
Emory University

MATH 315 Numerical Analysis

Learning Notes

Jiuru Lyu

June 18, 2025

Contents

1 Floating Point Numbers 3

1.1 Binary Representation . 3

1.2 Integers in Computers . 3

1.3 Representation of Floating Point Numbers . 4

1.4 Errors . 8

2 Solutions of Linear Systems 11

2.1 Simply Solved Linear Systems . 11

2.2 GEPP and Matrix Factorization . 16

2.3 Measuring Accuracy of Solutions . 19

3 Curve Fitting 27

3.1 Polynomial Interpolation . 27

3.2 Error in Polynomial Interpolation . 31

3.3 Least Square . 37

4 Differentiation and Integration 42

4.1 Review - Taylor Series . 42

4.2 Differentiation . 42

4.3 Integration . 43

4.4 Error in Integration . 48

4.5 Adaptive Integration and More . 53

1

LIST OF ALGORITHMS LIST OF ALGORITHMS

5 Root Finding 56

5.1 Fixed Point Iteration (FPI) . 56

5.2 Convergence Iteration Analysis . 57

5.3 Root Finding Methods . 58

5.4 Calculating Square Roots . 62

5.5 Roots of Polynomials . 62

6 Univariate Minimization 67

6.1 Find Minima Without Calculus . 67

6.2 Find Minima with Derivatives . 69

List of Algorithms

1 Row-Oriented Forward Substitution . 14

2 Column-Oriented Forward Substitution . 15

3 General Structure of GEPP . 17

4 Constructing a Polynomial Interpolant . 28

5 Adaptive Integration . 54

6 Fixed Point Iteration (FPI) . 56

7 Newton Iteration . 58

8 Secant Method . 61

9 Bisection Method . 61

10 Quadratic Inverse Interpolation . 61

11 A Good Starting Guess for Calculating Square Roots 63

12 Roots of Polynomials . 63

13 Horner’s Rule in Practice . 64

14 Bracket Refinement . 67

15 Golden Section Search . 68

16 Quadratic Interpolation Search . 70

17 Cubic Interpolation Search I: Hermite Interpolation 70

18 Cubic Interpolation Search II: Power Series . 71

19 Cubic Interpolation Search III: Bracket Refinement 71

2

1 FLOATING POINT NUMBERS

1 Floating Point Numbers

1.1 Binary Representation

Definition 1.1.1 (Binary). 0 and 1; on and off.

Example 1.1.2 Represent Numbers in Base-2

Consider 13 = 1(10) + 3(1) = 1(10) + 3(100) in base-10. It can be converted into base-2

by decomposing 13 as 1(23) + 1(22) + 0(21) + 1(20).

Example 1.1.3 Fractions in Base-2

7

16
=

1

16
(7) =

(
2−4
)(
22 + 21 + 20

)
= 2−2 + 2−3 + 2−4.

Example 1.1.4 Repeating Fractions in Base-2

1

5
=

1

8
+ ε1 =⇒ ε1 =

1

5
− 1

8
=

8− 5

(5× 8)
=

3

40

ε1 =
3

3(16)
+ ε2 =⇒ · · ·

Repeating the steps above, we would finally get

1

5
=

1

8
+

1

16
+

1

128
+

1

256
+ · · ·

Theorem 1.1.5

Let n ∈ Z and n ≥ 1, then

n−1∑
k=0

2k = 2n−1 + 2n−2 + · · ·+ 20 = 2n − 1.

1.2 Integers in Computers

Definition 1.2.1 (Storing Integers). unit8 stands for unsigned integers and int8 stands for

signed integers.

3

1 FLOATING POINT NUMBERS 1.3 Representation of Floating Point Numbers

Remark. 1.1 The 8 here represents 8 bits. It is a measure of how much storage (how many 0s or

1s).

b7 b6 b5 b4 b3 b2 b1 b0

unsigned: 27 26 25 24 23 22 21 20

signed: −27 26 25 24 23 22 21 20

Example 1.2.2

unit8(13) = 00001101

Since −13 = 1(−27) + 1(26) + 1(25) + 1(24) + 0(23) + 0(22) + 1(21) + 1(20), we have

int8(−13) = 11110011

Remark. 1.2 Largest and Smallest Integers:

uint8(xL) = 11111111 =⇒ xL = 27 + 26 + · · ·+ 20 = 28 − 1 = 255

uint8(xS) = 00000000 =⇒ xS = 0(27) + 0(26) + · · ·+ 0(20) = 0

int8(xL) = 01111111 =⇒ xL = 0(−27) + 26 + · · ·+ 20 = 27 − 1 = 127

int8(xS) = 100000000 =⇒ xS = 1(−27) + 0(26) + · · ·+ 0(20) = −128

1.3 Representation of Floating Point Numbers

Definition 1.3.1 (Normalized Scientific Notation). Only 1 digit (non-zero) to the left of the

decimal point.

Example 1.3.2

123.456× 107

12.3456× 108

1.23456× 109 → normalized

Definition 1.3.3 (Anatomy of Floating Point Numbers). A floating point number, float(x),

consists of three parts: s(x) (sign bit), e(x) (exponent bits), and f(x) (fraction bits).

Definition 1.3.4 (Precision). Precision is defined by the number of bits per part:

4

1 FLOATING POINT NUMBERS 1.3 Representation of Floating Point Numbers

s(x) e(x) f(x) total

double precision (DP) 1 11 52 64

single precision (SP) 1 8 23 32

half precision (HP) 1 5 10 16

Remark. 1.3 The less bits the float point number has, the less storage it requires and faster

computation it performs, but more error introduces.

Definition 1.3.5 (Floating Point Number).

float(x) = (−1)s(x)
(
1 +

f(x)

2# of fraction bits

)
2E(x), (1)

where E(x) is called the unbiased exponent because it is centered about 0 and is calculated

through the e(x), the biased exponent because it can only be non-negative integers, by the

following formula:

E(x) = e(x)−
(
2# of exponent bits−1 − 1

)
.

Remark. 1.4 Eq. (1) is in normalized scientific notation because the largest number f(x) can

represent is 2# of fraction bits − 1. Hence,

1 +
f(x)

2# of fraction bits
< 2,

and thus there will be only 1 digit in front of the decimal point.

Example 1.3.6 Formula for a Floating Point Number in Double Precision (DP)

floatDP(x) = (−1)s(x)
(
1 +

f(x)

252

)
2e(x)−1023.

Example 1.3.7 Converting DP into Decimal

Suppose a DP floating number is stored as s(x) = 0, e(x) = 10000000011, and f(x) =

0100100 · · · 0. Find its representation in decimal base-10.

Solution 1.

e(x) = 10000000011 = 210 + 21 + 20 and f(x) = 0100100 · · · 0 = 250 + 247. Then, the

5

1 FLOATING POINT NUMBERS 1.3 Representation of Floating Point Numbers

unbiased exponent E(x) = e(x)− 1023 = 210 + 21 + 20 − (210 − 1) = 4. So,

floatDP(x) = (−1)s(x) +

(
1 +

f(x)

252

)
2E(x)

= (−1)0
(
1 +

250 + 247

252

)
24

=
(
1 + 2−2 + 2−5

)
24

= 24 + 22 + 2−1

= 16 + 4 + 0.5 = 20.5

□

Example 1.3.8 Converting Value to DP

Suppose a number in base-10 is −10.75. Find its representation of floating point num-

ber under DP.

Solution 2.

We have

value(x) = −10.75 = (−1)(10 + 0.75)

= (−1)
(
23 + 21 + 2−1 + 2−2

)
= (−1)

(
1 + 2−2 + 2−4 + 2−5

)
23

[
In normalized scientific notation

]
= (−1)1

(
1 +

250 + 248 + 247

252

)
21026−1023

= (−1)1
(
1 +

250 + 248 + 247

252

)
22

10+21−1023

So, we have s(x) = 1, e(X) = 10000000010, and f(x) = 010110 · · · 0. □

6

1 FLOATING POINT NUMBERS 1.3 Representation of Floating Point Numbers

Theorem 1.3.9 Some Special Rules

1. The formula

value(x) = (−1)s(x) +

(
1 +

f(x)

252

)
2e(x)−1023

only holds when 0 < e(x) < 211 − 1 or 00 · · · 01 < e(x) < 11 · · · 10.

2. If e(x) = 11 · · · 1, then it encodes special numbers.

3. If e(x) = 00 · · · 0:

• If f(x) = 00 · · · 0, then value(x) = 0.

• If f(x) > 0, it encodes a denormalized floating point number :

value(x) = (−1)s(x)
(
0 +

f(x)

252

)
2−1022.

This denormalized floating point number is more precise when describing

really small things.

Definition 1.3.10 (Machine Epsilon/εWP). Let “WP” stands for the working precision (DP/SP/H-

P/etc.). The machine epsilon, denoted as εWP, is the gap between 1 and the next largest float-

ing point number. Equivalently, it can be viewed as the smallest possible non-zero value of
f(x)

2number of fraction bits
. So, εDP = 2−52, εSP = 2−23, and εHP = 2−10.

Definition 1.3.11 (Special Numbers).

1. ±0: when s(x) = ±1 and e(x) = f(x) = 0.

2. ±Inf

3. NaN: not-a-number

Definition 1.3.12 (Floating Point Arithmetic).

1. The set of real numbers, R, is closed under arithmetic operations.

2. The set of all WP floating point numbers, however, is not closed under arithmetic op-

erations. For example, floatDP(x) = floatDP(y) = 252 + 1, but xy = 2104 + ε cannot be

represented using DP.

3. Suppose x and y are floating point numbers, then x ⊕ y = float(x + y) and x ⊗ y =

float(xy). Consider float as a rounding process, we can also define subtraction and

division of floating point numbers.

7

1 FLOATING POINT NUMBERS 1.4 Errors

Example 1.3.13

Assume we are only allowed three significant digits (in Base-10) in a computer. Sup-

pose x = 1.23× 104 and y = 6.54× 103. Find x⊕ y = float(x+ y).

Solution 3.

x⊕ y = float(x+ y)

= float(1.23× 104 + 6.54× 103)

= float(1.23× 104 + 0.654× 103)

= float(1.884× 104)

= 1.88× 104.

□

1.4 Errors

Definition 1.4.1 (Errors We May See).

1. Overflow: The exponent is too large. This means |x| is large and the computer will rep-

resent it as ±Inf. Note: In DP, xlarge = (2− 2−52) × 21023 ≈ 1.798 × 10308. This number is

referred as realmax in MATLAB.

2. Underflow: Large negative exponent. This means |x| is tiny and the computer will rep-

resent it as ±0. Note: In SP, xsmall ≈ 2.225× 10−53 and is referred as realmin in MATLAB.

3. Roundoff error : cutoff or round at some point.

Note that sometimes we are encounter the catastrophic cancellation, meaning the subtrac-

tion leads to our loss of significance or information. In this case, it is different from underflow

error or roundoff error.

Example 1.4.2 Catastrophic Cancellation/Loss of Significance Due to Subtraction

x = 3.141592920353983 ≈ 355

113
16 digits

y = 3.141592653589794 ≈ π 16 digits

x− y = 0.000000266764189 9 digits

8

1 FLOATING POINT NUMBERS 1.4 Errors

Definition 1.4.3 (Relative Error). Let z ∈ R. The relative error between float(z) and z is

denoted as µ and

µ =
float(z)− z

z

float(z) = z(1 + µ),

where we know

|µ| ≤ εWP

2
.

Example 1.4.4 Propagation of Errors

There are two major sources of errors: storing number and arithmetics.

Consider a computer only allow 3 significant figures. Then εWP = 0.01.

Consider x =
1

3
, y =

8

7
, and x+ y =

31

21
. Then,

float(x) = 0.333 = 3.33× 10−1 = x(1 + µx).

Solving for µx:
333

1000
=

1

3
(1 + µx)

µx =
999

1000
− 1 =

−1

1000
= −0.001

Note that |µx| = 0.01 <
εWP

2
. Similarly, we can solve float(y) = 1.14 × 100 = y(1 + µy) for

|µy| = 0.0025. Now, consider the floating point addition

x⊕ y = float(float(x) + float(y))

= float(3.33× 10−1 + 1.14× 100)

= float(1.473× 100)

= 1.47× 100.

Also, solve x⊕ y = (x+ y)(1 + µa) for |µa| = 0.0042. Note that

|µx|+ |µy| = 0.0035 < 0.0042 = |µa|.

This is called the propagation of error.

Example 1.4.5 Plotting Exponentials Using Factored and Expanded Forms

Consider p(x) = (1− x)10 and its expanded form. Plot them to see which is better.

