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1 VECTOR SPACES

1 Vector Spaces

1.1 R"and C"

Definition 1.1.1 (Complex Number). A complex number is an ordered pair (a,b), where a,b € R, but
we write it as a + bi.

Notation 1.1.2. C := {a + bi | a,b € R}

Definition 1.1.3 (Addition & Multiplication).

(a+bi)+ (c+di) =(a+c)+ (b+d)]i

(a+bi)(c+di) = (ac — bd) + (ad + be)i

Theorem 1.1.4 Properties of Complex Arithmetic
1. commutativity: a + =6+ «; «of =Pa, Va,peC.
2. associativity: (a«+ 8) + A=a+ (B+A); (aB)X=a(BN), Va,B,)eC.
3. identities: A\+0=X; X-1=)\, V)X eC.
4. additive inverse: Vo € C, FJunique 5 € Cs.t. o+ 5 = 0.
5. multiplicative inverse: Vo € C,« # 0,3 unique g € C s.t. af = 1.

6. distributivity: A(a + 8) = Aa+ A3, VA «a,8 € C.

Definition 1.1.5 (Subtraction). If —« is the additive inverse of «, subtraction on C is defined by
B—a=B+(-a).

1
Definition 1.1.6 (Division). For o # 0, let — denote the multiplicative inverse of «. Then, division on
«

C is defined by
1
2o (1)
(6% (6%
Notation 1.1.7. F is either R or C.

Definition 1.1.8 (List/Tuple). Suppose n is a non-negative integer. A list of length » is an ordered
collection of n elements separated by commas and surrounded by parentheses: (1, 2,23, -, Zp).
Two lists are equal if and only if they have the same length and the same elements in the same order.

Remark. Lists must have a FINITE length.
Definition 1.1.9 (F" and Coordinate). F" is the set of all lists of length n of elements of F:
F" = {(21, ,20) | 7 € RYi =1, ,n},

where z; is the i coordinate of (zy,--- , z,,).



1 VECTOR SPACES 1.1 R"andC"

Example 1.1.10 R? = {(z,y) | x,y € R} and R? = {(=,y,2) | z,y,2 € R}.

Definition 1.1.11 (Addition on ). Addition on F" is defined by adding corresponding coordinates:

(1, xn) + Wi,y yn) = @1+ Y1, T+ Yn)-

Theorem 1.1.12 Commutativity of Addition on "
Ifx,y e F" thenz +y =y + x.

Proof'1. Suppose x = (z1,--- ,zp) and y = (y1,- -+ ,yn). Then

$+y:($1+y17 a$n+yn)
:(yl—i_wlf" 7yn+xn):y+x

Definition 1.1.13 (Zero). Let 0 denote the list of length n whose coordinates are all 0: 0 := (0, - - -

[ |
,0).

Definition 1.1.14 (Additive Inverse on F"). For x € F", the additive inverse of x, denoted —z, is the

vector —x € F" s.t. x 4+ (—x) = 0.

Definition 1.1.15 (Scalar Multiplication in ). The product of a number A € F and a vector x € F" is

computed by multiplying each coordinate of the vector by A :
Ar = ANz1, - ,2n) = (A1, -, Axp),

where z = (z1,--- ,x,) € F™.

Theorem 1.1.16 Properties of Arithmetic Operations on F"
l. (x4+y)+z=2+(y+2) Va,y,z€F"
2. (ab)x = a(bx) Vz € F"andVa,beF.
3.1-x=2 VreFrandleTF.
4. Nz+y)=Ax+ )y VAeRandVzx,y e F".

5. (a+b)zx =azx+bxr Va,be FandVz e F".




1 VECTOR SPACES 1.2 Definition of Vector Space

1.2 Definition of Vector Space

Definition 1.2.1 (Addition on V). An addition on V is a function (u,v) — u + v forall u,v € V.
Definition 1.2.2 (Scalar Multiplication on V). A scalar multiplication on V is a function (\,v) — \v
forallA e Fandv € V.

Definition 1.2.3 (Vector Space). A vector space is a set V' along with an addition on V and a scalar
multiplication s.t. the following properties hold:

1. commutativity: u +v=v+u Yu,v €V

2. associativity: (v +v) +w = u+ (v + w) and (ab)v = a(bv) VYu,v,w € V and Va,b € F.

3. additive identity: 30 e Vs.t.v+0=v Yve V.

4. additive inverse: Jw € Vst.v+w=0 YveV.

5. multiplicative identity: 31 e Vst.1-v=v Yve V.

6. distributive properties: a(u + v) = au +avand (a + b)v = av +bv Vu,v € Vanda,b € F.

Definition 1.2.4 (Vector). Elements of a vector space are called vectors or points.

Notation 1.2.5. V' is a vector space over F.

Definition 1.2.6 (Real and Complex Vector Space). A vector space over R is called a real vector space,
and a vector space over C is called a complex vector space.

Theorem 1.2.7 Unique Additive Identity of Vector Spaces
A vector space has a unique additive identity.

Proof 1. Suppose 0 and 0’ are both additive identities for some vector space V. So,

0'=0+0 Since0 is an additive identity
=0+0 commutativity

=0. Since (' is an additive identity

Then, 0 = 0. [ |

Theorem 1.2.8 Unique Additive Inverse of Vector Spaces
A vector in a vector space has a unique additive inverse.

Proof 2. Let V be a vector space. Suppose w and v’ are additive inverses of v for some v € V. Note

that
w=w-+0

=w+ (v+w')
=(w+v)+w

=0+w =u'.

Notation 1.2.9. Let v, w € V. Then, —v denotes the additive inverse of v.
Definition 1.2.10 (Subtraction). w — v is defined to be w + (—v).
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Theorem 1.2.11
0-v=0 YveV.

Proof 3. Since v € V, we know

0-v=04+0v=0-v+0-v
0-v+(=0-0) =0-+0-+(—0-v)

0=0-v
|
Theorem 1.2.12
a-0=0 VackF.
Proof 4. For a € F, we have
a-0=a-(0+0)=a-0+a-0
a-0+(—a-0)=a-0+a-0+(—a-0)
0=a-0.
|
Theorem 1.2.13
(—)lv=—v YveV.
Proof'5. For v € V, we have
v+ (-lv=1-v+(-1)-v=(1+(-1) - v=0-v=0.
Therefore, by definition, (—1)v = —v. |

Notation 1.2.14. F°
1. If S is a set, then F*° denotes the set of functions from S to F.
2. For f,g € F¥, the sum f + g € F° is the function defined by (f + ¢)(z) = f(z) + g(z) Vz € S.

3. For A\ € Fand f € F°, the product \f € F° is the function defined by (A\f)(z) = A\f(z) Vz € S.

Theorem 1.2.15
¥ is a vector space.
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1.3 Subspace

Definition 1.3.1 (Subspace). A subset U of V' is called a subspace of V if U is also a vector space using
the same addition and scalar multiplication as on V.

Theorem 1.3.2 Conditions for a Subspace
A subset U of V is a subspace of V' if and only if U satisfies the following conditions:

1. additive identity: 0 € U;
2. closed under addition: v, w € U — u +w € U;

3. closed under scalar multiplication: « € Fandu € U = au € U.

Proof'1.

(=) Suppose U is a subspace of V. By definition, U is then a vector space, and so those conditions
are automatically satisfied. O

(<) Suppose U satisfies the three conditions. Since U is a subset of V, U automatically has associa-
tivity, commutativity, multiplicative identity, and distributivity. So, we want to check U has additive
inverse and additive identities.

For additive identity, we know 0 € U, by assumption.

For additive inverse, by condition #3, we know —u = (—1)u € U.

Then, U is a vector space. [

Example 1.3.3 If b € F, then {(z1, 22, x3,24) € F* | 23 = ba4 + b} is a subspace of F* if and only if
b=0.

Proof 2.

(=) Suppose U = {(x1, 22, x3,24) € F* | 23 = bay + b} is asubspace of F*. Then, 0 = (0,0,0,0) €
U.S0,0=5-0+b,0orb=0. O

(<) Suppose b = 0. Then, x5 = 5z4. S0, U = {(z1, 2,574, 74) € F*}

1. 0=(0,0,0,0) € U

2. Note that
(21,22, 524, 24) + (Y1,Y2, 54, ya) = (x1 + Y1, 2 + Y2, 5(xa + ya), x4 + 1) € U

So, addition is closed under U.

3. Va € F, we have
a(z1, T2, 524, x4) = (axy,axs,5(axy),axs) € U

Then, U is a subspace of F*.

Example 1.3.4 The set of continuous real-valued functions on interval [0, 1] is a subspace of R*1].

Proof 3.
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1. 0 (zero mapping)e U
2. Set f and g € C[0, 1], the set of continuous functions on interval [0, 1]. Then, f + g € C[0, 1].

3. From Calculus, we know thatVa € F, af € C[0,1].

Definition 1.3.5 (Sum of Subspaces). Suppose Uy, - - - , Uy, are subspaces of V. The sumof Uy, --- , Uy,
denoted as Uy + - - - + U,,, is the set of all possible sums of elements of Uy, - - - , Up,:

Example 1.3.6 Suppose U = {(z,0,0) € F* |z € F} and W = {(0,y,0) € F? | y € F}, then

U+W ={(2,y,0) € F* | 2,y e F}.

Theorem 1.3.7

Suppose Uy, - - - , Uy, are subspaces of V. Then, U; + - - - 4+ U,, is the smallest subspace of V' con-
taining Uy, - - - , Upy,.

J

Proof4. Suppose Uy, - - - , Uy, aresubspaces of U. Let Ui+ - -+U,,, = {ur + -+ up | u; € Uj,j =1,---m}.
Suppose w; € U;, thenwy + - -+ + wy, € Uy + -+ - + Upy.

1. Uy +---+ Uy isasubspace of V.

(a) Note that
(ur 4 F ) + (w1 + - Fwp) = (ur Fw1) + -+ (U + W) € UL+ -+ + Uy,

soU; + --- + U, is closed under addition.
(b) Similarly, Uy + - - - + U,, is closed under scalar multiplication.
(c) Note that U; is a subspace, so 0 € U;. Hence, (0,--- ,0) =0€ Uy + -+ + Up,. O
2. Now, we want to show this subspace is the smallest subspace containing Uy, - - - , Uy,. That is, we
want toshowVW DU U---UU,,,wehave W D Uy + -+ -+ Up,,.
Note that U; C Uy + -+ + Uy, so we have (U UU U ---UUy,) C Uy + -+ + Uy, This means

Uy + -+ + U, must contain Uy, - - - , U,,. Let W be some subspace containing Uy, - - - , U,,. Then,
forj=1,---,m,wehaveu; € U;, which indicates v; € W. Therefore, u; + - - - + u,, € V and thus
Ur+---+U, CW.

Since W was arbitrary, we've shown V W that contains Uy, - - - , U, Uy + - - - + U,,, € W. Therefore,

Uy + -+ + U, is the smallest.
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Definition 1.3.8 (Direct Sum). Suppose Uy, - - - , U,,, are subspaces of V. Uy + - - - + U,,, is called a direct
sum if each element of U; + - - - + U,, can be written in only one way as a sum u; + - - - + u,,, where
Uj; € Uj.

Notation 1.3.9. If U; + - -- + U, is a direct sum, then we use U; @ - - - @ U,,, to denote it.

Example 1.3.10 Let U = {(z,y,0) € F? |z,y € F} and W = {(0,0,2) € F? | z € F}. Then, F* =
UaoW.
Proof 5. Note that U + W = {(z,y, 2) | 7,9,z € F} = F3. Suppose

(x? y? Z) = (1'7 y7 O) + (07 07 Z)? (1)

for some z,y, 2 € F and
(z,9,2) = (',4/,0) + (0,0, 2 2)

for some 2,1/, 2’ € F. Then, (1)—(2):
(0,0,0) = (x — 2,y —,0) + (0,0,2 — ') = (x — ',y — o/, 2 — 2/).

Then, z — 2/ =y —y' = 2z — 2/ = 0, which indicates x = 2/, y = ¢/, z = 2. So, by definition U + W is
adirect sum, orF3 = U @ W. [

Example 1.3.11 Suppose U; is the subspace of F" s.t.

Uy ={,0,0,---,0 | z € F}
Uy ={0,2,0,---,0 | z € F}

U, ={0,0,0,--- ,z |z € F}

Then, F* =U, @ Us @ --- @ U,.
Proof 6. Note that " = U; + Uy + - - - 4+ U, is evident. Now, we'll prove that Uy + Uz + - - - + Uy, is

a direct sum. Consider x = (z1, z2,- - ,z,) € F". Assume that
x:(x1,0’70)++(0”0’1‘n) (3)
and
x:(:c’l,O,---,0)+-~~+(0,---,O,xﬁl) 4)

Then, from (3)-(4), we know that
0= (xy—2),  ,op—a,) = (0,0, ,0).

Then, Vi =1,--- ,nwehave z; — 2} = 0, or z; = z}. Therefore, by definition, we know U; + --- + U,
is a direct sum. ]
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Example 1.3.12 Let
U= {(m,y,O) | T,y € F}
Uy ={(0,0,z2) | z € F}
Us ={(0,y,y) | y € F}

Show that Uy + U, + Us is not a direct sum.
Proof 7. Consider (0,0, 0) € F3. Note that

(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0)

and
(0,0,0) = (0,1,0) + (0,0,1) 4+ (0, —1,—1).
Then, U; + Us + Us is not a direct sum by definition. [ |

Theorem 1.3.13

Suppose Uy, - - - , U, are subspaces of V. Then,U; + - - - + U,,, is a direct sum if and only if the only
way to write 0 as a sum u; + - - - + w,, is by taking each u; = 0.

Proof 8.
(=) Since U; + - - - + U, is a direct sum, by definition, the only way to write 0 € F" is to write it as

0=04+---40 where0 e U;Vi=1,--- ,m. O

(«) Suppose the only way to write 0 as a sum u; + - - - + w,, is by taking each u; = 0. Assume that for
some v € V, we have

v=uUp+ Uy, uj €U 5)
and
v=uy g, ) €U (6)

Then, by (5)-(6), and according to the conclusion from Example 1.3.11, we have

0= (u1 —u})+ 4 (U —upy) =0+ +0.

So, Vi € 1,--- ,m, we have u; — u} = 0. thatis, u; = u}. So, Vv € V, there is only one way to write v as a
sum of u; + - - -, + m. Therefore, by definition, U; + - - - + U,, is a direct sum. [ |
Theorem 1.3.14

Suppose U amd W are subspaces of V. Then, U + W is a direct sum if and only if U n W = {0}.

Proof 9.

(=) Suppose U + W is a direct sum. Assume v € U N W. Then, v € U and v € W. By definition of
subspace, we know —v € W as well. Note that

O=v+(—v)eUNW.

10
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Then, by Theorem 1.3.13, we know that the only representation of 0 e UNWis0 =0+ 0since U N W
is a direct sum. Hence, it must be that v = —v = 0, and thus U N W = {0}. O

(<) Suppose U N W = {0}. Letu € U and w € W s.t. u + w = 0. Then, we have u = —w. Since
—w € W,weknowu = —w € W.Byu € U and u € W, we know that w € U N W = {0}. Therefore,
0 = 0 + 0 is the only to represent 0 € U + W. By Theorem 1.3.13, we know U + W is a direct sum. [

Remark. When extending Theorem 1.3.14 to 3 subspaces Uy, U, Us, we cannot conclude U; ® Uy @ Us if
we haveUy N Uy = Uy NUs = Uy N U3 = {0}. See Example 1.3.12 as a counterexample.

11
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2 Finite-Dimensional Vector Spaces

2.1 Span and Linear Independence

Notation 2.1.1. We usually write list of vectors without using parentheses.

Example 2.1.2 (4,1,6), (9,5, 7) is a list of vectors of length 2 in R3.

Definition 2.1.3 (Linear Combination). A linear combination of a list vy, --- , v, of vectors in V is a
vector of the form

a1v1 + -+ AU,

whereay, - ,a,, € F.

Example 2.1.4 Since (17, —4,2) = 6(2,1, —3) + 5(1, —2,4), we say (17, —4, 2) is a linear combination
of (2,1,-3),(1,—2,4).

Definition 2.1.5 (Span).

span(vy, -, vp) = {a1v1 + - + apop, | a1+ ap, € F}

Example 2.1.6 Consider span(eq, e2, €3) :

span(ey, ez, e3) = {a1e1 + azex + ages | ay, az, a3 € F}

= {(a1,a2,a3) | a1,az,a3 € F} = R®.

Theorem 2.1.7
The span of a list of vectors in V' is the smallest subspace of V' containing all the vectors in the
list.

\. J

Proof 1. To prove this theorem, we will prove two parts: span is a subspace and span is the smallest
subspace.

1. Spanis a subspace of V.

(a) By definition of span, we know span(vy,- -+ ,vm) = {a1v1 + -+ amom | a1, ,am € F}. If
wesetay, - ,a, =0,thenwehave 0 = Ovy + - - - + Ovy,. S0, 0 € spanvy, - -+ , Uy,
(b) Letajvi + -+ + amuvpm, € span(vy, -+ ,vy) and byvy + - - - + by vy, € span(vy, - -+, vpy,). Then,

(@1v1 + -+ amvm) + (b1v1 + -+ 4+ bvm) = (a1 + b1)ve + -+ - + (@, + b)) V-

Since (a1 +b1),- -, (am+bm) € F,weknow (a1 +b1)vi +- - -+ (am +bm)vm € span(vy, -« , Um).
() Let A € Fand ajv; + - - - + amvm, € span(vy, - -+, vy,). Then,

Ma1vy + -+ + amvp) = Aa1vr + -+ -+ Ay U,

12
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Since A\ay, - -, Aa,, € F,we know that A(ajv1 + -+ + apvm) € span(vy, -+, V).
Therefore, we have proven that span is a subspace of V. O

2. Now, we want to show that span is the smallest subspace.

Let U be a subspace of V' containing vy, - - - ,v,,. If we can show that span(vy,--- ,v,) C U, we
then know span is the smallest subspace containing vy, - - - , v,,. Since U is a subspace contain-
ing vy, -+, vy, it is closed under addition and scalar multiplication. So, ajv; + -+ + apv, €
span(vy, - - - ,vp,). Therefore, span(vy, - - - ,vy,) C U.

|
Definition 2.1.8 (Span as a Verb). If span(vy,--- ,v,) = V,wesayvy,--- , v, spans V.
Definition 2.1.9 (Finite-Dimensional Vector Space). A vector space V is called finite-dimensional if 3
alist of vectors, say vy, - - - , vy, S.I. span(vy, - - -, vp,) = V. In the following of this notes, we will use f-d as
a shortcut for saying “finite-dimensional.”
Definition 2.1.10 (Infinte-Dimensional Vector Space). A vector space V is infinite-dimensional if it is
not f-d. This is equivalent to say that V lists of vectors in V, they do not span V.
Definition 2.1.11 (Polynomial Functions). A function p : F — F is called a polynomial with coeffi-
cientsinFif3ag, - ,am € Fs.t. p(z) = ag + a1z + asz® + - + ap 2™ Vz €F.
Notation 2.1.12. We use P(IF) to denote the set of all polynomial with coefficients in F.

Theorem 2.1.13
P(FF) is a vector space over F.

Proof 2. Recall the definition of F¥. We will show P(F) is a subspace of F".
1.0=0+0z+---+0z" € P(F).

-+ b1z + by € P(F). WLOG, suppose

2. Suppose p(z) = amz™ + -+ + a1z + ap and ¢(z) = b, 2" + -
+bn)2" 4 -+ (ap + bo) € P(F).

m > n, then we have p(z) 4+ ¢(z) = apz™ + - + (an
3. Suppose A € F. Then, A\p(z) = AM(apz™ + -+ a1z + ag) = Aapz2™ + -+ + Aag € P(F).

Hence, we've shown P(F) is a subspace over F. [ |
Definition 2.1.14 (Degree of a Polynomial). A polynomial p € P(F) is said to have degree m if 3 scalars
ap, -+ ,am € Fwitha,, # 08.6.p(2) = anz™ + -+ a1z +ap Vz € F. We write degp = m. Specially,
deg0 := —oo and deg ag := 0 when ag # 0.
Definition 2.1.15 (P,,,(F)). For m € N*, P,,(F) denotes the set of all polynomial with coefficients in F
and degree< m. i.e.,

Prn(F) = {p € P(F) | degp < m}.

Example 2.1.16 For each m € N, P,,,(F) is a f-d vector space.
Proof 3. Note that P,,(IF) is a vector space because it is a subspace of P(F). Suppose p(z) €
P (F), thenp(z) = ag + a1z + - - - + amz™ € span(l, z,- - - , 2™). Then, by definition, P,,(F) is f-d. B

Remark. In this proof, we are abusing notation by letting * to denote a function.

13



2 FINITE-DIMENSIONAL VECTOR SPACES 2.1 Span and Linear Independence

Example 2.1.17 P(F) is infinite-dimensional.

Proof 4. For any list of vectors in P(F), by definition of list, the length of it is finite. Suppose
the highest degree in this list is m. Consider a polynomial with degree of m + 1 : z™*!. Since ™!
cannot be written as linear combinations of the list of polynomials, we know the list does not span

P(F). So, P(F) is infinite-dimensional. [ |
Definition 2.1.18 (Linear Independence). Alist vy, - - - , v, of vectors in V is called linearly independent
(L.1.) if the only choice of a1, - - - , a,, € Fthatmakes ajvi+- - -+anv, =0isa; = --- = a,, = 0. Specially,
the empty list () is declared to be L.I..

Definition 2.1.19 (Linear Dependence). vy, --- ,v,, is called linearly dependent if it is not L.I.. Or,
m

equivalently, vy, - - - , vy, is linearly dependent if 3ay,--- ,a,, € Fnotall 0 s.. Z a;v; = 0.
i=0

Example 2.1.20 Let vq,--- ,v,, € V. If v; is a linear combination of other v’s, then vy, --- , v, is

linearly dependent.

Proof 5. By assumption, v; = a1v1 + - - + aj—10j—1 + Gj41Vj4q + - - - + amvy, for some a; notall 0.

S0,0 =ajvi+---+a;—1vj—1 + aj+1vj41 + - - - + amv, — vj, alinear combination of vy, - - -, vy,. Since

—wv; has a coefficient of —1 # 0, by definition, vy, - - - , vy, isnot L.L.. [ |
Lemma 2.1.21 Linear Dependence Lemma Suppose vy, - - - , v,, is a linearly dependent listin V. Then,

dje€{1,---,m} s.t. the following hold:

1. v; € span(vy,- -+ ,vj-1)
2. if the j™ term is removed from vy, - - - , v,,, the span of the remaining list equals span(vy, - - - , Uy ).
Proofé6.
1. Since vy, -+ , vy, is linearly dependent, a1v1 + - -+ + av, = 0, for some a; # 0. Let j be the
maximized index s.t. a; # 0. Then, aj;1 = - -- = a,, = 0, by this assumption. Hence,
ajvj = —a1v1 — -+ = Aj-1Vj-1 — Aj+1Vj4+1 — = * — AmUm
al aj—1
’Uj:—f’l)l—‘--— Uj_l.
a; a;
. al a1
Since ——, -+, — -2 € F, we know v; € span(vy,--- ,vj_1). d
a; a;
2. Consider
al aj_l
Span(vb'" yUjy s >vm):Spa‘n(U17"' , T V1 — - — Vj—1, >vm)
a; a;
= Span(vl, e )Uj—la Uj+17 o ,Um).
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2 FINITE-DIMENSIONAL VECTOR SPACES 2.1 Span and Linear Independence

Remark. By using this Lemma 2.1.21, we can do lots of proofs using the “step” strategy. Namely, we start
to remove vectors from a list that are linearly dependent to obtain a 1..1. list. However, this “step” strategy
can only be used when dealing with FINITE-dimensional vector spaces.

Theorem 2.1.22
Let V be a f-d vector space. Let span(wy, - -+ ,w,) = V. Letuy,-- - , u,, be L.I.. Then, m < n.

Proof 7.

