
10
d A():A.

e factorL: Ag = Q1R =

0 1][1 o
1 0]|0 1

1 olfo 1 1
e multiply: A; = R1Q1 = [ 0 [O ] = [0

= A = We do not converge.
0 1)1 0 10

Algorithm 16: Single-Shift QR Iteration
Input: A € R"™*™

1 begin
2 Ao = QoAQg // upper Hessenberg reduction
3 while not converged do

4 Choose shift o, close to eigenvalue of A // How to choose 0,7 We will discuss this
later.
5 Factor Ay — o] = Qr11Rk11;

Multiply Aj11 = Rpt1Qk+1 + o l;

Claim 6.11 Ay, Ay, are orthogonal similar.
Proof 6.

App1 = Rp1Qpy1 +opd
= Qr1Qr+1(Rr1Qrg1 + ord)
—_——
= Q1 Qrr1Riy1 Qry1 + 01 Qi1 Qryt
—_——

= Qi1 (Qrr1Ri+1 + 01I)Qria
= Qi1 (Ay — o + 05T) Qi
= Q1 4kQk+1-

QED. ®m
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Theorem 6.4.12 Choose the shift o;: Rayleigh Quotient

We will set .

TR ATy

Ofp = ————
e

with specific choice of z; based on Q. Our choice here is to pick the last column of @y, i.e.,

or = Qr(:,m)" AQr(:,m) = o = Ag(m,m).

Algorithm 17: Single-Shift QR Iteration with o4 Choice Described in Theorem 6.4.12

Input: A € R™*"™

1 begin

Hy = QoAQ)y // upper Hessenberg

while not converged do
Choose shift o, = Hi_1(m, m);
Factor Hy — oyl = Qk+1Rk11;
Multiply Hy 11 = Rp11Qk+1 + oxl;

[<2BE) BN

Theorem 6.4.13 Convergence of Single-Shift QR Algorithm
If we order eigenvalues of A s.t.

At —a|>|X—0a| > > |\ — 0|, forfixedo,
then the p-th sub-diagonal entry of H;, converges to 0 with rate

k
)\p+1 — 0

Ap—0

)‘p+1 — 0

Remark 6.7 Each time, we cut the sub-diagonal entry by this rate. Hence, we want 5\
p — O

to

be small (that is, smaller than 1 and close t00).

Definition 6.4.14 (Unreduced/Irreducible Matrix). A matrix is unreduced (or irreducible) if and only

if its off-diagonal entries are nonzero.

77



EIGENVALUES AND EIGENVECTORS 6.4 General Eigenvalue Algorithms

Theorem 6.4.15

Let o be an eigenvalue of H, upper Hensenberg (unreduced/irreducible). In each iteration,

H—o0ol=QR
fNI:RQ-i-O'I

Then, H(m,m — 1) = 0 and H(m,m) = o.

Proof 7.

* Hisunreduced = firstm — 1 columns are L.I..
e H—o0l =QR = R(i,i)#0fori=1,...,m—1.
e If H — oI is singular, then R(1,1)--- R(m, m) = 0.

e By ®, it mustbe R(m,m) =0 = lastrow of H = oe*,.

*
*
*
*

*
*
*
*

RQ = Q=] ° — RQ+ol =

o
o
o
o
Q

QED. H

Theorem 6.4.16 Implicit () Theorem

If H is upper Hessenberg, unreduced, and H = Q*AQ, then columns 2 to m of () are determined
uniquely (up to sings), by the first column of Q).

Proof 8. (“Chase the Bulge”) Suppose
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C1 S1 * ok
—81 C1 ko ok
1 * % %
1 * %

= N =QHQi= |0 * x x x

This is a similarity transformation.

This ¢ is the “bulge.” Because we alter the first two columns using Householder reflection, we
introduce unexpected nonzero entry. Hence, we will restore the upper Hessenberg form by op-
erating the second and the third rows.

* Restore upper Hessenberg:

_1 ] _* * ok ok >|<_

(&) S9 ko ok ok ok ok

Q3 = 52 C2 = QSH=10 % = % x
1 x k%

1 * %k

Hi=Q5HQ2= |0 * * *x =x

S
* ok
* Continuing this process, we have
1 1
1 1
Q3 = c3 83 and Q@ = 1

—S83 3 C4 S4
1 —S4 C4

So, we have
Hy = Q3Q3Q5Q7 H Q1Q2:Q3Q4 = Q*HQ.
Q* Q

79
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Then, the general @) will be given by

c1 * % % %
S1 *  x  ox %
Q=10 s * * x|,
S3 x X

0 S4 k

where the first column is the normalized first column of H (which is also the first vector of the QR
factorization). Meanwhile, ss, s3, and s4 are defined based on ¢y, s1. QED. n

Remark 6.8 We can also have Doubly-Shifted QR Iteration.

6.5 Symmetric Eigenvalue Problem

Assumption: A € R™*™, symmetric.