9

1 FLOATING POINT NUMBERS 1.4 Errors

Example 1.4.5

1 %% Defining the Functions

2 p_1 = @(x) (1-x).^10;

3 p_2 = @(x) x.^10-10*x.^9+45*x.^8-120*x.^7+210*x.^6-252*x.^5+...

4 210*x.^4-120*x.^3+45*x.^2-10*x+1;

5 %% Ploting the Functions

6 x = linspace(0, 2, 100);

7 plot(x, p_1(x))

8 hold on

9 plot(x, p_2(x))

10 legend("Factor", "Expanded")

11 %% Zooming In

12 y = linspace(0.99, 1.01, 100);

13 hold off

14 plot(y, p_1(y))

15 hold on

16 plot(y, p_2(y))

17 legend("Factor", "Expanded")

(a) Plotting Functions (b) Zooming In

It seems that the two functions are the same (Fig 1(a)); however if we zooming in (Fig

1(b)), the expanded version introduces more error than the factored version because the

expanded version requires more arithmetical operations in it.

10

2 SOLUTIONS OF LINEAR SYSTEMS

2 Solutions of Linear Systems

Remark. 2.1 Assumption throughout this chapter: A is a square n× n matrix.

2.1 Simply Solved Linear Systems

Definition 2.1.1 (Linear System).

• Equation form: xi are variables (what we solve for) and aij are coefficients:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

This system has n equations and n variables.

• Matrix form: 
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann



x1

x2
...

xn

 =


b1

b2
...

bn

 =⇒ Ax = b,

where A is the coefficient matrix, a n × n matrix, x is the unknown, the solution vector

with length n, and b is the right hand side, vector with length n.

Theorem 2.1.2 Number of Solutions to a Linear System

A linear system Ax = b could have the following numbers of solutions:

• One unique solution: Ax = b is nonsingular; A is invertible.

• No solutions: Ax = b is singular.

• Infinite many solutions: Ax = b is singular.

11

2 SOLUTIONS OF LINEAR SYSTEMS 2.1 Simply Solved Linear Systems

Theorem 2.1.3 Matrix-Vector Multiplication

Let A ∈ Rm×n and x ∈ Rn.

• View 1: Row-wise. Let y = Ax, then yi =
n∑

j=1

aijxj as the ith row of y.

• View 2: Column-wise. Ax is a linear combination of columns ofA. So, y =
n∑

j=1

xja⃗j,

where we regard A as
[
a⃗1 a⃗2 · · · a⃗n

]

Row-Wise Vector Multiplication

1 y = zeros(n, 1);

2 for i = 1:n % loop over rows

3 for j = 1:n % loop over sum

4 y(i) = y(i) + A(i,j) + x(j);

5 end

6 end

Row-Wise Vector Multiplication (Vectorization)

1 y = zeros(n, 1);

2 for i = 1:n % loop over rows

3 y(i) = A(i,:) * x(i); % vectorization

4 end

Column-Wise Vector Multiplication

1 y = zeros(n, 1);

2 for j = 1:n % loop over columns

3 y = y + x(j) * A(:, j);

4 end

Definition 2.1.4 (Important Part of a Matrix).

• Diagonal Part

• Strictly Upper Triangular Part

• Strictly Lower Triangular Part

12

2 SOLUTIONS OF LINEAR SYSTEMS 2.1 Simply Solved Linear Systems

Theorem 2.1.5 Solving Diagonal Matrix

Given 
a11

. . .

ann



x1
...

xn

 =


b1
...

bn

,
we have

a11x1 = b1; a22x2 = b2; · · · annxn = bn

So we have

xi =
bi
aii
,

only if aii ̸= 0.

Remark. 2.2 aii ̸= 0 holes if A is invertible.

Remark. 2.3 A Diagonal matrix is also a lower triangular matrix or an upper triangular ma-

trix.

Solving Diagonal Matrix

1 x = zeros(n, 1);

2 for i = 1:n

3 x(i) = b(i) / A(i,i); % overflow and underflow

4 end

13

2 SOLUTIONS OF LINEAR SYSTEMS 2.1 Simply Solved Linear Systems

Theorem 2.1.6 Solving Lower Triangular Systems

Given 
a11

a21 a22
...

. . .

an1 · · · ann



x2

x2
...

xn

 =


b1

b2
...

vn

,
we have

a11x1 = b1

a21x1 + a22x2 = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

We can use the Forward Substitution to solve:

xi =
b1 − ai1x1 − ai2x2 − · · · − ai(i−1)xi−1

aii.

Algorithm 1: Row-Oriented Forward Substitution

Input: matrix A =
[
aij
]
; vector b =

[
bi
]

Output: solution vector x =
[
xi
]

1 begin
2 for i = 1 to n do // loop over rows

3

4 for j = 1 to i-1 do // loop over columns

5

6 bi := bi − aijxj ;

7 xi := bi/aii;

Example 2.1.7

Given −5

3 3

2 −5 3


x1x2
x3

 =

−10

3

21

.
Use column-wise forward substitution to solve this system.

Solution 1.

14

2 SOLUTIONS OF LINEAR SYSTEMS 2.1 Simply Solved Linear Systems

In column-wise:

x1

−5

3

2

+ x2

 0

3

−5

+ x3

00
4

 =

−10

3

21

.
1. Step 1: Solve for x1 = −10/− 5 = 2.

2. Step 2: Plug x1 = 2 into the equation:

x2

 0

3

−5

+ x3

00
4

 =

−10

3

21

− (2)

−5

3

2

 =

 0

−3

17

.
3. Step 3: Solve for x2 = −3/3 = −1.

4. Step 4: Plug x2 = −1 into the equation:

x3

00
4

 =

 0

−3

17

− (−1)

 0

3

−5

 =

 0

0

12

.
5. Step 5: Solve for x3 = 12/4 = 3.

□

Algorithm 2: Column-Oriented Forward Substitution

Input: matrix A =
[
aij
]
; vector b =

[
bi
]

Output: solution vector x =
[
xi
]

1 begin
2 for j = 1 to n do
3 xj := bj/ajj ;
4 for i = j+1 to n do
5 bi := bi − aijxj ;

15

2 SOLUTIONS OF LINEAR SYSTEMS 2.2 GEPP and Matrix Factorization

Theorem 2.1.8 Computational Cost of Forward Substitution

Number of floating point operations (+, −, ×, /) in row i is 1 division, (i− 1) multiplica-

tions, and (i− 1) subtractions. So, Number of floating points operations, or flops, of the

algorithm is

flops =
n∑

i=1

(1 + i− 1 + i− 1) =
n∑

i=1

(2i− 1)

= 2
n∑

i=1

i−
n∑

i=1

1

= 2

[
(n+ 1)(n)

2

]
− n

= n2

Remark. 2.4 It should be the same number of flops if we do column-oriented forward

substitution.

Remark. 2.5 Solving upper triangular system using backward substitution.

2.2 GEPP and Matrix Factorization

Theorem 2.2.1 Gaussian Elimination

In Gaussian Elimination, we are allowed to

1. Swap rows (exchange, pivot)

2. Add multiple of one row to another

3. Multiply row by non-zero scalar.

Remark. 2.6 We require the equation with the largest coefficient in magnitude at the top when

doing the Gaussian Elimination. This is because we want to divide by large numbers instead of

smaller ones (which will cause errors).

At stage k, eliminate xk, from rows k + 1 to n

1 for i = k+1:n

2 m(i,k) = a(i,k) / a(k,k); % find the multiplier

3 a(i,k) = 0;

16

2 SOLUTIONS OF LINEAR SYSTEMS 2.2 GEPP and Matrix Factorization

Algorithm 3: General Structure of GEPP

1 begin
2 for all stages do
3 pivot;
4 eliminate;

4 for j = k+1:n

5 a(i,j) = a(i,j) - m(i,k) * a(k,j); % could use vectorization

6 end

7 b(i) = b(i) - m(i,k) * b(k);

8 end

Pivoting at stage k: find the coefficient with the largest magnitude

1 %% The code tells us which row has the pivot.

2 p = k;

3 for i = k+1:n

4 if abs(a(p,k)) < abs(a(i,k))

5 p = i;

6 end

7 end

8 %% Swap rows in A and b

9 A([p,k],:) = A([k,p],:);

10 b(p) = b(k);

Theorem 2.2.2 Cost of GEPP

At stage k, we only focus on rows k through n and columns k through n. We have (n− k)

divisions for multipliers. For every multiplier we have (n− k) multiplications, which are

then used (n−k) times to change each row. So, we have (n−k)(n−k) multiplications in

total. Subtractions come with multiplications, so we also have (n−k)(n−k) subtractions.

Theorem 2.2.3 Another Perspective on GEPP

The process of GEPP can be written as matrix multiplication EA, where E is an elemen-

tary matrix and act on the rows of A.

17

2 SOLUTIONS OF LINEAR SYSTEMS 2.2 GEPP and Matrix Factorization

Theorem 2.2.4 Matrix Factorizations: PA = LU

PA = LU,

where U is upper-triangular, L is lower-triangular, and P is the pivot or permutation

matrix.

This factorization comes from GEPP. Almost all matrices A have PA = LU unless we

have a column of all zeros in A.

Theorem 2.2.5 Solving Ax = bwith PA = LU

Given Ax+ b and pre-computed PA = LU:

PA = Pb

LU = Pb

Ux = L−1Pb using forward substitution

x = U−1L−1Pb using backward substitution

This process need around O(n2) operations. O(·) is the big-O notation, meaning the

number is dominated by n2.

PA = LU in MATLAB

1 [L, U, P] = lu(A);

2 % P could be omitted sometimes.

Theorem 2.2.6 Cholesky Factorization

If A is symmetric (A = AT) and positive definite (all eigenvalues are positive), then

A = RTR, where R is upper-triangular and RT is lower-triangular. This factorization is

2 time less expensive than GEPP.

Remark. 2.7 Choleksy Factorization is just the PA = LU factorization for SPDs (symmetric

positive definite matrices).

18

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

Theorem 2.2.7 Other Matrix Factorization

1. QR decomposition:

A = QR,

where R is upper-triangular and Q is orthogonal such that QTQ = QTQ = I.

Q is really easy to be inverted and comes from the Gram-Schmidt process.

This composition is a bit more expensive than PA = LU.

2. Singular Value Decomposition (SVD):

A = UΣVT ,

where U and VT are orthogonal and Σ is diagonal. This factorization is also more

expensive than PA = LU decomposition.

2.3 Measuring Accuracy of Solutions

Definition 2.3.1 (Vector Norms). A vector norm is a function ∥ · ∥ : Rn → R that satisfies

• Positive Definiteness: ∥x∥ ≥ 0 ∀x ∈ Rn and ∥x∥ = 0 if and only if x = 0.

• Positive Homogeneity: ∥cx∥ = |c|∥x∥ ∀x ∈ Rn and c ∈ R.

• Triangular Inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ∀x, y ∈ Rn.

Definition 2.3.2 (Common Definitions of Norm).

• Pythagorean Distance: ∥x∥2 =
√
x21 + x22 + · · ·+ x2n.

• Taxicab/Manhattan Distance: ∥x∥1 = |x1|+ |x2|+ · · ·+ |xn|.

• Infinity Norm: ∥x∥∞ = max
i=1,...,n

|xi|.

Proof 1. In this proof, we want to show the 1−norm is a proper norm.

• Positive Definiteness: Note that ∥x∥1 = |x1 ++ · · ·+ ()|xn| ≥ 0 since each |xj| ≥ 0. If one

xi ̸= 0, |xi| ≥ 0, then ∥x∥1 > 0. So, if ∥x∥1 = 0, it must be x = 0. □

19

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

• Positive Homogeneity:

∥cx∥1 = |cx1|+ |cx2|+ · · ·+ |cxn|

= |c||x1|+ |c||x2|+ · · ·+ |c||xn|

= |c|(|x1|+ |x2|+ · · ·+ |xn|)

= |c|∥x∥1. □

• Triangle Inequality:

∥x+ y∥1 = |x1 + y1|+ |x2 + y2|+ · · ·+ |xn + yn|

≤ |x1|+ |y1|+ |x2|+ |y2|+ · · ·+ |xn|+ |yn|

= (|x1|+ |x2|+ · · ·+ |xn|) + (|y1|+ |y2|+ · · ·+ |yn|)

= ∥x∥1 + ∥y∥1.

■

Definition 2.3.3 (Matrix Norm). A matrix norm is a function ∥ · ∥ : Rn×n → R s.t.

• Positive Definiteness: ∥A∥ ≥ 0 and ∥A∥ = 0 if and only if A = 0.