Step 1| Note that uy,ws, - - ,w, is linearly dependent because u; € V = span(wy,--- ,w,). Then,
by Lemma 2.1.21, we can remove one of the w’s, say w;;. Then, the list becomes

{ulvwla T ’wn} \ {wjl}'
Adjoin uy. Apply the same reasoning, since span({ui, w1, -+ ,wn} \ {wj1}) = V, we know

{ui,ug, wy,- - ,wy} \ {w;}islinearly dependent. Since us ¢ span(u), Lemma 2.1.21 is not applicable
to up. Now, we can remove another w from the list, say w;». The list becomes

{ul7u27w17 T awn} \ {wjl’ U}JQ}

After m steps, we list will become

{ul,...,um,wl,...’wn}\{w‘jl’...’w‘jm}.
Since span({u1,- - , um, w1, -+ ,wp} \ {wj1, - ,wjm}) = V, this list is still linearly dependent, so by
Lemma 2.1.21, we know 3 w to be removed. Therefore, n > m. [ |

Theorem 2.1.23
Every subspace of a f-d vector space is f-d.

Proof 8. Suppose V to be a f-d vector space and U to be a subspace of V.
IfU = {0}, then U is f-d. If U # {0}, then choose v; € U s.t. v; # 0.

IfU = span(vy, - - ,vj_1), then U is f-d. IfU # span(vy, - - - ,v;_1), thenchoosev; € U s.t. v; ¢
span(vy, -, vj-1).

By Lemma 2.1.21 and Theorem 2.1.22, we know this process will eventually terminate because the
vector list that spans U cannot be longer than any spanning list of V. Therefore, U is f-d. [

15



2 FINITE-DIMENSIONAL VECTOR SPACES 2.2 Bases

2.2 Bases

Definition 2.2.1 (Basis). A basis of V is a list of vectors in V that is L.I. and spans V.

Example 2.2.2

1. The standard basis of F"*:

(1707"' 70)7(071707'” 70)7”' 7(07'” 7071)'

2. (1,1,0),(0,0,1) is a basis of V, where V = {(z,z,y) € F* | 2,y € F}.
Proof 1.
(@) Suppose ai(1,1,0) + a2(0,0,1) = 0, we have (a1, a1,a2) = 0. So, it must be a; = a2 = 0.
Therefore, (1,1,0), (0,0, 1) is L.I.. O
(b) Suppose (z,z,y) € V. Note that (z,z,y) = =(1,1,0) + y(0,0,1), then, V =
span((1,1,0), (0,0,1)).

Therefore, we've proven (1,1, 0), (0,0,1) is a basis of V according to the definition of basis. B

Theorem 2.2.3 Criterion for Basis
Alistvy,--- ,v, € V is a basis list of V' if and only if every v € V can be written uniquely in the
formv = ajv; + - - - + a,v,, Wwhere a; € F.

Proof 2.
(=) Let vy,--- ,v, be a basis of V. Let v € V. By definition of basis, V' = span(vi,---,v,). So,
v € span(vy, - - ,vy),and thusv = ajv1+- - -+a,v, for some a; € F. Assume for the sake of contradiction

that v = byvy + - - - + b, v, for some b; # a; € F. Then,

v—v=_(ar —by)vy+ -+ (an — bp)vy
0= (al—bl)v1+---+(an—bn)vn.

Since vy, - -+ , v, is a basis, itis L.I.. So, 0 = Ovy +- - - +0v,,. Therefore, we knowa; — b1 = --- = a,,—b, = 0.
That is, a; = by, -+ ,a, = b,. % This is a contradiction with the assumption that 3 a; # b;. Hence, it
must be that v = ajv; + - - - + a,v, is unique. O

(«<) Suppose v = ajv; + - - - + a, v, is the unique representation Vv € V. Then, v € span(vy, -+, vy,).
Since v € V, then V' C span(vy,--- ,v,). However, vy, -+ ,v, € V, so span(vy,---,v,) C V. Therefore,
span(vy, - - ,v,) = V. To show vy, - - -, v, is L.L., further consider 0 = av; + - - - + ayv,. Since 0 € V, by
assumption, 3 a unique way to write 0 as ajv; + - - - + a,v,, and that unique way is to take every a; = 0.
Hence, by definition, we know vy, - - - , v, is L.I.. Since vy, --- ,v, is L.I. and span(vy,--- ,v,) = V, we
know v1, - - - , v, is a basis list of V. [ |

Theorem 2.2.4

Every spanning list can be reduced to a basis of the vector space.
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2 FINITE-DIMENSIONAL VECTOR SPACES 2.2 Bases

Proof 3. Suppose V' = span(vy, - - - ,v,). If v; = 0, we just remove v;. So, let’s suppose v; # 0.

If vy € span(vy), delete it. If vo ¢ span(vs), keep it.
vaj € span(vy, - - ,vj_1), deleteit. If v; ¢ span(vi,---,v;-1), keep it.

After n steps, we will have a “sub-list” from the original list s.z. it spans V and is L.I.. There-
fore, the basis list is contained in the spanning list. [ |
Corollary 2.2.5 Every f-d vector space has a basis.

Proof 4. By definition, f-d vector space always has a spanning list. By Theorem 2.2.4, a spanning
list contain a basis. |

Theorem 2.2.6
Every linearly independent list of vectors in a f-d vector space can be extended to a basis of the
vector space.

Proof 5. Suppose uq,--- ,u,, is L.I. in a f-d vector space of V. Let wy,---,w, be a basis of V.
Then, uy,- -, Um, w1, -+ ,w, spans V. According to Lemma 2.1.21 and Theorem 2.1.22, we can reduce
UL, 5 Um, W1, "+ , Wy, to some list of uq, - -+ , u,, and some w’s. |

Theorem 2.2.7

Suppose V' is f-d and U is a subspace of V. Then, there is a subspace W of V s.t. V. =U & W.

Proof 6. Since V is f-d, U, as V'’s subspace, is also f-d. So, 3 a basis of U, say uq,--- ,u,,. Then,
ui, -+, Uy is L.I. and € V. By Theorem 2.2.6, this list can be extended to a basis

ULy Um, W1, " ,'LUnOf‘/.

Let W = span(wy, -+ ,wy). We'llshowV =U ¢ W.

1. WTIS: V = U + W. Suppose v € V. Then,

V= AUy + -+ Gl + biwy + -+ - + by, .
eU ew

So,veU+W,orV=U+W. O

2. WIS:UNW = {0}. Suppose v € U N W. Then, v € U and v € W. So,

v=a1uy + -+ amUy, = bjwy + - - - + bpwy,.

Hence,

aiuq + - - + amy — bywr — - - — bpw, = 0. (7
Since by assumption, uy, - - - , Uy, w1, -+ ,w, isabasisof V,souy, - -+ , upm, wr, - -+ ,w, isL.I.. There-
fore, the only way for Equation (7) to hold is whena; = --- = a,, = by = --- = b, = 0. Hence,

v =_0u; + -+ uy, =0.Thatis, U nW = {0}.

Therefore, we've shown that V =U @ W. [ |
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2 FINITE-DIMENSIONAL VECTOR SPACES 2.3 Dimension

2.3 Dimension

Theorem 2.3.1
Let B; and Bs be two bases of V, then B; and B, have the same length.

Proof 1. Since B, is L.I. in V and B; spans V, by Theorem 2.1.22, we know len(B;) < len(Ba).
Interchanging the roles of B; and Bs, we have len(B3) < len(Bj). So, we have len(B;) = len(Bs). [
Definition 2.3.2 (Dimension). The dimension of a f-d vector space V is the length of any basis of V.
Notation 2.3.3. We use dim V' to denote the dimension of a f-d vector space V.

Example 2.3.4 dim F" = n and dim P,,(F) = m + 1 (1, 2, 22,--- , 2™).

Theorem 2.3.5
If Vis f~dand U is a subspace of V, then dim U < dim V.

Proof 2. Let B; be a basis of U and Bs be a basis of V. Then, B; is a L.I. list of V and B, spans V.
Then, By Theorem 2.1.22, we know that len(B;) < len(B3). So, by definition of dimension, we know
dimU < dimV. [}

Extension. IfV isf-d and U is a subspace of V, givenU C V, thendim U < dim V.

Proof 3. Let uy, - - - ,u,, be abasis of U. Since U C V, we know V — U # @. So, choosev € V — U.

Then, v ¢ span(uy,--- ,u,). Therefore, uj, - - -, uy,,vis L.I. in V. Thatis
dim V' > dim(span(uy, - - , Um,v))
> dim(span(ug, -+, Up))
=dimU.
[ |
Theorem 2.3.6
Let V be f-d, then every L.1. list of vectors in V with length dim V' is a basis of V.
Proof 4. Letvy,--- ,v, € VbeL.I. Let n = dim V. When extending the list to basis, we get
{vi,m--- o} UG
as a basis of V. That s, vy, - - - , v, has already been a basis of V. [ |

Remark. The proof given above is not that straight-forward, so we are giving an easier-understanding
proof as follows.

Proof 5. Suppose for the sake of contradiction that Jvy,--- ,v, € V not a basis of V for n = dim V.
Then, span(vy, -+ ,v,) # V. Thatis, 3 v,41 S.t. vyy1 ¢ span(vy,--- ,vy,). Adding v, to the vector list,
we have vy, -+, v, vp41 is L.I.. By Theorem 2.3.5, we know len(vy, -+ ,v,41) = n+ 1 < dim V. % This
contradicts with the fact that dim V' = n < n + 1. So, our assumption is incorrect, and it must be that
vy, , Uy is a basis of V. |
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2 FINITE-DIMENSIONAL VECTOR SPACES 2.3 Dimension

Theorem 2.3.7
Suppose V' is f-d. Then, every spanning list of vectors in V' with length dim V" is a basis of V.

Example 2.3.8 Show that 1, (x — 5)2, (z — 5)? is a basis of the subspace U of P3(R) defined by
U={pePs(R)|p(5 =0}

Proof 6. Consider a; + az(z — 5)? + ag(x — 5)® = 0, we will get a1 = az = a3z = 0 easily from
the equation. Then, 1, (z — 5)2, (x — 5)3 is L.L.. So, by Theorem 2.3.5, we know dim U > 3. Since
U C P3(R), we have dimU < dim P3(R) = 4. Therefore, dimU = 3 = len(1, (x — 5)%, (z — 5)%). By
Theorem 2.3.6, we know 1, (z — 5)2, (x — 5)* is a basis of U. |

Theorem 2.3.9
If U; and U, are subspaces of a f-d vector space, then

dim(U1 + Ug) = dim(Ul) + dim(Ug) = dim(U1 N UQ).

Proof7.Letu,,- - ,u,, beabasis of U; NUs, then dim(U; NUz) = m. Also, uy, - - - , u, is L.I. in Uy, so

we can extend it to a basis of Uy as uq, -, um, v1,- - - ,v;. Then, dim(U;) = m + j. Similarly, extending
ui, -+ , Uy to a basis of Uy, we will get uy, -+, up, wy, - ,wg. So, dim(Us) = m + k. Now, we want to
show uy, -+, U, v1, -+ ,vj,wr, - ,wy is a basis of Uy + Us.
1. Since Uy, Us C span(ui, -+, Um, V1, -+, Uj, Wi, -, wg), we know that
Span(ula" C s Um, V1,000, U5, W, o 7wk) = Ul +U2 U

2. Suppose ajuy + - - - + amUy + bivy + - - + bjv; + cqwy + - - - + cpwy, = 0. Then we know that

CQwi + - -+ CRWE = —a1U — * -+ — AUy — byvy — -+ — bjvj.
Since ciwy + -0 + cpwi € UQ, and —Q1UL — * — AUy, — DU — -0 — bj’l)j € Ul, we know
that cqwy + --- + cgwr, € Uy N Us. Therefore, ciwy + -+ + cpwy, = diug + -+ + dpuy. Since
UL, 5 U, w1, -, wpisLI, weknowey = -+ - = ¢, = 0.50, —ajus —- - — @y, —b1v1 —- - - —bjv; =
0.Since u1, -+ ,Um,v1, -+ ,v;is LI, wehave ay = --- = a,, = by = --- = b; = 0. Therefore, we've
provenuy,- - ,Up,v1, - ,v, Wi, - ,wy is L.I. and thus is a basis of Uy + Us. O
Since ui, -+, Um, V1, ,vj, w1, - ,wy is abasis of Uy + Us, we know dim(U; 4+ Uz) = m + j + k. Further

note that
dim(U1) + dim(Uz) — dim(Uy NU2) = (m+j) + (m+ k) —m

=m+j+k
= d1m(U1 + UQ)
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3 LINEAR MAPS

3 Linear Maps

Notation 3.0.1. In this section, we use V and W to denote vector spaces over F.

3.1 The Vector Space of Linear Maps

Definition 3.1.1 (Linear Map). A linear map from V to W is a function 7" : V' — W with the following
properties:

e additivity: T'(u +v) =Tu + Tv Yu,v e V.
* homogeneity: T (A\v) = A\(T) VYAeFandvv e V.

Notation 3.1.2. The set of all linear maps from V' to W is denoted by £(V, W).

Example 3.1.3
1. Zero-mapping: 0 € L(V, W) is defined by 0v = 0.
2. Identity-mapping: I € L(V,V) is defined by /v = v.
3. Differentiation: D € L(P(R), P(R)) is defined by Dp = p'.
Proof 1. Note that (f +g) = f'+ ¢ and (\f)" = \f". [ |

1
4. Integration: ' € L(P(R),R) is defined by Tp = / p(z) dz
0

Proon.Notethat/Ol(erg):/Oler/Olgand/ol)\f:)\/olf. [ |

5. Backward shift: T € L(F>°,F>°) as T'(z1, z2, 23, -+ ) = (w2, z3, ).
Proof 3. Note that

T($1,132a$3a"‘)"‘T(?/l,y%y&"') - (xQ)x3a"')+(y27y3a”')
= (v2 +y2,23 +y3, )
=T(zx1+y1, 22+ y2, 23+ Y3, ).

Therefore, T is additive. Homogeneity of T is travial and thus omitted here. [

6. From F" to F™, we define T' € L(F",F™) as
T(l’l, te wrn) = (Al,lxl +---+ Al,nxnv T 7Am,1x1 +---+ Am,n$n)7

where A;, € F Vj=1,--- mandk=1,---,n.

Theorem 3.1.4
Suppose vy, - - - ,v, is a basis of V and wy,--- ,w, € W. Then, 3 a unique linear map 7" : V" —
W s.t. TUj = wj Vi=1,---,n.
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3 LINEAR MAPS 3.1 The Vector Space of Linear Maps

Remark. IfT in Theorem 3.1.1 is a linear mapping, we should have
LT+ +4uvy) =Tvi+ -+ Tv, = w1 + - + wy, by additivity of T, and
2. T(\jvj) = AjTv;, by homogeneity of T.
Combine the two properties, we should have
T+ -4+ Aop) = MTvr + - = XNTv, = Mwi + -+ + Apwy,.
This remark will be very helpful in our following proof of the theorem.

Proof 4. Let'sdefine T : V. — W by T'(civ1 + -+ - + cpvn) = cqwy + - - + cywy,, Wwhere ¢q, - -+ , ¢, are
arbitrary elements of F. Now, we want to show that 7" is a linear mapping.
Suppose u,v € V, u = ajvy + - - - + apvp, and v = cjvy + - - - + ¢, v, Then, we have

T(u+v)=T((a1 +c1)vr + -+ (an + cn)vn)
= (a1 +c1)wr + -+ + (an + cp)wy,

= (mqw; + - - + apwy) + (CQwi + - -+ + cpwy,)
=Tu+Tv. U

Now, we want to show 7" has homogeneity. Suppose A € F. Then, we know

T(Av) =T (Acrvr + -+ + Aepvp)
= Acqwi + -+ + Acpwn
= AMciwy + -+ + cpwy)
= ATv. O

Also, we want to show that this 7" satisfy the condition the theorem is asking (i.e., Tv; = w;). Note

that when ¢; = 0 and other c’s equal 0, we will get Tv; = w;. O
Finally, we will prove the uniqueness of this 7. Suppose that 7/ € £(V,W) and T'v; = w;. Let
c1,-,¢, € F. Then, T'(cjvj) = cjw;. So, we know that T7(civ1 + -+ + cpvp) = crwi + -+ + cpwp.

However, by definition, we know c;w; + - - - 4+ cpw, = T(ciw; + - - - + ¢yvy). So, we can conclude that
T (crv1 4+ -+ + epvpn) = T(cqwy + -+ - + cyvy). Thus, T = T, and thus the T we defined above is unique
in £(V, W). |
Definition 3.1.5 (Addition and Scalar Multiplication on £(V, W)). Suppose S,T € L(V,W)and A € F.
Then, the addition is defined as (S + T')(v) = Sv + Tv, and the scalar multiplication is defined as
(AT)(v) == A(Tv) YveV.

Theorem 3.1.6
L(V,W) is a vector space.

Proof'5.

1. additive identity: Note that the zero-mapping 0 € £(V, W) satisfies the following equation:

O0+T)v)=0w+Tv=0+Tv="To. O
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2. commutativity: Note that

(S+T)v)=Sv+Tv=Tv+ Sv=(T+S5)(v). O

3. associativity: Let S, T, R € L(V,W). Then,

(S+T)+R)(v)=(S+T)(v)+ Rv=Sv+Tv+ Rv
= Sv+ (Tv + Rv)
=Sv+ (T'+ R)(v)
=(S+(T+R))(v).

Leta,b € F. Then,

((ab)T)(v) = T(abv) = T'(a(bv)) = aT'(bv) = (a(bT))(v). O

4. multiplicative identity: Note we have 1 € F s.t.

(1-T)(v)=T(1-v)=To. O
5. additive inverse: Note that

T+ (-T)(v)=Tv+ (-T)(v) =Tv+T(—v)=T(v—v)=T0=0. O

6. distributivity: Note that
a(T + S)(v) = a(Tv + Sv) = aTv + aSv,

and
(a+b)Tv=T((a+b)v)=T(av + bv) = T(av) + T(bv) = aTv + bTv.

|
Definition 3.1.7 (Product of Linear Maps). If T" € £L(U,V) and S € L(V,W), then the product ST €
L(U, W) is defined by (ST)(u) = S(Tu) YueU.

Remark. Compare this definition with composite functions. ST is only defined when T' maps into the
domain of S.

Theorem 3.1.8 Algebraic Properties of Products of Linear Maps
1. associativity: (TlTQ)Tg = T1 (TQTg)
2. identity: TI = IT = T, where I is the identity mapping

3. distributive properties: (S1 + S2)T' = S1T + SoT and S(T + Tz) = ST + STs.

Proof 6. First, we want to show the associativity. Note that
[(TT2)T5)(v) = (T T2)(Thv) = (Th)(T2(Tv)) = (T1)[(T2T3)(v)]. O

Then, we want to show the identity. This proof can be done using the following diagram:
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3 LINEAR MAPS 3.1 The Vector Space of Linear Maps

V— =W

IV/T \LIW
4 W O

Finally, we will show the distributive properties. Note that

[(Sl + SQ)T] (’U) = (51 + SQ)(TU) =5 (TU) + SQ(TU)
= (517)(v) + (52T)(v)
— (51T + $,T)(v).

Similarly, we can show

[S(Th + T2)|(v) = S[(Th + T2)(v)] = S(Tiv + Tpv)
= S(Thv) + S(Trv)
= (ST1)(v) + (ST2)(v)
= (ST + ST3)(v).

Example 3.1.9 Suppose D € L(P(R), P(R)) is the differentiation map, and 7" € L(P(R), P(R)) be
defined by (T'p)(x) = x?p(z). Show that DT # TD.
Proof 7. Note that (DT)p = D(Tp) = D(2?p(x)) = 2xp(x) + 2%p’(x). Similarly, we can compute

a general formula for TD: (TD)p = T(Dp) = T(p') = 2*p'(z). Since 2zp(x) + 22p/(x) # 2%’ (z), we
know DT # T'D.

|
Theorem 3.1.10
LetT € £L(V,W),then T'(0) = 0.
Proof 8. Since T'(0) = T (04 0) = T(0) + 7'(0), we know 0 = T°(0), or T'(0) = 0. |

Corollary 3.1.11 If 7'(0) # 0, thenT" ¢ L(V,W).
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3.2 Null Spaces and Ranges

Definition 3.2.1 (Null Space/Kernel). For " € L(V,W), the null space of T, denoted null T, is the
subset of V' consisting of those vectors that 7’ maps to 0: null 7' = {v € V | Tv = 0}.

Remark. Sometimes, null space of T is also called the kernal of T, denoted as ker T

Example 3.2.2

1. Null space of zero-mapping: Let 7" be the zero mapping from V to W. Since Tv =0 Yv €V,
we know null 7' = V.

2. D e L(P(R),P(R))as Dp = p': null D = {a | a € R}.

3. T e L(F*,F*)asT(z1,x2,23, -+ ) = (x2,23, -+ ):null T = {(a,0,0,---) | a € F}.

Theorem 3.2.3
Suppose T' € £(V,W). Then, null T' is a subspace of V.

Proof'1.
1. Note that7'(0) = 0,500 € null 7. O

2. Suppose u,v € nullT. Then, Tu = Tv = 0. So, T(u +v) = Tu+ Tv = 0+ 0 = 0. Hence,
u+venulT. O

3. Suppose u € null 7"and A € F. Then, Tu = 0. So, T'(Au) = AT'u = A - 0 = 0. Therefore, Au € null 7.

|
Definition 3.2.4 (Injective/Injection). A function 7' : V' — W is called injective of Tu = Twv implies

u =v.

Remark. Sometimes, the contrapositive will be much more helpful: T is injective if u # v, then Tu # v.

Theorem 3.2.5
LetT € L(V,W). Then, T is injective if and only if null 7" = {0}.

Proof 2.

(=) Suppose T is an injective. We've already known that {0} C null 7. Then, we need to show
null 7" C {0}. Suppose v € null 7', then T'v = 0. However, since 7' is an injection, and 7'v = 70 = 0, then
we have v = 0. So, null 7" C {0}. Therefore, it’s sufficient to say null 7" = {0}. O

(<) Suppose null 7" = {0}. Suppose u,v € V and Tu = Tv. Then, Tu — Tv = T'(u — v) = 0. Hence,
u—v €nullT. Bynull 7" = {0}, we know u — v = 0, so v = v. Then, T is an injection. [
Definition 3.2.6 (Range/Image). For 7' € £(V, W), the range of T is the subset of W consisting of those
vectors that are of the form T'v for some v € V:range T = {Tv | v € V'}.

Theorem 3.2.7
If T € L(V,W), then range T is a subspace of .
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Proof 3.
1. Since T'(0) = 0, we know 0 € range T O

2. Suppose wy,wy € range T. Then, Jvy,v2 € V s.t. Tvy = wy and Tvy = we. Then, wy + wy =
Tvi 4+ Tvy = T(v1 + v2). Since vy + vy € V, we have wy + we = T'(vy + v3) € range T. O

3. Suppose w € range T'and A € F. Then, Jv € V s.t. w = Tv. So, A\w = A(Tv) = T'(\v). Since Av € V,
Aw =T (M) € range T.

|
Definition 3.2.8 (Surjective/Surjection). A function 7' : V' — W is called surjective if range T' = W.

Remark. A functionT : V — W is called a bijection, or is bijective, if it is both injective and surjective.

Theorem 3.2.9 Fundamental Theorem of Linear Maps
Suppose V'is f~dand T' € L(V, W). Then, range T is f-d and

dim V = dimnull T 4+ dim range 7.

Proof4.Letuy,--- ,uy, beabasis of null 7. Then, dim null 7" = m. By Theorem 3.2.3, we know null T’
is a basis of V, so we can extend the basis to a basis of V: uy,--- ,upm,v1, - ,v,. Thus, dimV = m + n.
WTS: dimrange T = n. Further WTS: Tvy, - -- , Tv, is a basis of range T
Suppose v € V. Then
v =aqui + -+ aGpliy + b1v1 + - - - + by,

Since uy, -+ ,u,;, € null T, we know T'uq, - - - , Tu,, = 0. Therefore,
Tv=a1Tui +- - +apTtym +b1Tv1 + - +b,Tv, =b1Tv1 + -+ b, Ty,

Hence, span(Tvy, - -+, Tv,) = range T, and thus range T is f-d. Now, WTS: Tvy,- -+ ,Tv, isL.I..
Consider ¢;Tv; + - - - + ¢, Tv, = 0. Then, T'(cyv1 + - - - + ¢pvy) = 0. Hence, civ1 + - -+ + ¢pvp, € null 1.
Since uq, - - - , u,y, is a basis of null T, we know

cvr + -+ epvp = diug + -+ dpu, fS.diG]F.