Remark 6.9 Ussing Householder reflection, we can convert and A to a triangonal matrix T. The algo-
rithms will be based on T .

6.5.1 Divide-and-Conquer Algorithm

al bl
b1 as bg
by
ag—1 bp—1
T — bp—1  ak Dk
Ok ag+1 brg
bi+1
bm—l
bm—1 am
. ak—bk. I bkj bk'
ar — bi bx. b
- n *
= + brovv™,
2
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where v = e;, + ep11 =

0

Assume we have eigendecomposition of 77 and 7; that is,

Q2A2Q3

A |

and T = QQAQQ;

+ bpvv*

Ty = QiMQ7
Then,
T A QF
T = ! + bpov* = @@
2
_[@
Qs
where u = @ V.
Q3
Rewrite
Ay

2

Goal: Find eigenvalues of D + puu*.

I

Ao

+ b;mu*) [ ! ],

Q3

rank 1 update

+buu* = D +

diagonal

~ =
pun”

Assume D — \I is nonsingular, then characteristic polynomial of D + puu* is

PD+puw (A) = det(D + puu™ — \I)

= det

id

entity+rank 1

~——
#0 by non-singularity

From Homework 1, we have

(D — \I) U+MDA04mﬂ>

det (I + p(D — )\I)_luu*) =14 pu*(D - X)"tu

Goal (updated): Find the roos of f(\).

81

s
i=1
F)

uf
d; — A

(Secular Equation)
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| |

| |

| |

J | |
e — - - - = = /A y=1

| |

| |

: i A

| |

| |

| |

| |

| |

| |

di—1 d; diy1
To find f()\): use Newton’s method on each interval (d;, d;+1).
Computational cost:
* Find one root: O(m).
* Find all roots: O(m?).
To write this algorithm, we use recursion. Define
[Q,A] = dcEig(T, Q,A ), T =QAQ"
~—
optional
* 1 x 1Case:
T = [al]
[Q. A] =1, a1] = dcEig(T)
* 2 x 2 Case:
1x1
b ar —b 0 1 71| 0
T= o _ L + by [1 1} = ! + brov*
by ao 0 az — by 1 0 T3
1x1 o

So, we can solve two 1 x 1 cases:

[Ql, Al] = [1, ap — bl] = dCEig(Tl) and [QQ, AQ] = [1, a9 — bl] = dCEig(Tg).

A
D=|"

— Build D + puu*:

N [Al
= D+ puu” =
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6 EIGENVALUES AND EIGENVECTORS 6.5 Symmetric Eigenvalue Problem

Find eigenvalues of D + puu* by finding roots of the secular equation.

Find eigenvectors of D + puu*: (D — A\I)~!u are eigenvectors, where ) is an eigenvalue of
D + puu*. However, this method is not numerically stable.

Orthogonalize eigenvectors and form @’

_ @ )
o= o

Return @, A (eigenvalues of D + puu*).

e 4 x 4 Case:

a1 by 2x2 0
b b T 1

a

T= | T2 S — + by [0110}.
by | a3 b3 T 1
~—

by a4 2%2 0

So, we can solve two 2 x 2 cases:
[Ql, Al] = dCEig(Tl) and [Qg, AQ] = dCEig(Tg).
6.5.2 Bisection Method (Finding a subset of Eigenvalues)

Assumption: T is tridiagonal, symmetric, irreducible (off-diagonal entires are non-zero)

Remark 6.10 Ifwe have a reducible matrix,

we can perform the algorithm in each submatrix.

Definition 6.5.1 (Principal Minor). Given an m x m matrix T, the upper left k£ x k sub-matrix is called
the k-th principal minor and is denoted by 7).

Example 6.5.2 Principal Minor
Consider a 3 x 3 matrix

al bl
b1 az by
bg as

bm—l

[ainy
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6 EIGENVALUES AND EIGENVECTORS 6.6 Eigenvalue Perturbation Theory

Then the principal minors are

b al bl
T = [ay), T? WO O = by ay b
b1 ag
bQ as

Proposition 6.3 : Eigenvalues of 7" and T*) are distinct. For T,
/\gk) < /\gk) << A,(f).
One can also show, eigenvalue strictly interlace. i.e.,

(k+1) (k) (k1)
Aj <A <AL

Definition 6.5.4 (Sturm Sequence (As a Consequence of Proposition)). The Sturm sequence is defined
as

1, det (T(1)>, det (T<2>), .. det (T(m>).

Note that
# of negative eigenvalues = # of sign changes in Sturm sequence.

So, given T' — xI, we can determine # of eigenvalues in any interval [a, b) by

(# of negative eigenvalues of ' — bI) — (# of negative eigenvalues of T' — aI).

6.6 Eigenvalue Perturbation Theory

Question: If we perturb A, how much do eigenpairs change?