• Positive Homogeneity: ∥cA∥ = |c|∥A∥.

• Triangle Inequality: ∥A+B∥ ≤ ∥A∥+ ∥B∥.

Definition 2.3.4 (Some Matrix Norms).

1. Frobenius Norm:

∥A∥F =

√√√√ n∑
j=1

n∑
i=1

a2ij.

2. Induced Matrix Norm: Let A ∈ Rn×n, x ∈ Rn×1, and p = 1, 2,∞, · · · , then

∥A∥p = max
x ̸=0

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p.

Remark. 2.8 Induced norm intuition: how much does ∥x∥p change when we apply A?

20

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

Theorem 2.3.5 Induced Matrix Norms with different p’s

• ∥A∥2 = σ1, the largest singular value. That is, if A = UΣVT , then ∥A∥2 is the

largest entry in Σ.

• ∥A∥1 = max
j=1,...,n

n∑
i=1

|aij|, the maximum column sum.

• ∥A∥∞ = max
i=1,...,n

n∑
j=1

|aij|, the maximum row sum.

Proof 2. Let’s show that ∥A∥1 is the maximum column sum. We will (1) show ∥A∥1 ≤
the maximum column sum, and (2) find one case when we attain the upper bound. Given

∥x∥1 = 1, then

∥Ax∥1 =
n∑

i=1

∣∣∣∣∣∣∣∣∣∣
n∑

j=1

aijxj︸ ︷︷ ︸
i−th entry ofAx

∣∣∣∣∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|aij||xj|

=
n∑

j=1

|xj|

(
n∑

i=1

|aij|

)

≤ max
j=1,...,n

n∑
i=1

|aij|, when x has exactly 1 entry equal to 1.

When x = ej∗ be a standard basis vector with 1 in j∗ position, where j∗ is the column of A with

maximum column sum, we have

∥Aej∗∥1 = ∥j − th column of A∥1 = max
j=1,...,n

n∑
i=1

|aij|.

■

Example 2.3.6

Given that A =

[
−1 2

−12 9

]
, find ∥A∥1 and ∥A∥∞.

∥A∥1 = maximum column sum = max
j=1,...,n

∥A(:, j)∥1 = 13.

∥A∥∞ = maximum row sum = 21.

21

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

Theorem 2.3.7 Submultiplicativity of Induced Norm

∥Ax∥p ≤ ∥A∥p∥x∥p.

Proof 3. By definition, we know ∥A∥p = max
x ̸=0

∥Ax∥p
∥x∥p

. Then,

∥A∥p ≥
∥Ax∥p
∥x∥p

∥Ax∥p ≤ ∥A∥p∥x∥p.

■

Corollary 2.3.8 ∥AB∥p ≤ ∥A∥p∥B∥p.
Definition 2.3.9 (Measuring Erros). Suppose x is the true solution, and x̂ is the approximate

solution. Then

Error = ∥x̂− x∥

Relative Error =
∥x̂− x∥
∥x∥

, x ̸= 0.

Remark. 2.9 In practice, we do not know x, the true solution. So this measurement cannot be

used.

Definition 2.3.10 (Residual). We know A, b, x̂, and we want to solve Ax = b. So, the

Residual = Ax̂− b

Residual Norm = ∥Ax̂− b∥

Relative Residual Norm =
∥Ax̂− b∥

∥b∥

Example 2.3.11

Let A =

[
0.835 0.667

0.333 0.266

]
, b =

[
0.168

0.067

]
. Let x =

[
1

−1

]
be the exact solution to the system

22

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

Ax = b and x̂ =

[
267

−334

]
, a bad computation of the solution. Then,

∥b−Ax̂∥2
∥x∥2

≈ 0.006

∥x− x̂∥2
∥x∥2

≈ O(102)

Remark. 2.10 The residual norm is not always a good estimate of the relative error.

Definition 2.3.12 (Ill-Conditioned, Well-Conditioned). If the system is linearly dependent,

we call the system ill-conditioned. If the system is linearly independent, we call it well-conditioned.

Definition 2.3.13 (Condition Numbers). The condition number of A is κ(A) = ∥A∥∥A−1∥.

Note that κ(A) ≥ 1 and κ(I) = 1. If κ(A) is large, then A is ill-conditioned. If κ(A) is close to

1, then A is well-conditioned.

Remark. 2.11 Some intuition on κ(A):

• ∥A∥: how much A moves x: Ax = b.

• ∥A−1∥: how much A−1 moves b: x = A−1b.

So, if κ(A) = ∥A∥∥A−1∥ is close to 1, the moves balance each other. If κ(A) is large, then we

move the vectors a lot.

Theorem 2.3.14 Upper Bound for Relative Error

∥x− x̂∥
∥x∥︸ ︷︷ ︸

Relative Error

≤ κ(A) · ∥b−Ax̂∥
∥b∥︸ ︷︷ ︸

Relative Residual

= ∥A∥∥A−1∥∥b−Ax̂∥
∥b∥

.

Proof 4. We want to use residual norm to compare ∥x − x̂∥ and ∥x∥. Suppose x is the true

solution: b = Ax. Then,

∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥.

So,
1

∥x∥
≤ ∥A∥

∥b∥
(2)

23

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

Consider the residual: r = b−Ax̂ = Ax−Ax̂ = A(x− x̂). So, x− x̂ = A−1r. Therefore,

∥x− x̂∥ = ∥A−1r∥ ≤ ∥A−1∥∥r∥ (3)

Putting Eq. (2) and Eq. (3) together, we have

∥x− x̂∥ · 1

∥x∥
≤ ∥A−1∥∥r∥ · ∥A∥

∥b∥

Re-arrange the inequality, we have

∥x− x̂∥
∥x∥

≤ ∥A∥∥A−1∥∥b−Ax̂∥
∥b∥

.

■

Remark. 2.12 Since norms measure how far two things are apart from each other, ∥x − x̂∥ =

∥x̂− x∥ and ∥b−Ax̂∥ = ∥Ax̂− b∥.

Corollary 2.3.15 If κ(A) ≈ 1, then a small residual implies that x̂ is a good approximation to

the true solution x. If κ(A) is large, then we still don’t know if x̂ is a good approximation to the

true solution.

Example 2.3.16

Given A1 =

[
1 10

0 1

]
and A2 =

[
1 106

0 1

]
. Which matrix will have a better approximation

to the true solution?

Solution 5.

κ1(A1) = ∥A1∥1∥A−1
1 ∥1.

Since det(A1) = 1− 0 = 1, we know A−1
1 =

1

det(A1)

[
1 −10

0 1

]
=

[
1 −10

0 1

]
. So,

κ1(A1) = ∥A1∥1∥A−1
1 ∥1 = (11)(11) = 121.

Similarly,

κ2(A2) = ∥A2∥1∥A−1
2 ∥1 =

(
1 + 106

)(
1 + 106

)
= O(1012).

Since κ2(A2) ≫ κ1(A1), A1 will yield a more accurate approximation. □

Remark. 2.13 Think κ(A) as an indicator for how much movement of x will there be if we

apply A on x.

24

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

Claim. 2.1 Conditioning is inherent to the problem. So, no algorithms can improve condition-

ing.

Definition 2.3.17 (Algorithm Stability/Backward Stability). When we solve Ax = b, we will

have some algorithm x̂ = algorithm(A, b). Imagine we run the algorithm in reverse (back-

wards). We should obtain Â and b̂ s.t. Âx̂ = b̂ in exact arithmetic. An algorithm is backward

stable if ∥A− Â∥ and ∥b− b̂∥ are small.

Remark. 2.14 Algorithm stability has nothing to do with conditioning.

Example 2.3.18

Given A =

[
α 1

1 2

]
. We know that solving Ax = b using Gaussian Elimination without

pivoting, we could get a solution far from true. So, Gaussian Elimination without pivoting

is not backward stable. In contrast, GEPP is a backward stable algorithm.

Example 2.3.19 Is Multiplication Backward Stable?

Define

x⊗ y = float(float(x)× float(y))

on a computer with 3 significant digits. Suppose x =
1

3
and y =

1

2
. Then,

x⊗ y = float((0.333)(0.500) = 0.167; εWP = 1.01− 1.00 = 10−2

Take x̂ = 0.334 and ŷ = 0.500, we get x̂ŷ = 0.167. Since ∥x − x̂∥ ≈ 0.001 ≤ 1

2
εWP, we say

multiplication is backward stable. Similarly, we could show all floating point operations

are backward stable, in fact.

Example 2.3.20

Prove that ∥Qx∥2 = ∥x∥2 for any x ∈ Rn if Q is orthogonal.

Proof 6. Since Q is orthogonal, QTQ = QQT = I. Note that the 2−norm:

∥x∥22 = x21 + x22 + · · ·+ x2n = xTx.

Then,

∥Qx∥22 = (Qx)T (Qx) = xTQTQx = xTx = ∥x∥22.

25

2 SOLUTIONS OF LINEAR SYSTEMS 2.3 Measuring Accuracy of Solutions

So,

∥Qx∥2 = ∥x∥2.

■

Extension. 2.1 What is ∥Q∥2? What is κ(Q)?

Solution 7.

∥Q∥2 = max
∥x∥2=1

∥Qx∥2
∥x∥2

= max
∥x∥2=1

∥x∥2
∥x∥2

= max
∥x∥2=1

1 = 1.

κ(Q) = ∥Q∥2∥Q−1∥2 = ∥Q∥2∥QT∥2 = 1 · 1 = 1.

□

26

3 CURVE FITTING

3 Curve Fitting

3.1 Polynomial Interpolation

Definition 3.1.1 (Interpolation). A function p(x) interpolates data {(xi, fi)}Ni=0 if p(xi) = fi for

i = 0, . . . , N .

Remark. 3.1 Uniqueness of the interpolating polynomial.

Definition 3.1.2 (Polynomial). A polynomial pk(x) is of degree k if there are constants c0, . . . , ck s.t.

pk(x) = c0 + c1x+ · · ·+ ckx
k.

A polynomial pk(x) is in exact degree k if ck ̸= 0.

Theorem 3.1.3 Steps for Polynomial Interpolation

1. Create a problem.

• Find some data.

• Design the problem

2. Choose a degree (based on the number of interpolation points)

3. Determine the coefficients. → Construct a polynomial

• Choose a polynomial basis

• Solve a linear system.

4. Draw the curve: evaluating at lots of points. → Evaluate a polynomial

Theorem 3.1.4 Polynomial Uniqueness

When the nodes {(xi, fi)}Ni=0 are distinct, there is a unique polynomial, the interpolating

polynomial pN(x) of degree N that interpolates the data. That is,
q0(x0) · · · qM(x0)

...
. . .

...

q0(xN) · · · qM(xN)

 ∈ Rn×n

27

3 CURVE FITTING 3.1 Polynomial Interpolation

Algorithm 4: Constructing a Polynomial Interpolant

Input: data, {(xi, fi)}Ni=0; polynomial basis: {qj(x)}Ni=0

Output: c0, . . . , cM s.t.
M∑
j=0

cjqj(xi) = fi for i = 0, . . . , N

1 Solve for c0, . . . , cM : 
c0q0(x0) + c1q1(x0) + · · ·+ cMqM(x0) = f0
...

c0q0(xN) + c1q1(xN) + · · ·+ cMqM(xN) = f0 q0(x0) · · · qM(x0)
...

. . .
...

q0(xN) · · · qM(xN)


 c1...
cM

 =

f0...
fN



Definition 3.1.5 (Power Series).

pN(x) = c0 + c1x+ c2x
2 + · · ·+ cNx

N

The Vandermonde Matrix is defined as
1 x0 · · · xN0
...

...
. . .

...

1 xN · · · xNN

.
• Pros: easy to understand and implement

• Cons: ill-conditioning, near singularity of the Vandermonde matrix, when |xi − xj| is

small.

Example 3.1.6 Power Series

Interpolate the points {(−1, 0), (0, 1), (1, 3)}.

Solution 1.

Suppose p2(x) = c0 + c1x+ c2x
2. Then,

(−1, 0) : p2(−1) = c0 + c1(−1) + c2(−1)2 = 0

(0, 1) : p2(0) = c0 + c1(0) + c2(0
2) = 1

(1, 3) : p2(1) = c0 + c1(1) + c2(1)
2 = 3.

28

3 CURVE FITTING 3.1 Polynomial Interpolation

In matrix form: 1 −1 1

1 0 0

1 1 1


c0c1
c2

 =

01
3

 =⇒

c0c1
c2

 =

 1

3/2

1/2

.
□

Definition 3.1.7 (Newton Form).

pN(x) = b0 + b1(x− x0) + b2(x− x0)(x− x1) + · · ·+ bN(x− x0)(x− x1) · · · (x− xN−1).