So,
c1v1 + -+ cpup — diug — -0 — dip Uy = 0. (8)
However, by assumption, we know vy, - -+ , vy, uq, - - - , u,, is @ basis of V, and thus it is L.I.. So, the only
way to make Equation (8) hold is by taking¢; = --- = ¢, = —dy = --- = —d,,, = 0. Therefore, we've
shown T'vy, - -, Ty, is L.1., and thus is a basis of range T'. Then, dim range 7' = n.
So, we've shown that dimnull 7'+ dimrange 7' = m +n = dim V. |
Theorem 3.2.10

Suppose V and W are f-d vector spaces s.f. dim V' > dim W. Then, no linear map from V' to W is
injective.
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Proof 5. Let T € L(V,W). By the Fundamental Theorem of Linear Maps, we have dimV =
dim null T’ + dim range 7. Then, we know

dimnull 7' = dim V — dimrange T’
>dimV —dimW >0 [dimrange T' < dim W]

This implies that null 7" # {0}. So, T is not injective by Theorem 3.2.5. [

Theorem 3.2.11
Suppose V and W are f-d vector space s.t. dim V' < dim W. Then, no linear map from V' to W is
surjective.

Proof 6. We know
dimrange 7' = dim V — dimnull T

<dmV <dim W

Then, T cannot be surjective by definition. [

Example 3.2.12 Solving Linear Systems Using Linear Maps I
For a homogenous system of linear equations,

Arjzr + -+ Ay pen, =0

Am,lxl +- Am,nxn =0

where A;, € Fand (z1,--- ,2,) € F*, we can defined alinear map 7" : F* — F™ as
n n
T(x1,- - ,an) = <Z A g, - ,ZAm,kJUk)-
k=1 k=1
Apparently, (z1,--- ,z,) = 0is a solution to the system, but the question is “If there are any non-

zero solutions for this linear system?”

Theorem 3.2.13
A homogeneous system of linear equations with more variables than equations has non-zero
solutions.

Proof 7. Suppose T' € L(V,W). Then, dimV = n and dim W = m. Suppose n > m. So, dimV >
dim . By the Theorem 3.2.5, we know 7' is not injective. [

Example 3.2.14 Solving Linear Systems Using Linear Maps II
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For an inhomogeneous system of linear equations

n
> Ay =
k=1

9

n
E Am,kxk =Cm
k=1

where A;;, € Fand (c1,--- ,¢m) € F™and (21, - ,z,) € F*, we can define T' : F* — F™ by
n n
T(x1, - om) = (Z Ay, > Appy = 61)-
k=1 k=1
However, in this case, (21, - - -, z,) = 0 may not be a solution to the system.

Theorem 3.2.15

An inhomogeneous system of linear equations with more equations than variables has no solu-
tion for some choice of the constant terms.

Proof 8. Suppose T' € L(V,W). So, dimV = n and dim W = m. Suppose n < m. Then, dimV <
dim W. By Theorem 3.2.11, we know 7 is not surjective. [
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3.3 Matrices

Definition 3.3.1 (Matrix). Let m,n € Z". An m-by-n matrix A is a rectangular array of elements of F
with m rows and n columns:

)

Arg - Ay
A= : :
Am,l to Am,n
The notation A;;, denotes the entry in row j, column k of A.
Definition 3.3.2 (Matrix of a Linear Map). Suppose 7' € £(V,W) and vy, --- ,v, is a basis of V' and
wi, - , Wy, is a basis of W. The matrix of T with respect to these bases is the m x n matrix M(7T') whose
A; i are defined by

Ty, = ALkwl —+ -+ Amkwm.

If the bases are not clear from the context, then the notation M (T, (vy,--- ,v,), (w1, -+ ,wy,)) is used.

Example 3.3.3 Suppose T' € L(F? F3) is defined by T'(x,y) = (z + 3y, 2z + 5y, 7z + 9y). Find the
matrix of 7" with respect to the standard bases of F? and F3.

Solution 1.

Note that 7'(1,0) = (1,2,7) and 7'(0, 1) = (3,5,9). Then,

1
M(T) = | 2
7

© ot W

Example 3.3.4 Suppose D € L(P3(R), P2(R)) is the differentiation map defined by Dp = p’. Find
the matrix of D with respect to the standard bases of P3(R) and P2 (R).

Solution 2.

Standard bases of P3(R) : 1, x, 2%, 23. Standard bases of P2(R) : 1, z, z2. Since (z")" = nz""!, so
we have

D(1)=0=0-14+0-z+0-2°
D(z)=1=1-1+0-2+0-2°
D(*)=20=0-1+2-2+0-2°
D(®)=322=0-140-2+3-2?
So, we have
0100
MD)y=[0 0 2 0
000 3

O

Definition 3.3.5 (Matrix Addition). The sum of two matrices of the same size is the matrix obtained by
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adding corresponding entries in the matrices:

Ag - Ay Cip - Cip Aig+Cip - A +Cip
: 3 N Pl = : :
Am,l T Am,n Cm,l T Cm,n Am,l + Cm,l T Am,n + Cm,n
Theorem 3.3.6

Suppose S, T € L(V,W). Then, M(S +T) = M(S) + M(T).

Proof 3. Let vq,--- ,v, be a basis of Vand wy,--- ,w, be a basis of W. Suppose M(S) = A and
M(T) = C. Then, if 1 < k < n, we have

(S + T)vk = Svg + Ty
= (A pwr + - + Ay pw) + (Crpwy + -+ + Cpy )
= (ALk + C’Lk)wl + -+ (Am,k + Cm,k)wm-

Hence, we have M(S +T') = M(S) + M(T). [ ]
Definition 3.3.7 (Scalar Multiplication of a Matrix). The product of a scalar and a matrix is the matrix
obtained by multiplying each entry in the matrix by the scalar:

Air o Ay Mg 0 M,
Mo = :
A1 o Apn Mmi - Mmn

) )

In other words, (AA); 1 = AA; j.

Theorem 3.3.8
Suppose A € Fand T € L(V, W). Then, M(AT) = AM(T).

Proof4. Letvy,--- ,v, beabasisof Vand M(T) = A. When 1 < k < v, note that

(/\T)Uk = )\(T?)k)
= )\(Al,kwl + -+ Am,kwm)
= (M pwi + -+ (AN ) Wi

So, M(A\T') = AM(T). [ ]
Notation 3.3.9. F™" := the set of all m x n matrices with entries in F.

Theorem 3.3.10
Suppose m,n € Z*. With addition and scalar multiplication defined above, F"™" is a vector space
and dim F™"™ = mn.

Proof'5. 1t is trivial to prove F"*" is a vector space. O
Define A, as the matrix with 1 on its j® row, £ column and 0 elsewhere. Then, we can see that
Ajpforj=1,--- mandk =1,--- ,nisabasis for F»". So, dim F™" = m - n. [ |
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Definition 3.3.11 (Matrix Multiplication). Suppose A is an m x n matrixand C' is an n x p matrix. Then,
AC'is defined to be the m x p matrix whose entry in row j. column k is given by

(AC)jk = AjsChrpe.

r=1

Remark. Matrix multiplication is not commutative. i.e., AC # CA. However, it is distributive and
associative.

Theorem 3.3.12
T e L(U,V)and S € L(V,W), then M(ST) = M(S)M(T).

Notation 3.3.13. Suppose A is an m X n matrix.

1. If 1 < j < 'm, then A;. denotes the 1 x n matrix consisting of row j of A.

2. If 1 <k <n,then A. ; denotes the m x 1 matrix consisting of column % of A.
In other words,

Aig o Ain Atk

A= : : ; Aj. = <Aj71 Aj,n) c [Fl,n; Ay = : c ol
Anmi o Amn Ak

) ) )

Theorem 3.3.14 Practical Interpretations of Matrix Multiplication
1. Suppose A is anm xn matrix and C'is an n xp matrix. Then, (AC);, = A;.C. . for1 <j <m
and1 <k <p.
2. Suppose A is anm x n matrix and C'is an n x p matrix. Then, (AC)., = AC. ,for1 <k <p.
c1

3. Suppose Aisanm x nmatrixand C' = | : | isann x 1 matrix. Then,

Cn

AC:clA.’1+--~+ann

S

In other words, AC is a linear combination of the columns of A, with the scalars that mul-
tiply the columns coming from C.

Example 3.3.15
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3.4 Invertibility and Isomorphic Vector Spaces

Definition 3.4.1 (Invertible). A linear map 7" € L£(V,W) is called invertible if 3 a linear map S €
L(W,V) s.t. ST equals the identity map on I and 7S equals the identity map on W.

Definition 3.4.2 (Inverse). A linear map S € L(W, V) satistying ST = I and T'S = I is called an inverse
of T.

Theorem 3.4.3
An invertible linear map has a unique inverse.

Proof'1. Suppose T' € L(V, W) is invertible. Let S; and S, be inverses of 7.Then,
S1 =511 = S1(T'S2) = (51T)Sy = 153 = Ss.

Thus, S; = S92, and so inverse is unique. [ |
Notation 3.4.4. If T is invertible, then its inverse is denoted by 7—!.

Theorem 3.4.5

Proof 2.

(=) Let T € L(V,W) be invertible. Then, TT~! = Iy and T~'T = Ty. Let Tv = 0. Note that
(T~T)v = 0, so Iv = 0 and thus v = 0. Therefore, null T = {0}, and so T is an injection.

To show T is surjective, suppose w € W. Note that since T-* € L(W, V), T~w € V. So,

T(T ') = (TTYHYw = Tww =w e W.

Therefore, T~ 'w is the v € V we intend to find. Hence, 7 is also a surjection. O

(<) Let T be surjective and injective. For w € W, define Sw € V s.t. T(Sw) = w. So, we know
Sw is unique. Since (T o S)w = w, we know (T o S) = Iy . Consider (S o T)v = S(Tw), we have
T(S(Tw)) = T, by definition of S. Since T is injective, we know S(T'v) = V. So, (S o T')v = v, and thus
ST = Ty . Therefore T is invertible.

Now, we want to show S is a linear map. Let wy, wo € W, then

T(S(w1 + wz)) = (TS)(’U)l + 'LUQ) = IW(w1 + ’wQ) = w1 + wa.

By definition, wy + wy = T'(Sw1) + T'(Sws) = T'(Sw;i + Sws). So, T'(S(wi + w2)) = T'(Swy + Sws). By T’
is an injection, we have S(w; + ws) = Sw; + Swe. So, S is additive. Further consider

T(S(A\w)) = Aw = MNT'(Sw)) = T(A\Sw)

for some w € W. Again, since 7 is injective, S(Aw) = ASw. So, S has homogeneity. Then, S is a linear
map. |
Definition 3.4.6 (Isomorphism). An isomorphism is an invertible linear map.

Definition 3.4.7 (Isomorphic). Two vector spaces are called isomorphic if there is an isomorphism
from one vector space onto the other one.

Notation 3.4.8. If two vector spaces V and W are isomorphic, we denote them as V' = W.
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Theorem 3.4.9
Suppose V and W are f-d vector spaces, then V' = W if and only if dim V' = dim W.

Proof 3.
(=) Suppose V = W. By Fundamental Theorem of Linear Maps, we know

dim V = dimnull T 4+ dim range 7T

Since V' = W, T is invertible and thus is injective and surjective. So, dimnull 7" = 0 and dimrange T =
dim W. Therefore, dim V' = 0 + dim W = dim W. O

(<) Suppose dim V' = dim W. Suppose vy, - - - , v, and wy, - - - , w,, are bases of Vand W, respectively.
Then, dim V' = dim W = n. Here, we want to define a bijection between VV and W. Let T" be defined as
Tvi=wi (i=1,---,n).

LetTwv = 0. Then, T'(a1v1 +- - - + anvy,) = 0. So, by definition, a;w; +- - - +a,w, = 0. Since wy, - - - , wy,
is a basis, we have a; = --- = a,, = 0. So, null 7" = {0}, and thus 7" is an injection.

Let w € W be any vector. Then, we know w = cjw; + - - - + ¢,w,. Note that, by definition of T, we
have T'(civy + -+ + cpvn) = cqwy + -+ - + cLwy,. Hence, Vw € W, 3v = cyv1 + -+ - + cpop, € V 8.0 Tv = w.
Therefore, T is a surjection.

Finally, it is trivial to show that 7" is indeed a linear map, and so the proof is complete. [

Theorem 3.4.10
Suppose vy, - - - , v, is a basis of V and wy, - - - , w,, is a basis of W. then, M is an isomorphism
between £(V, W) and F™".

Proof 4. We already know M is linear, so we just need to show M is a bijection.

To prove M is injective, consider M(T) = 0 for some 7" € L(V,W). So, we get Tv, = 0. Since
v1, -+, v, is a basis of V, we know Tv = 0 Vv € V. Then, T is the zero-mapping, or 7' = 0. Therefore,
null M = {0}.

To show M is surjective, suppose A € F™". Let T be a linear map from V to W s.t.

m
Ty, = ZAj,kwjv k=1,---,n.
j=1

Obviously, M(T') = A, and thus range M = F™". So, M is also a surjection. [

Theorem 3.4.11
Suppose V and W are f-d. Then, L(V, W) is f-d and dim £(V, W) = (dim V')(dim W).

Proof 5. By Theorem 3.4.10 and Theorem 3.4.9, we know dim £(V, W) = dim F™". Further by The-
orem 3.3.10, we know dim F™" = (m)(n). As dim V' = n and dim W = m, so we have

dim £(V, W) = (dim V')(dim W).

[ |
Definition 3.4.12 (Matrix of a Vector, M (v)). Suppose v € V and vy, - - - , v, is a basis of V. The matrix
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of v with respect to this basis is the n x 1 matrix

1
M) =| 1],

Cn

where ¢y, -+ , ¢, are scalars s.f. v = civ1 + - -+ + cpUp.

Theorem 3.4.13 M(T). , = M(vy)
Suppose T € L(V,W)and vy, -- ,v, isabasisof V and wy, - - - ,w,, isabasisof W. Let1 < k < n.
Then, the k™ column of M(T), which is denoted by M(T). x, equals M (vy,).

Proof 6. This theorem is an immediate result by definitions of matrix of a linear mapping and a
vector. |

Theorem 3.4.14
Suppose T' € L(V,W) and v € V. Suppose vy, - - ,v, is a basis of V and w;, - - - , w,, is a basis of
W. Then, M(Tv) = M(T)M(v).

Proof 7. Note thatv = cyv; +- - -+ ¢, v, SOWe have Tv = ¢1Tvy + - - - + ¢, T'v,. So, by Theorem 3.4.13,

we know
M(Tv) = aM(Tvr) + - - + cpM(Tvy)

= A M(T)1 4+ + eaM(T).
= M(T)M(v).

The final equality holds due to our interpretation of matrix multiplication as column linear combina-
tions (Theorem 3.3.14(3)) [ |

Remark. M : F" — F™! is an isomorphism:

v=Cv1+ -+ ey —

Cn

Proof 8. Suppose M(v) =0: M(civ1 + -+ + cpv,) = 0. So, we have c;w; + - - - + c,w, = 0. Since

wy, -+ ,wy, isabasis, ¢; = -+ = ¢, = 0. So, v = 0. Therefore, null M = {0}, and so M is injective. O
Cc1 C1
Now, prove M is surjective. Note thatV| : |, we have M(civ1 + -+ cyv,) = | ¢ |. So, Misa
Cnp Cp,
surjection. O
Finally, its’ trivial to prove M is a linear map. O
Since M is both surjective and injective, M is an isomorphism. [

Definition 3.4.15 (Operator). A linear map from a vector space to itself is called an operator.
Notation 3.4.16. The notation £(V') denotes the set of all operators on V. So, L(v) = L(V, V).
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Theorem 3.4.17
Suppose V' is f~dand T' € L(V'). Then, the following are equivalent: (a) 7 is invertible; (b) 7" is

injective; and (c) 7 is surjective.

Proof 9.

1. Clearly (a) implies (b). O

2. Suppose (b): T is injective. So, null ' = {0}. Then, by Fundamental Theorem of Linear Maps, we

know
dimV = dimnull T' 4 dimrange T' = 0 4+ dim range 7.

Since dimrange 7' = dim V, we know 7' is surjective. O

3. Suppose (c): T is surjective. So, range T' = V. Then, by Fundamental Theorem of Linear maps,

we have
dimnull 7' = dim V — dimrange T" = 0.

So, null 7" = {0}, and thus 7 is injective. Since 7' is surjective and injective, 7" is invertible.

Example 3.4.18 Show that for each polynomial ¢ € P(R), there exists a polynomial p € P(F) such
that ((22 + 52 + 7)p)” = q.

Proof 10. We know that every non-zero polynomial must have a degree of m. So, we can think of

this problem under 7P,,,(R). Note that
(2 + 5z 4+ 7)p)” = 2p + (4 + 10)p’ + (2 + 5z + 7)p" = q.
Therefore, the degree of p and ¢ should be the same. Define 7" : P,,,(R) — P,,,(R) as

Tp = ((«* + 52 + 7)p)"".

Then, T is an operator on P,,(R). Consider Tp = 0. We have az + b = (22 + 5z + 7)p. Note that only
when p = 0, the equation above holds. So, it must be that p = 0 when Tp = 0. Thatis, null 7" = {0}, and

so T is injective. By Theorem 3.4.18, we know 7' is also surjective, and so our proof is complete.
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3.5 Duality

Definition 3.5.1 (Linear Functional). A linear functional on V is a linear map from V to F. That is, a
linear functional is an element of £(V, F).

Example 3.5.2

1. Fix (¢1,--+,¢,) € F". Define ¢ : F* — F by p(z1, -+ ,z,) = c121 + -+ + cpzpn. Then, g is a
linear functional on F".

2. Define ¢ : P(R) — R as ¢(p) = 3p”"(5) + Tp(4).

1
3. Define ¢ : P(R) = Ras p(p) = / p(z)dz.
0

Definition 3.5.3 (Dual Space/V’'/V*). The dual space of V, denoted as V’, is the vector space of all
linear functionals on V. In other words, V' = L(V,F).

Theorem 3.5.4
Suppose V' is f-d. Then, V' is also f-d and dim V' = dim V.

Proof 1. Note that for a general linear map, £(V, W) = F™", So, L(V,F) = V' = F.", Hence,

dimV’' =dimF'"" =1-n=n=dimV.

[ |
Definition 3.5.5 (Dual Basis). If v{,--- ,v, is a basis of V, then the dual basis of v1,--- ,v,, is the list
©1,- -+ ,¢n of elements of V', where each ¢ is the linear functional on V' s.t.
(o) 1 ifk=j
wi\Vk) =
! 0 ifk#j
Example 3.5.6 Find the dual basis of ey, --- , e, € F"
Solution 2.
pi(er) =1 a(e1) =0 - ppler) =0
pi(e2) =0 pa(e2) =1 -+ pplez) =0
pi(en) =1 pa(en) =0 - pulen) =1
Define ¢; as
pj(@) = @j(@1, -, z0) = z1995(€1) + - + x05(e5) + - + Tnpjlen) = ;.
]
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Theorem 3.5.7
Suppose V is f-d. Then, the dual basis of a basis of V' is a basis of V".

Proof 3. Suppose vy, - -+ ,v, isabasisof Vand ¢y, - - - , ,, denotes the dual basis. Since we’ve shown
dimV = dim V"’ in Theorem 3.5.4, we only need to show ¢1, - - - , ¢, is L.I.. Select c1p1 + - - - + ¢ppn, = 0.
Then,

(cip1+ -+ cnpn)(v) =0 YoveV.

Suppose v = vy + - - - + v, then
(cto1+ -+ cpon)(vj) =¢; forj=1,--- ,n.

So, (crp1+ -+ cnpn)(v) =c1+---+ ¢, = 0. So, it must be that¢; = --- = ¢, = 0. Therefore, ¢1,--- , ¢n
is L.I. and our proof is complete. |
Definition 3.5.8 (Dual Map). If T € £(V, W), then the dual map of T is the linear map 77 € L(W', V)
defined by T7(¢) = p o T for p € W'.

Remark. The following diagram represents dual map (but not an exact representation).
Vv

x
T'(p)=¢poT eV

() =poT eV W
\_rerawn
/

T

Also, dual map is a linear map, so it is additive and homogeneous.
LT(p+v)=(p+v)oT=poT+¢oT=T(p) +T'(¥).
2. T'(Ap) = (Ap) o T = Ao T) = XT"(¢).

Example 3.5.9 Suppose D : P(R) — P(R) as Dp = p'.

1. Define alinear functional ¢ : P(R) — R as ¢(p) = p(3). Find D'(p).

Solution 4.

(D'())(p) = (¢ o D)(p) = ¢(Dp) = ¢(p') = p'(3).

1
2. Define ¢ : P(R) — R, alinear functional, as ¢(p) = / p(z) dz. Find D’(p).
0

Solution 5.
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Theorem 3.5.10 Algebraic Properties of Dual Maps
1. (S+T)=8+T VSTeL(V,W)
2. NT)' =XT" VT e L(V,W)

3. (ST) =T'S' VT e L(U,V)andS € L(V,W)

Proof 6.

1. (S+T) e LW, V). Letp € W'. Then,
(S+T)(p)=¢o(S+T)=poS+poT =5(p)+T'(¢)=(S"+T)(p). O
2. (\T)' € L(W',V"). Let o € W'. Then,

AT) () = 9o (AT) = AMpoT) = XT'(p) = (A\T")(¢). O

3. (ST) € L(W',U"). Let o € W'. Then,

(ST) (@) = o (ST) =po(SoT) = (poS)oT =(5(p)) o T =T(5(¢)) = (T'S')(p).

|
Definition 3.5.11 (Transpose/A®). The transpose of a matrix A, denoted A?, is the matrix obtained
from A by interchanging the rows and columns. i.e., (A%); ; = A;x.

Remark. Transpose is additive and homogeneous. That is, (A + C)t = A' + C' and (AA)! = \AL.

Theorem 3.5.12
If Aisanm x n matrix and C is an n x p matrix, then (AC)! = C*A".

Proof 7. Note that

n

(AC),; = (AC) k=D AjrCri = > (CYip(A)r = (CT A"

r=1 r=1
|
Theorem 3.5.13
Suppose T € L(V,W). Then, M(T") = (M(T))".
Proof 8. Suppose v1,--- ,v, is a basis of V, wy, - ,w,, is a basis of W, ¢1,--- | ¢, is a basis of V’,

and 1, - , ¢, is abasis of W'. Let A = M(T) and C = M(T"). Since T'(¢);) = C1jo1 + -+ Cnjon
and 7"(¢y;) = ¢j o T,wehave ¢; o T = Cy jp1 + - - - + Cy jpn. Consider

(joT)(vg) = (Crjo1+ -+ Cpjvn)(vr) = Crjpr(vr) = Cr j-
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Also, we have
(¥ 0 T)(vg) = ¥j(Twr) = (AL gwr + - + Ampwm) = ¥i(Ajpw;) = Aj k(o (wy)) = Aj g

Therefore, we have A, ;, = C ;, and thus A = C*. So, M(T) = (M(T"))". [ |
Definition 3.5.14 (Annihilator/U°). For U C V, the annihilator of U, denoted as U, is defined by

U0:{¢€V'|<p(u):0 Vu e U}.

Theorem 3.5.15
Suppose U C V. Then U is a subspace of V'.

Proof 9.
1. 0€ U% SinceO(u) =0 VueU,then0ec U’ O

2. Let p,v € U°. Then,
(o +¥)(u) = p(u) + (u) = 0.

So, o+ U’ O

3. Let A € Fand p € U°. Then
(Ap)(u) = Ap(u) =A-0=0.
So, A\p € UV.
[ |

Lemma 3.5.16 Suppose V is f-d vector space. If U is a subspace of V and S € £(U, W), then there exists
TeLl(V,W)st.Tu=Su Yuel.

Proof'10. Suppose uy, - - - ,u, isabasis of U. Then, we can extend it to abasisof V asuy, - -+ , tpm, Umt1, - - -

Define T' € L(V,W) as Tu; = Su;, Tv; = 0,wherei =1,--- ,mand j =m+1,--- ,n. Note that

Tu=T(a1us + - + amlm)
=a1Tu + -+ anTun
=a1Su1 + -+ amSuny
= S(aur + -+ + amup,) = Su.

Therefore, we've found such a T'. [ |

Theorem 3.5.17
Let V be f-d and U be a subspace of V, then dim U + dim U® = dim V.

Proof11.leti € L(U,V)asi(u) =u Yu € U. Then,i € L(V',U’). So, by Fundamental Theorem
of Linear Map, we know
dim V' = dimnull ¢ + dim range 4’. 9)
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By Theorem 3.5.4, we know dim V = dim V’ Note that U° = {¢ € V' | p(u) =0 VYu € U} and

nulli' = {¢ € V' | i'(¢) = 0}
={peV'|poi=0}
={peV' |(poi)(uy=0 YueU}
={peV']pu)=0 YueU}

So, U? = null 7/, and thus dim null i/ = dim U°.