Theorem 6.6.1 Gershgorin Circles/Disks
Suppose A = D + F, where A = diag(dy, . ..,d) and F has 0’s on tis diagonal. Then,

where

Di{ZEC

|z —di| < Zfij} = ().

i=1
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7 COMPUTING SVD

7 Computing SVD

Generally speaking, computing SVD is a two phases algorithm framework.
Given A € C™*" with m > n.

* Reduction to bidiagonal form B. (Deterministic; O (mn?))

* SVD of B. (Iterative; infinite number of steps in theory; in practice, O(nlog |1og enacn|))

7.1 Phase I: Golub-Kahan (GK) Bidiagonalization

X X| x 0 0]
x\ X X X
X X -V X X X
X X X —_— > X X X
X X X X X X X
[ X X X x| | ¢ | |0 x x x|
A A AV,

[« x 0 0] %> x 0 0O

_ > >

AV AV,

[ x 00 _\\3\00_

v IO

0

L 4 L 0
AV Uy AV,

The computation cost

4
~ 4dmn* — gn flops.
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7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

Algorithm 18: GK Bidiagonalization
Input: A € R™*" withm <n

1 begin
2 w = randn(n, 1) // create first normalized column of W randomly
s | W 1) = W/lwly
// main loop
4 fork=1:mdo
// update @
QG k) =AW (:, k);
if t > 1 then
| QE.k) = Q. k) — Bk — 1,k)Q(: k — 1);
|| B = loe ol
oy QGE)
9 Q(’k) - B(k’,k),
// update W
10 if £ < m then
1 Wk +1) = A*Q(, k) — B(k, k)W (-, k);
12 B(k,k+1) = [[W(, k+ 1)l
W, k+1)
sk4+1) = ——7-—75;
1 WEE+D = B0 ve 1)

Output: Q € R"™*™ unitary; B € R™*" upper bidiagonal; W € R"*™ unitary (W*W = I,,,)

e Other (potentially faster) Approach: Lawson-Hanson-Chan (LHC):

R
A ¥, r LB
mXn nxn
m>n

— LHC is less expensive when m > gn

— We can do this with GK. We run LHC for a huge matrix for some iterations, and then run GK
on the submatrix.

7.2 Phase II: SVD of Bidiagonal Matrix

e Overview:
Phase I Phase II
A —— B —_—

UpXVg
UL AV, B

— A =UABV} = Us(UgSVi)Vi = (UaUp)E(VaVi)*.

* Asimple idea: leverage eigendecomposition algorithms.

0 B*
0

- Consider C = € C2)x(2n) Define

P = [el €ntl €2 €py2 - €p €2n]. (Perfect Shuffle)
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7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

Then, T' = P*CP is symmetric and tridiagonal with the following properties:

« all zeros on main diagonal of T" (traceless).

« off-diagonal alternate entries in B. That is,

r q 0 u
ar by
aq 0 b1
a9 bg
by 0 ay
B= = T =
a9 0
bnfl
(171,
aﬂ,
- - a, 0

Then, we can apply algorithms such as divide-and-conquer or bisection algorithm to calcu-
late the eigenvalues of 7'.

Permutation matrices are orthogonal. So, 7' = P*CP is similar to B.

- If z; is eigenvector of T, T'z; = «z;, then a; = +0;(B) and

1

pxi—ﬂ

Vi
:I:ui

)

where v; and u; are left and right singular vectors of B.
- Warning: Running divide-and-conquer or QR iteration on C is impractical.

+ We only need non-negative eigenvalues of 7' (might do 2 times more work).

» Small numerical problems with small singular values.
e Idea #2:

- Consider T'= BB* € C™*", symmetric, tridiagonal. Then,

a? +b3  ashy
* (1,3 + b% asbo

*

2 2
* A, 1 +t0,_1 anbp

* (l%’

- Singular values of B are square roots of eigenvalues of 7'.

However, we only get left singular vectors of B.i.e, B=UXV* — T =UX*U".
e Idea#3: T = B*B

— T'looks similar as in idea # 2, but slightly different.

— Problem: only get right singular vectors of B.
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7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

— Even worse: ill-conditioning. It is numerically unstable to build BB* or B*B.

Example 7.2.1
1
Consider B = f] , Where 7 is small. Then, o(B) =~ {\/5, \/Z } On the other hand,
n
1 1 1 .
*B = = will give us wrong singular values.
1 1+ [11

e Idea # 4: Differential Quotient-Difference Algorithm with Shift (DQDS)

Algorithm 19: A Mathematically Equivalent Algorithm: LR Iteration
Input: any symmetric tridiagonal 7

begin

while rnot converged do
Choose a shift 7-,? smaller than the smallest eigenvalue of 7};
Compute Cholesky factorization T, — 721 = B} By;
// We never want to form B} Bj explicitly

5 Update Ty, = By B} + 121

W Ny -

Output: a (tri)diagonal matrix T

— One can show: T}, and T} are similar.

— Two steps of LR with 7, = 0 is the same as QR iteration.