• Pros: we are having a lower triangular system:

pN(x0) = b0

pN(x1) = b0 + b1(x− x0)

pN(x2) = b0 + b1(x− x0) + b2(x− x0)(x− x1).

Example 3.1.8 Newton Form

Interpolate the points {(−1, 0), (0, 1), (1, 3)}.

Solution 2.

pN(x) = b0 + b1(x− (−1)) + b2(x− (−1))(x− 0)

pN(−1) = b0

pN(0) = b0 + b1

pN(1) = b1 + 2b1 + 2b2

In matrix form: 1 0 0

1 1 0

1 2 2


b0b1
b2

 =

01
3

 Forward−−−−−−→
Substitution

b0b1
b2

 =

 0

1

1/2

.
□

Definition 3.1.9 (Lagrange Polynomials).

• Coefficient = function values fi. =⇒ we don’t need to solve anything

29

3 CURVE FITTING 3.1 Polynomial Interpolation

•

ℓ(x) :

1 at x = xi

0 atx = xj, j ̸= i

Now, we want to construct a polynomial that has roots at all the nodes:

ω(x) = (x− x0)(x− x1) · · · (x− xN).

Then, if we assume we have distinct noes, we have

ℓ0(x) =
(x− x1)(x− x2) · · · (x− xN)

(x0 − x1)(x0 − x2) · · · (x0 − xN)

ℓ3(x) =
(x− x0)(x− x1)(x− x2)(x− x4) · · · (x− xN)

(x3 − x0)(x3 − x1)(x3 − x2)(x3 − x4) · · · (x3 − xN)

Generalizing, we have

ℓk(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xN)

numerator evaluated at x = xk
=

N∏
j=0, j ̸=k

=
x− xj
xk − xj

.

• pN(x) =
N∑
i=0

fi · ℓi(x).

• Pros: No solving. Great for theory.

• Cons: constructing ℓi(x) is tricky.

Example 3.1.10 Lagrange Polynomials

Interpolate the points {(−1, 0), (0, 1), (1, 3)}.

Solution 3.

ℓ0(x) =
(x− 0)(x− 1)

(−1− 0)(−1− 1)
; ℓ1(x) =

(x− (−1))(x− 1)

(0− (−1))(0− 1)
; ℓ2(x) =

(x− (−1))(x− 0)

(1− (−1))(1− 0)

So,

pN(x) = f0ℓ0(x) + f1ℓ1(x) + f2ℓ2(x).

□

Definition 3.1.11 (Chebyshev Polynomial).

• Only works for domain [−1, 1], but easy to extend to [a, b].

30

3 CURVE FITTING 3.2 Error in Polynomial Interpolation

• Tj(x) = cos(j · arccos(x)), j = 0, . . . , N . Therefore, T0(x) = cos(0 · arccos(x)) = 1 and

T1 = cos(1 · arccos(x)) = x. By trigonometric identities, we can show

Tj+1 = 2xTj(x)− Tj−1(x).

Remark. 3.2 Domain is limited to [−1, 1] because arccos(x) can only take x ∈ [−1, 1].

• We solve for d0, . . . , dN , where

pN(x) = d0T0(x) + d1T1(x) + d2T2(x) + · · ·+ dNTN(x)

• Pros: Nice numerical properties due to oscillation.

• Cons: Highly non-intuitive.

Example 3.1.12 Chebyshev Polynomial

Interpolate the points {(−1, 0), (0, 1), (1, 3)}.

Solution 4.

Assume p2(x) = d0T0 + d1T1(x) + d2T2(x), where T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.

Then,

p2(−1) = d0 + d1(−1) + d2(1)

p2(0) = d0 + d1(0) + d2(−1)

p2(1) = d0 + d!(1) + d2(1)

In matrix form, we have1 −1 1

1 0 −1

1 1 1


d0d1
d2

 =

01
3

 =⇒

d0d1
d2

 =

5/43/2

1/4


□

3.2 Error in Polynomial Interpolation

Remark. 3.3 Set-up:

• f(x), the unknown function

31

3 CURVE FITTING 3.2 Error in Polynomial Interpolation

• {(xi, fi)}Ni=0, data, where fi = f(xi).

• pN(x), degree N interpolant

• Our goal is to find error = f(x) − pN(x). Note that at x = xi, f(xi) − pN(xi) = 0 for

i = 1, . . . , N . So, xi are roots of f(xi) − pN(xi). Recall that xi are also roots of ω(x) =

(x− x0)(x− x1) · · · (x− xN). We wonder if we can build a connection between them.

Theorem 3.2.1

∃ ξx, a point on [a, b] depends on x such that

f(x)− pN(x) =
ω(x)

(N + 1)!
f (N+1)(ξx).

Example 3.2.2

Suppose f(x) = x2 on [0, 1]. We have data {(0, 0), (1, 1)} and interpolant p1(x) = x.

Then,

f(x)− p1(x) = x2 − x

and

ω(x) = (x− 0)(x− 1) = x2 − x.

Therefore,

LHS =
ω(x)

(N + 1)!
f (N+1)(ξx) =

x2 − x

(1 + 1)!
f ′′(ξx) =

x2 − x

2!
(2) = x2 − x = RHS

Example 3.2.3

Suppose f(x) = x3 on [0, 1]. We have data {(0, 0), (1, 1)} and interpolant p1(x) = x.

Then,

f(x)− p1(x) = x3 − x

and

ω(x) = (x− 0)(x− 1) = x2 − x.

Therefore,

RHS =
ω(x)

(N + 1)!
f (N+1)(ξx) =

x2 − x

(1 + 1)!
f ′′(ξx) =

x2 − x

2
(6ξx) = x2 − x.

32

3 CURVE FITTING 3.2 Error in Polynomial Interpolation

Question: Can we find a ξx where
x2 − x

2
(6ξx) = x2 − x.

Answer: Say we want to evaluate error at x =
1

2
, we can certainly find some ξx = ξ 1

2

such that (
1

2

)2

−
(
1

2

)
=

(1/2)2 − (1/2)

2
(6ξx).

Remark. 3.4 Some intuition on why this equation holds.

• When is f(x)− pN(x) = 0? At x0, . . . , xN due to interpolation.

• When is ω(x) = 0? At x0, . . . , xN due to construction.

• So, f(x) − pN(x) has roots x0, . . . , xN , which means we can “factor” out the roost using

ω(x): f(x)− pN(x) = ω(x)g(x).

• What is ξx? It is found through the Rolle’s Theorem. a special case for the Mean Value

Theorem: If f(a) = f(b) = 0, then ∃ξ ∈ [a, b] s.t. f ′(ξ) = 0.

Theorem 3.2.4 Make Error Small

max
x∈[a,b]

|f(x)− pN(x)| ≤ max
x∈[a,b]

|ω(x)|︸ ︷︷ ︸
make this small!

·

typically unknown︷ ︸︸ ︷
max
z∈[a,b]

∣∣f (N+1)(z)
∣∣

(N + 1)!

Theorem 3.2.5 Make |ω(x)| small

ω(x) = (x− x0)(x− x1) · · · (x− xN)

Choose xi so that usually x is “close” to some xi: Chebyshev points, roots of Chebyshev

polynomials:

xi = cos

(
2i− 1

2n
π

)
, i = 1, . . . , n

33

3 CURVE FITTING 3.2 Error in Polynomial Interpolation

Theorem 3.2.6

|ω(x)| ≤ |b− a|N+1

Remark. 3.5 This inequality is true because ω(x) can be regarded as distances from x to

xi’s. Hence, another approach to make |ω(x)| smaller is to make the interval [a, b] smaller.

Definition 3.2.7 (Linear Splines).

• Data: {(xi, fi)}Ni=1

• Ordering: a = x0 < x1 < x2 < · · · < xN = b

Remark. 3.6 We do not require equally spaced points here.

• Linear Splines:

S1,N(x) =



f0 ·
x− x1
x0 − x1

+ f1 ·
x− x0
x1 − x0

, x ∈ [x0, x1]

f1 ·
x− x2
x1 − x2

+ f2 ·
x− x1
x2 − x1

, x ∈ [x1, x2]

...

fN−1 ·
x− xN

xN−1 − xN
+ fN · x− xN−1

xN − xN−1

, x ∈ [xN−1, xN]

,

where 1 indicates the degree of each piece (1 for linear) andN is the number of intervals

(N + 1 points create N intervals)

Example 3.2.8

Given {(−1, 0), (0, 1), (1, 3)}. Construct S1,2(x).

Solution 1.

S1,2 =


0 · x− 0

(−1)− 0
+ 1 · x− (−1)

0− (−1)
= x+ 1 x ∈ [−1, 0]

1 · x− 1

0− 1
+ 3 · x− 0

1− 0
= 1− x+ 3x = 2x+ 1 x ∈ [0, 1]

.

□

Definition 3.2.9 (Linear B-Splines). We define the linear B-splines basis as follows:

L0(x) =


x− x1
x0 − x1

x ∈ [x0, x1]

0 o/w (otherwise)

34

3 CURVE FITTING 3.2 Error in Polynomial Interpolation

Li(x) =


x− xi−1

xi − xi−1

x ∈ [xi−1, xi] (left of xi)

x− xi+1

xi − xi+1

x ∈ [xi, xi+1] (right of xi)

0, o/w

, i = 1, . . . , N − 1.

LN(x) =


x− xN−1

xN − xN−1

x ∈ [xN−1, xN]

0 o/w

Therefore, we can write the linear splines as

S1,N(x) = f0L0(x) + f1L1(x) + · · ·+ fNLN(x).

Definition 3.2.10 (Cubic Splines).

S3,N(x) =



p1(x) = a1,0 + a1,1x+ a1,2x
2 + a1,3x

3 x ∈ [x0, x1]

p2(x) = a2,0 + a2,1x+ a2,2x
2 + a2,3x

3 x ∈ [x1, x2]
...

pN(x) = aN,0 + aN,1x+ aN,2x
2 + aN,3x

3 x ∈ [xN−1, xN]

,

where ai,j are unknowns. We have in total 4N unknowns, so we need 4N equations to solve

them. We want the splines to interpolate and continuous. So, for i = 1, . . . , N we have

pi(xi−1) = fi−1 and pi(xi) = fi,

which gives us in total 2N equations. To ensure continuous, we want the derivatives to be

continuous, so we have

p′i(xi) = p′i+1(xi) for i = 1, . . . , N − 1,

which gives us another N − 1 equations. To further ensure continuous and smoothy, we need

continuous second derivatives, so we have

p′′i (xi) = p′′i+1(xi) for i = 1, . . . , N − 1,

which also gives us N − 1 equations. Now, we have in total 4N − 2 equations, and we cannot

take the 3rd derivatives because after taking the 3rd derivatives, there will be only constants

left. Hence, we still need 2 more equations, and there are several different approaches:

35

3 CURVE FITTING 3.2 Error in Polynomial Interpolation

• Natural boundary conditions:

p′′1(x0) = 0; p′′N(xN) = 0.

• Second derivative conditions:

p′′1(x0) = f ′′(x0); p′′N(xN) = f ′′(xN)

This condition is not always helpful because we don’t always know the information on

the original function.

• First derivative conditions:

p′1(x0) = f ′(x0); p′N(xN) = f ′(xN).

• Not-a-knot condition:

p′′′1 (x1) = p′′′2 (x1); p′′′N−1(xN−1) = p′′′N(xN−1)

Definition 3.2.11 (Cubic B-Splines). Assume we have equally spaced points x0, x1 = x0 + h,

x2 = x1 + h, · · · . We want to find Bp(x) center at xp:

xp xp + h xp + 2hxp − hxp − 2h

A(x− (xp − 2h))3 A(x− (xp + 2h))3

A(x− (xp − 2h))3 +B(xp − (x− h))3

A(x− (xp + 2h))3 +B(xp − (x+ h))3

We require Bp(xp) = 1, so we have

A(x− (xp − 2h))3 +B(x− (xp − h))3 = 1.

We require continuity, so

A(x− (xp − 2h))3B(x− (x− h))3 = A(x− (xp + 2h))3B(x− (x+ h))3.