Further, if o € U’, then ¢ : U — F. By Lemma 3.5.16, ¢ can be extended to ) € V' with ¢(u) =
p(u) VYu e U. Notethati'(¢)) =1 oi,s0 (Yoi)(u) =1(u) =p(u) Yue U Then, I € V' s.t.i'(¢) = .
So, ¢ € range U'. So, dimrange ¢/ = dim U’ = dim U.

Substitute dim V'’ = dim V, dim null i’ = dim UY, and dim range i’ = dim U to Equation (9), we get

dimV = dim U° + dim U.

Theorem 3.5.18 The Null Space of 7’
Suppose V and W are f~dand T' € £(V,W). Then,

1. null 7" = (range T)°

2. dimnull 7! = dimnull 7 + dim W — dim V'

Proof12.
1. (©) Suppose ¢ € null 7/ C W'. Then, T"(p) = ¢ o T = 0 € V'. So, we know
(poT)(v) =0 VYweV. ie,p(Tv)=0.

Note that Tv € range T. By definition, we have ¢ € (range T')° O
(D) Suppose ¢ € (range T)°. Then, p(w) = 0 Vw € range T. Thatis, p(Tv) = 0 VYo € V. So,

(poT)(v) =0 Vv e V.Hence,weknowpoT =T (p)=0¢€ V'.Thus, ¢ € null 7" [ |
2.
dim null 7" = dim(range 7')°
=dim W — dimrange T
=dimW — (dimV — dimnull T")
=dimW —dimV + dimnull 7"
|
Theorem 3.5.19

Suppose V and W are f-dand T € L(V,W). Then, T is surjective if and only if 7" is injective.

Proof'13.
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(=) Suppose T is surjective. Then, dimrange ' = W. So, (range T')° = {0}. Hence,
dimnull 7" = dim(range T)° = 0.

Thus, 7" is injective. O
(<) Suppose 7" is injective. Then,
dimnull 77 = 0.

So, dim(range 7')® = dimnull7” = 0. Then, (range T)° = {0}. So, dimrange " = W, and thus 7 is
surjective. [

Theorem 3.5.20 The Range of 7"
Suppose V and W are f~dand T' € £(V,W). Then,

1. dimrange 77 = dimrange T

2. range T’ = (null T')°

Proof 14.
1. By Fundamental Theorem of Linear Map, we have
dimrange T" = dim W’ — dim null 7’
= dim W’ — dim(range T')°

= dim W' — dim W’ + dimrange T

= dimrange 7T

2. Suppose ¢ € range 7" C V'. Then, 3¢ € W' s.t. T'()) =1 o T = ¢. Letv € null T. Then,

p(v) = (o T)(v) = ¢(Tv) = ¥(0) = 0.

Then, ¢ € (null T7)°. So, range 7" C (null T)°. O
Note that
dimrange T’ = dimrange T = dim V — dim null 7' = dim(null 7)°.

Then, range 7" C (null 7)° and dim range 7" = dim(null 7)°, so it must be that range 7" = (null 7)°.

Theorem 3.5.21
Suppose V and W are f-dand T € L£(V,W). Then, T is injective if and only if 7” is surjective.

Proof'15.
(=) If T is injective, null ' = {0}. So,

dimnull 7 = dim V — dim(null 7)® = dim V — dim range T’ = 0.
So, dimrange 7/ = dim V' = dim V’. Then, 7" is surjective. O
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(«<) If T' is surjective, dimrange 77 = dim V' = dim V. So,
dimnull 7 = dim V — dim(null 7)° = dim V — dim range 7" = 0.

Then, null 7' = {0}, and so T is injective. |
Definition 3.5.22 (Row Rank & Column Rank). Suppose A is an m x n matrix with entries in IF.

1. The row rank of A is the dimension of the span of the rows of A4 in F",

2. The column rank of A is the dimension of the span of the columns of A in F™!,

Theorem 3.5.23
Suppose V and W are f-dand T' € £(V, W). Then, dimrange T" equals the column rank of M(T").

Proof 16. Suppose vy, - - - , v, is a basis of V and wy, - - - , w,, is a basis of W. Then,

Tv, = Ay pwy + -+ + Apy Wiy

and thus
Atk
M(Tvy) = : € ™!
Am,k
Therefore, M(T') = (M (Tvy) - M(Tvn)>. Note that range T' = span(T'vy, - - - , Tvy).

Define M : span(Tvy, - - ,Tv,) — span(M(Tvy),--- ,M(Tv,)) as w — M(w).
1. M is surjective: Note that
aM(Tvy) + -+ cuM(Tvy) = M(c1Tvr + -+ - + ¢, Toy).

Since ¢y Tvy + - - - + ¢, Tv, € range T, we know M is surjective. O

2. M isinjective: Let

M(c1Tvy + -+ + ¢, Tv,) =0. (10)

We can reduce c¢;Tvy + --- + ¢,Tv, to a basis Tvj,,--- ,Tv;,,. Then, Equation (10) becomes
ai

M(a1Tvj, +---+anTvj,,) = 0. By definition of matrix, weknow | : | =0.S0,a1 =--- =a,, =0
am

and aTvj, + - - + apTvj,, = 0. S0, M is injective. O

Since M is both surjective and injective, M is a bijection. Thus, M is an isomorphism between
span(T'vy, - - - ,Tv,) and span(M(Tvy),- - - , M(Tv,)). In other words,

span(Tvy, - -+, Tvy,) = span(M(Tvy), -+, M(Tvy,)).
Then, dim span(Tvy, - -+ ,Tv,) = dimspan(M(Tvy), - -+ , M(Tv,)). That s,

dimrange T' = column rank of 7.
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Theorem 3.5.24 Row Rank Equals Column Rank
Suppose A € F™". Then, the row rank of A equals the column rank of A.

Proof 17. Define T : F™»! — F"™! by Te = Az. Then, M(T) = A, where M(T) is computed with
respect to the standard basis of F! and F"!. Note that

column rank of A = column rank of M(T)

= dimrange T Theorem 3.5.23
= dimrange 7" Theorem 3.5.20(1)
= column rank of M(T")

= column rank of A Theorem 3.5.13

= row rank of A

[ |
Definition 3.5.25 (Rank). The rank of a matrix A € F™" is the column rank of 4, denoted as rank A.
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3.6 Quotients of Vector Spaces

Definition 3.6.1 (v + U/Affine Subset). Suppose v € V and U is a subspace of V. Then
v+U={v+u|luecU}

An affine subset of V is a subset of V' of the form v + U for some v € V and some subspace U of V. The
affine subset is said to be parallel to U.

Definition 3.6.2 (Quotient Space, V/U). Suppose U is a subspace of V. Then the quotient space V/U
is the set of all affine subsets of V' parallel to U. In other words,

VU ={v+U|veV}

Example 3.6.3If U = {(z,22) € R? | # € R}, then R?/U is the set of all lines in R? with slope of 2.

Theorem 3.6.4
Suppose U is a subspace of V and v, w € V. Then, the following are equivalent:

l.v—welU
2.0+U =w+U

3. (w+U)N(w+U) £ o

Proof'1.

1. We want to show (1) = (2). Suppose v —w € U. Note thatv +u = w+ ((v — w) 4+ u). Since v — u
andu € U, we have (v —w)+u € U. So, v+ u € w+ U. Similarly, we can show that w +u € v+ U.
Then, we have v + U = w + U. O

2. Now, we want to show (2) = (3): Suppose v+ U = w+ U. Then, we have (v+U)N(w+U) # o,
which is evident from the assumption. O

3. Finally, we will show (3) = (1). Suppose (v +U) N (w+ U) # @. Then, Juj,us € U s.t. v+ u; =
w 4+ ug. Sowe have v — w = uy —uy € UL

|
Definition 3.6.5 (Addition & Scalar Multiplication on V/U). Suppose U is a subspace of V. Then,
addition and scalar multiplication is defined on V/U by

w+U)+(w+U)=(w+w)+U

and
Av+U)=(\)+U

forv,w e Uand X € F.
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Theorem 3.6.6
Suppose U is a subspace of V. Then, V/U, with the operations of addition and scalar multipli-
cation defined above, is a vector space.

Proof 2.

1.

7.

8.

Addition on V/U makes sense.

Note the addition can be written in the language of mapping as + : V/U x V/U — V/U. So, we
have (v 4+ U,w+U) — (v+w) 4+ U. Suppose Jv.0 € Vst.v+U =0+Uandw+U = w + U.
Note that v — ¢ € U and w — @ € U by Theorem 3.6.4. Then, (v — 9) + (w — @) € U. So, we have
(v+w) — (0 + w)inU. Further, by Theorem 3.6.4, we have

(w+w)+U=0+d)+U. O

. Scalar multiplication on V/U makes sense.

We can write the scalar multiplication on V/U as a mapping: - : F x V/U — V/U defined as
(Mv+U) = A+ U. Suppose 30 € Vst.v+U = v+ U. Soweknowv — o € U, and thus
AMv —0) = A — Ab € U. By Theorem 3.6.4, we then have (\v) + U = (Ad) + U. Thus, the scalar
multiplication makes sense. O

. additive identity: 0 + U = U. O
. additive inverse: (—v) + U. O

. commutativity:

w+U)+(w+U)=@v+w)+U=(w+v)+U
=(w+U)+ (v+0). O

. associativity:

(v4+U)+ (w4 U)]+(x+U)=[(v+w)+ U]+ (x+U)
=[v4+w)+z]+U
=+ (w+2z)]+U
=w+U)+[(w+z)+ U]
=w+U)+[(z+U)+ (x+ V). O

multiplicative identity: 1 - (v+U) =(1-v)+ U =v + U. O
distributivity:
al(v+U)+ (w+U)] =al(v+w)+ U]
=a(v+w)+U
= (av +aw) + U
=(av+U)+ (aw+U)
=a(v+U)+a(lw+U).
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(a+b)(v+U)=(a+bv+U
= (av+bv)+U
=(av+U)+ (bv+U)
=a(v+U)+bv+U)

|
Definition 3.6.7 (Quotient Map). Suppose U is a subspace of V. The quotient map = is the linear map
w:V = V/U defined by n(v) =v4+U VYveV.

Remark. Here are some properties of the quotient map:

1. w(v) is defined Vv € V. Thus, 7 is surjective.

2.nullr={veV|n(v)=0}. Ifr(v) =0,thenv+U =U =0+ U. So,v — 0 € U by Theorem 3.6.4.
Then, v € U. So, nullm C U. Further,Vv € U, ifn(v) = 0, thenv € nullx, thenU C null 7. So,
U =null 7.

B rv+w)=w+w)+U=w+U)+ (w+U) =7n(v) + n(w).
4. (M) = (M) +U =ANv+U) = Ar(v).

Theorem 3.6.8
Suppose V' is f-d and U is a subspace of V. Then

dimV/U = dimV — dimU.

Proof 3. By Fundamental Theorem of Linear Map, we have
dim V = dim null 7 4+ dim range 7. (11)

Since null 7 = U from the Remark, we have dimnull 7 = dim U. Further, since = is surjective as men-
tioned in the Remark, range 7 = V/U. Hence, dimrange 7 = dim V/U. Therefore, Equation (11) be-
comes

dimV =dimU + dim V/U,

or we have
dimV/U =dimV —dimU

Definition 3.6.9 (7). Suppose T' € £L(V,W). Define T : V/(null T) — W by T'(v + null ') — T'v.
Proof 4.

1. This definition makes sense
Suppose u,v € V s.t. u +null T = v + null 7. By Theorem 3.6.4, we know © — v € null 7. Then,
T(u—v)=0,0rTu="Tv. O

2. T is alinear map.

T(u+nullT)+ (v+null T)] = T[(u + v) + null T
=T(u+v)
= Tu+Tv="T(u+nullT) + T(v+ null T). O
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TA(u+null 7)) = T(Au + null T')
=T(\u)
=Nlu
= AT (u+nullT).

Theorem 3.6.10
Suppose T' € L(V,W). Then,

1. T is injective.
2. range T = range 7.

3. V/(null T') = range T

Proof'5.

1. Suppose v € V and T'(v + null T) = 0. Then, Tv = 0. So, v € null T, or v — 0 € null 7. By Theorem
3.6.4, we then have v 4+ null 7 = 0 + null 7. Then, it implies null 7 = 0. So, T is injective. O

2. By definition of T, it must be range T’ = range 7. O

3. Note that dim V/(null ) = dimnull T 4 dimrange T' = 0 4 dim range 7. Then, by Theorem 3.4.9,
we know two vector spaces are isomorphic if and only if their dimensions are equal. Then,

V(null T) = range T
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4 Eigenvectors and Invariant Subspaces

4.1 Invariant Subspaces

Theorem 4.1.1
Suppose V' is f-d with dim V' = n > 1. Then, 3 1—dimensional subspaces Uy, --- ,U,, of V s.t.

V=U,® --®U,.

Proof 1. Choose a basis vy, - - - , v, of V. Then, we know V' = span(v;) + - - - + span(v, ). Also, Vv € V,
we have v = ajv1 + - - - + apv, With a;jv; € span(v;). Setajvy + - - - + apv, = 0. Since vy, - - - , vy, is a basis,
itmustbea; = --- = a, = 0. Then,

V =span(v1) & - - - @ span(vy,).

Theorem 4.1.2
Suppose Uy, - - - , U, are f-d subspaces of V' s.t. Uy + - - - + Uy, is adirect sum. Then, U; & - - - ® U,
is f-d and

dimU; ®---®U,, =dimU; + --- + dim U,,.

m
Proof 2. Suppose uy,1,- - ,uj, is a basis of the subspace Uj. Then, any vector in @ U; is in the
i=1
formofu; + - +uy, u; € Uj. Also,

Ji
U; = E Qi | U k-
k=1

So,
J1 Jm
Up =+ o+ Uy = E a1 kUl g+ 0+ E Ak Um, k-
k=1 k=1

Then, u; + - - - + up, is alinear combination of uy 1, - - - , u;m. So, the direct sum is f-d. O
Further, suppose

Jm

J1
E al pul g + -+ § A kUm ke = 0.
k=1 k=1

Since Uy + - - - 4+ U,,, is a direct sum, it must be

jl ]m
§ a1 pULE =" = § Qg kUm e = 0.
k=1 k=1

Since we selected bases, a; , = -+ = ayr = 0.S0, w11, -+, Umj,, iSabasisof Uy @ - -- @ U,,. Then,

dmUi®---pU,, =dimU; + --- +dim U,,.
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Definition 4.1.3 (Invariant Subspace). Suppose 7" € £(V'). Asubspace U of V is called invariant under
Tifu € U implies Tu € U.

Example 4.1.4 Suppose T' € £(V). Show that each of the following subspaces of V' is invariant
under 7"

1. {0}

Proof3.70 =0 € {0} |
2.V

Proof4.ucV = TuecV [
3. null T

Proof5. v € nullT — Tu =0 €range T [ |
4. range T

Proof 6. u € range T —> Twu € range T |

Example 4.1.5 Suppose ' € L(P(R)) is defined by Tp = p'. Then, P4(R) is invariant under 7.
Proof 7. Note that T'p,) € P4(R). Then, P4(R) is invariant under 7. [

Definition 4.1.6 (Eigenvalue). Suppose 7' € L£(V). A number A € F is called an eigenvalue of T if
JveVstv#0and Tv = \v.
Corollary 4.1.7 T has a 1-dimensional invariant subspace if and only if 7" has an eigenvalue.

Proof 8.

(=) Suppose span(v) is invariant under 7'. Let U be defined as U = {\v | A € F} = span(v). Then.
U is the invariant subspace under 7" and dimU = 1. Then, Vv € V, we have Tv € U. Hence, 9\ €

F s.t. Tv = Av. Then, A is an eigenvalue. O
(<) Suppose A € Fis an eigenvalue. Then, Tv = Av. Hence, span(v) is a 1 =dimensional invariant
subspace under 7. [

Theorem 4.1.8 Equivalent Conditions to be an Eigenvalue
Suppose V'is f-d, T € L(V), and X € F. Then, the following are equivalent:

1. \isan eigenvalue of 7'.
2. T — Al is not injective.
3. T — Al is not surjective.

4. T — )\ is not invertible.

Proof 9.

1. (1) = (2): Suppose ) is an eigenvalue of 7. Then, Jv € V s.t. v # 0 and Tv — Av. So, Tv — \v =
(T — M )v = 0. Since v # 0, null (7" — A\I) # {0}, and thus T is not injective. O
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2. Note that 7' — \I is an operator by itself. By Theorem 3.4.17, we know (2), (3), and (4) are equiva-
lent.

3. (4) = (1): Suppose T'— \I is not invertible. Then, it is not injective. So, Jv # 0 s.t. (T'— Al )v = 0.
Thatis, Tv — AMlv = Tv — Av = 0. So, T'v = Mv. Then, ) is an eigenvalue of 7.

|
Definition 4.1.9 (Eigenvector). Suppose 7' € £(V) and X € F is an eigenvalue of 7. A vector v € V is
called an eigenvector of T corresponding to \ if v 4 0 and Tv = Av.
Corollary 4.1.10 A vector v € V with v # 0 is an eigenvector of 7" with respect to A if and only if
v e null (T — \I).
Proof 10. Note that T'v = \v ifand only if (7' — AI)v = 0. [

Example 4.1.11 Suppose T € L(F?) is defined by T'(w, 2) = (—z, w).

1. Find the eigenvalues and eigenvectors of T'if F = R.
Solution 11.
—z=Aw
LetT(2,z) = AM(w, 2). So, (—z,w) = (Aw, A\z). Then, solve { \
W = AZ

Then, we have A2z + z = 0. If z # 0, A> + 1 = 0. This equation has no solutions on R. So

T has no eigenvalues. If w = 0,z = 0, then T'(w, z) = T(0.0) = T0. By definition, 7" has no

eigenvalues. O
2. Find the eigenvalues and eigenvectors of 7' if F = C.

Solution 12.

Applying similar rational, z # 0 and solve A2 + 1 = 0. Then, we have A = +i. If A\ = i, then
—z =iw. S0, v = (w, 2) = (w, —iw). [f A — i, then —z = —iw, or z = iw. So, v = (w, iw). O

Theorem 4.1.12
LetT € L£(V). Suppose Ay, - - - , A, are distinct eigenvalues of 7"and vy, - - - , v, are corresponding
eigenvectors. Then, vy, - - - , vy, is L.1..

Proof 13. Suppose for the sake of contradiction that vy, - - - , vy, is linearly dependent. Let k be the
smallest positive integer s.t. vy € span(vy,---,vk_1). Then, vy = ajv1 + - -+ + ag_1vk—_1. Applying 7', we
have

AUk = Q1101 + -+ Qg1 A p—1Vk—1. (12)

Since v, = ajv1 + - - - + ag_1v,—1, we also have
AV = QAU + -+ Q1 ApUK_1. (13)
So, by Equation (13)-(12), we have

0= al(/\k — )\1)?}1 + -+ ak,l()\k — )\kfl)?}kfl.
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By assumption, vy, - ,v;_1 is L.I.. Then, it must be that a; = --- = a;_; = 0 since A1, -, \; are
distinct eigenvalues. Therefore, vy, = ajv; + - - - + ag_1vx_1 = 0. % This contradicts with the fact that v
is an eigenvector, which cannot be 0. So,it must be that vy, - - - , v, are L.I. [ |

Theorem 4.1.13
Suppose V is f-d. Then, each operator on V" has at most dim V' distinct eigenvalues.

Proof 14. Let T € L(V). Suppose Ay, --- , A, are distinct eigenvalues of 7. Let vy, - - - , vy, be corre-
sponding eigenvectors. By Theorem 4.1.12, we know vy, - - - , v, is L.I.. Further by Theorem 2.3.5, we
know dim span(vy, - -+ ,v,) < dim V. Thatis, m < dim V' as desired. [ |
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4.2 Eigenvectors and Upper-Triangular Matrices

Definition 4.2.1 (7). Suppose T' € £(V') and m is a positive integer. Then, 7™ is defined by

™ =7T---T.
——

m times

Specially, 7° is defined to be the identity operator I on V. Further, if T is invertible with inverse 71,
then 7™ is defined by 7-™ := (T—1)™.

Theorem 4.2.2

™" =T""  (T™)" =1T"".

Definition 4.2.3 (p(7)). Suppose T' € L(V') and p € P(F) is a polynomial given by
p(2) =ag+ a1z +az? + - +anz™, zePl.
Then, p(T) is the operator defined by

p(T) = aol + a1 T + asT? + -+ + a, T™.

Example 4.2.4 Suppose D € L(P(R)) is the differentiation operator defined by Dq = ¢’ and p is the
polynomuial defined by p(z) = 7 — 3z + 522. Find p(D) and (p(D))q.
Solution 1.

p(D) =71 — 3D + 5D?

(p(D))q = (71 — 3D + 5D%)q
= 7Iq — 3Dq + 5D%q
=17q—3q¢ +5¢".

Theorem 4.2.5
If we fix an operator 7" € £(V), then the function from P(F) to £(V') given by p — p(T) is linear.

Proof 2. Suppose f : P(F) — L(V) is defined by p — p(T'). Suppose
p=ap+arz+---+anz" = al+a T+ - +a,T™

and
q:b0+blz+--~—|—bmzm»—>b0I—|—b1T—|—---+mem.
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4 EIGENVECTORS AND INVARIANT SUBSPACES 4.2 Eigenvectors and Upper-Triangular Matrices

Then,
fp+q)=(ao+bo)I + (a1 +b1)T + -+ (am + b)) T™

( ()I +a T+ -+ CLme) + (boI + blT +---+ mem)

= f(p) + f(q@).
Further, suppose A € F, then

f(Ap) - )\QOI —+ )\alT 4+ o4 )\ame
= Af(p).

|
Definition 4.2.6 (Product of Polynomials). If p, ¢ € P(F), then pq € P(IF) is the polynomial defined by

(pq)(z) == p(2)q(z) for z € F.
Remark. (pg)(z) = p(2)q(z) = q(2)p(z) = (qp)(2) forz € F.

Theorem 4.2.7 Multiplicative Properties
Suppose p,q € P(F)and T € L(V). Then

L. (pg)(T) = p(T)q(T)

Proof 3.

1. Suppose p(z Z a;z7 and q(z Z brz". Then
7=0 k=0

(p9) (2) = p(2)a(2) = 3_ajz’ y b2t =373 bzt

So, by definition, we have

NE
3

Q

=

3

L
PR
NE

Q@

e
N———
/\

M-
=

S

=
N————
5
]

=0 k=0

2. Similar to the Remark,

Theorem 4.2.8 Fundamental Theorem of Algebra
Every non-constant polynomial with complex coefficients has a zero.

Theorem 4.2.9 Existence of Eigenvalues
Every operator on a f-d, non-zero, complex vector space has an eigenvalue.
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Proof 4. Let V be a complex vector space with dimension n > 0. Suppose " € L(V). Choose
v € Vs.t.v#0. Then, v,Tv,T?v,--- ,T"v is linearly dependent because dim V = n but the length of
thelistisn + 1 > n. Hence, 3 ag,a1,--- ,a, notall0 € C s.1.

O0=agv+a1Tv+ -+ a,T™v (14)
By Fundamental Theorem of Algebra (Theorem 4.2.8), we have
agtarz+--+apz" =clz—=A) (2= An)
withc € C, ¢ # 0, and \; € C. Then, Equation (14) becomes

O=apv+a1Tv+---+a,T™
= ((IQI +a T+ + anT")U
=c(T—M\I)--- (T = M\pD)v
Since v # 0 and ¢ # 0, it must be some 7" — \;I = 0. Thus, " = \;1, and J; is an eigenvalue of T'. |
Definition 4.2.10 (Diagonal of a Matrix). The diagonal of a square matrix consists of the entires along
the line from the upper left corner to the bottom right corner.

Definition 4.2.11 (Upper-Triangular Matrix). A matrix is called upper-triangular if all the entires be-
low the diagonal equal 0. Typically, we present an upper triangular matrix in the form

A1 *

0 An

Theorem 4.2.12 Conditions for Upper-Triangular Matrix
Suppose T' € L(V) and vy, - - - , v, is a basis of V. Then, the following are equivalent:

1. the matrix of 7" with respect to vy, - - - , v,, is upper triangular.
2. Tvj € span(vy,--- ,vj) foreachj=1,--- ,n

3. span(l,--- ,v;)is invariant under 7' foreach j = 1,--- , n.

Proof'5.