- By is upper bidiagonal:
(a1 by ] (a1 b ]
a9 b2 aQ /52
By, = : Bj41
p—1 bp—1 Qp—1 gn—l
-~ an - -~ an -
and
Tyi1 = BpBj + 171 (update at k-th iteration)
Ti+1 = Bii1 Biyr + 101 (factorization at (k + 1)-th iteration)
So,
B 1By + 11 I = By By + 121
On the diagonal, we have
a; +g]2»,1 + T =a; + b+ 7 (n equations)
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7 COMPUTING SVD 7.2 Phase II: SVD of Bidiagonal Matrix

On the sub-diagonal, we have

a%b? = a3, 1b; (n — 1 equations)

Goal: Write aj,gj in terms of a;, b;.

Remark 7.1 When solving, we have to assume@o =by=0b, = Bn = 0. As we have, in total,
2n — 1 unknowns (n for aj andn — 1 for b;) and 2n — 1 equations. We can solve formulas for
Eij Cli’ld/l;j.
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8 ITERATIVE METHODS

8 Iterative Methods

8.1 Introduction

Definition 8.1.1 (Direct Methods). Direct methods have explicit procedure with known stopping point.
(For example, Gaussian elimination or QR factorization.) Typically, it requires O(m?) flops.

(—) too expensive when matrix size is large.
(—) only need O(m?) in storage of A, but need many more flops.
Definition 8.1.2 (Iterative Methods).
* Rules: we don’t form A. We can only apply A (or A*) to a vector. That is, we know Ax (and A*y).

e If Ais sparse, compute Ax costs O(vm), where v = # of entries per row, and v < m.

Example 8.1.3
Consider

A= = v=3 =~ O(3m).

Table 1: Applications of Iterative Methods

Solve Az = b Solve Az = \x
Symmetric A = A* CG (Conjugate Gradient) Lanczos
Non-symmetric A # A* GMRES, CGN, BCG Arnoldi

Example 8.1.4 Solving Az = b Iteratively: Two Schools of Thoughts (there are others)

e Split A = M — K, where M is non-singular. For example, Jacobi, Gauss-Seidel, Successive
over-relaxation (SoR)

* Krylov subspace method. For example, CG, GMRES, . ..

Definition 8.1.5 (Krylov Subspace). The Krylov subspace, K,,(A,b), is defined by

Kn(A,b) = span {b, Ab, A%, ..., A" 'b}.
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8 ITERATIVE METHODS 8.2 Arnoldi Method

Example 8.1.6 How do we use /C,,(A, b) to (approximately) solve Az = b?
* We try to find the “best” solution in Krylov subspace

min || Az — bl|,.
2EKn (Ab)

That is,

T =cob+c1Ab+ -+ 1AV
= (col +c1A+ -+ 41 A" D
= p(A)b.

For example, MINRES for symmetric matrix A, and GMRES for non-symmetric matrix A.

e If Ais SPD, we could use

i Az — bl ,_
xeg}&’b)\! | 4-1s

where ||r|, 1 = (r*A~1r) "7,

For example, CG.

8.2 Arnoldi Method

Definition 8.2.1 (Krylov Matrix). Recall the Krylov subspace is defined by

K (A,b) = span {b, Ab, A%b, ..., A" 'b}.

Think power method:
y1="> =b
Y2 = Ay = Ab
Yn AYn—1 A1

Then, the Krylov matrix, K € R™*", is defined as

K= [2/1 Y2 yn]'
2. Properties of Krylov Matrix and a Theoretic Idea

© AK,41(A,b) = span {Ab, A%, ..., A"b} = AK(A,b) C Kny1(A, D).
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8 ITERATIVE METHODS 8.2 Arnoldi Method

Proof'1.
AK — [Ayl Ay Ayn}
= [?/2 Y3 A”yl}
QED. =
e AK = KC, where
[0 0 —cp |
1 0
01 :
C = [62 e3 -+ ey —c} =1, , upper Hessenberg.
0 .
. 0 —Cm—1
0 0 -+ 1 —cpn |
Further,
c=—K1A™y.

This may be a good idea: AK = KC = K 'AK = C.
¢ Danger:

- K is likely to be ill-conditioned (hard to invert).

- Solving for C', we apply A n times, which is slow.