36

3 CURVE FITTING 3.3 Least Square

Solving the system, we will have

Bp(x) =



0 x < xp − 2h
1

4h3
(x− (xp − 2h))3 xp − 2h ≤ x < xp − h

1

4h3
(x− (xp − 2h))3 − 1

h3
(x− (xp − h))3 xp − h ≤ x < xp

− 1

4h3
(x− (xp + 2h))3 +

1

h3
(x− (xp + h))3 xp ≤ x < xp + h

− 1

4h3
(x− (xp + 2h))3 xp + h ≤ x+ xp + 2h

0 xp + 2h ≤ x

Then, we have

SN(x) =
N+1∑
i=−1

ai ·Bi(x),

where

Bp(xp−1) =
1

4
; Bp(xp) = 1; Bp(xp+1) =

1

4

3.3 Least Square

Definition 3.3.1 (Least Square Polynomial). Let qM(x) be a polynomial of degreeM . We want

to measure the error between qM(x) and f(x) with data {(xi, fi)}Ni=0. We define

σ(qM(x)) ≡
N∑
r=0

{qM(xr)− fr}2

The least square polynomial of degree M , pM(x), satisfies

σ(pM) ≤ σ(qM)

for any other degree M polynomial qM(x).

Example 3.3.2 Find the Best Fit Line

i xi fi

0 1 2

1 3 4

2 4 3

3 5 1

Solution 1.

37

3 CURVE FITTING 3.3 Least Square

Suppose p1(x) = a0 + a1x. Then,

σ(p1) =
3∑

r=0

{a0 + a1xr − fr}2

To minimize σ(p1), we set
∂σ

∂a0
=

∂σ

∂a0
= 0:

∂σ(p1)

∂a0
=

3∑
r=0

2(a0 + a1xr − fr) = 0

∂σ(p1)

∂a0
=

2∑
r=0

2xr(a0 + a1xr − fr) = 0

Plugging in data, we have

∂σ(p1)

∂a0
= 2(4a0 + 13a1 − 10) = 0;

∂σ(p1)

∂a0
= 2(13a0 + 51a1 − 31) = 0

Solve the following system:[
4 13

13 51

][
a0

a1

]
=

[
10

31

]
=⇒

[
a0

a1

]
=

[
107/35

−6/35

]
.

□

Definition 3.3.3 (Best Fit Polynomial).

qM(x) = a0φo(x) + a1φ1(x) + · · ·+ aMφM(x).

We want qM(x) to fit data {(xi, fi)}Ni=0 as best as we can, so we compute the error

σ(qM) =
N∑
r=0

{qM(xr)− fr}2 =
N∑
r=0

{a0φo(xr) + a1φ1(xr) + · · ·+ aMφM(xr)− fr}2.

In matrix form (vector 2-norm), we have

σ(qM) = ∥Va− f∥22.

38

3 CURVE FITTING 3.3 Least Square

That is,

σ(qM) =

∥∥∥∥∥

φ0(x0) φ1(x0) · · · φM(x0)

φ0(x1) φ1(x1) · · · φM(x1)
...

...
. . .

...

φ0(xN) φ1(xN) · · · φM(xN)



a0
...

aM

−


f0

f1
...

fN


∥∥∥∥∥
2

2

To find a pM minimizes ∥Va− f∥22, we solve the normal equations, that is

VTVa = VTf.

Solving the normal equation is equivalent to solving the least square problems.

Example 3.3.4 Basis

For φi(x) = xj , the power series, the big matrix V becomes
1 x0 x20 · · · xM0

1 x1 x21 · · · xM1
...

...
...

. . .
...

1 xN x2N · · · xMN


This is consistent with the Vandermonde matrix. The matrix might not necessarily be a

squared matrix.

Example 3.3.5 Solving the Normal Equation

Find the best fit equation p2(x) = a1 + a1x+ a2x
2.

i xi fi

0 −2 6

1 −1 3

2 0 1

3 1 3

4 2 6

Solution 2.

Construct V (power series):

V =


1 −2 4

1 −1 1

1 0 0

1 1 1

1 2 4

; f =


6

3

1

3

6


39

3 CURVE FITTING 3.3 Least Square

Construct VTV and VTf :

VTV =

 5 0 0

0 10 −18

10 −18 34

; VTf =

190
54



Remark. 3.7 In most cases of this class, VTV will be symmetric, positive, definite (having

positive eigenvalues), so VTV is invertible

Solve VTVa = VTf : MATLAB: (V’*V)\(V’*f); % worse conditioning

a ≈

1.51430

1.1429

.
□

Remark. 3.8 Important Points.

• V is an (N + 1)× (M + 1) matrix, and M < N .

• If M < N and xi are distinct, VTV will be SPD, and pM is unique.

• If M = N , we are back to polynomial interpolation.

• In practice, least square polynomial is more useful than interpolation for data analysis.

Remark. 3.9 Why does the normal equation work? - Linear Algebra.

f

f −Vâ

Vâ

col(V) = {Vy | y ∈ Rm+1}

Our goal: min
a

∥Va− f∥22. We want a nontrivial â such that

(Vâ)T − (f −Vâ) = 0

âT
(
VT (f −Vâ)

)
= 0

VTf −VTVâ = 0 normal equation

40

3 CURVE FITTING 3.3 Least Square

Definition 3.3.6 (Solving Least Squares with Matrix Factorization). We will use QR factor-

ization.

• V = QR, where Q is orthogonal and R is upper triangular.

V Q

R

Upper Triangular

0

=

• Substitute:

∥Va− f∥22 = ∥QRa− f∥22
= ∥QT (Q︸ ︷︷ ︸

I

Ra− f)∥22 2− norms invariant to orthogonal matrices

= ∥Ra−QTf∥22

=

∥∥∥∥∥
[
RM

0

]
a−

[
b

c

]∥∥∥∥∥
2

2

paritionQTf into 2 parts

= ∥RMa− b∥22 − ∥c∥22.

• Solve RMa = b using backward substitution, where b is the first M row of QTf .

41

4 DIFFERENTIATION AND INTEGRATION

4 Differentiation and Integration

4.1 Review - Taylor Series

Definition 4.1.1 (Taylor Series). Let f(x) be a smooth function (we can take derivatives). We

can approximate f(x) about x = a using Taylor series:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +O

(
|x− a|3

)
,

where O
(
|x− a|3

)
denotes higher order terms that depend on |x− a|3 or higher orders.

Definition 4.1.2 (Taylor Series). To approximate f(x+ h) for h > 0 about x, we have

f(x+ h) = f(x) + f ′(x) h︸︷︷︸
(x+h−x)

+
1

2
f ′′(x)h2 +O(h2).

4.2 Differentiation

Definition 4.2.1 (Differentiation).

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Definition 4.2.2 (Finite Difference Approxiation).

f ′(x) ≈ f(x+ h)− f(x)

h

x x+ hx− h x x+ hx− h x x+ hx− h

Forward Difference Backward Difference Central Difference

Example 4.2.3 Finite Difference

Suppose f(x) = x4. We want to approximate f ′(1). By hand, we know f ′(x) = 4x3, so

f ′(1) = 4. However, numerically, we have the first order approximation (O(h)) is

f ′(1) ≈ f(1 + h)− f(1)

h

42

4 DIFFERENTIATION AND INTEGRATION 4.3 Integration

and the second order approximation (O(h2)) is

f ′(1) ≈ f(1 + h)− f(1− h)

2h

Note that in the first order approximation, every time we divide h by 10, we are 10 times

more accurate. In the second order approximation, every time we divide h by 10, we will

be 100 times more accurate.

Remark. 4.1 Why Central Differencing is in Second Order?

By Taylor series, we know

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +O(h3)

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 +O(h3).

Then,

f(x+ h)− f(x− h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +O(h3)

−
[
f(x)− f ′(x)h+

1

2
f ′′(x)h2 +O(h3)

]
= 2f ′(x)h+O(h3)

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) Divide by h

≈ f(x+ h)− f(x− h)

2h

4.3 Integration

Definition 4.3.1 (Definite Integral). Suppose f is a function defined over the interval [a, b].

Then, the functional I(x) is the area under the curve, and

I(f) =

∫ b

a

f(x) dx.

Definition 4.3.2 (Functional). A functional is a mapping from functions to real numbers.

43

4 DIFFERENTIATION AND INTEGRATION 4.3 Integration

Theorem 4.3.3 Steps to approximate I(f)

• Partition the Interval: a ≤ x0 < x1 < x2 < · · · < xN ≤ b.

• Evaluate f at points xi, we get f(xi) and the data {(xi, fi)}Ni=0.

• Integrate using Riemanian Sums

Definition 4.3.4 (Midpoint Rule).∫ xi

xi−1

f(x) dx ≈
∫ xi

xi−1

f

(
xi−1 + xi

2

)
dx = (xi − xi−1)f

(
xi−1 + xi

2

)
.

x0 x1 x2 x3 x4

Definition 4.3.5 (Composite Midpoint Rule).

I(x) =

∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx+

∫ x2

x1

f(x) dx+ · · ·+
∫ xN

xN−1

f(x) dx

≈ (x1 − x0)f

(
x0 + x1

2

)
+ (x2 − x1)f

(
x1 + x2

2

)
+ · · ·+ (xN − xN−1)f

(
xN−1 + xN

2

)

If we have equally spaced points: xi = a+ ih for i = 0, . . . , N , and h =
b− a

N
, then

I(x) = h ·
N∑
i=1

f
(
x i−1

2

)
≡ RCM(f, h).

If h → 0, the approximation gets better (in theory). In practice, numerical considerations

come into play.

44

4 DIFFERENTIATION AND INTEGRATION 4.3 Integration

Definition 4.3.6 (Trapezoidal Rule).∫ xi

xi−1

f(x) dx ≈ (xi − xi−1)

(
f(xi−1) + f(xi)

2

)
.

x0 x1 x2 x3 x4

Definition 4.3.7 (Composite Trapezoidal Rule).

RCT (f, h) ≡ h
N∑
i=1

(
f(xi−1) + f(xi))

2

)

Definition 4.3.8 (Quadrature Rule). The Quadrature question concerns “Can we find a square

that has the same area as a circle?” In the integration problem, the Quadrature Rules states

that given points x0 < x1 < · · · < xN and weights w0, w1, . . . , wN , then

R(f) ≡
N∑
i=0

wif(xi).

45

4 DIFFERENTIATION AND INTEGRATION 4.3 Integration

Theorem 4.3.9 Properties ofR(f)

• Linear functional:

R(αf + βg) = αR(f) + βR(g).

• Alternative perspective:

R(f) = I(q),

where q is an approximation (q has a polynomial interpolant) to f .

I(q) = I(f + (q − f))

= I(f) + I(q − f)︸ ︷︷ ︸
error of integration

Then, the error of integration depends on how well q approximates f .

Example 4.3.10 Midpoint Rule Revisit

Use degree 0 approximation of f(x), q0(x), and use x =
c+ d

2
on [c, d]. Then, we have

exactly the midpoint rule:

c c+d
2

d

f(x)

q0(x)

Example 4.3.11 Trapezoidal Rule Revisit

Use degree 1 approximation of f(x), q1(x), with q1(c) = f(c) and q1(d) = f(d):

c d

f(x)
q1(x)

46

4 DIFFERENTIATION AND INTEGRATION 4.3 Integration

Use Lagrange polynomials to build q1(x):

ℓ1(x) =
x− d

c− d
, ℓ2 =

x− c

d− c
, q1(x) = f(c)ℓ0(x) + f(d)ℓ1(x).

Then,

I(f) ≈ I(q1)

= f(c)I(ℓ0) + f(d)I(ℓ1) Compare : w0f(x0) + w1f(x1)

= f(c)

(
d− c

2

)
+ f(d)

(
d− c

2

)
= (d− c)

(
f(c) + f(d)

2

)
,

which is exactly the trapezoidal rule.

Definition 4.3.12 (Interpolatory Quadrature). Given data {(xi, fi)}Ni=0, ordering x0 < x1 <

· · · < xN , and the interpolating polynomial qN(x). We can always write

R(f) = qN(x) =
N∑
i=0

f(xi)ℓi(x),

where ℓi(x)’s are Lagrange polynomials:

I(f) ≈ R(f) = I(qN)

= I

 N∑
i=0

f(xi)︸ ︷︷ ︸
constant

variable︷︸︸︷
ℓi(x)


=

N∑
i=0

f(xi) I(ℓi)︸︷︷︸
wi

Integration is a linear functional

So, wi = I(ℓi) =

∫ b

a

ℓi(x) dx.

Definition 4.3.13 (Newton-Cotes Rules). We are working with interpolatory quadrature with

equally spaced points. That is, x1 = a + ih and h = (b − a)/N . We have two types of Newton-

Cotes Rules:

• Closed (N + 1)-point Newton-Cotes: We will use all points x0, . . . , xN , including end-

points.

• Open (N − 1)-point Newton-Cotes: Use only interior points: x1, . . . , xN−1.