1. First, we will show (1) < (2).
Ay - Ay

Suppose M(T') = ¢ |.Then,

0 Anon

)

Tvl = A1,1U1

Tvy = Aq2v1 + azpv2

Tvj = Apjor + -+ Aj jvj.
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4 EIGENVECTORS AND INVARIANT SUBSPACES 4.2 Eigenvectors and Upper-Triangular Matrices

So, T'vj € span(vy,- -+ ,vj). The reverse implication is trivial to prove. O
2. (3) = (2) is obvious and trivial to prove.

3. Lastly, we want to show (2) = (3).

Note that for each fixed j = 1,--- ,n, we have

Ty € span(vi) C span(vi, - -+ ,v;)

Ty € span(vy, ve) C span(vy, -+ ,vj)

Tvj € span(vy, -+ ,vj)
Letv € span(vi, - -- ,v;). Then, v is alinear combination of vq, - - - , vj, then
Tv € span(vi,- -+ ,v;).
That is, span(vy, - - - ,v;) is invariant under 7'.

|

Definition 4.2.13 (Quotient Operator). Suppose 7' € £(V') and U is a subspace of V' invariant under
T. The quotient operator T /U € L(V/U) is defined by (T/U)(v+U) :=Tv + U.

Proof 6. The definition makes sense, and here is the proof. If v + U = w + U, thenv — w € U. So,

T(v —w) € U since U is invariant. Thatis, Tv — Tw € U. Then, Tv+ U = Tw + U. [

Theorem 4.2.14
Suppose U is a subspace of V. Letv; + U, - - , v, + U be a basis of V/U and uy, - - - , u,, be a basis
of U. Then, vy, , Uy, u1,- - ,uy is a basis of V.

Proof7. Letv € V. Thenv+ U € V/U. So,v+ U = aiv; + -+ + amvn + U, uniquely. Then, by
Theorem 3.6.4, we have v— (ajv1 +- - - +amvy) € U. Therefore, v—(a1v1+- - -+ amvm,) = bius+- - -+ by,
uniquely. So, v = ajv1 + -+ - + @V + b1us + - - - + byuy,. uniquely. By definition, vy, - -+, v, u1, - -+, up
isabasis of V. |

Theorem 4.2.15
Suppose V is a f-d complex vector space and 7" € £(V'). Then, 7" has an upper-triangular matrix
with respect to some basis of V.

Proof 8.

When dim V' = 1, the implication holds.

‘ Inductive Steps ‘ Suppose the implication is true for some complex vector space with dimension of
n — 1. Letdim V' = n and v; be any eigenvector of 7. Suppose U = span(v;). Then, U is invariant under
T. Note that dim V/U = dimV —dim U = n — 1, so we can use the inductive hypothesis on the quotient
operator 7'/U € L(V/U). Then, 3abasisvs + U,--- ,v, + U € V/U s.t. T/U has an upper-triangular
matrix. By Theorem 4.2.12, we have

(T/U)(vj+U) € span(va+U,--- ,c=v; +U) forje{2,--- n}.
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So, T?)j +U = (CQUQ + -+ Cj’Uj) +U. Then,
Tvj — (cava + - -+ + ¢jvj) € U = span(vy).

So, ij — (CQUQ + -+ ijj) = cyv; for some ¢; € F. Then, ij = C1v1 + U2 + - -+ + ¢jvy. So,
Tv; € span(vy,---,v;) forj € {1,---,n}. Since by Theorem 4.2.14, vy, - -- ,v, is a basis of V, further
by Theorem 4.2.12, T has an upper-triangular matrix with respect to vy, - - - , v,,. So, the implication is
true for dim V' = n.

Since the implication is true for dim V' = 1 and is true for dim V' = n whenever it is hold for dim V' =
n — 1, by the Principle of Mathematical Induction, the implication is true for all positive integers n.
Hence, the proof is complete. u
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4.3 Eigenspaces and Diagonal Matrices

Definition 4.3.1 (Diagonal Matrix). A diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal.

Definition 4.3.2 (Eigenspace, £()\,T)). Suppose T' € £(V') and A € F. The eigenspace of T' correspond-
ing to A\, denoted E(\, T), is defined by

E\T)=null (T — \I).

In other words, E(), T) is the set of all eigenvectors of T' corresponding to A, along with the 0 vector.

Theorem 4.3.3 Sum of Eigenspaces is a Direct Sum
Suppose V' is f-dand T' € L(V'). Suppose also that Ay, - - - , \,,, are distinct eigenvalues of 7. Then

EQA,T)+ -+ EOn,T)
is a direct sum. Further

dim E(A, T) + - - - + dim E(Ap, T) < dim V.

Proof 1. Suppose uj +- - - +u,, = 0, whereu; € E(\;,T). If some u; # 0, then u; +- - - +u,, can never

be 0 because uy,- - - , un, as eigenvectors corresponding to distinct eigenvalues, is L.I.. Hence, the only
way for u; + - - - + u,, tobe 0 is by taking u; = - - - = u,, = 0. Hence, we know E(\,T) + --- + E(A\,, T)
is a direct sum. O

By Theorem 4.1.2, we know

dim E(A,T) + - +dim E(A\,,T) =dim E(\,T) @ - ® E(Ap, T)
< dimV.
|

Definition 4.3.4 (Diagonalizable). An operator 7' € £L(V) is called diagonalizable if the operator has a
diagonal matrix with respect to some basis of V.

Theorem 4.3.5 Conditions Equivalent to Diagonalizability
Suppose V' is f-dand T € L(V). Let A1, --- , A\, denote the distinct eigenvalues of 7. Then, the
following are equivalent:

1. T is diagonalizable.

2. V has a basis consisting of eigenvectors of 7'.

3. 31—dimensional subspaces Uy, - - - ,U,, of V, each invariantunder 7, s.t. V =U;&---®U,.
4. V=EMN,T)® - & E\n,T).

5. dimV =dim E(A,T) + - - - + dim E(\y,, T).

Remark. To prove this theorem, we will prove (1) <— (2), 2) < (3), 2) = (4), 4) = (5), and
b)) = ().
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Proof 2.
1. (1) <= (2): By definition, we know 7 is diagonalizable if and only if 3 a basis vy, - - - , v, of T' s.t.
A 0
0 An
which holds if and only if we have Tvy = A vy, -+, Tv, = Ayv,. i€, v1,- -+ , v, are eigenvectors of
T. O
2. (2) = (3): Suppose vy, - - - , v, isabasis of V. Then, forsome v € V, we have v = ajvy +- - -+ anvy,.
So, we know V' = span(v;) + - - - + span(vy,). Further, let ajv; + - - - + a;v,, = 0. Since vy, - -+, vy, is
a basis, it mustbe a; = --- = a,, = 0. So, there is only one way to represent 0. So,

V = span(v1) @ - - - @ span(vy,).

Now, we want to show each span(v;) is invariant. Consider T'(c;v;) = ¢;Tv; = cjA\jv; € span(vj).
So, span(v;) is invariant. O

3. (3) = (2): Suppose 7 1—dimensional subspaces Uy, - - - , U, of V, each invariant under 7', s.t.
V=U;®---®U,. Then, Vv € V,we have v = ajuj +- - - +a,u, uniquely. Then, uy, - - - , u,, is a basis
of V. Since Uy, --- ,U, are 1—dimensional invariant subspaces, u;,--- ,u, are the eigenvalues.
O

4. (2) = (4): Suppose V has a basis consisting of eigenvectors of 7. Then, v = ajv; + -+ + apv,
is a linear combination of eigenvectors of 7. By definition, F();,T) contains the eigenvectors
corresponding to \;. Further since A, ---, Ay, is distinct, corresponding eigenvectors are L.I..
Then, E(\;,T) N E(\;, T) = {0} if i # j. Then, we have

v=aiv1 + -+ apvy € EN,T) 4+ -+ EOAy, T).
Hence, V =E(\,T) + --- + E(\, T). Further by Theorem 4.3.3, we have

V=EA,T)® & EM,T). O

5. (4) = (5): This conclusion can be deduced from Theorem 4.3.3 and its proof.

6. (6) = (2): Suppose dim V' = dim E(\,T) + - - - + dim E(A\,, T'). Select B;, the basis of E(\;,T)
forj = 1,--- ,m. Denote dimV = n. Then, if we put these bases together as By, --- , B,,, we
can write the collection as vy, - - - ,v,. Suppose ajv1 + - - + apv, = 0. Let u; denote the sum of
all the terms ayvy, s.t. v, € E(\;,T). Then, the equation becomes u; + --- 4+ u,, = 0 and each
uj € E(\;,T). Since eigenvectors corresponding to distinct eigenvalues are L.I., it must be that

up = --- = uy = 0. Further, by definition of u;, and since v} s are bases of E()\;,T), it must be
a; = --- = a, = 0. So, we know vy, - - - , v, is L.I.. Further, since len(vy, -+ ,v,) = n = dimV, we
know that vy, --- ,v, is a basis of V.

n
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Theorem 4.3.6
If T € £(V) has dim V distinct eigenvalues, then T is diagonalizable.

Proof 3. Suppose T € £(V') hasdim V distinct eigenvalues: A1, - , \gimv. Then, ithasv, -, vgimv
as corresponding eigenvectors and is L.I.. Note that len(vy, -+ ,vgimyv) = dim V. So, v1, -+ , vgimv IS @
basis of V. By Theorem 4.3.5, with respect to this basis consisting of eigenvectors, 7" has a diagonal
matrix. |

Example 4.3.7 The Fibonacci Sequence F, Fs, - - - is defined by
h=rn=3 and F,=F, o+ F,1 forn>3.

Define T € L(R?) by T'(z,y) = (y,z + y).
1. Show that 7"(0,1) = (F},, F,+1) foreachn € Z*.
Proof 4.

» Base Case: Note that 7'(0,1) = (1,1) = (F1, F»).
¢ Inductive Process: Suppose 7"~ 1(0,1) = (F,,_1, F,,). Then,

T" = [T(T"1))(0,1) = T[T"1(0,1)]
=T(Fp1,Fy)
= (Fn, Fm1 + Fy)
= (Fp, Fri1).

So, T™(0,1) = (F,, Fn+1) Vn € Z* by Principle of Mathematical Induction.

|
2. Find the eigenvalues of T'.
Solution 5.
y=Ax . 2
Suppose T'(z,y) = A(z,y). So, (y, z+y) = (Az, Ay). Solve . Thatis, z+\z = \°z,
T+y=Ay
or Az — Az — x = 0. It follows z # 0, so solving \> — X\ — 1 = 0, we get
1 1-—
/\1 = + \/g and )\2 = \/5
2 2
g
3. Since T has two eigenvalues, T should have a basis of R? consisting of eigenvectors. Find the
basis.
Solution 6.
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When A\ = ! +2\/5, we have y = Az = 1 +2\/5x. So, v; = (w, 1 +2\/5x> = a:(l, 1+2\/5>
That is,
v = 1, .
2
Similarly, we have
vg = | 1, .
2
Further, it follows that
A O
M(T, ’1)1,’1)2) = (01 )\2>
O
4. Find F,, using an expression of n only.
Solution 7.
Note that (0,1) = \}g(vl — v2). So, we have
770.1) = (01— o))
1) = — (v —v
NG 1— U2
= \}ETH(’Ul — UQ)
= \}E(Tnvl — TTLUQ)
1 n n
= %()\1111 — AZv2)
(1B, 1B (1B, 1= V5
V5 2 T2 2 )
_L 1+\/5 n_ 1_\/571 1+\/5 n-l-l_ 1_\/5 n+1
V5 2 2 ’ 2 2
= (Fn7 Fn+1)-
So, we have . .
po_ L ((1VEY) [1-45
"5 2 2
[l
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5 Inner Product Spaces

5.1 Inner Products and Norms

Definition 5.1.1 (Dot Product). For z,y € R", the dot product of x and y, denoted z - y, is defined by
T-y=2x1Y1+ -+ Tnln,

where x = (z1,--- ,zy) and y = (y1,- -+ , yn)-

Theorem 5.1.2 Properties of dot Product
1. CL"Q?:.’E%-F"'—FZE%ZO Ve € R"™.
2. z-x =0ifand onlyif x = 0.

3. Fory € R", define f : R™ — R as z — z - y. Then, f is linear.

4. Ve, y e R", -y =y - x.

\. J

Proof 1. Properties #1, #2, and #4 are trivial to prove, so the proof is omitted. Here we complete a
proof for property #3, linearity of dot product. Let f : R” — R be defined as z — z -y for a fixed y € R".

Note that
fla+bd)=(a+b)-y=(a1+b1)yr+ -+ (an + bn)yn)

= (a1y1 + -+ anyn) + (bry1 + - -+ + buyn)
= f(a) + f(b).

Further, notice that

- )‘(xlym + -t Tpyn = )\f(w)

Remark. Forw,z € C", we define the dot product of w and z, denoted as (w, z), as
<’LU,Z> =w1z1 + -+ WpZp.

Definition 5.1.3 (Inner Product). An inner product on V is a function that takes each ordered pair
(u,v) of elements of V to a number (u, v) € F and has the following properties:

1. positivity: (v,v) >0 Yv e V.

2. definiteness: (v,v) = 0ifand only if v = 0.

3. additivity in first slot: (u + v, w) = (u, w) + (v,w) Yu,v,w € V.
4. homogeneity in first slot: (\u,v) = A(u,v) VA € FandVu,v € V.

5. conjugate symmetry: (u,v) = (v,u) Yu,v € V.
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Example 5.1.4 Here, we offer some examples of inner product. Note that there might be multiple
inner products over a vector space, as long as the following the definition and properties given in
Definition 5.1.3.

1. Consider C[—1, 1], the set of continuous real-valued functions on the interval [—1, 1]. An inner

product can be defined as (f, g) / flz

Proof 2.

(@ ( / fA(x) dz > 0.

(b) (f,f)=0ifand onlyif f(z) =
(c) Note that

1
(.= [ (1) + g(@)lh(o) da
1
=/1f@M@W+M@h@NM
1
/ f(z dx—i—/ g(x)h(z) dx

1
) + (g, h).

)</\f,9>=/_ A (@)g(r) dz = A /f M g).

(© (g, /) = / dx—/’f ) de = {f,g) = (F.9).

2. Aninner product on P(R) can be defined as (p, ¢) = / p(x)q(z)e ™ dx
0

Proof 3. The definition makes sense. Consider the inner product as () : P(R) x P(R) — R.
Note that oo ¢ R. So we need to show the improper integral converges to a finite number
under any circumstances. Consider

2?p(z)q(z) _ p(z)g(z)e””
e L '
Note that .
oy PO
T—00 =

o0
Further since / — dx converges as it is a p-series with p = 2 > 1, we know it must be
0 xr

p(x)q(z)e”* dx converges as well, by the comparison test. The remaining job is to show

0
this definition of ( ) indeed retain the five properties as required in Definition 5.1.3, which is
trivial and so is omitted. u
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Definition 5.1.5 (Inner Product Space). An inner product space is a vector space V' along with an inner
producton V.

Example 5.1.6 Euclidean Inner Product on F” is defined as
<(’LU1,"' ,'U)n),(Zl,"' 7zn)> = w121 + - +wnZ>

where (w1, -+ ,wp), (21,7, 2n) € F".

Notation 5.1.7. For the rest of this Chapter, without otherwise specification, V' denotes an inner prod-
uct space over F.

Remark. Ifnot explicitly defined, the inner product is the Euclidean inner product as defined in Exam-
ple 5.1.6.

Theorem 5.1.8 Basic Properties of an Inner Product

1. For each fixed v € V, the function that takes v to (v, u) is a linear map from V to F.

2. (0,u) =0 foreveryu € V.

&

(u,0) =0foreveru e V.

5

(u, v+ w) = (u,v) + (u, w) for all u,v,w € V.

5. (u, W) = Mu,v) VA€Fandu,v V.

Proof 4.

1. Define f : V — Fasv — (v, u) for some fixed u € V. Then,
flotw) = (v+w,u) = (v,u) + (w,u) = f(v) + f(w).

Fw) = (A, u) = Mo, u) = Af(v). O

\S)

. Since f is alinear map, then f(0) = (0,u) = 0. O
3. Note that (u,0) = (0,u) =0 =0. O

4. Notice

5. Observe that

(u, \v) = (Av,u) = \(v, u)
=X (v,u) = Mu,v).

[ |
Definition 5.1.9 (Norm). Suppose V is a vector space. Then, the norm of v is a real-valued function
| || : V— R satisfying the following properties:
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1. ||v|| > 0and ||v|| = 0if and only if v = 0.
2. |lav]| = |a|jv]| VYaeFandwv e V.
3. triangle inequality: ||u + v|| < ||ul| + ||v|| Vu,v € F.
Definition 5.1.10 (Norm Induced by An Inner Product). Forv € V, ||[v|| = \/{(v,v) isa normon V.

Remark. We will prove Definition 5.1.10 is indeed a definition of norm that satisfies the conditions in-
dicated by Definition 5.1.9 throughout the rest of this section.

Theorem 5.1.11 Basic Properties of Norms
Letv € V. Then,

1. |lv|| = 0if and only if v = 0.

2. ||xv|| = |Allv]| VA eF.

Proof'5.

1. |lv|| = 0if and only if y/(v,v) = 0, which is equivalent to (v,v) = 0. By properties of an inner
product, (v,v) = 0 if and only if v = 0. So, the proof is complete. O

2. Consider

Il = (Ao, Ao) = A~ Mo, 0) = A0, 0).

So, [ Ml = /A (v, v) = [A[|Jo]l.
|
Definition 5.1.12 (Orthogonal). Two vectors u,v € V are called orthogonal if (u,v) = 0.
Theorem 5.1.13 Orthogonality and 0
1. 0is orthogonal to every vector in V.
2. 0is the only vector in V' that is orthogonal to itself.
Proofé6.
1. As (0,u) =0 Vu €V, the proof is complete. O
2. Note that (v,v) = 0 if and only if v = 0, so we complete the proof. O
|

Theorem 5.1.14 Pythagorean Theorem
Suppose u and v are orthogonal vectors in V, then

lu +ol* = Jlull® + [lo]|*.
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Proof 7. Note that

lu+v|* = (u+v,u+v)
= (u,u+v) + (v,u + v)
= (u,u) + (u,v) + (v,u) + (v, v).
Since u and v are orthogonal, (u,v) = (v,u) = 0. So, ||u + v||? = (u,u) + (v,v) = ||ul|® + ||v|*. [

Theorem 5.1.15 An Orthogonal Decomposition
_ (W) _ . (wo)
Tl T R

Suppose u,v € V, with v # 0. Set ¢ v. Then, Yw,v) = 0and u = cv + w.

Proof 8.

Ccv

0

The idea is the find ¢, w s.t. (v,w) = 0 and w = u — cv. Thatis, u = w + cv. Since (v, w) = 0, then we

have
(v,u—cv) =0 = (u— cv,v) = (u,v) — c|v|*
So,
(u, v)

c=——+
[[v]|?

and
(u,v)

W=UuU—CcU=1u~—
lv]1?

Theorem 5.1.16 Cauchy-Schwarz Inequality
Suppose u,v € V. Then,
[(w, 0)] < [l [|v]]

This inequality is an equality if and only if one of u, v is a scalar multiples of the other.

Proof 9. If v = 0, then [(u,v)| = 0 = ||ul|||v]|. So, we can assume v # 0. Consider the orthogonal
decomposition,
(u,v)

U=-—F-"-0+w.
[v]|2
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Then, by the Pythagorean Theorem, we have

2 2
2 _ (u,v) 2 _ | (u, )| 2 2
[, 0) 2 o {w0))”
= + [[w]” =
lv]1? o]

As ||v||> > 0, we have ||u|?||v]|?> > |(u, v)|*. Further since [|u|| > 0, ||v|| > 0, and |(u, v)| > 0, then
[(w, v)| < [fullf|o]-

The equality holds if and only if ||w||? = 0. That is, w = 0 from the orthogonal decomposition. In other
words, u and v are linearly dependent. [

Theorem 5.1.17 Triangle Inequality
Suppose u,v € V. Then
[+ ol < Jull + [lvfl

This inequality is an equality if and only if one of «, v is a non-negative multiple of the other.

Proof 10. Note that

|u+v||? = (u+v,u+v)

= (u,u) + (u,v) + (v,u) + (v,v)

= (u,u) + (v,v) + (u,v) + (u,v)

= [lull® +[[v[|* + 2 Re ((u, v))

<l + o)l + 2| (u, v)|

< lull® + |Jv]|® + 2|l Cauchy-Schwarz Inequality

= ([lull + loll)*.

Since ||u + v|| > 0, ||ul| > 0,and ||v|| > 0, we have
[[u+ ol < flull + flvf].

The equality holds if and only if (u,v) = ||u||||v||. That is, when « and v are linearly dependent to each
other. |

Remark. After proving this triangle inequality, we finally, and officially, complete our proof to show the
norm induced by an inner product as stated in Definition 5.1.10 is indeed a norm satisfying the formal
definition of norms as stated in Definition 5.1.9.

Theorem 5.1.18 Parallelogram Equality
Suppose u,v € V. Then
lu+ vl + [lu = v)|* = 2(Jlull® + |o]|*).
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Proof'11. Note that

u+v]? + |lu—v]]? = (u+v,u+0)+ (u—0v,u—2)
= (u,u) + (v,v) + (u,v) + (v,u) + (u, u) + (v,v) — (u,v) — (v, u)
= [l + flall® + ol + [lo]f?
= 2(flufl? + [lv]?).

Theorem 5.1.19
Suppose V is a real inner product space. Then,

_ Nt ol = flu— ol
4

(u,v)

Proof 12. Note that

Hu—l—vHQ— Hu—vHQ: (u+v,u+v)—(u—v,u—0v)
= [Jull® + |lv]|* + 2(u, v) — ([Jul]* + vl — 2(u,v))
= 4(u,v).

So, we have

_ Jut o) = fu— vl

(u,0) ]

Theorem 5.1.20
Suppose V is a complex inner product space. Then,

lu+ olf? = [lu = ol® + Jlu + iv]]% — lu —iv]|*

<ua U> = 4

Proof 13. Note that

(u+v,u+v) —(u—v,u—v)+ (u+iv,u+iv)i — (u —iv,u — )i

so, we have
lu+vll* = [lu—ol* + [lu+ iv[*i = [Ju — v

<u’ U> = 4
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Theorem 5.1.21
Let U be a vector space. If || || is a norm on U satisfying the parallelogram equality, then there is

an inner product () on U s.t. [|u|| = \/(u,u) Yu e U.
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5.2 Orthonormal Bases

Definition 5.2.1 (Orthonormal). A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all the other vectors in the list. In other words, a list ey, - - - , e,,, 0of vectors
in V is orthonormal if
1 ifj=k
(ej, er) = {

0 ifj#£k

Theorem 5.2.2
Ifei, -, e, is an orthonormal list of vectors in V, then

later + - + amem||? = 1> + - - + |am|* Va1, ,am €F.

Proof 1. Note that
(a1e1,a2es + -+ + amen) = (are1, azes) + -+ - + (ar€1, amen) = 0.
So, by the Pythagorean Theorem, we have

larer + -+ + amen||? = ||arer||* + lazes + -+ + amenm ||
= [larer||* + llagea|* + - - + [|amenm||?

= |a1|* + |ao* + - - - + |am|?

|
Theorem 5.2.3
Every orthonormal list of vectors is L.I..
Proof 2. Suppose ey, - - - , e, is an orthonormal list of vectors in V. Then, ||aje; + - - - + amenm||* = 0.
By Theorem 5.2.2, it is equivalent to a1 |> + - - - + |a,|? = 0. Since each |a;| > 0, it must be a; = 0 for all
j=1,---,m. Therefore, the orthonormal list is ... |

Definition 5.2.4 (Orthonormal Basis). An orthonormal basis of V ¢ is an orthonormal list of vectors in
V that is also a basis of V.

Theorem 5.2.5
Every orthonormal list of vectors in V with length dim V'c is an orthonormal basis of V.

Proof 3. By Theorem 5.2.3, any orthonormal list of vectors must be L.I.. Further since it has length
dim V/, it is a basis of V. So, by definition, it is an orthonormal basis of V. |

Theorem 5.2.6
Suppose ey, - - - , e, is an orthonormal basis of V and v € V. Then, v = (v,e1)e1 + - - + (v, e, )en,
and [|v]|* = [(v,e1)|* + - - - + [{v, en) .
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Proof 4. Supposev € Vandv = aje; + - - - + ape,. Then,
(v,€j) = (a1e1 + -+ + anen, ¢j) = (a;ej, ¢5) = a;.