3. A Practical Idea

Kn(A,b) = span {b, Ab, A%, ..., A" b}

= Span{QL q2,43,...,4n }
S—— —

orthogonal basis

We find q1, . . ., ¢, by a Gram-schmidt-ish procedure. Note that col(K) = K, (A, b). Suppose K = QR,
we have

K'AK = (QR)'A(QR) =C
— R'Q"AQR=C
Q*AQ = RCR™! = H another upper Hessenberg

4. Arnoldi Algorithm
Q"AQ=H = AQ =QH.
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8 ITERATIVE METHODS

8.2 Arnoldi Method

e Orthonormal basis for {b}:

a1 = 7o
161l
e Orthonormal basis for {b, Ab}:
b .
Q1 = ol from Gram-Schmidt
2
Aqr = hiiq1i + h21go
1 0
G Aq = hidgqi + hagi@s
hi1 = qi(Aq1) Rayleigh Quotient
— v:=ha1q2 = Aq1 — h1iqn = wvis parallel to ¢o
hor = [[olly @2 =7 =
21 = s 2= =
? har vl

So,
Aq = [Q1 Q2} [Z;]

* Continuing this process, we should get

AQn = QnHy +  wpe, = Qni1 ﬁ(n—i—l,n)
——

. Xgitf)j\g(%rv,, upper Hessenberg

from Krylovian

Algorithm 20: Arnoldi’s Method

Input: unit vector ¢, linear operator A : R — R™

1 begin
2 forj =1,2,...,ndo
3 w; = Agj // next column in K,(4,q1)
4 fori=1,...,5do
// orthogonalization: Gram-Schmidt
hij = q;wj;
wj = wj — hijgi;
7 hj1).5 = llwillys
wj .
8 q]+1 - h y
L (J+1).3

Output: Q,,,1, H,

¢ How to use Arnold to Solve Ax = b?

- Let z¢ be an initial guess for solution, and let ro = b — Ax.

—_ Bulld ICn(A7T'0) = span {7-07 AT’(), A2T0, e An—lro}.
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8 ITERATIVE METHODS 8.2 Arnoldi Method

— Goal: Find solution z,, € xo + K,,(4,19) s.t.

b— Az, L K, (A, 10).

Remark 8.1 zy + K, (A, ro) means: x, = xo + Q,C,, where Q,, is a m x n matrix whose
columns form orthonormal basis of K,,(A, ro), from Arnoldi’s Method.

- Snapshot of solution:
AQn = QnJran =QnHy, 4wy, - e;kp

where w,, is multiple of ¢, 1.

By orthogonality of columns of @,,, we have
- End product: good approximate solution is

@y = x0 + Qu(Hy 'Ber), 8= rolly
S~—_—— —
GKn(A,T'Q)

— Benefits of using Arnoldi’s method:

(+) H,isn x n,small and upper Henssenberg —>- easy to invert.
(+) Be; is a basis vector = easy to work with

(+) Punchline: with Krylov methods, we do the work in small spaces (n x n).

* Arnoldi & Eigenvalues:

— Main idea: estimate eigenvalues of A using H,, at each iteration. Usually, we find extreme
eigenvalues first. We might not get all eigenvalues.

— Some algebraic intuition:

Recall: z € K, (A, b) = span {b, Ab, ..., A"~ 'b}. Then, we have

z=cob+c1Ab+ -+ cp 1 A" 1D
= (C()I +cA+-+ Cn_lAn_l)b
= q(A)b,

where ¢(-) is a polynomial, where ¢(z) = co +c12 + -+ + cp_12" L.

- Arnoldi Approximation Problem:

min ||pn(A)]ly,  s.t. pn is a degree n polynomial with ¢, = 1 (monic)

(Arnoldi Approxmation)
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8 ITERATIVE METHODS 8.3 Generalized Minimal Residual Method (GMRES)

That is, p,(z) = co + c12 + -+ + c,_12" "1 + 1 - 2™ By Arnoldi’s method, we can have
pr(A)b = A"b— Qny, yecC",

where @, is from Arnoldi, with columns being orthonormal basis of K,,(A, b).

Equivalently, (Arnoldi Approxmation) can be written as a least square problem:

;’Iel(iCITll |A"0 — Qnylly (Arnoldi Approximation II)

e A"b

1

‘/\ rp=A"D— Qu]/*
1

Ku(A, b)
Quy

Theorem 8.2.5
If Arnoldi Iteration does not break down (i.e., dim (K,,(A, b)) = n), then the characteristic

polynomial of H,, minimizes (Arnoldi Approxmation) Problem.

8.3 Generalized Minimal Residual Method (GMRES)

1. Main Idea
Approximate solution to Az = bvia z,, € K, (A, b). We will do this in a least square way:
min b — Ax]|,, (P)
€0l (A,ro)
where rg := b — Axy.
2. Equivalent Problem Statement: Change of Variables
Define x = x( + z, (P) becomes an easier constrained problem:

in |b—A = |lro— A P
zEICIS(lzr‘ll,ro)H (@0 + 2)[l5 = [lro — Az]], (P)

3. Rewrite (P) using Arnoldi
If 2 € K,(A,19), using Arnoldi, 3y € C” s.t. z = Q,y, where @, is from Arnoldi. Then, (P) becomes
an unconstraineed least square

min |[rg — AQny |2 P
yecn ~—~
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8 ITERATIVE METHODS 8.3 Generalized Minimal Residual Method (GMRES)

From Arnoldi: AQ,, = Q,+1H,, SO

. _ T P
yrg(ngLI{TO Qu1Hpyl|, (P)
Recall that we can view Arnoldi as Gram Schmidt on K,,(A, 7o) = span {rg, Aro,..., A" 'ro}. Then,
70
1) = .
Ot D=,
Then, (P) is further reduced to
min | Quit (Ber — Hoy)lzr where 8 = [roll. ®)
yeCn S—~—
orthonormal

By 2-norm unitary invariance, (P) is equivalent to

min ||fer — Hy, yl2 (GMRES)
yeCn N
(n+1)xn

We can easily solve for y.