47

4 DIFFERENTIATION AND INTEGRATION 4.4 Error in Integration

Example 4.3.14 Midpoint Rule and Trapezoidal Rule as Newton-Cotes

The midpoint rule is equivalent to an open 1-point Newton Cotes. On the other hand,

the trapezoidal rule is equivalent to a closed 2-point Newton-Cotes.

x0 x1 x2

Midpoint since

equally spaced

Midpoint Rule

x0 x1

Trapezoidal Rule

Theorem 4.3.15 Simpson’s Rule

The Simpsons’s Rule is a closed 3-point Newton-Cotes. The Simpson’s Rule states that

I(f) =

∫ b

a

f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

Proof 1.

w0 =
b− a

6
=

∫ b

a

ℓ0(x) dx =

∫ b

a

(
x− a+b

2

)
(x− b)(

a− a+b
2

)
(a− b)

dx

w1 =
4(b− a)

6
=

∫ b

a

ℓ1(x) dx

w2 =
b− a

6
=

∫ b

a

ℓ2(x) dx

■

4.4 Error in Integration

Theorem 4.4.1 Integral Mean Value Theorem

Suppose g(x) andw(x) are continuous on [a, b], andw(x) is non-negative on (a, b). Then,

for some point η ∈ (a, b), we get∫ b

a

w(x)︸︷︷︸
weight

g(x) dx =

{∫ b

a

w(x) dx

}
g(η).

Proof 1. Since g(x) is continuous on [a, b], by the Extreme Value Theorem, g(x) attains

48

4 DIFFERENTIATION AND INTEGRATION 4.4 Error in Integration

a maximum and minimum on [a, b]. Let m = min
x∈[a,b]

g(x) and M = max
x∈[a,b]

g(x). Then, since

w(x) ≥ 0 ∀x ∈ (a, b), we have

m

∫ b

a

w(x) dx ≤
∫ b

a

w(x)g(x) dx ≤M

∫ b

a

w(x) dx.

Since g(x) is continuous on [a, b], by the Intermediate Value Theorem, g(x) attains every value

between m and M . In other words, for any y s.t. m ≤ y ≤ M, ∃η s.t. g(η) = y. Therefore,

∃η ∈ (a, b) s.t. the statement holds. ■

Theorem 4.4.2 Error in Trapezoidal Rule

I(f)−RT (f) = −(d− c)3

12
f ′′(η) for some η ∈ (a, b)

Proof 2. The error in trapezoidal rule is given by

I(f)−RT (f) = I(f)− I(q1) q1 is a linear approximation

= I(f − q1)

=

∫ d

c

{error in linear interpolation} dx

So, error in integration is the integral of error in interpolation. Recall

f(x)− q1(x) =
ω(x)

2!
f ′′(ξx), where ω(x) = (x− c)(x− d).

Then,

I(f)−RT (f) =

∫ d

c

(x− c)(x− d)

2︸ ︷︷ ︸
w(x)

f ′′(ξx)︸ ︷︷ ︸
g(x)

dx

= −
∫ d

c

(x− c)(d− x)

2
f ′′(ξx) dx

= −
{∫ d

c

(x− c)(d− x)

2
dx

}
f ′′(η)

= −(d− c)3

2
f ′′(η).

■

Corollary 4.4.3 If f ′′(η) ≥ 0, then we always overestimate the integral since the error is nega-

tive. If f ′′(η) < 0, then we always underestimate the integral since error is positive.

49

4 DIFFERENTIATION AND INTEGRATION 4.4 Error in Integration

Theorem 4.4.4 Errors in Composite Trapozoidal Rule

I(f)−RCT (f, h) = −h
3

12
Nf ′′(η) = −h

2

12
(b− a)︸ ︷︷ ︸
=Nh

f ′′(η), N = # of intervals

Theorem 4.4.5 Errors in Midpoint Rule and Composite Midpoint Rule

I(f)−RM(f) =
(d− c)3

24
f ′′(η);

I(f)−RCM(f) =
h3

24
Nf ′′(η) =

h2

24
(b− a)f ′′(η).

Definition 4.4.6 (Degree of Precision/DOP). We say R(f) has DOP = m if

R(pk) = I(pk) for k = 0, 1, . . . ,m,

and

R(pm+1) ̸= I(pm+1).

Theorem 4.4.7 DOP Test

R(f) has a DOP = m if R(xk) = I(xk) for k = 0, 1, . . . ,m and R(xm+1) ̸= I(xm+1).

Example 4.4.8 DOP of Midpoint Rule, Trapezoidal Rule, and Simpson’s Rule

• Midpoint rule has DOP = 1.

Proof 3.

k degree k I
(
xk
)

R
(
xk
)

0 p0(x) = 1

∫ b

a

1 dx = b− a (b− a)(1)

1 p1(x) = x

∫ b

a

x dx =
1

2

(
b2 − a2

)
(b− a)

(
a+b
2

)
= 1

2
(b2 − a2)

2 p2(x) = x2
∫ b

a

x2 dx =
1

3

(
b3 − a3

)
(b− a)

(
a+ b

2

)2

=
1

4
(a+ b)2(b− a)

So, the Midpoint Rule has a DOP = 1. ■

Remark. 4.2 Super-convergence in Midpoint Rule: we use a degree 0 polynomial to

interpolate our data, but we end up with a DOP = 1 > 0.

50

4 DIFFERENTIATION AND INTEGRATION 4.4 Error in Integration

• Trapezoidal Rule has a DOP = 1.

• Simpson’s Rule has a DOP = 3. (Super-convergence)

Remark. 4.3 Super-convergence generally means we use a bad interpolation but get an accu-

rate approximation of integral. (Degree of interpolation < DOP)

Theorem 4.4.9 Method of Underdetermined Coefficient

Goal: maximize DOP by choosing weights (given x0, . . . , xN on canonical interval

[−1, 1]). When k = 0, we have

∫ 1

−1

1 dx =
N∑
i=0

wi(1) DOP ≥ 0

When k = 1, we have ∫ 1

−1

x dx =
N∑
i=0

wixi DOP ≥ 1

...

When k = m, we have ∫ 1

−1

xm dx =
N∑
i=0

wix
m
i DOP ≥ m

If the next equation is not satisfied, DOP =,. That is,

∫ 1

−1

xm+1 dx ̸=
N∑
i=0

wix
m+1
i

We now havem+1 equations andN +1 unknowns (w0, . . . , wN). To find the weights, we

solve a linear system.

Example 4.4.10 Method of Underdetermined Coefficients

Suppose x0 = −1, x1 = 0, x2 = +1. Develop a R(f) = w0f(−1) + w1f(0) + w2f(+1).

Solution 4.

51

4 DIFFERENTIATION AND INTEGRATION 4.4 Error in Integration

k degree k I
(
xk
)

R
(
xk
)

0 p0(x) = 1

∫ 1

−1

1 dx = 2 w0 + w1 + w2

1 p1(x) = x

∫ 1

−1

x dx = 0 −w0 + w2

2 p2(x) = x2
∫ 1

−1

x2 dx =
2

3
w0 + w2

3 p3(x) = x3
∫ 1

−1

x3 dx = 0 −w0 + w2

4 p4(x) = x4
∫ 1

−1

x4 dx =
2

5
w0 + w2

So, we can form the following system of equations:
w0 + w1 + w2 = 2

−w0 + w2 = 0

w0 + w2 = 2/3

=⇒


w0 = 1/3

w1 = 4/3

w2 = 1/3

Therefore, we have a DOP = 3, which is a case of superconvergence.

R(f) =
(+1)− (−1)

6

[
f(−1) + 4f(0) + f(1)

]
−→ Simpson’s Rule

□

Theorem 4.4.11 Peano’s Theorem

Suppose

• R(f) with DOP = m, and

• integrand f(x) and its first m+ 1 derivatives exist and are continuous on [a, b].

Then, there exists a function K(x), the Peano’s Kernel, for which

I(f)−R(f) =

∫ b

a

K(x)f (m+1)(x) dx

Corollary 4.4.12 If K(x) does not change sign on [a, b], then by the Integral Mean Value The-

orem, we get

I(f)−R(f) = κf (m+1)(η),

for some η ∈ (a, b) and κ is a number called the Peano’s constant.

52

4 DIFFERENTIATION AND INTEGRATION 4.5 Adaptive Integration and More

Remark. 4.4 Midpoint Rule, Trapezoidal Rule, Simpson’s Rule satisfy the condition that K(x)

does not change sign on [a, b].

Example 4.4.13 Peano’s Kernel

On [−1, 1], the Simpson’s Rule gives us

R(f) =
1

3

[
f(−1) + 4f(0) + f(1)

]
,

with DOP = 3. Then, by Peano’s Theorem,

I(f)−R(f) =

∫ 1

−1

K(x)f (4)(x) dx = κf (4)(η).

Estimate the Peano’s constant κ.

Solution 5.

Choose f(x) = x4, so we have f (4)(x) = 24. Then

I(x4)−R(x4) = κf (4)(η) =⇒ 2

5
− 2

3
= 24κ =⇒ κ = − 1

90

□

4.5 Adaptive Integration and More

Theorem 4.5.1 Characteristics of Adaptive Integration

• Fewer function evaluations

• Control of error

• Goal: estimate I(f, T) ≡
∫
T

f(x) dx, where T = [a, b].

Notation 4.5.2. T ∗: subinterval of T . R1(f, T
∗) and R2(f, T

∗) are both quadrature rules, but R2

is more accurate (with higher DOP/composite method).

Definition 4.5.3 (Etimate Error).

E(f, T ∗) = |I(f, T ∗)−R1(f, T
∗)|

≈ |R2(f, T
∗)−R1(f, T

∗)|

Definition 4.5.4 (Gauss Rules).

53

4 DIFFERENTIATION AND INTEGRATION 4.5 Adaptive Integration and More

Algorithm 5: Adaptive Integration

1 Partition T into subintervals Ti, where i = 1, . . . , n;
2 Compute R(f, Ti) and E(f, Ti) for i = 1, . . . , n;
3 Find the subinterval with largest error and bisect. Say Ti∗ is the interval, then we turn

it into T left
i∗ and T right

i∗ ;

4 Repeat. Stop when we get
n∑

i=1

E(f, Ti) ≤ tolerance︸ ︷︷ ︸
to be chosen

;

• Main idea: maximize DOP by choosing weights wi and nodes xi.

• Assumption: canonical interval [−1, 1].

• Properties:

– positive weights: wi > 0

– interior nodes: xi ∈ (−1, 1) for i = 0, . . . , N

– symmetry

– interlacing: when comparing N-point and (N + 1)-point, those nodes will appear

in the interweaving/interlacing order. This guarantees good sampling of integration

intervals

– interpolatory

– DOP of (N + 1)-point Gauss Quadrature is 2N + 1.

Remark. 4.5 There are other rules such as Lobatto Rules or Gauss-Kronrod Rules. They are also

widely used in practice.

54

4 DIFFERENTIATION AND INTEGRATION 4.5 Adaptive Integration and More

Theorem 4.5.5 Transformation from Canonical Interval∫ g(d)

g(c)

f(x) dx =

∫ d

c

f(g(t))g′(t) dt,

where f(g(t)) represents evaluating f on [a, b], and g′(t) shows how much [a, b] is

stretched/shrunk from [−1, 1]. In our case, c = −1, d = +1, and g : [−1, 1] → [a, b].

We will use a linear map that maps −1 to a and +1 to b:

g(t) =
(b− a)

2
t+

(b+ a)

2

So,

I(f) ≡
∫ b

a

f(x) dx =
b− a

2︸ ︷︷ ︸
g′(t)

∫ 1

−1

f

(
b− a

2
t+

b+ a

2

)
dt

≈ b− a

2

N∑
i=0

w∗
i f

(
b− a

2
t∗i +

b+ a

2

)

=
N∑
i=0

wif(xi),

where wi =
b− a

2
w∗

i and xi =
b− a

2
t∗i +

b+ a

2
.

55

5 ROOT FINDING

5 Root Finding

5.1 Fixed Point Iteration (FPI)

Definition 5.1.1 (Root). A root of a function f is a point x∗ where f(x∗) = 0.

Definition 5.1.2 (Simple Root). A point x∗ is a simple root of a function f if the following hold:

• x∗ is a root, i.e., f(x∗) = 0,

• f ′(x) exists everywhere on an open interval containing x∗, and

• f ′(x∗) ̸= 0.

Remark. 5.1 In other words, we corss the x-axis “like a line.”

Definition 5.1.3 (Fixed Point). A point x∗ is a fixed point of function g if x∗ = g(x∗).

Remark. 5.2 It is those points where g(x) intersects y = x.