So, we have
v=(v,e1)e; + -+ (v,ep)en.

Further, by Theorem 5.2.2, we have

ol = [{v, en)? + - - + [{v, en) .

|
Theorem 5.2.7 Gram-Schmidt Procedure
. . . v . .
Suppose vy, - -, vy, is L.L. list of vectors in V. Lete; = ﬁ For j = 2,--- ,m, define ¢; induc-
U1

tively by

o= Ui~ (vj,er)er — - — (vj,ej-1)ej-1 (15)

lvj — (vj, e1)er — -+ — (v, €j-1)ej—1||

Then, ey, - - - , ey, is an orthonormal list of vectors in V' s.z. span(v1, - - - ,v;) = span(ey, - - - ,e;) for
j=1-- ,m.

Proof'5. To prove that Gram-Schmidt Procedure indeed produces an orthonormal list of vectors in
V', we will use prove by mathematical induction.

Suppose j = 1, then span(v;) = span(e;) since v is a positive multiple of e;. So, the
conclusion holds when j = 1.

‘Inductive Steps‘ Suppose for some 1 < j < m, we have span(vi,---,vj-1) = span(ei, - ,€j_1).
Sincevy, - - - ,vp, is LI, we know v; ¢ span(vi,---,vj—1). Thatis, v; ¢ span(ei,---,ej—1). Ufv; €
span(ei,--- ,ej—1), thenv; = (vj,er1)er + -+ + (vj,ej_1)ej—1.) Then, we are dividing by 0 in Equation
(15). So, we are not dividing by 0 in Equation (15). Dividing a vector by its norm produces a new
vector with norm 1, so |le;|| = 1. Now, we want to verify e; is orthogonal to e;,--- ,e;_;. Pick some
ks.t.1<k<j. Then

(ej,ex) = < v~ (g enjer = = (v, €5-1)€51 ek>

lvj = (vj,en)er — - — (v, ej_1)ej1l’
_ (v —(uj,enjer —--- = (vj, ¢j1)€j1, €k)
[{vj — (vj,en)er — - = (vj,ej—1)ej|
_ (vj, ex) = (vj, ex)
[{vj — (vj,er)er — - = (vj, ej-1)ej-1]|
=0
Then, ey, - - ,e; is an orthonormal basis, and v; € span(ey,--- ,e;) since v; is a linear combination of
e1,--- ,e; by Equation (15). Further, we have
dimspan(vy, - - - ,v;) = dimspan(ey, - - - , €;)
and
span(vy,-- - ,v;) C span(eq,--- ,e;).
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That is, exactly, span(vy, - -+ ,v;) = span(e, - ,€;). [

Theorem 5.2.8
Every f-d inner product space has an orthonormal basis.

Proof 6. Suppose V is f-d, and select a basis of . Apply Gram-Schmidt Procedure (Theorem 5.2.7)
to this basis, we then have an orthonormal basis of V. [ |

Theorem 5.2.9
Suppose V' is f-d. Then, every orthonormal list of vectors in V' can be extended to an orthonor-
mal basis of V.

Proof 7. Suppose ey, --- , e, is an orthonormal list of vectors in V. Then, e;,--- , e, is L.I. and
can be extended to a basis ey, - , e, v1,- -, v, of V. Apply Gram-Schmidt Procedure to this basis,
we get an orthonormal list ey, - - - , e, f1,-- -, fn. Here, eq, -+, e,, is unchanged since they are already
orthonormal. Then, eq,--- ,em, f1,- -, fn iS an orthonormal basis of V. |

Theorem 5.2.10
Suppose T' € £(V). If T has an upper-triangular matrix with respect to some basis of V, then T’
has an upper-triangular matrix with respect to some orthonormal basis of V.

Proof 8. Suppose M(T) is upper-triangular with respect to a basis vy, - - - , v, of V. Then, we know
span(vy,-- - ,v;) is invariant under 7" for j = 1,--- ,n. Apply Gram-Schmidt Procedure to vy, - - ,vp,
we will get an orthonormal basis ey, --- ,e, of V. Further, since span(eq,---,e;) = span(vi,---,v;)
forj =1,---,n, we know span(ey, - - - ,e;) is invariant under 7. Therefore, 7" has an upper-triangular
matrix with respect to the orthonormal basis ey, - - - , e,,. |

Theorem 5.2.11 Schur’s Theorem
Suppose V is a f-d complex vector space and 7" € £(V'). Then, T" has an upper-triangular matrix
with respect to some orthonormal basis of V.

Proof 9. Since V is a f-d complex vector space, 7" must have an upper-triangular matrix with respect
to some basis of V. Further, by Theorem 5.2.10, 7' must have an upper-triangular matrix with respect
to an orthonormal basis of V. [

Example 5.2.12 The function ¢ : F? — F defined by
p(21,22,23) = 221 — 522 + 23

is a linear functional on F3. We could write this linear functional in the form ¢(z) = (z, u) for every
z € F3, where u = (2, -5, 1).

70



5 INNER PRODUCT SPACES 5.2 Orthonormal Bases

Theorem 5.2.13 Riesz Representation Theorem
Suppose V' is f-d and ¢ is a linear functional on V. Then, there is a unique vectoru € V s.t. p(v) =
(v,u) foreveryv € V.

Proof’10. Letey, - - - , e, be an orthonormal basis of V. Then, for all v € V, we have
v="{(v,e1)e; + -+ (v, ep)en.

So,

Suppose Jui, ug € V s.t. p(v) = (v,u1) = (v, u2). Then, (v, ur) — (v, u2) = (v,u; —uz) = 0. Letv = u; —us,
then we have (u; — ug,u; — ug) = 0. So, it must be u; = us. Therefore, 3 a unique v € V" and

u=p(er)er + -+ @len)en s.t. o(v) = (v,u) Yv e V.

1 1

p(t)(cos(mt)) dt = / p(t)u(t) dt for every p € P2(R).

Example 5.2.14 Find u € P»(R) s.t. /
—1

-1
1

Remark. Define an inner product on P2(R) as (p,q) = / p(x)q(z) dz to solve this problem.
-1

Solution 11. )
Let ¢ € L(P2(R),R) be defined as p(t) = / p(t)(cos(nt)) dt. Note that 1,z, 22 is a basis of

-1
P>(R). To find an orthonormal basis of P»(R), apply Gram-Schmidt Procedure, we have

1 1 \F
81:7:—: —.
[ 1 2
[ 1
-1

1 [ 1
1 1 2
Since z — (x,e1)e; :I—/ x\/;dx- \/;:x, and ||z| = / 2% de = \/;, we have
-1 -1

x 3

62:72— §.ZU

3

Further, consider

1 1
1 1 3 3
2? — (2%, e1)er — (2%, e2)er = % — /_1x2\/;d:v- \[2— /_lxz\/;x dx - \/;c
1

o0
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and note that

So, we have

1}-_,

-5

. 1 3
Thatis, e; = \/; ey = \/;x, e3 =

pler) = /_11 \/gCOS(ﬂ't) dt = \/g/_ll cos(mt) dt =
p(e2) = /_11 \/gt cos(rt) dt = \/g/_ll tcos(mt) dt =

p(es) = /l \/E<t2 — 1) cos(t) dt

/45 [45 1 [*
/ t2 cos(mt) dt — 1/ — / cos(mt) dt
8 '3/,

(S ——

4 1
= \/5/ t2 cos(rt) dt
8 J
4

So, by Theorem 5.2.15 and its proof, we know

45
u=p(e1)er + pez)ez + p(es)es = 040 + 8<
45 )
-5 () (=

45 (45 1

72
1
3

1

1 : 1\* L 2
2 — 2| = / 22— < | do= / zt— a2+ —dx =
3 » 3 LT3 Ty

45 1
\/ = S <x2 — 3) is an orthonormal basis of P2(R). Then, we have

0

8

45

0

0
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5.3

Orthogonal Complements and Minimization Problems

Definition 5.3.1 (Orthogonal Complement, U1). If U is a subset of V, then the orthogonal complement
of U, denoted U+, is the set of all vectors in V that are orthogonal to every vector in U:

Ut={vev|{v,u)=0 YueU}

Theorem 5.3.2 Basic Properties of Orthogonal Complements

1. If U is a subset of V, then U+ is a subspace of V.

\S)

{0t =v.

w

. VE={o}
4, If U isasubsetof V,thenU N U+ C {0}.

5. If U and W are subsets of Vand U C W, then W+ C U*L.

Proof'1.

1.

Letv,w € U*. Then (v + w,u) = (v,w) + (w,u) = 0+ 0 = 0. So, v + w € U~. Further, suppose
A € F. Then (\v,u) = Mv,u) = A-0 = 0. So, \v € U~. Finally since (0,u) = 0, we know 0 € U+.
Then, Ut is asubspace of V. O

. Since (v,0) =0 Vo € V, weknow {0} = V. O

. Suppose v € V*. Then, (v,v) = 0. By property of an inner product, it must be that v = 0. So,

V+ = {0} O

. Suppose U is asubset of V. Letv € U N U+, Then, v € U and v € U™. So, (v,v) = 0. Then, it must

be thatv = 0. So, U n U+ C {0}. O

. Suppose U and W are subsets of V with U C W. Suppose v € W+. Then, (v,u) =0 Yu € W.

Since U C W, we have (v,w) =0 VYu € U. Thatis,v € U+. Then, we have W+ C U+,

Theorem 5.3.3
Suppose U is a f-d subspace of V. Then, V = U @ U*.

Proof 2. Suppose u € U and w € UL. Then, Vv € V, we have v = cu + w for some ¢ € F and
(u,w) = 0. Then, we have V' = U + U*. Further, by Theorem 5.3.2(4), U N U+ = {0} since U and U+
are all subspaces of V. Hence, V = U @ U+. [ |
Corollary 5.3.4 Suppose V is f-d and U is a subspace of V. Then, dim U+ = dim V — dim U.

Theorem 5.3.5
Suppose U is a f-d subspace of V. Then, U = (U+)*.

Proof 3.
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(C). Suppose u € U. Then, (u,v) =0 VYo € U*. Then,u € (U+)L. Thatis, U C (UL)+. O

(D). Suppose v € (U+)*. Then, v = u + w for some v € U and w € U*. Then, w = v — u € (U+)*.
Since U C (U+)+, we know u € U+. Then, v —u € (U+)*. Hence, v — u € U+ N (U+)*. Thatis, v — u is
orthogonal to itself. So, it must be that v — v = 0 or v = w. Since u € U and v € U, we have shown that
(UhHtcu. u
Definition 5.3.6 (Orthogonal Projection, P;). Suppose U is a f-d subspace of V. Then orthogonal
projection of V onto U is the operator Py € £(V') defined as follows: For v € V, write v = u + w, where
we Uandw € UL. Then, Pyv = u.

Remark. By Theorem 5.3.3,V = U & U+, which ensures eachv € V can be uniquely represented in the
form of u +w withu € U andw € U™, and thus Py is well-defined.

Example 5.3.7 Suppose = € V with z # 0 and U = span(z). Show that

Pyv = <U’$>x Yo e V.

2]

Proof 4. Suppose v € V. Then,
(v, ) < (v, z) >
v = r+|v— x|,
2] 122

x € span(z) and v — <U’x>x € U*. Thus, Pyv =

2]

(v, )
2]

where

Theorem 5.3.8 Properties of Orthogonal Projections
Suppose U is a f-d subspace of V and v € V. Then,

1. Py e L(V).

2. Ppju=u Yuel.
3. Ppjw=0 YweU*L.
4. range Py =U.

5. null Py = U+,

6. v— Pyv e U™

7. o = Py

8. ||[Pyv|l < [lv].

9. for every orthonormal basis ey, - - - , e, of U,

Pyv = (v,e1)er + -+ (v,em)em.

Proof'5.
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1. Suppose v; = u; + wy and vy = uy + wo, Where vy, vy € V, ug,us € U, and wy,w, € U*. Then,
V1 + v = (u1 —I—UQ) + (w1 +w2),where w1 +ug € U and wy + wy € U-t. So,

Py(vi +v2) = u1 + ug = Pyvr + Pyus.
Additionally, suppose A € F. Then, Av; = Au; + Aw;, where Au; € U and \w; € U-L. Then,
Py(Avy) = Aup = APy (v1). O
2. Suppose u € U. Then, v = u + 0, where v € U and 0 € U*. So, Pyu = u. O

3. Suppose w € U+. Then, w = 0 + w, where 0 € U and w € U~. So, Pyw = 0. 0

4. By definition of P;, we have range Py C U. By Theorem 5.3.8(2), we know U C range Py. So,
range Py = U. g

5. By Theorem 5.3.8(3), we have U+ C null Py. Further note if v € null Py, then v = 0 + v with 0 4 u
andv € UL. So,null Py C UL, Thatis,null Py =U. O

6. Ifv =u+wwithu € U and w € UL, then

v—PUv:v—u:weUL. O

7. Ifv = u+wwithu € U and w € U*, then
(P%)v = Py(Pyv) = Pyu = u = Pyv.
So, P2 = Py. O
8. Ifv = u+wwithu € U and w € UL, then we have
1Pyoll* = Jlull? < flul® + [lw]® = [lv]®
by the Pythagorean Theorem. O

9. Ifv = u+wwithu € U and w € UL, then

v=u+w=(v,e1)e1 + -+ (V,em)em + (v —(v,e1)e1 — -+ — (v, em)em).
Sinceey, - - - , e, is an orthonormal basis of U, we have (vej)e1+- - -+ (v, e ) e, € U. Now, consider
{(v,er)er 4+ (v, em)em, v — (v,er)er — -+ — (v, em)em) = ((v,er)er + -+ (v, em)em, v) — |ull?
= (v, e1){e1,v) + -+ + (v, em) (em, v) — [Jul?
= (v,e1){v,e1) + -+ + (v, €m) (v, €m) — [Jull?

= |(v, e1)[? +---—|—|<v,em>|2—HuH2
HUHQ — HUH2 =0 (ByTheoremb5.2.2)

Then, v — (v,e1)e; —--- — (v, em)em € UL, So, we have Pyv = (v,e1)er + - + (v, em)em.
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Theorem 5.3.9 Minimizing the Distance to a Subspace
Suppose U is a f-d subspace of V, v € V, and u € U. Then, ||v — Pyv|| < ||[v — u||. The inequality
is an equality if and only if u = Pyo.

Proof 6. Note that ||[v — Pyv||? < |[v — Pyv||? + ||Pyv — ul|? since || Pyv — ul|? > 0. Further, since
v — Pyv € Ut by Theorem 5.3.8(6) and Pyv — u € U by the Pythagorean Theorem, we have

lv = Proll® + |Pyv — ull* = [lv = Pyv + Pyv - ul* = [lv - ul]*.

Then, ||u — Pyv||? < |[v = Pyv||? + || Pyv — ul|? = ||v — u||?. Since ||v — Pyv||?> > 0and |Jv — ul|?> > 0, we
have ||[v — Pyv|| < ||v — u||. The equality holds if and only if || Pyv — u||*> = 0. That s, |Pyv — ul| = 0,
Pyv—u=0,o0r Pyv = u. |

Example 5.3.10 In R*, set U = span((1,1,0,0),(1,1,1,2)). Findu € U s.t. ||u — (1,2, 3, 4)]| is as small
as possible.

Solution 7.

By Theorem 5.3.9, we need to find Pyv = (v,e1)e; + (v, ea)ea. Thus, we need to use Gram-
Schmidt Procedure to find e; and es:

1 1
e1=—(1,1,0,0 and ey = —=(0,0,1,2).
1 ﬂ( ) 2 5( )
Setv = (1,2,3,4), we have
Pov = ((1,2,3,4), ——(1,1,0,0))—=(1,1,0,0) + (1,2, 3,4), —= (0,0, 1,2))—= (0,0, 1,2)
U= )&y Dy s T =\ b Y s\ B Y ) Hy Dy sy T o\ Yy by AR )
v 2 V2 V5 V5

(33 11 22
- \2’2"57 5 )

76



6 OPERATORS ON INNER PRODUCT SPACES

6 Operators on Inner Product Spaces

6.1 Self-Adjoint and Normal Operators

Definition 6.1.1 (Adjoint, 7). Suppose T' € L(V, W). The adjoint of T is the function 7% : W — V s.t.
(Tv,w) = (v, T"w)

foreveryv € V and everyw € W.

Theorem 6.1.2
T e L£(V,W), thenT* € L(W,V).

Proof 1.

1. The definition of adjoint makes sense.
Suppose T' € L(V,W). Fixw € W. Let f : V — F be defined as v — (T'v,w). Then, f is a linear
functional on V. Note that
flau+ bv) = (T(au + bv),w) = (aTu + bTv, w)
= a(Tu, w) + b{(Tv, w)
= af(u) + b(fv).
By Riesz Representation Theorem, we know f(v) = (v, A) for some A € V. We call this unique A
as T*w. That is, for each w € W, 3 unique T*w € V. So, T* is well-defined as a function from W
toV. g
2. Adjoint is a linear map.

Suppose wy,we € W. If v € V, then

(v, T* (w1 + we)) = (Tv,w; + wa) = (Tv,w1) + (Tv, ws)
= (v, T"w1) + (v, T"wy)
= (v, T"w1 + T w3).

So, T*(w1 -+ UJQ) = T*wy + T*ws. O
Now fixw € Wand A € F. Ifv € V, then

(v, T*(A\w)) = (Tv, \w) =

So, we know 7™ (\w) = AT*w. O

Thus, we've shown 7* is a linear map as desired.
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Example 6.1.3 Define T : R? — R? by T'(x1, 22, 23) = (z2 + 323, 221). Find a formula for 7*.
Solution 2.
Define 7% : R? — R3. Lety = (y1,y2) € R%. Then,

(x, T*y) = (Tx,y) = y1x2 + 3y123 + 221Y2
— <(:C17 T2, .’L'g), (21927 Y1, 3y1)>

Thus, T* : R? — R is defined as T* (y1, y2) = (2y2, y1, 3y1). O

Example 6.1.4 Fixu € Vand z € W. Define T € L(V,W) by Tv = (v,u)x for every v € V. Find a
formula for 7.

Solution 3.

Define T* € L(W, V). Consider

(v, T*w) = (Tv,w) = ((v, uyz, w)
= (v, u)(z, w)

= (v, (w, z)u).

So, we have T*w = (w, x)u. O

Theorem 6.1.5 Properties of the Adjoint
1. (S+T)*=8"+T* VS, TeL(V,W).
2. AT)*=XT* VYAeFandT € L(V,W).
3. (T*)*=T VT € L(V,W).

4. I* = I, where [ is the identity operator on V.

5. (ST)* =T*S* VT € £(V,W)and S € L(W,U).

Proof 4.

1. Consider
(v,(S+T)'w)y={((S+T)v,w) =

(Sv,w) + (Tv,w)
= (v, S™w) + (v, T*w)
= (v, S"w + T*w)
= (v, (8" +T")w).
So, we have (S + T)*w = (S*+T*)w Yw € W. O
2. Note that
(v, ANT)*w) = (AT)v,w) = XNTv,w)
= \v, T"w)
= (v, \T*w).
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So,we get (\T)*w = A\T"w Ywe W. O

3. Consider

(v, (T*)*w) = (T"v,w) = (w, T*v)

So,itis (T*)*w =Tw Yw e W. O
4. Note we have
(v, I"w) = (Iv,w) = (v, w).
So, I*w=w Ywe& W.Thatis, I* = I. O

5. We have
(v, (ST)*w) = (ST)v,w) = (S(Tw),w)
= (T, S*w)
= (v, T*(S*w)).

So, (ST)*w = T*(S*w) = (T*S*)w Yw € W.

Theorem 6.1.6 Null Space and Range of 7
Suppose T' € L(V,W). Then,

1. null 7% = (range T)*.
2. range T = (T*)*.
3. null T’ = (range T*)*.

4. range T* = (null T)*.

Proof'5.

1. Suppose w € null 7*. Then, T*w = 0. So, (v,T*w) = 0. Thatis, (Tv,w) =0 Vv € 0. Then, w is
orthogonal to any T'w. Thatis, w € (range T)*. Conversely, if w € (range T')*, we have (T'v, w) = 0,
and thus (v, T*w) = 0, or T*w = 0. That is, w € null T*. Hence, null T* = (range T)*. O

1
2. Note that (null 7%)*+ = <(range T)L> = range 1. O

3. Suppose v € nullT. Then, Twv = 0, and (Tv,w) = 0. So, (v,T*w) = 0 VYw € W. Then, v is
orthogonal to every vectors in T*w. So, v € (range T*)". In the other way around, if we assume
v € (range T*)*, then (v, T*w) = (T'v,w) = 0. So, Tv = 0, and thus v € null 7. Hence, we have
null T = (range T%)*. O

4. Consider (null T)* = ((range T”‘)l)L = range 7.

|
Definition 6.1.7 (Conjugate Transpose). The conjugate transpose of an m x n matrix is the n x m matrix
obtained by interchanging the rows and columns and then taking the conjugate of each entry.
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Theorem 6.1.8
Let T € L(V,W). Suppose ej,--- ,e, is an orthonormal basis of V and fi,---, f,, is an or-
thonormal basis of W. Then, M(T™,(fi,---, fm),(e1,--- ,em)) is the conjugate transpose of

M(T, (e1,- - ,en), (f1,- -+ fm))-

\. J

Proof 6. Suppose M(T') denote the matrix M (T, (e1,--- ,en), (f1, -, fm)) and let M(T*) denote
the matrix M(T*, (f1, -+, fm),(e1,--- ,em)). Then, note that Te;, = (Tey, f1)f1 + -+ (Teg, fm) fm- SO,

(M(T)), ), = (Tex, [;)-
Further, consider T* fy, = (T* fx,e1)e1 + -+ - + (T* fx, en)en. That s,

(M(T™)) e = (T frr €5) = (€, T* fi)

= (T'ej, fr)
= (M(T))k]

So, we've shown that M(7™) is the conjugate transpose of M(T'). [
Definition 6.1.9 (Self-Adjoint). An operator 7' € £(V) is called self-adjoint if T' = T*. In other words,
T € L(V) is self-adjoint if and only if (T'v, w) = (v, Tw) Yv,w € V.

Theorem 6.1.10
The sum of two self-adjoint operators is self-adjoint, and the product of a real scalar and a self-
adjoint operator is self-adjoint.

Proof 7.
1. Suppose T, S € L(V) are self-adjoint. Then,
(S+T) =8"+T"=S5S+T.
So, S + T is self-adjoint. O

2. Let A € R. Then,
(AT)* = \T* = \T.

So, AT is self-adjoint.

Theorem 6.1.11
Every eigenvalue of a self-adjoint operator is real.

Proof 8. Suppose T is a self-adjoint operator on V. Let A be an eigenvalue of 7', and let v be a
non-zero vectorin V s.t. Tv = \v. Then,

Mv|? = (v, v) = (T, v) = (v, Tv) = (v, \v) = A|v|>.

So, it must be A = \, which means )\ is real. [ |

80



6 OPERATORS ON INNER PRODUCT SPACES 6.1 Self-Adjoint and Normal Operators

Theorem 6.1.12
Suppose V is a complex inner product space and 7' € £L(V'). Suppose (Tv,v) =0 Vv € V. Then,
T=0.

Proof 9. Note that

(Tu,w) = %{(T(u—i—w),u—i—u& —(T(u—w),u— w>}

(), ek 1) = (T = i), (1 - )]
=0 VYu,welV.

Letw =Tw € V. Then, (T'w,Tu) = 0. Thatis, Tu =0 VYu € V.So, T = 0. [

Theorem 6.1.13
Suppose V is a complex inner product space and 7' € £(V'). Then, T is self-adjoint if and only if
(Tv,v) eR Yo eV.

Proof 10.
(=) Letv € V. Then,

(Tv,v) — (Tv,v) = (Tv,v) — (v, Tv)
= (Tw,v) — (T"v,v) (16)
= (T —-T")v,v)
If (Tw,v) € R Vv € V, then Equation (16)= 0. Thatis, ((I' — T*)v,v) =0 Vv € V.So, T —T* =0, or
T = T*. That s, T is self-adjoint. O
(«<) Conversely, if T is self-adjoint, then Equation (16)= 0. That s, (T'v,v) = (T'v,v) = 0, or we have

(Tv,v) = (Tv,v). This is equivalent to the conclusion (Tv,v) € R. [

Theorem 6.1.14
Suppose T is a self-adjoint operator on V s.t. (Tv,v) =0 Yo =V.Then, T = 0.