Algorithm 21: GMRES
Input: A € C"™*"™, g € C™, b e C"

1 begin

2 ro = b— AZL‘O;

[Qni1, Hy) = arnoldi(A, ro,n);

4 Solve y* € arg myin |Ber — Hyy

w

9

(3]

Update z* = 2o + Q,y"*;

4. Convergence of GMRES

I7all2,
181l

e Main question: How many steps n do we need to reach desired accuracy of

¢ Observation:

= |ITn+1lly < |lrnlly, where r,, = b — Ax,, and z,, is returned from GMRES (n)
Intuition: ,Cn(A, 7“0) - ]Cn+1<A, 7’0).

- How many steps until ||, ||, = 0? (in exact arithmetic): m steps (i.e., we exactly solve Az = b).

e Assume A is diagonalizable: A = XAX~!. Then,

lrally < k(X)) ()], lIrolly
how orthogonal initial guess

the eigenvectors are

where p is a degree n polynomial with p(0) = 1 (i.e., ¢p = 1).
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8 ITERATIVE METHODS 8.4 Lanczos Method

Remark 8.2 (Intuition for p,,)

‘min |[p(A)rolly = [|(1 = Agn-1(A)blly = [[b = Agn—1(A)bl],
p:degreen
p(0)=1

Proof'1.1f x € K,,(A,b), then

I — Az[ly = [[p(A)rolly = [| Xp(A) X rol|, < [ X[ X[, Ip()allrolly-
—_——

r2(X)
QED. =
8.4 Lanczos Method
1. Overview: Arnoldi for Symmetric Matices
AQn = Qn+1Tna
where T, is tridiagonal.
(a1 B | :
. | . [ a2 B Bi-1
Algt @ - | =|a @ - @ o1 By . Bp_1|; Note:T(,j)=| q
I * 5
qu = QTH-lT(:?j)
Agj = Bj—1qj—1 + ;g5 +
where 3;_; and «; are computable, and ¢;_; and ¢; are known
Biqi+1 = Agq; — Bj—1qj—1 — a;q; (3 Term Recurrsion)

Algorithm 22: Lanczos Method

1 begin
b
2 | @1= 757560 =0,q=0;
(12]P
3 forn=1,2,... do
4 v = Aqp;
5 an = q;
6 V=v— Bp_1qn_1 — Onqn // orthogonalization
7 Bni1 = |v]]5;
v

8 gn+1 = 3 +1;

L n
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8 ITERATIVE METHODS 8.5

Gradient Descent (GD)

8.5 Gradient Descent (GD)

Remark 8.3 In this section and the next, assume A to be real and SPD.

1. Problem Set-up

1
min f(x) = §$TALC —b'a.

Gradient:
Vf(x)=Ax —b.

2. In each iteration

Tn = Tp—-1 — O‘nvf(fljn—l)

Claim 8.3 Connection with Solving Linear System
GD solves this problem by solving the system Ax = b.
Proof 1. By first order condition: Vf(z) =0 = Ax —b=0.
4. Rewrite (GD) using residual: r = b — Ax
Define V f(z) = Ax — b = —r, negative residual. Then, GD iteration gives

Tp = Tp—1 + QpTp—1

5. Can we update r,, iteratively?
That is, can we rewrite r,, = r,_1 + update. Note that

rh =b— Ax,
=b— A(xp_1 + aprp—1)

=b— Axr,_1 —a,Ar,_1
—_———

=7Tp-1— apAr, 1

6. Hoe to choose «,,? Pick the optimal one
Define p(a) = f(zp—1 + arp—1).
Goal: Find a s.t. ¢'(a) = 0.

(GD)

QED. N

(GD)

P(@) = =(Tn_1 + ary_1) A(@n_1 4+ arn_1) = b (Tn_1 + arn_1)

2

1
= f(zp-1) + ozle_lArn_l + 70427",—{_1147“”_1 - abTrn_l.

2
set
Oa)ys=x) (Arp_1+ar] (Arn_ 1 —b 1o =0
T T
. b'rp_1—x, 1 Arp_1

o, =

-
"1 Arn_1
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8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

Algorithm 23: Gradient Descent
Input: A, b, z

1 begin
2 ro = b — Axp;
3 forn=1,2,... do

T T e
T 1 )

5 Tpn = Tpn-1+ QpTp—1;

// Computing Ar, 1 is expensive, but we can store its values and avoid repeated

4 oy =

computation.