Theorem 5.1.4 Fixed Point and Root

If x∗ is a fixed point of g, then x∗ is a root of f(x) = x− g(x). Conversely, if x∗ is a root of

f(x), then x∗ is a fixed point of g(x) = x− f(x).

Example 5.1.5

Given g(x) = 5− 3

x+ 2
. Find fix points of this function.

Solution 1.

x = g(x) =⇒ x = 5− 3

x+ 2
=⇒ x2 − 3x+ 7 = 0 =⇒ x∗ =

3±
√
37

2

□

Algorithm 6: Fixed Point Iteration (FPI)

1 Goal: Find x∗ such that x∗ = g(x∗);
2 Start with a guess x0. Repeat the following step:

xn+1 = g(xn), n = 0, 1, . . . ,

where g is the FPI function;

Remark. 5.3 The result of FPI depends significantly on our initial guess!

56

5 ROOT FINDING 5.2 Convergence Iteration Analysis

Example 5.1.6

Find fixed points of g(x) = e−x.

Guess: x0 = 0.5. Then,

x1 = g(x0) = g(0.5) ≈ 0.6065; x2 = g(x1) = g(0.6065) ≈ 0.5452; . . .

Remark. 5.4 Consider h(x) = − ln(x). x∗ of g(x) is also a fixed point of h(x):

x∗ = g(x∗) = ex∗ =⇒ ln(x∗) = −x∗ =⇒ x∗ = − ln(x∗) = h(x∗).

However, using the guess x0 = 0.5 to solve for a fixed point of h(x) would not result in a converg-

ing fixed point.

5.2 Convergence Iteration Analysis

Definition 5.2.1 (Error). The errr of FPI is defined as

en := xn − x∗

Theorem 5.2.2

If FPI converges, then {|en|}∞n=0 decreases monotonically eventually.

Remark. 5.5 We will assume g′(x) is continuous whenever we need.

Theorem 5.2.3 Mean Value Theorem, MVT

By the mean value theorem, we can find the relationship between en+1 and en.

en+1 = xn+1 − x∗

= g(xn)− g(x∗)

= g′(ηn)(xn − x∗)

en+1 = g′(ηn)en

Theorem 5.2.4 Convergence Analysis

We have |en+1| < |en| ⇐⇒ |g′(ηn)| ≤ G < 1.

57

5 ROOT FINDING 5.3 Root Finding Methods

Theorem 5.2.5 Tangent Line Condition

If |g′(x)| ≤ G < 1 ∀x ∈ I = [x∗ − r, x∗ + r], then FPI converges for every starting guess

xi ∈ I.

Corollary 5.2.6 If g′(x∗) > 0, convergence is on-sided (= the sign of error does not change). If

g′(x∗) < 0, convergence is two-sided (= the sign of error changes).

Theorem 5.2.7

The smaller |g′(x∗)|, the faster we converge.

Theorem 5.2.8 Error Approximation

When xn is close enough to x∗,

en+1 ≈ g′(x∗)en

Definition 5.2.9 (Linear, Superlinear). Convergence rate is linear if g′(x∗) ̸= 0. Convergence

rate is superlinear if g′(x∗) = 0.

Definition 5.2.10 (Convergence Rate). If lim
n→∞

|en+1|
|en|p

= K, where K > 0, then the convergence

rate is order-p. If p = 1 andK < 1, then convergence is linear. If p = 2, then we have quadratic

convergence.

5.3 Root Finding Methods

Algorithm 7: Newton Iteration

1 To find a simple root f(x) = 0, we can use the FPI function

g(x) = x− f(x)

f ′(x)
,

and apply the fixed point iteration algorithm;
2 So, in each iteration, we have

xn+1 = xn −
f(xn)

f ′(xn)
.

Proof 1. This comes from Taylor Series:

f(z) = f(x) + (z − x)f ′(x) + (z − x)2
f ′′(x)

2
+ · · ·

f(z) ≈ f(x) + (z − x)f ′(x).

58

5 ROOT FINDING 5.3 Root Finding Methods

Find the root of linear approximation (solving for z):

0 = f(x) + (z − x)f ′(x)

z =
xf ′(x)− f(x)

f ′(x)
= x− f(x)

f ′(x)

In practice, we have

xn+1 = xn −
f(xn)

f ′(xn)
.

■

Theorem 5.3.1 Convergence of the Newton Methods

We have superlinear convergence when we are close near the root with the Newton’s

Method.

Proof 2.

en = xn − x∗; en+1 = g′(ηn)en.

Derivative of the Newton’s Method FPI function:

g′(x) =
d

dx

[
x− f(x)

f ′(x)

]
= 1− f ′(x)f ′(x)− f(x)f ′′(x)

f ′(x)2

= 1− 1 +
f(x)f ′′(x)

[f ′(x)]2

g′(x) =
f(x)f ′′(x)

[f ′(x)]2
.

When we are near x∗, we approximate

en+1 ≈ g′(x∗)en

g′(x∗) =
f(x∗)f

′′(x∗)

[f ′(x∗)]
2 = 0.

So, we have superlinear convergence when we are close near the root. ■

Definition 5.3.2 (Rate of Convergence). If lim
n→∞

|en+1|
|en|p

= K, K is a constant ∈ (0,∞), then the

method has convergence rate p.

Example 5.3.3

59

5 ROOT FINDING 5.3 Root Finding Methods

• en+1 =
1

2
en, p = 1

• en+1 = e2n, p = 2

• en+1 =
1

3
e3n, p = 3

As p increases, the method converges faster.

Remark. 5.6 p has to be greater than 1. For example, en+1 = e
1/2
n will give us a divergent

method.

Theorem 5.3.4 Rate of Convergence of Newton’s Method

The Newton’s Method has a rate of p = 2. It is converging quadratically.

Proof 3. Note that

en+1 = xn+1 − x∗

= g(xn)− g(x∗)

=

g(x∗) + (xn − x∗)︸ ︷︷ ︸
en

g′(x∗)︸ ︷︷ ︸
0

+(xn − x∗)
2 g

′′(x∗)

2
+ · · ·

− g(x∗)

= e2n ·
g′′(x∗)

2

So, the Newton’s Method has a rate of p = 2. It is converging quadratically. ■

Remark. 5.7 Drawback of Newton’s Method: we need information of the derivative.

Remark. 5.8 Drawback of Newton’s Method and Secant Method:they are very sensitive to our

initial guess. Bad initial guesses might even lead to divergence.

Theorem 5.3.5

The error terms of quadratic inverse interpolation satisfy

en+1 = Ke1.44n .

So, quadratic inverse interpolation is converging superlinearly.

60

5 ROOT FINDING 5.3 Root Finding Methods

Algorithm 8: Secant Method

1

xn+1 = xn −
f(xn)

mn

,

where mn is the slope of the secant line, computed by

mn =
f(xn)− f(xn−1)

xn − xn−1

.

This method does not require information of the derivative;

2 The order of convergence of the secant method is p =
1 +

√
5

2
= φ, the golden ratio;

Algorithm 9: Bisection Method

1 Choose a bracket [a, b] (an interval) such that f(a) and f(b) are different signs. That is,
f(a)f(b) < 0 (As f is continuous, by the intermediate value theorem, f must cross 0 in
this interval);

2 Compute the midpoint m =
a+ b

2
and f(m);

3 Form a new bracket: If f(a)f(m) < 0, then the new bracket is [a,m]. Otherwise,
f(m)f(b) < 0, then the new bracket is [m, b];

4 Repeat;
5 The bisection method is converging linearly;

Algorithm 10: Quadratic Inverse Interpolation

1 Assume f is invertible. Obviously, f(x) = y ⇐⇒ x = f−1(y). Then, if x∗ is a root of f ,
then f(x∗) = 0 ⇐⇒ x∗ = f−1(0);

2 Given there points: xn−2, xn−1, xn;
3 Compute the corresponding y values: yn−2 = f(xn−2), yn−1 = f(xn−1), yn = f(xn);
4 Interpolate {(yn−2, f

−1(yn−2)︸ ︷︷ ︸
xn−2

), (yn−1, f
−1(yn−1)︸ ︷︷ ︸

xn−1

), (yn, f
−1(yn)︸ ︷︷ ︸
xn

)}:

p2(y) =
(y − yn−1)(y − yn−2)

(yn − yn−1)(yn − yn−2)
f−1(yn) +

(y − yn)(y − yn−2)

(yn−1 − yn)(yn−1 − yn−2)
f−1(yn−1)

+
(y − yn)(y − yn−1)

(yn−2 − yn)(yn−2 − yn−1)
f−1(yn−2)

So, xn+1 = p2(0);
5 Interpolate {(yn−1, f

−1(yn−1)), (yn, f
−1(yn)), (yn+1, f

−1(yn+1))}, and repeat.

61

5 ROOT FINDING 5.4 Calculating Square Roots

5.4 Calculating Square Roots

Theorem 5.4.1

To compute
√
a for a > 0, we are essentially finding the roots of the function given by

f(x) = x2 − a, using the Newton’s Method:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2n − a

2xn
=
xn +

a
xn

2

The second expression is better as we have less operations involved and dividing by 2 is

easier.

Lemma 5.4.2 Consider x0 > 0, then e1 =
e20
2x0

> 0. So, x1 −
√
a > 0 and we have one-sided

convergence. Therefore, we have en ≥ 0 for all n ≥ 1. Therefore,

0 ≤ en
xn

=
xn −

√
a

xn − 0
< 1

Let’s consider the inequality using the num-

ber line and distance.

0 x√
a

Theorem 5.4.3 Error Analysis

We will always converge when finding the square roots.

Proof 1. Consider the error terms:

en = xn −
√
a

en+1 = xn+1 −
√
a

=

(
xn +

a
xn

)
2

−
√
a =

(xn −
√
a)

2

2xn
=

e2n
2xn

.

By Lemma 5.4.2, we have

en+1 =
e2n
2xn

=

(
en
xn

)(en
2

)
≤ en

2
.

So, we will always converge. ■

5.5 Roots of Polynomials

Definition 5.5.1 (Polynomial of Degree-n). A polynomial of degree-n is given by

pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

62

5 ROOT FINDING 5.5 Roots of Polynomials

Algorithm 11: A Good Starting Guess for Calculating Square Roots

1 Write a in base-2:
a = S(a)2e(a),

where S(a) is the significant, 1 ≤ S(a) < 2, and e(a) is the exponent, an integer;
2 Compute

√
a:

√
a =

{√
S(a) · 2

e(a)
2 e(a) is even√

2S(a)2
e(a)−1

2 e(a) is odd

So, finding
√
a depends on finding the root of the significant;

3 Range reduction:
1 ≤ S(a) < 2 ≤ 2S(a) < 4,

with this reduced range, we can make good starting guess for calculation of square
roots;

4 One additional trick: seeding;

Theorem 5.5.2 Fundamental Theorem of Algebra

A polynomial of degree-n (n ≥ 1) will have n roots by counting multiplicities, some of

which could be complex.

Algorithm 12: Roots of Polynomials

1 Use Newton’s Method to find a root. −→ We need to evaluate pn(x) and p′n(x) quickly;
2 Factor out root. −→ Synthetic division;
3 Repeat on remaining polynomial;

63

5 ROOT FINDING 5.5 Roots of Polynomials

Theorem 5.5.3 Horner’s Rule of Degree-3 Polynomials

Given a cubic polynomial:

p3(x) = a3x
3 + a2x

2 + a1x+ a0

= (a3x
2 + a2x+ a1)x+ a0

= ((a3x+ a2)x+ a1)x+ a0

We then can define the following temporary polynomials:

t3(x) = a3 t′3(x) = 0

t2(x) = a2 + xt3(x) t′2(x) = t3(x) + xt′3(x)

t1(x) = a1 + xt2(x) t′1(x) = t2(x) + xt′2(x)

p3(x) ≡ t0(x) = a0 + xt1(x) p′3(x) ≡ t′0(x) = t1(x) + xt′1(x)

In this way, our computation of p3(x) and p′3(x) invovles less operations of floating point

numbers.

Algorithm 13: Horner’s Rule in Practice
Input: [an, an−1, . . . , a0] coefficients; x value of evaluation
Output: t value of the polynomial at x; tp value of the derivative at x

1 begin
2 Initialize: tp = 0; t = an;
3 for i = n− 1 to 0 do
4 tp = t+ tp ∗ x;
5 t = ai + t ∗ x;

Theorem 5.5.4 Synthetic Division/Polynomial Long Division

Suppose α is a root such that pN(α) = 0. Generally,

pN(x)

(x− α)
= qN−1(x) +

b0
(x− α)

⇐⇒ pN(x) = (x− α)qN−1(x) + b0

When α is a root, b0 = 0, so
pN(x)

(x− α)
= qN−1(x)

Example 5.5.5 Long Division

64

5 ROOT FINDING 5.5 Roots of Polynomials

x+ 9 + 66
x−7

x− 7) x2 + 2x+ 3

x2 − 7x

9x+ 3

9x− 63

66

So,
x2 + 2x+ 3

x− 7
= x+ 9 +

66

x− 7
and x2 + 2x+ 3 = (x+ 9)(x− 7) + 66.