Proof 11. We've already shown this to be true under a complex inner product space. Thus, we can
assume V is a real inner product space. If u,w € V, then

(T, w) = %(T(u+w),u—|—w> T — w), u — w)
=0 Yu,welVl.

Letw = T'u. Then, (Tu,Tu) =0,orTu =0 YueV.So, T =0. |
Definition 6.1.15 (Normal Operator). An operator on an inner product space is called normal if it
commutes with its adjoint. In other words, 7' € £(V') is normal if 7'7* = T*T.

Example 6.1.16 Let 7" be the operator on F? whose matrix with respect to the standard basis is

<)
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Show that T is not self-adjoint but is still normal.

Proof'12. Since M(T) = (3 _23> and M(T™) = ( 23

g) , then M(T) # M(T*), and thus it

is not self-adjoint. However, note that

and

So, by definition, 7" is normal. [ |

Theorem 6.1.17
An operator 7' € £(V) is normal if and only if | Tv|| = | T*v|| Yv € V.

Proof 13. Note that
Tisnormal < T°T - TT* =0
— (T*T —TT*)v,v) =0 YveV
= (IT"Tv,v) = TT"v,v) YveV
— (Tv,Tv) = (T"v,T*v) YveV
= |Tv|* = ||IT*|* YweV.

Since || Tv|| > 0 and ||T*v|| > 0, it is equivalent to

|7l = 17| Vo€ V.

Theorem 6.1.18
Suppose T' € £(V) is normal and v € V is an eigenvector of 7' with eigenvalue \. Then, v is also
an eigenvector of 7* with eigenvalue ).

Proof 14. Note that (T — X\I)* = T* — M. Consider (T — XI)(T — M\ )* = TT* — AT — AT* + A\ and
(T — XI)*(T — X\I) = T*T — AT — XT* + M)\. Since, T is normal, TT* = T*T. So.

(T — AI)(T — AI)* = (T — XI)*(T — AI).
Thatis, ' — A\ is also normal. So, by Theorem 6.1.17, we have
(T = XD)v|| = [[(T* = A)v|| = 0.

That is, T*v = \v, or v is an eigenvector of T* with eigenvalue \. [ |
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Theorem 6.1.19

Suppose T' € £(V') is normal. Then, eigenvectors of T’ corresponding to distinct eigenvalues are
orthogonal.

Proof 15. Suppose «, (5 are distinct eigenvalues of T', with corresponding eigenvectors u,v. Then,
Tu = au and Tv = Sv. By Theorem 6.1.18, we have T*v = 3v. So, we have

(o = B)(u, v) = {au,v) — (u, Bv)
= (Tu,v) — (U, T*v)
= (Tu,v) — (T'u,v)
= 0.

Since « # §3, it must be (u, v) = 0. So, v and v are orthogonal. [
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6.2 The Spectral Theorem

Theorem 6.2.1 Complex Spectral Theorem
Suppose F = Cand T € L(V). Then, the following are equivalent:

1. T is normal.
2. V has an orthonormal basis consisting of eigenvectors of 7.

3. T has a diagonal matrix with respect to some orthonormal basis of V.

Proof 1. Note that (2) <= (3) is obvious by Theorem 4.3.5. No we need to show (3) <= (1) to
complete the proof. O

Suppose (3). Then, M(T) is diagonal. That is, M(T™) is also diagonal. Then, M(T)M(T*) =
M(T*)M(T). Thatis M(TT*) = M(T*T), or TT* = T*T. So, T is normal. O

Suppose (1). That is, 7' is normal. Then, by Schur’s Theorem, 3 an orthonormal basis ey, - - - , e,, of
V s.t. M(T, (e1, ey,)) is an upper triangular matrix. Suppose

a1 o Gin
M(T, (e1,--+ ,en)) = :
0 Qn.n
Then,
ail 0
M(T", (e1,- -+ yen)) = |
Tn - Gnn

Then, Te; = ay1e; and T*e; = @y te1 + - - - + arnen. Further, note that || Te; |2 = |a11|* and || T*e||? =
la11* + -+ + |a1..|? Since || Tey || = ||T*e1||?, we have |a11|* = |a11|* + - - + |a1.,|>. Then, it must be
that |a; 2|* + - - - + |a1.,|> = 0. Applying this procedure to ||Tey||> = [|[T*e2|?, - - - , | Tenl|? = ||T*en|?, we
have |a; ;| = 0 when j # k. So, M(T) is a diagonal matrix. [ |
Lemma 6.2.2 Invertible Quadratic Expressions Suppose 7" € L£(V) is self-adjoint and b,¢ € R are
s... b? < 4c¢. Then, T? + bT + ¢l is invertible.

Proof 2. Letv € V s.t. v # 0. Note that

(T?% + T + cI)v,v) = (T?v,v) + b(Tv,v) + c(v,v)

= (T, Tv) + b{Tv,v) + c||[v|? T is self — adjoint

> || Tv||? = |b|||Tv||||v] + ¢||v))? Cauchy — Schwarz
ol [[v]|\* b

= (o= PY 4 (= 2 o

>0 b* < 4c

Then, Vv # 0, {(T? +bT + cI)v,v) > 0. So, it must be that (T2 + bT + cI)v = 0 if and only if v = 0. Then,
null (72 + bT + cI) = {0}. Thus, T? + bT + cI is injective, and thus it is invertible. |
Lemma 6.2.3 Suppose V # {0} and T' € L(V) is a self-adjoint operator. Then, T has an eigenvalue.
Proof 3. Let m = dimV and choose v € V. Then, v, Tv,--- ,T"v cannot be L.I. because we have
n+ 1 > dim V vectors in the list. So, Jag, -+ ,a, € R s.t. agv +a1Tv + - - - + a,T"v = 0. Make the a’s the
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coefficient of a polynomial then
ag+ a1z + -+ apz” = c(x® + bz + 1) (2% Fbyz +ear) (@ — A1) - (@ — M),
where c is a non-zero real number, each b;, ¢;, \; € R, each b; < 4c;, and m + M > 1. Then, we have

O0=aov+a1Tv+---+a,T™v
= (aof +a T+ + anT”)’U
=c(T?* + 01T+ ci ) - (T?* + by T + ey 1T — MI) - (T — M\ D).

By Lemma 6.2.2, T? + b;T + c;I is invertible. Since ¢ # 0, it must be that 0 = (T — M\ 1) --- (T — A\ ).
Hence, T' — \;1 is not injective for at least one j. So, 7" has at least one eigenvalue. [ |
Definition 6.2.4 (Restriction Operator, 7'|;;). Suppose 7' € £(V') and U is an invariant subspace of V'
under 7'. Then, the restriction operator, T|y € L(V), is defined as T'|y(u) = Tu foru € U.

- )

Theorem 6.2.5
Suppose T' € L(V) is self-adjoint and U is a subspace of V' that is invariant under 7". Then,

1. U+ isinvariant under T}
2. Ty € L(U) is self-adjoint;

3. T|yL € L(U?) is self-adjoint.

Proof 4.

1. Suppose v € U+ and u € U. Then, (v, Tu) = (Tv,u) = 0 since U is invariant under 7' (and hence
Tu € U) and v € U*. Then, we have Tv € U+ Vv € U+, proving U+ is an invariant subspace
under 7. O

2. Note thatifu, v € U, then
<(T‘U)uvv> = <TU7U> = <U¢TU> = (U, (T|U)U>

Therefore, T'|y is self-adjoint. O

3. Replace U with U+ in (2) and apply the conclusion from (1), and we complete the proof.

Theorem 6.2.6 Real Spectral Theorem
Suppose F =R and T € £(V). Then, the following are equivalent:

1. T is self-adjoint;
2. V has an orthonormal basis consisting of eigenvectors of T'.

3. T has a diagonal matrix with respect to some orthonormal basis of V.

Proof 5. Similar to the complex case, (2) <= (3) is obvious. So, we will show (3) = (1) and
(1) = (2) to complete the proof. O
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Suppose (3) holds. Then, M(T) is diagonal. So, we have M(T')! = M(T). Thatis, T' = T*, and thus
T is self-adjoint. O

Suppose (1) holds. We will use mathematical induction on dim V. When dimV = 1.
Clearly, (1) = (2). | Inductive Steps ‘Assume dimV > 1 and (1) = (2) holds for all cases with dimen-
sion dim V' — 1. Let u be an eigenvector of 7" with ||ju|]| = 1. Let U = span(u). Then, dimU = 1. Since
V=UaU+, weknowdimU+ = dimV — dimU = dimV — 1. So, (1) = (2) holds on U*. That is, 3 an
orthonormal basis of U+ consisting of eigenvectors of T'|;;.. Now, add u to this orthonormal basis, we
get a basis of V. Further since u € U, this basis is an orthonormal basis of V' consisting of eigenvectors
of T. |

86



6 OPERATORS ON INNER PRODUCT SPACES 6.3 Positive Operators and Isometries

6.3 Positive Operators and Isometries

Definition 6.3.1 (Positive Operator). An operator 7' € £(V) is called positive if T is self-adjoint and
(Tv,v) >0 YveV.
Definition 6.3.2 (Square Root). An operator R is called a square root of an operator T if R?> = T

Example 6.3.3 Suppose T € L(R?) and R € L(R3) be defined as T'(z, z2,23) = (z3,0,0) and
R(z1, 22, 23) = (22, 23,0). Then, R is a square root of 7.
Proof 1. Since R?(z1, 22, z3) = R(29,23,0) = (23,0,0) = T(21, 22, 23), Risasquare rootof 7. W

Theorem 6.3.4 Characterization of Positive Operators
LetT € L(V). Then, the following are equivalent:

1. T is positive;

2. T is self-adjoint and all the eigenvalues of 7" are non-negative;
3. T has a positive square root;

4. T has a self-adjoint square root;

5. Janoperator R € L(V) s.t. T = R*R.

Proof 2.
(1) = (2): Since T is positive, then T is self-adjoint. Let A be an eigenvalue of 7. Then, Tv = A\v for
some v € V. Then, (Tv,v) = (Av,v) = Av,v) = \|lv||?. Since T is positive, (T, v) > 0. Further since

lv]|? > 0, it must also be A > 0. So, we complete the proof. O
(2) = (3): Suppose T'is self-adjoint and all the eigenvalues of 7" are non-negative. By the Spectrum
Theorem, 3 an orthonormal basis ey, - - - , e,, where ey, - - - , e, are eigenvectors of 7. Let A\;,--- , \,, be

the corresponding eigenvalues, where \; > 0. Let R € L(V) s.t. Re; = \/\je;. Then

(Rv,v) <a1 Vel + -4 apy/ Apen,are1 + -+ anen>
= la1[*V/ A1+ + fan* VA > 0.

Further, we can verity R is self-adjoint (proof omitted). So, R is positive by definition. Note that

R’ = R(J)Cq) = VAiVAjej = Ajej = Te;.

So, R is a square root of T'. O

(3) = (4): Suppose T has a positive square root. By definition, positive operators are self-adjoint.
U

(4) = (5): Suppose T has a self-adjoint square root. Then, we have R € L(V) s.t. R* = R and
R? =T.Thatis,T = R> = RR = R*R. O

(5) = (1): Suppose 3 an operator R € L(V) s.t. T = T*T. Then,

T* = (R*R)* = R*(R*)* = R*R=T.
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So, T is self-adjoint. Now, since
(Tw,v) = (R*Rv,v) = (Rv, Rv) = ||Rv|> >0,

we have 7' is a positive operator. |

Theorem 6.3.5
Each positive operator on V has a unique positive square root.

Proof 3. Let T be a positive operator on V. Select v to be an eigenvector of 7' with correspond-
ing eigenvalue of \. Then, we have Tv = \v. Let R be a positive square root of 7. Apply Spectrum
Theorem to R, then 3 an orthonormal basis ey, - - - , e, where ey, - - - , e, are eigenvectors of R. Then,
A, A > 0.t Rej = \/Aje;. Suppose v € V and v = aje; + - - - + aney,. Then,

Ru=aj\V el + - +ap/Inen and R?v =ajdieq + - + aninen.
Further, Tv = \v = Aaje; + - - - + Aaney. Since R?v = Tv, we know
ar(A1 —ANer+ -+ an(Ay — ANe, = 0.

Since ey, - - - , ey, is an orthonormal basis, for each j = 1,--- ,n, we have a;(A\; — X\) = 0. So, it must be
a; = 0or\; = A Ifa; = 0, then we can delet it from the representation of v. So,

v = E ajej

{alx=A}

Hence,
Rv = Z aj\f)\ej = V).
{dl1A;=A}
[
Definition 6.3.6 (Isometry). An operator S € L£(V) is called an isometry if ||Sv|| = |[v| Vv € V. In
other words, an operator is an isometry if ti preserves norms.

Example 6.3.7 Let A\, ---,\, € Fwith |[\;| and § € L(V) s.t. Se; = \je; for some orthonormal
bases ey, - -, e, of V. Then, S is an isometry.

Proof 4. Letv € V. Then, v = (v,e1)er + -+ + (v,en)en. S0, |02 = [(v,e1)]* + - + [(v, en)
Further, Sv = Ay (v, e1)e1 4 - - - 4+ A (0, €,)en, and thus [|Sv]|2 = A [(v, e + - + | Al (v, en) .
Since |\;| = 1, we know

1S0]12 = [{v, en) 2 + - + (v, ea) ? = [Jo]1>

So, ||Sv|| = ||v]| since || Sv|| > 0 and ||v|| > 0. That is, by definition, S is an isometry. [ |

88



6 OPERATORS ON INNER PRODUCT SPACES 6.3 Positive Operators and Isometries

Theorem 6.3.8 Characterization of Isometries
Suppose S € L(V). Then, the following are equivalent:

1. Sis anisometry.

2. (Su, Sv) = (u,v) VYu,v eV,

3. Sey,-- -, Se, is orthonormal for every orthonormal list of vectors ey, - - - , e, in V;
4. Jan orthonormal basis ey, --- ,e, of V s.t. Seq,--- , Se, is orthonormal;

5. 8*S =1,

6. SS* =1,

7. S* is an isometry;

8. Sisinvertible and S—! = S*.

Proof'5.
(1) = (2): Note that

_ 1Su+ Sv|? — ||Su — Svl* _ [|S(u+v)|* — [[S(u—v)|
4 4
_ Nutv]? = flu - vf?
4
= <U,U> U

(Su, Sv)

(2) = (3): We have

(Sei, Sej) = (ei,ej) = {1 it =
0 ifi#y
So, Seq, - -+, Se, are orthonormal. O
(3) = (4): Supposeey, - - - , e, is orthonormal. We can extend ittoabasisof V: ey, - em, Uma1, 5 Un.
Then, apply the Gram-Schmidt Procedure, we get an orthonormal basis, €1, -+ , e, €m41,- -+ , €, Of V.
O
(4) = (5): Suppose ey, - - - , ey, is an orthonormal basis of V. Then,

(S*Sej,ek> = <Sej,Sek> = <€j,6j>.
Suppose u,v € V s.t. u = aje; + - - + ape, and v = byey + - - - + bpe,. Then,

(S*Su,v) = (Su, Svy = (S(are1 + - - + anen), S(brer + - - - + bpey))
= (a15e1 + - -+ + apSey,b1Se; + -+ + b, Sey)
= (a1Se1,b15€e1) + -+ + (anSen, by Sey,)
= aib||Se1||? + - - - 4 anby||Sen|?
by 4t gy

= (u,v).
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So, S*Su = u,or S*S = 1. O
(5) = (6): Suppose S*S = I. Then, S = S*. So, SS* = I. O
(6) = (7): Suppose S*S = I. Then,

I5*0]|* = (S™v, §*v) = ($5™v,v) = (v,0) = ol O

(7) = (8): Suppose S* is an isometry. Then, we know S*S = I and SS* = I by the proofs done
above. So, S is invertible, and S~ = S*. O
(8) = (1): Finally, suppose S is invertible and S~! = S*. Then, S*S = I. Note that

1Svl* = (Sv, Sv) = (§*Sv,v) = (v,v) = ||v]*.

[ |

Theorem 6.3.9

Suppose V is a complex inner product space and S € £(V'). Then, S is an isometry if and only

if 3 an orthonormal basis of V' consisting of eigenvectors of S whose corresponding eigenvalues

all have absolute value of 1.

Proof6.

(=): By the Spectrum Theorem, 3 an orthonormal basis e, - - - , e, where e1, - - - , ¢,, are eigenvec-
tors of S. Suppose Ay, - - - , A\, are the corresponding eigenvalues. Then, we have

1Sejll = [[Ajesll = Az

Since S is an isometry, || Se;|| = ||e;|| = 1. So, |Aj| = [|Se;|| = 1. O

(«<): This direction is proven in Example 6.3.7. [ |
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6.4 Polar Decomposition and SVD
Notation 6.4.1. If T is a positive operator, then /T denotes the unique positive square root of T'.

Remark. We want to verify that the definition of vT*T is reasonable: (T*Tv,v) = (Tv,Tv) > 0. Also,
(T*T)* = T*T. So, T*T is a positive operator, and thus /T*T is well-defined.

Theorem 6.4.2 Polar Decomposition
Suppose T' € £(V). Then, Janisometry S € L(V) s.t. T = SVT*T.

Proof'1.
Characteristics of range v7T*T': Note that

|Tv||* = (Tv, Tv) = (T*Tw,v)
(VT*TVT*Twv,v)
(VT*Tw, VT*Tv)
— T2

So, Vv € V, we have | Tv|| = ||VT*Tv|. Define S : range vVT*T — range T as Sp (\/T*Tv) = Tw. Then,
we have [|S1vVT*Tv|| = ||[Tv]-

1. Now, we want to verify that S; is well-defined. Suppose v, v € V s.t. VT*Tv; = /T*Tvs. Then,

[Ty = Twa|| = [|T(v1 = va2)|| = [[VT*T (01 — va)|
= ||[VT*Tvy — VT*Tvs||
=0.

So, S, is well-defined.

2. Further, we want to show 5] is linear. By using the linearity of 7', we can easily prove that 5; is
also linear.

3. Additionally, S; is surjective by definition of S;.
4. Also, 5, is isometry. Note that Vu € range vT*T, we have ||S1u|| = ||u|| since ||vVT*Tv|| = || Tv]|.

5. Hence, 5 is injective: Note that ||S;v|| = 0 if and only if ||v|| = 0, which is equivalent to v = 0. So,
null S; = {0}. O

Extend S; to an isometry on V. Note that we have dimrange v7*T = dimrange T'. So, we
1 1
know dim (range V T*T) = dim (range T)L. Select an orthonormal basis ey, - - - , e, of (range V T*T)

1
and an orthonormal basis fi, - - -, f,, of (range T)L. Now, let’s define S5 : (range T*T) — (range T)L
as Si(arer + -+ + amem) = a1 f1 + - - - + am frn- We can then not only show Ss is well-defined but also Sy
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. . L .
is linear. Moreover, Vw € <range \/T*T) ,ifw =aie; + -+ amem, we have

1S2w]|* = || S2(arer + - + amem) |* = llavfi + -+ + am fin |

=l + -+ |am|”

= |lwl®
So, ||Sew|| = ||w||. Now, we define
Siv, v €range VIT*T
Sv =

i
Sov, we (range \/T*T>

1
Note that since V' = range VT*T & (range v T*T) , we can uniquely representv € V asv = u + w

i
for some u € range vT*T and w € (range V T*T) . Hence, we can also write the definition of S as

Sv = Siu + Sow. If we select vT*Tv € range v1T*T, then we have S(\/T*Tv) =5 (\/T*T’U) = Tw.

Therefore, T = SvVT*T VYv e V. O
Finally, we will show S is an isometry. Note that v = u + w. So, by Pythagorean Theorem,

1Svll* = [[S1u + Sow||?||Syull® + || Szwl|?
2 2
= [lull® + [l

= |lvl*.

|
Definition 6.4.3 (Singular Values). Suppose 7" € L(V). The singular values of T are the eigenvalues of

VT*T, with each eigenvalue \ repeated dim E ()\, V T*T) times.

Example 6.4.4 Define T € L(F*) by
T (21, 22, 23, 22) = (0,321,222, —324).

Find the singular values of T'.
Solution 2.
Suppose v = (z1, 22, 23, 24) € F*and w = (y1, y2, 3, y4) € F4. Consider

(v, T*w) = (Tv,w)
= ((0,321, 222, —=324), (Y1, Y2, Y3, Y4))
= 32172 + 22013 — 32474
= (21, 22, 23, 23), (3y2, 2y3, 0, —3y4)).

So, T*w = T*(y1, y2,y3,y4) = (3y2,2y3,0, —3ys). Then, T*T (21, 29, 23, 24) = (921,422,0,9z4). Then,
VT*T (22, 22, 23, 24) = (321,229, 0,324). So, the eigenvalues of vT*T are 3, 2, and 0. Also,

dimE(S, m) —9, dimE(Q,\/ITT> - dimE(O, \/ﬁ) — 1.
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So, the singular values are 3, 3, 2, 0. O

Theorem 6.4.5 Singular Value Decomposition (SVD)
Suppose T' € L(V) has singular values s;,--- ,s,. Then, 3 orthonormal bases ey, --- ,¢, and
fi,-, faof Vst

Tv=s1(v,e1)f1+ -+ sp{v,en) fn

foreveryv € V.

Remark. Relevant Theorem used in proving SVD: Spectrum Theorem, Characterization and Properties
of Isometry, and Polar Decomposition.

Proof 3. Apply the Spectrum Theorem to v7*7T, we know 3 an orthonormal basis ey, - - - , e, of V' s.1.
VI*Te; = sje; Vj=1,---,n.

Note that Vv € V, we have
v=(v,e1)e; + -+ (v,ep)ey (17)

Apply vT*T to Equation (17) we have
VT Tv = si{v,er)e; + -+ sp(v, epn)en. (18)
By Polar Decomposition, 3 an isometry S € £(V) s.t. T = S+/T*T. Apply S to Equation (18), we get
S(\/TTTU) = s1(v,e1)Se; + -+ + sp,(v, €,)Sey.

By the characteristics of isometry, since ey, - - - , e, is an orthonormal basis, Sey,--- , Se, is also an or-
thonormal basis. Let f; = Se;. Then,

Tv=SVT*Tv = s1{v,ee) f1 + -+ + $p(v,en) fun.

[ |
Theorem 6.4.6
Suppose T' € L(V). Then, the singular values of 7" are the non-negative square roots of the
eigenvalues of 7*T', with each eigenvalue A repeated dim E(\, 7*T) times.
Proof 4. By the Spectrum Theorem, 3 an orthonormal basis e, - - - , ¢, and non-negative number
Ay Ay S.ET*Te; = Nje; Vj = 1,---,n. Then, we have vT*Te; = /Aje; Vj = 1,---,n, which
completes the proof. [
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7 Operators on Complex Vector Spaces

7.1 Generalized Eigenvectors, Nilpotent Operators

Theorem 7.1.1
Suppose T' € £(V). Then,

{0} Cnull7° Cnull 7! C -+  Cnull TF C null 7FH C - -

Proof 1. Let k € N*. Letv € null T%. Then, T%v = 0. Then, we know T(T*v) = T*+1v = 0. So,
v € null T**1. Thatis, null 7% C null 7%*! as desired. [ ]

Theorem 7.1.2
Suppose T' € L£(V). Suppose m is a non-negative integer s.t. null 7 = null 7. Then,

null 7™ = null 771! = null 7712 = pull 773 = . ..

Proof 2. Let k € N. We've already shown null 7"** C null 7"***1 in Theorem 7.1.1. Now, let
v € null TmHk+1 So, Tm+k+1(v) = 0. That is, 71 (Tkv) = 0. So, TFv € null 7! = null 7. In other
words, 7™ (T*v) = T™*(v) = 0. So, v € null 7", Then, null 71 C null 7™*. Hence,

null 7% = pull 7L

Theorem 7.1.3
Suppose T' € L(V). Let n = dim V. Then,

nll 77 = null 77 = null 772 = - ..

Proof 3. Suppose for the sake of contradiction that null 7" # null 77", Then,
null 70 ¢ null T ¢ 72 ¢ -+ € null T ¢ T+

As the symbol ¢ means “contained in but not equal to,” at each of the strict inclusions in the chain
above, the dimension increases by at least 1. That is, dim null 7"*! > n + 1. % This is a contradiction
because a subspace of V' (null 7"*!) cannot be a dimension larger than dim V' = n. So, it must be that
our assumption is wrong, and null 7" = null TnH, [ |

Theorem 7.1.4
Suppose T' € L(V). Let n = dim V. Then,

V =null T" ® range T".