8.6 Conjugate Gradient (CG)

Algorithm 24: Conjugate Gradient
Input: A, b, z

1 begin
2 9 = b — Axp;
3 Do =T0;
4 forn=1,2,... do
T
Tn—1Tn—1
5 Op = — —,
P Apn]
6 Tp = Tp—1 + OnPn—1;
T
TwTn
8 Brn = ‘qj““‘ﬁ
Tnflrn—l
9 | Pn="Tn+ Bnpn-1;
// Improve computational cost: store those boxed values to avoid repeated
computation

Definition 8.6.1 (A-norm). Let A be real-valued SPD matrix. Then, the A-norm of z is given by
|zl = VaT Aa.
2. What is p,,’s? Conjugate Gradient
» Conjugate: p,’s are A-conjugate: orthogonal w.r.t. inner product (-, -) 4.
(Psps)a =pp Apj =0 ifk # j
e Gradient: search direction to update z,,.
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8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

3. Properties of CG
° z, € K,(A,Db).

* Residual are orthogonal:
rkTrj =0 fork#j = r, LK_1(A,D),

allows CG to converge fast if at most m iterations (under some assumptions).

* Search directions are A-conjugate:

p;—Apj =0 fork #j = efficient search through space.

4. How do we ensure orthogonal residual?
Goal: r7, 1 =0

r,j Tp—1 = (Th—1 — aApn_l)Trn_l Line #7 from Algorithm (24)

set . . .
=7 rn1—ap) (Ar, 1 =0 A = AT since A is symmetric

Solve for «, we get
-

oy = 7?71%_1 .

pn_lATn—l
To get «,, matching Algorithm (24), plug p,—1 = rn—1 + Bn—1Pn—2 into a,,.
5. How to ensure A-conjugate search direction?

Goal: p,| ,Ap, = 0.

Ph—1APn = D1 Alrn + Bpn—1) Line #9 of Algorithm (24)

set

= p;ll—_lA""n + Bp;lr_lApn,1 =0

Solve for 3:
B, = pg_lATn
Y Py 1 Apa

To get 3,, exactly matching Algorithm (24), plut r,, = r,—1 — @, Ap,—1 into 5.

Theorem 8.6.6
If A is SPD, and CG has not already converged (i.e., ,, # 0), then z,, € K, (A,b) is unique that

minimizes ||z, — x| 4

Remark 8.4 Note that x,, is the best approximation to the solution of Az = b that lives in K,,( A, b).

Proof 1. Pick arbitrary x = z,, — Az € K.
Goal: Az = 0.

100



8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

Consider error: e = z — x, = ¢, + Az. Then,

|z|% = (en + Az) T A(en + Ax)
= lleal’ + 2r) (Az) + ||Az|% expand and simplify

Recall that residuals are constructed such thatr,, 1 £,(4,b) = r, L Az

— |lell% = llenll + || Az|% is mallest when Az = 0. QED. =
7. Intuition: Building A-conjugate basis

Given {qi, ..., gn} orthonormal. How to build {p, ..., p,}, A-conjugate, where A is SPD?

Since A is SPD, by Cholesky Facotrization, we have A = LL". Define p; = L~ ¢;. Then,

pZTApj = qi—l—L_1 (LLT)L_qu = q;rqj =0 fori#j.
Suppose K, (A,b) = span{p1,...,pn}. Then, K, +1(A,b) = K, (A, b) Uspan {A"b}. So, we have

p; (A") =p] A (A" 'b)

———
€KCn(Ab)
= J-TA(cl p1+ -+ cnpn) almost everything cancels by orthogonality
= ijjTApj
However, if we directly consider ¢ (A"0) = ¢/ A(ciq1 + -+ + ¢ngn) =777 This is why we relay on A-

conjugate bases in CG.

Theorem 8.6.8 Connect Residual with Error

Irnlla-1 = llenll 4

Remark 8.5 Intuitively, this connection makes sense: e, lives in the input space so we can compute its
A-norm, whereas r,, lives in the output space so we need to compute its A~'-norm.

Proof 2.
Hrn||,24*1 =1y Ay = (b— Az,) AT (b — Azy)
= (Az, — Az,) " A" Y(Ax, — Axy) Az, =b
= (A(zy — 22)) A A2y — 20)) en = Ty — Tn
=l ATAL Ae, AisSPD, AT = A
N —
AA-I=T]
=e) Aey
= llenll%
QED. ®m
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8 ITERATIVE METHODS 8.6 Conjugate Gradient (CG)

Theorem 8.6.9 Convergence of CG

[rallar _ llealla 2<\/E—1>"7

Irolla-x— lleolla = "\ Ve +1

where e, = x, — x, if . denotes the true solution, and k = k2(A).