Theorem 5.5.6 Synthetic Division in Practice

Given a degree-3 polynomial p3(x) = (a− α)q2(x) + b0. We can rewrite the equation into

a3x
3 + a2x

2 + a1x+ a0 = (x− α)
(
b3x

2 + b2x+ b1
)
+ b0

=⇒



a3 = b3

a2 = b2 − αb3

a1 = b1 − αb2

a0 = b0 − αb1

=⇒



b3 = a3

b2 = a2 + αb3 = a2 + αa3

b1 = a1 + αb2 = a1 + α(a2 + αa3)

b0 = a0 + αb1 = a0 + α(a1 + α(a2 + αa3))

In summary, we want

• Find root α of p3(x)

• Find the mapping: [a3, . . . , a0] → [b3, . . . , b1]

• Find roots of q2(x) and repeat.

Theorem 5.5.7 Conditioning of Polynomial Roots

Given the true polynomial pn(x) = a0+a1x+· · ·+anxn with root z0 such that p(z0) = 0. We

computed a polynomial Pn(x) = A0 +A1x+ · · ·+Anx
n with root Z0 such that P (Z0) = 0

from our algorithm. Then, the error = z0 − Z0 can be approximated with

z0 − Z0 ≈
Pn(z0)− pn(z0)

P ′
n(Z0)

=

n∑
i=0

(Ai − ai)z
i
0

P ′
n(Z0)

.

65

5 ROOT FINDING 5.5 Roots of Polynomials

Proof 1. We can approximate Pn(z0) using Taylor series, expanded about Z0:

Pn(z0) ≈ Pn(Z0)︸ ︷︷ ︸
0

+(z0 − Z0)P
′
n(z0)

Pn(z0)− pn(z0)︸ ︷︷ ︸
0

≈ (z0 − Z0)P
′
n(Z0)

Therefore, we have

error = z0 − Z0 ≈
Pn(z0)− pn(z0)

P ′
n(Z0)

=

n∑
i=0

(Ai − ai)z
i
0

P ′
n(Z0)

.

■

Remark. 5.9 Theoretically, Ai − ai should be small. Therefore, the error becomes large when

P ′
n(Z0)a ≈ 0.

That means flatter polynomials at the roots will cause large errors.

66

6 UNIVARIATE MINIMIZATION

6 Univariate Minimization

Remark. 6.1 (Goal) The goal of this chapter is to find a minimum of continuous function f on

[a, b]. By the Extreme Value Theorem, we will always find such a minimum.

Remark. 6.2 (A Calculus Perspective) If f is differentiable, local extrema occur when f ′(x) =

0. That is a root finding problem! Suppose x1, . . . , xp are where f ′(xo) = 0. Then, the global

minimization on the interval [a, b] will be

min
x∈[a,b]

f(x) = min {f(xi), f(a), f(b)}.

Definition 6.0.1 (Minimum/Minimizer). Minimum is the smallest value the function can

take on [a, b]. Minimizer is the input (x) for which the function attains its minimum.

6.1 Find Minima Without Calculus

Definition 6.1.1 (U-Shaped Function). A function f is U-shaped on [a, b] if

• f is continuous

• Strictly decreasing on [a, xm], where xm is the minimizer.

• Strictly increasing on [am, b].

If f is continuously differentiable, then f is U-shaped if f ′(x) =

< 0 x ∈ [a, xm]

> 0 x ∈ [xm, b]

Remark. 6.3 A U-shaped function has not to be differentiable (i.e., smooth)!

Definition 6.1.2 (Bracket for a Local Minimum). [a, b] is a bracket for the minimum if the

minimizer xm ∈ [a, b].

Definition 6.1.3 (Search Points). Given a bracket [a, b], c, d are search points if the have a <

c < d < b.

Algorithm 14: Bracket Refinement
Input: a bracket [a, b] and two search points c, d.

1 If f(c) ≤ f(d), then [a, d] is a bracket for the minimum;
2 If f(c) ≥ f(d), then [c, b] is a bracket for the minimum;

Remark. 6.4 (Relationship to the Golden Ratio) φ =
1 +

√
5

2
=

1

1− r
.

Remark. 6.5 Advancement of the Golden Section Search

67

6 UNIVARIATE MINIMIZATION 6.1 Find Minima Without Calculus

Algorithm 15: Golden Section Search

Input: a bracket for the minimum [a, b], r =
3−

√
5

2
.

1 c ≡ a+ r(b− a), d ≡ b− r(b− a);

• balance when we refine

• each refinement cuts the bracket down by a factor of 1− r ≈ 0.618.

• refinements reuse search points −→ great for computation.

(to derive this point, verify that the next search point c′ ≡ c + r(b − c) by substituting

c = a + r(b − a). Also, keep in mind that r is a root of x2 − 3x + 1. Simply the previous

equation, we will have c′ = d eventually.)

Theorem 6.1.4 Condition to Stop the Golden Section Search

1. Function has a similar value at all four points

2. Brackets is small:

|b− a| ≤
√
ε

L
,

where ε is the working precision, and L is some constant.

Remark. 6.6 For example, if we want five digits of precision, ε should be around 10−6 or

10−5, but generally, the smaller ε, the more iterations we need.

Proof 1. Here, we offer some intuition of why that condition for small brackets will work.

If f is continuously differentiable, then we have∣∣∣∣f(x)− f(xm)

x− xm

∣∣∣∣ ≤ L,

where L is the Lipschitz constant. This inequality shows that for all x ∈ [a, b] and x ̸= xm, the

slope is bounded:

|f(x)− f(xm)| ≤ L|x− xm| ≤ L|b− a| ≤ some upper bound

Remark. 6.7 So, if f is a very steep function,Lneeds to be large to bound the slope. We therefore

need small brackets. Then, more iterations are needed to refine the brackets. On the other hand,

68

6 UNIVARIATE MINIMIZATION 6.2 Find Minima with Derivatives

if f is a very flat function,L can be small but still bound the slope. We could have relatively large

brackets, and so less iterations are needed.

L(b− a)2︸ ︷︷ ︸
upper bound of |f(x)−f(xm)| (computed vs. true)

≤
upper bound of |F (x)−f(x)|

|f(x)| rounding error, user-defined level of precision︷︸︸︷
ε

Now, let’s discuss the role of L, the Lipschitz constant. Assume f is second-order differen-

tiable. We can approximate xm with x by using the Taylor’s series:

f(x) ≈ f(xm) + f ′(xm)(x− xm)︸ ︷︷ ︸
0

+
f ′′(xm)

2
(x− xm)

2

f(x)︸︷︷︸
computed

≈ f(xm)︸ ︷︷ ︸
true

(1 + ψ)︸ ︷︷ ︸
relative error

So, we would have

ψ ≡ f ′′(xm)

2f(xm)
(x− xm)

2

|ψ| ≤
∣∣∣∣f ′′(xm)

2f(xm)

∣∣∣∣(b− a)2 = L(b− a)2

Therefore, we know L depends on the curvature of f ′′(xm) and the value of f(xm). ■

Remark. 6.8 In practice, we don’t always know xm and the derivatives, so Lwould just be some

numbers to pick.

Remark. 6.9 A good choice of c is
a+ b

2
, the midpoint.

6.2 Find Minima with Derivatives

Remark. 6.10 Assumptions for the Cubic Interpolation Search

• f is U-shaped on [a, b].

• Extremum lies interior (a, b). We need f ′(a) and f ′(b)have opposite signs. That is, f ′(a)f ′(b) <

0. To be more specific, f ′(a) < 0 and f ′(b) > 0.

69

6 UNIVARIATE MINIMIZATION 6.2 Find Minima with Derivatives

Algorithm 16: Quadratic Interpolation Search
Input: A bracket [a, b]

1 Choose some c ∈ (a, b) s.t. f(c) < min {f(a), f(b)}. This is to ensure we have an upward
facing parabola;

2 Interpolate {(c, f(c)), (a, f(a)), (b, f(b))}:
In Newton’s form,

P2(x) = g0 + (x− c)g1 + (x− c)(x− a)g2,

where g0 = f(c), g1 =
f(c)− f(a)

c− a
, g2 =

(
f(b)−f(c)

b−c

)
− g1

b− a
.

Note that g1 < 0 and g2 > 0;
3 Compute the minimizer d of P2(x).

P ′
2(x) = g1 + [(x− a) + (x− c)]g2 = 0

Solve, and we would have d = xm =
a+ c

2
− g1

2g2
;

4 Add d as the new search point and refine the brackets. Repeat;

Algorithm 17: Cubic Interpolation Search I: Hermite Interpolation
Input: (a, f(a)), (b, f(b)), (a, f ′(a)), (b, f ′(b)). We have 4 points in total, so we

need 4 equations.
1 Interpolate: P3(x) = a3x

3 + a2x
2 + a1x+ a0

We will use the Hermite interpolation here.
Define a clever basis: φ(s) = (1 + 2s)(1− s)2 and ψ(s) = s(1− s)2. Note that φ(0) = 1,
φ(1) = φ′(0) = φ′(1) = 0 and ψ(0) = ψ(1) = ψ′(1) = 0, ψ′(0) = 1. So, our interpolation
function can be written as

P3(x) = f(a)φ(t) + f(b)φ(1− t) + hf ′(a)ψ(t)− hf ′(b)ψ(1− t),

where t =
x− a

b− a
and h = b− a;

2 Minimize P3(x) and the minimizer will become a search point;
3 Refine the bracket (will be discussed later) and repeat;

70

6 UNIVARIATE MINIMIZATION 6.2 Find Minima with Derivatives

Remark. 6.11 (Why we need h and why −h?) Note that t is a function of x, so when comput-

ing φ′(t) and ψ′(t), we need chain rule:

P ′
3(x) = f(a)φ′(t)

(
1

b− a

)
−f(b)φ′(1− t)

(
1

b− a

)
+hf ′(a)ψ′(t)

(
1

b− a

)
+hf ′(b)ψ(1− t)

(
1

b− a

)

Algorithm 18: Cubic Interpolation Search II: Power Series

1 Define P3(x) = A(x− c)3 +B(x− c)2 + C(x− c) +D, where c =
a+ b

2
;

2 Solve the system we get

A =
[d(f ′(b)− f ′(a))− (f(b)− f(a))]

4d3
; B =

[f ′(b)− f ′(a)]

4d

C =
[3(f(b)− f(a))− d(f ′(b) + f ′(a))]

4d
; D =

[f(a) + f(b)]

2
− d[f ′(b)− f ′(a)]

4
,

where d =
b− a

2
, and so a+ d = c and b− d = c;

3 Solve P ′
3(x) = 0 to find the minimizer: roots =

a+ b

2
+

−B ±
√
B2 − 3AC

3A
, and the root

of smaller magnitude will be chosen as the new search point. Repeat;

Remark. 6.12 The cubic interpolation search ensures that a root of P ′
3(x) = 0 exists in (a, b) (by

the Intermediate value theorem) and there is only one root in (a, b).

Algorithm 19: Cubic Interpolation Search III: Bracket Refinement

1 In this method, we only need one search point to refine the bracket;
2 If f ′(c) < 0, then the new bracket is [c, b];
3 If f ′(c) > 0, then the new bracket is [a, c];

71

	1 Floating Point Numbers
	1.1 Binary Representation
	1.2 Integers in Computers
	1.3 Representation of Floating Point Numbers
	1.4 Errors

	2 Solutions of Linear Systems
	2.1 Simply Solved Linear Systems
	2.2 GEPP and Matrix Factorization
	2.3 Measuring Accuracy of Solutions

	3 Curve Fitting
	3.1 Polynomial Interpolation
	3.2 Error in Polynomial Interpolation
	3.3 Least Square

	4 Differentiation and Integration
	4.1 Review - Taylor Series
	4.2 Differentiation
	4.3 Integration
	4.4 Error in Integration
	4.5 Adaptive Integration and More

	5 Root Finding
	5.1 Fixed Point Iteration (FPI)
	5.2 Convergence Iteration Analysis
	5.3 Root Finding Methods
	5.4 Calculating Square Roots
	5.5 Roots of Polynomials

	6 Univariate Minimization
	6.1 Find Minima Without Calculus
	6.2 Find Minima with Derivatives