Remark 8.6
1
(identity matrix, CG solves instantly) 0 < ﬁ ) <1 (largek, slow convergence)

10. Polynomial Approximation of Error for CG & Proof of Theorem 8.6.9
Let f(z) = ||b — Az|’-.. Consider the following optimization problem:

flan) = i f(2), (CG Problem)

where z € K,(4,0) = 2z =pp—1(A)b =pp_1(A)Az, = ¢,(A)z,
N——

Qn(A)
Now, we can write (CG Problem) as
fzn) = i f(z)
. T
= * A * n — n —
i (@ =2)T Alee—2) lealls = lIralla-s

[(T—gn(A))z.] T
flwn) = min @ p,(A)Ap,(A)z.
pn(0)=1
= pinilgn lpn(A)eol| 45 (Polynomial Approx. of Error for CG)
pn(0)=1
with g = 0 and thus eg = 7, — 19 = 2+.

Since A is SPD, we can orthogonally diagonalize it: A = QAQ". Denote |7, [|%-1 = |lenl = flzn)-

f(an) = min yT (M) Apn(A) y Y= QTJ:*
Pn€Pn,pn(0)=1 —_———
diagonal
— Ai:eigenvalue
B anPrnI;?lr?(O Zyz lpn Z m:# of eigenvalues
= If 20=0,boxed part=f(z0)
2 2y . zo=0,boxed part=f(xo
= pnePIEzln(O) (ArgA(}fA)p (A > Z:yi Ai l[roll%—1 or [leo|%
T
f(@n) < min ( max pp(\; )2> take square root
F(20) T pn€Pupn(0)=1 \N€A(A)

We don'’t solve the problem exactly,

i < .
HeOHA pnePg,lglaS(O):l (/\rgA(ﬁ | n( 2)|> )\Helf\l(ﬁ ’pn( Z)‘ We just want to find an upper bound
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8 ITERATIVE METHODS 8.7 Polynomial Approximation Perspective

It turns out that Chebyshev polynomial is a good choice.
Definition 8.6.11 (Chebyshev Polynomial). For = € [—1, 1], the Chebyshev polynomial is given by

T (x) = cos (n cos_l(an)), with |T,,(z)] < 1.

After shifting the polynomial to fitin A(A), we have that £ € [Ayin, Amax), and

(Yn(f) _ Tn <)\max + )\min - 2€>

)\max - )\min
8.7 Polynomial Approximation Perspective

1. Arnoldi: Gram-Schmidt-ish method to find the next ¢, ;

min _ {|p, (A)b]],

Pn € Pp,,monic

Note that p,(A)b = A"b — Q,y. The closest vector in K,,(A4,b), Q,y, to next vector A”b. Form normal
questions:

AL A" = ey — y = QLA™

Closest vector: @,y = Q,Q; A*b can be viewed as an orthogonal projection. Next ¢, 41:

dn+1 = (Im - QnQ:L)Anb

A Further Explanation

* Arnoldi’s method finds ¢, ..., ¢,, an orthonormal basis of the Krylov subspace K,,(A,b) =
span {b, Ab, A%, . .. ,A”_lb}.

¢ Arnoldi Relation:
AQn — Qn+1Hn7

where Q,, = [ql .. qn} and H,, is an upper Hessenberg matrix.
By construction of Q),,, we know that Q,,y € K,,(A,b).

For the next iteration, we add A”b to the Krylov subspace, and seek ¢, 11 s.t.
Gn+1 L Kn(A,b) U{A"b}.

That is, we minimize the distance between A™b and the Krylov subspace.

e Optimization Problem:

As Qny € K,,(A,b), rewrite the problem as minimizing the residual r,, = A™b — Q,y:

min |7,||, = min [|A"b — Qny||5- (Arnoldi Approx.)
yeCr yeCr
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8 ITERATIVE METHODS 8.7 Polynomial Approximation Perspective

* Polynomial Representation: Since Q,y € K,(A4,b) = span {b, Ab, A%,..., A" b}, rewrite
Qny as alinear combination of b, Ab, ..., A" b

Substituting into (Arnoldi Approx.), we have:

min [|ry|| = min [|A"0 — Qnyll,
yeCn

yeCn

= min ||A"b — (y1b Ab+ -+ y, A"
min | (y1b+ y2Ab+ - +y )5

= min H(—ylb — oAb — - —y, AV b+ A”b)H2
yeCn

= min [|(—y1] — oA — - — g, A"+ A"
yeCn

pn(A)

min A)bll,.
Jmin la(A)l
pp, MONIc

2. GMRES: Solve Az = b

' (A)b
pnepféf(m:l”p (A)bll,

pn(A)b = (I - Aanl(A))b =b- Aanl(A)b anl(A)b € ’Cn(A7 b)
=b— AQny Qny € ’Cn(A7 b)

Find coefficients y s.t. A @,y 1is as close as possible to b.
~~

solution

3.CG:Solve Az =10

min Aleg where eg = z, — .
anPn,pn(O)ZIHPn( Jeoll 4 .
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