Proof 4. Note that dimV = dimnull 7" + dimrange 7" by the Fundamental Theorem of Linear
Maps. So, we only need to prove (null 7") N (range 7") = {0}. Let v € (null7™) N (range 7). Then,
Ju € V s.t. v = T"u. Since v € null 7", TNv = T"(T™u) = 0. That is, 7?"u = T"v = 0. Therefore, u €
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null 72" = null 7". So, we now have T"u = 0. Hence, v = T"u = 0. Then, i (null 7") N (range 7") = {0},
and thus V = null T" & range T". [ |
Definition 7.1.5 (Generalized Eigenvector). Suppose 7' € £(V') and )\ is an eigenvalue of 7. A vector
v € V is called a generalized eigenvector of T corresponding to \ if v # 0 and (T — AI)’v = 0 for some
positive integer j.

Definition 7.1.6 (Generalized Eigenspace, G(\,T")). Suppose T' € L£(V) and A € F. The generalized
eigenspace of T corresponding to A, denoted G(\,T), is defined to be the set of all generalized eigen-
vectors of T corresponding to A, along with the 0 vector.

Theorem 7.1.7
Suppose T € L(V) and X € F. Then,

G\, T) = null (T — AI)4™V,

Proof'5.
(©): Letv € G\, T). Then,3j € NT s.z.

v € null (T — XY,
Since null (T — AXI)? C null (T — M)+t C -+ C null (T — A)3™V, we have v € null (T — AI)3™V, So,
G\, T) C null (T — AI)dmV,
(D): Conversely, suppose v € null (T' — A\I)4™V" Then,

(T = M) Vy = 0.

By definition, v is a generalized eigenvector, and so v € G(\, T). Then, null (T — AX)¥™V C G(\, 7). &

Theorem 7.1.8
LetT € L(V). Suppose A1, ..., A\, are distinct eigenvalues of 7" and vy, . . . , vy, are corresponding
generalized eigenvectors. Then, vy, ..., v, is L.L..

Proof6. Leta,...,a, € Cs.t
0=a1v1 + -+ amUm. (19)

Let k be the largest non-negative integer such that (7 — A1 I)¥v; # 0. Let w = (T — A\;)*v1, then

(T — M Dw = (T =M\ (T -\ I1)*v=0
=(T-MD"v=0

So, w is an eigenvector, and
Tw = \w. (20)

Minus Aw from both sides of Equation (20), we have
(T —X)w = (A1 — Nw YvelF

Then, (T—AI)"w = (A1 —\)"w, A € F, n = dim V. Apply the operator (T— X\ I)¥(T—Xo1)" - - - (T— Ay )™
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to both sides of Equation (19), we have

0= (T —MDFT = xoD)" - (T = A D)™ (@101 + - - - + Q)
= (T = MDMT = XoD)™ (T = A )™ (@mvm) + - 4+ (T — MDF(T = XoI)"™ - (T — M\ D)™ (aqv1)
= (T — \DH(T = XoD)"™ -+ (T = A\ D) (a1 1)

=ay (T = MDFT = XoD)™ - (T = N\ )™ w
#0 70

So, it must be a; = 0. Apply the same rationale, we can show a; = --- = a,, = 0. Therefore, vy, ..., vy,
is L.I. by definition. [
Definition 7.1.9 (Nilpotent). An operator is called nilpotent if some power of it equals 0.

Theorem 7.1.10
Suppose N € £(V) is nilpotent. Then, N4mV = .

Proof 7. Note that null (N — 0I)3™V = G(0, N) = V. So, we have proven N4mV = 0, u
Lemma 7.1.11 Suppose N € L(V) has a basis such that M(N) is an upper-triangular matrix with its
diagonal all 0. Then, N is nilpotent.

Proof 8. Suppose the basis is vy, . .., v, and

A=M(N) =

Then,
N V1 = 0

Nuvy = Al,gvl + 0, N21)2 = A172NU1 =0

Nv, = Al,nvl + -+ Anfl,nvnfl +0.

So, N, = A1, N" tog + Aoy N" tvg + -+ + Ap1,N"1v,_; = 0. Thatis, N* = 0. So, we've shown
that IV is nilpotent. u

Theorem 7.1.12 Matrix of a Nilpotent Operator
Suppose N is a nilpotent operator on V. Then, 3 a basis of V with respect to which the matrix of
N has the form

where all entries on and below the diagonal are 0’s.

Proof 9. Let k € NU {0} be the smallest such that N* = 0. So, we have null N* = V and k < n. So,
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NJ #£0 Vj < k.So, we have

{0} = null N° € null N! € null N2 € --- C null N*.

L2 w2 ..ok oo vk asabasis of N. It can be also written as vy, . . ., vp.

1
Select vy, ..., v s Ung s ny,

1. Let j be an index such that v; € null N. Then, Nv; = 0.
2. Let j be an index such that v; € null N2. Then, N?(v;) = N(Nwv;) = 0. So, Nv; € null N.

So, NUJ' = Z Ai,jvj, 1< 7. |
{ilvi€null N}

Theorem 7.1.13
Let T € L(V) s.t. T is no nilpotent. Suppose dim V' = n. Then, V = null 7"~ ! @ range 7"~ 1.

Proof 10. Since T is not nilpotent, N™ # 0. So, null N* C V. That s,
0Cnull7 Cnull7?2C - Cnull 7" Cnull 7" C V.

So, it must be the case that null 7"~! = null 7".
Suppose v € (null 7"71) N (range 7" !'). Then, Ju € V s.t. 7" 'u = v. Note that

Ty =TT ) =T %u = T"u = 0.

So, u € null 7" = null 7"~ !. Thatis, 7" 1u = 0. So, v = 0. Then, (null T"il) N (range T"il) = {0}, and
thus V = null 7"~ ! @ range 77" !. [ |

Theorem 7.1.14
Suppose T' € L(V), a, 5 € F with « # (. Then,

G(a,T) N G(8,T) = {0}.

Proof'11. Letv € G(a,T) N G(B,T) with v # 0. Then, we know v is a generalized eigenvector of «
and $ at the same time. However, given a # (3, their corresponding generalized eigenvectors should
be L.I.. % This contradicts with the fact that v cannot be L.I. with v. Then, our assumption is wrong,
and G(a, T) N G(B,T) = {0}. [ |
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7.2 Decomposition of an Operator

Theorem 7.2.1
Suppose T' € £(V) and p = P(F). Then, null p(7) and range p(7") are invariant under 7'.

Proof'1. Let v € null p(T). Then, p(T)(T T(p(T)v) = T(0) = 0. So, null p(7T') is invariant under
T. Suppose v € range p(T), then Ju € V s.1. p(T) = . Then, Tv=T(p(T)u) =p(T)(Tu) € range p(T).
So, range p(7T') is also invariant under 7'. [

Theorem 7.2.2

Suppose V is a complex vector space and 7" € L(V). Let Ay, ..., A, be the distinct eigenvalues of

T. Then,

L. V=GA\,T)® - - &G\, T).
2. each G(\;,T) is invariant under 7.

3. each (T — A1) gy, r) is nilpotent.

Proof 2.

1. We will prove it by induction. Obviously, the conclusion follows when n = 1. Now, considern > 1.
Suppose the conclusion holds for all spaces with dimension < n — 1.
WTS: the conclusion is true for dim V = n.
Consider V = null (T" — M )" @ range (T' — M I)" = G(\,T) @ U if we fix U = range (T — A\ 1)".
Obviously ,G(A\1,T) # {0}. So, dimU < n, and so our inductive hypothesis is applicable to U.

Note that G(\;,T) N G(\;,T) = {0} ifi # j. Then, Xo,..., A, are eigenvalues of T' |;. So, U =
G(/\Q,T ‘U) b---D G()\m,T ‘U) Then, V= G()\l,T) D G()\Q,T |U) ®---bD G()\m,T ’U)

WTS: G<)‘j7 T ’U) = G(/\jv T)
Note that G(\;,T |y) € G(A;,T) is evident. Conversely, suppose v € G(\;,T) C V. Then,
v = vy + u for some v; € G(A\1,T) and u € U. Further, by our inductive hypothesis, we have

u=uvy+---+vy, forsome v;eG\;,T |y)CG\;,T).

Then,v =v1 +u=v;+vo+ -4+ vy € G\, T). Thatis, vy +--- + (vy —v) +--- + v, = 0. Then,
vy € G(A,T),...,v —v € G, T), ... ;v € G(Ap, T). Therefore, vy, ..., v —v,..., v, are L.I.
So, it must be thatvy = --- = v, -2 =--- =2, = 0. So,v =v1 +u =0+ u = uw. Then,v € U.
So,v e G\, T)NU = G(M, T |v). As k was arbitrary, we've shown G(\;,U) C G(\, T |v). So
G(\;, T |uv) = G()\j,T). We complete our proof.

2. Note that G(\;,T) = null (T" — X\;I)" = null p(T) if p(2) = (2 — A;)". By Theorem 7.2.1, null p(T) is
invariant under 7. So, it follows that G(\;, T') is also invariant under 7'. O

3. By definition, we have G()\;,T) = null (T' — A\;1)". Then, [(T =N lao 1) "—o. So, by defini-
tion, (T' — A1) [gx,,7) is nilpotent.

98



7 OPERATORS ON COMPLEX VECTOR SPACES 7.2 Decomposition of an Operator

Corollary 7.2.3 Suppose V is a complex vector space and 7' € £(V'). Then, 3 a basis of V' consisting of
generalized eigenvectors of 7.

Definition 7.2.4 (Multiplicity). Suppose 7' € L(V). The (algebraic) multiplicity of an eigenvalue \ of
T is defined to be the dimension of the corresponding generalized eigenspace G(A, T'). In other words,
the multiplicity of an eigenvalue ) of T equals dim null (7' — A\I)4™ V. The geometric multiplicity of an
eigenvalue \ of 7' is dim E(\, T').

Theorem 7.2.5

Suppose V is a complex vector space and 7' € £(V'). Then, the sum of the multiplicities of all
eigenvalues of 7" equals dim V.

Proof 3. By Theorem 7.2.2 (1), we know V = G(A\1,T) @ - - - @ G(A, T'). So, we have

dimV = dim G(A,T) + - - - + dim G( A, T).

Definition 7.2.6 (Block Diagonal Matrix). A block diagonal matrix is a square matrix of the form
Ay 0
0 Am
where A4,..., A, are square matrices lying along the diagonal and all the other entries of the matrix
equal 0.

Theorem 7.2.7

Suppose V is a complex vector space and 7" € L(V'). Let Ay, ..., A, be the distinct eigenvalues
of T', with multiplicities d;, ..., d,. Then, 3 a basis of V' with respect to which 7" has a black
diagonal matrix of the form

Al 0

0 Am

where each q; is d;-by-d; upper-triangular matrix of the form

J

Proof 4. Note that Ty, = Ay yv1 + -+ + Appvp + -+ + Ay pvn. Also, (T — A1) |G(A].7T) is nilpotent.
For each G(\;,T), choose a basis of G(\;,T) and dim G(\;,T) = d;. Then,

0 *
M((T = NI) |G’()\j,T)> =
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Since M((T — \) \G(A].,T)) = M(T |G(,\j7T)> — M(\;I), we have

0 *
M(T |G()\j,T)) = + M(N; D)
0 0
0 * Aj *
= +

0 0 by

Aj *

0 Aj

Put all the bases of G(\;, T') together, we have completed the proof. [
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7.3 Characteristic and Minimal Polynomials

Definition 7.3.1 (Characteristic Polynomial). Suppose V is a complex vector space and 7" € L(V). Let
AL, ..., A denote the distinct eigenvalues of 7', with multiplicities d1, . . ., d,,. The polynomial

(z — Al)dl (2= )\m)dm

is called the characteristic polynomial of T

Theorem 7.3.2
Suppose V is a complex vector space and 7' € £(V'). Then,

1. the characteristic polynomial of 7" has degree dim V;;

2. the zeros of the characteristic polynomial of 7" are eigenvalues of T'.

Proof'1.

1. Notethat V = G(A1,T)® -+ ® G(A, T). So, dimV = d; + - -+ + d,,. That is, the characteristic
polynomial of 7" has degree dim V. O

2. By the definition of characteristic polynomial, it is evidently true.

Theorem 7.3.3 Cayley-Hamilton Theorem
Suppose V is a complex vector space and 7' € £(V'). Let g denote the characteristic polynomial
of T. Then, ¢(T") = 0.

Proof 2. Suppose )\, ..., A\, are distinct eigenvalues of 7" and dy, . .., d,, are their corresponding
multiplicities. Foreach j = 1,...,m, we have (T'—\;I) |g(, r) is nilpotent. Then, (T—N\;I)% la,,7)= 0.
Since ¢(z) = (z — A% - (2 — Am)®, we know ¢(T) = (T — M\ D)% --- (T — X\, I)%. Considerv € V.
SinceV=G(\,T)®--- & G\, T), thenv = ajv1 + - - - + a0, where v; € G(A\;,T). Then,

q(T)v = q(T)(ar1v1 + - - + amvm)
=a1q(T)vr + - + amq(T)vm,.

For simplicity, consider

Since v; € G()\;,T), we know (T — \;I)%v; = 0. Then, ¢(T)v; = 0 foreach j = 1,...,m. So, ¢(T)v = 0.
Thatis, ¢(7') = 0. [
Definition 7.3.4 (Monic Polynomial). A monic polynomial is a polynomial whose highest-degree co-
efficient equals 1.
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Theorem 7.3.5
Suppose T' € L(V). Then, 3 a unique monic polynomial p of smallest degree such that p(7) = 0.

Proof 3. Let diim V = n. Then, the list I, T, T2, ..., 7" is not L. in £(V) because £(V') has dimen-
sion n? and we have a list of length n? + 1. Let m be the smallest positive integer such that the list

I,T,T?, ..., T™ is linearly dependent. Then, by the Linear Dependence Lemma, 7™ is a linear combi-
nationof I, T,...,T™ . So, we have
aol + arT + aoT? + -+ + 4y T+ T™ =0 (21)

Define a monicp € P(F) as p(z) = ag + 212 + a2z + - - - + ap_12™ 1 + 2™. Then, Equation (21) implies
p(T) = 0. Now, we will prove the uniqueness. Suppose 3 a monic g € P(F) with degq = m s.t. ¢(T") = 0.
Then, (p — ¢)(T") = p(T') — ¢(T") = 0 and deg(p — ¢) < m. Hence, p = q. [ |
Definition 7.3.6 (Minimal Polynomial). Suppose 7' € L(V'). Then, the minimal polynomial of T is the
unique monic polynomial p of smallest degree such that p(T") = 0.

Corollary 7.3.7 By the Cayley-Hamilton Theorem, the minimal polynomial of each 7' € £(V) has
degree < dim V.

Theorem 7.3.8 Division Algorithm of Polynomials
Suppose p, s € P(F) with s # 0. Then, 3 unique ¢, r € P(F) s.t. p = sq+ r and deg r < deg s.

Proof 4. Let degp = n and degs = m. If n < m, then ¢ = 0 and » = p. Now, we assume n > m.
Define T : P,,—p(F) X Pp—1(F) — Pp(F) as T'(q, ) = sq + r. It is easy to verify that T"is a linear map. If
(g,r7) € null T, then sq+r = 0. So, ¢ = r = 0. Thatis, dimnull 7 = 0 and 7 is injective. Further, note that
dim(Pp—m (F) X Pp—1(F)) = (n—m+1)+(m—1+1) = n+1and dimrange ' = n+1 = dim P, (F). Since
range I' C P, (F) and dim range 7" = dim P,,(F), we have range T = P, (F). Therefore, T is surjective. W

Theorem 7.3.9
Suppose T' € L(V) and ¢ € P(F). Then, ¢(7") = 0 if and only if ¢ is a polynomial multiple of the
minimal polynomial of 7'.

Proof'5. Let p be the minimal polynomial of 7.

(«<): Suppose g = sp. Then, ¢(T") = s(T)p(T") = 0. O

(=): Suppose ¢(T") = 0. By division algorithm of polynomials, ¢ = sp + r with degr < degp. Then,
q(T) = s(T)p(T) + r(T) = 0. Note that p(T') = 0, so r(T') = 0. Then, r = 0. It must be ¢ = sp. [

Theorem 7.3.10 Characteristic Polynomial and Minimal Polynomial
Suppose F = Cand T € L(V). Then, the characteristic polynomial of 7" is a polynomial multiple
of the minimal polynomial of 7'.

Proof 6. Suppose g is a characteristic polynomial of 7. Then, by Cayley-Hamilton Theorem, ¢(7") =
0. Further by Theorem 7.3.9, ¢ is a polynomial multiple of the minimal polynomial of 7'. [
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Theorem 7.3.11
LetT € L£(V). Then, the zeros of the minimal polynomial of 7" are precisely the eigenvalues of T'.

Remark. “Precisely” means “is and only is.” So, we need to prove the theorem from two directions.

Proof 7. Suppose p(z) = ag + a1z + azz® + -+ + apm-12""1 + 2™ is the minimal polynomial of T'.
(=): Suppose p(A\) = 0.  WTS: X is the eigenvalue. Since p(\) = 0, we have p(z) = (z — N)q(2).
Then, p(T) = (T' — M )q(T) = 0. Then, degq < degp and p(T)v = (T'— A)q(T)v =0 Vv € V. So,
Jv e V s.t. ¢(T)v # 0. So, it must be that 7" — A\ is not injective, and thus ) is an eigenvalue of 7. O
(«<): Suppose ) € Fis an eigenvalue of T. Then, 3v € V s.t. Tv = \vwith v # 0. Consider T7v = M.
Then,
p(T)V = (aol + a1T + -+ + @ T + T™ )
= (ag+ G A+ F A N A
=pNv=0

Since v # 0, it must be p(\) = 0. [

Example 7.3.12 Suppose T € £(C?) be defined as

T(Zl, 29, 2’3) = (621 + 329 + 423,629 + 223, 723).

Then,
6 3 4
MT)=10 6 2
0 0 7
Find the minimal polynomial of T'.
Solution 8.
6 3 4
Since M(T)= |0 6 2|, theeigenvaluesofT are 6,6, 7. The multiplicity of 6 is 2 and that of 7
007

is 1. So, the characteristic polynomial of T'is ¢(z) = (z — 6)%(z — 7). Then, the minimal polynomial
is polynomial multiple of (2 — 6)(z — 7). So, the minimal polynomial of 7" should be (z — 6)(z — 7)
or (z — 6)%(z — 7). Note that

M(T = 61)*(T — 71)] = (M(T — 61))* M(T — 71

and
0 3 4 -1 3 4
M(T -6 T —70)]=[0 0 2|| 0 -1 2|0
0 01 0 0 O
So, (z — 6)?(z — 7) is the minimal polynomial of 7. O
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Example 7.3.13 Find the minimal polynomial of operator 7' € £(C?) defined by T'(21, 22, 23) =
(621, 622, 723).

Solution 9.
Note that
6 0 0
MT)=10 6 0
0 0 7

Then, the characteristic polynomial is ¢(z) = (z — 6)?(z — 7). The minimal polynomial could be
(z—6)%(z — 7) or (z — 6)(z — 7). Since

M((T — 6I)(T — 7I)] = M(T — 61)M(T — 7I)

0 00 -1 0 0
=10 0 O 0 —1 0| =0,
0 01

the minimal polynomial of T'is (z — 6)(z — 7). O

Theorem 7.3.14

Suppose T' € L(V). T is invertible if and only if the constant term in the minimal polynomial of
T is non-zero.

Proof 10. Let p(z) = ag + a1z + - - - + apm_12™" ! + 2™ be the minimal polynomial of 7.
(=) We will prove the contrapositive: “If ¢y = 0, then 7" is not invertible.” Suppose ay = 0. Then,

p(z) =arz+ -+ am 12"+ 2™

Then, p(0) = 0. So, 0 is an eigenvalue of 7. That is, T'v = 0 for some v # 0. Then, 7 is not injective, and
thus is not invertible. O

(<) We will prove the contrapositive: “If T is not invertible, then oy = 0.” Suppose 7' is not invert-
ible. Then, 7' is not injective. So, 3v # 0s.t. Tv = 0. Thatis, Tv = 0 - v or 0 is an eigenvalue of T". So,
p(z) = zq(z), and thus ap = 0. |

Theorem 7.3.15

Suppose V is a complex vector space and 7' € L(V'). V has a basis consisting of eigenvectors of
T if and only if the minimal polynomial of 7" has no repeated roots.
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7.4 Jordan Form

Example 7.4.1 Let N € L(F*) be the nilpotent operator N(z1, 29,23, 24) = (0, 21,22, 23). Letv =
(1,0,0,0). Then, Nv = (0,1,0,0), N?v = (0,0, 1,0), and N3v = (0,0,0, 1). Note that v, Nv, N?v, N3v
is a basis of F4, and the matrix of N with respect to this basis is

o O O O
o O O =
o O = O
o = O O

Example 7.4.2 Let N € £(F%) be the nilpotent operator defined by
N (21, 22, 23, 24, 25, 26) = (0, 21, 22,0, 24, 0).

Letv; = (1,0,0,0,0,0), v2 = (0,0,0,1,0,0),and v3 = (0,0,0,0,0,1). Then, we have N?v;, Nvi, Nvy,
v9, v3 to be a basis of F. The matrix of N with respect to this basis is

010\ 00 0
00 1| o0 o
000/ 00 o0
000 (o1 o
000 \ool o
00 0 00(0)

Theorem 7.4.3
Suppose N € £(V) is nilpotent. Then, Jvy,...,v, € V and m4, ..., m, € Nt such that

1. N™uq,...,Nvy,v1,...,N™u,,..., Nu,, v, is a basis of V;

2. Nmtly = ... = NM»tly, = 0.

Proof 1. We will prove by induction on dim V.

When dim V' = 1, the conclusions obviously hold.

‘ Inductive Steps ‘Assume dim V' > 1 and the conclusions hold for all spaces with dimension smaller
than dim V. Since N is nilpotent, it is not injective and thus is not surjective. So, range N C V. That s,
dimrange N < dim V. Since N is nilpotent, it is not injective and thus is not surjective. So, range N C
V. thatis, dimrange N < dim V. Apply the inductive hypothesis on range N. Consider N |iange NE
L(range N), then Jvy,. .., v, € range N and my, ..., m, € NT such that

N™uwyi,...,Nvi,v1,...,N™v,, ..., Nvoy,, vy,. (22)
is a basis of range N, and N™*ly; = ... = N™»tly, = 0. For each j, v; € range N. Then, Ju; €
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V s.t.v; = Nuj. So, N¥*1y; = N*vy; vk € N*. We now claim the following list of vectors is L.L.:
N™Fy oo Nug,ur, ..o, N™ Py, o0 Nug, up (23)
Leta/ ™ N™+ 1y + o 4 alNuy 4 aduy + -+ + aPn P N™n 4+ 6l Nu, + a%u,, = 0. Then,
aT1+le11)1 4+ Fatvy +aduy + -+ a™ TNy, 4+ adv, +alu, = 0. (24)
Apply N to both sides of the Equation (24),

aMTINT Ly b @i Nvy + al Nug + -+ @™ PNy 6l Ny, 4 6 N, = 0.
— —— SN~ —_— N

0 v1 0 Un

So,
al""N™vp + - + aiNvy +alvy + - +a™ N™v, + -+ al Nv, + alv, = 0.

Since Equation (22) is a basis, it must be all the coefficients equal to 0. Meanwhile, reconsider Equation
(24). It becomes
aMTIN™Ly o g LNy, = 0,

As N™ ..., N™» is included in the list of vector stated in Equation (22), they must also be L.I.. Thus,

we have o[t = ... = a7+ = 0. So, we have proven the claim by showing Equation (23) is indeed a

list of L.I. vectors. Now, extend Equation (23) into a bassi of V:
N™Hly o Nug,ug, .o, N™ o N, up, we, . . , Wp (25)

Then, each Nw; € range N = span(Equation (22)) s.t. Nw; = Nx;. Now, suppose u,4; = w; — x;, and
we have Nu,; = 0. Hence,

mi1+1 mp+1
N™ g, ooy Nug,ut, o, N g, oy Nt Uy U 1, -+ 5 Ungp (26)

spans V because it contains each z; and u,,; and thus w;. Since Equation (25) and Equation (26) have
the same length, Equation (26) is a basis of V satisfying the desired condition. [
Definition 7.4.4 (Jordan Basis). Suppose T € L(V'). A basis of V is called a Jordan basis of T if M(T')
with respect to this basis has a block diagonal matrix

A 0
0 A,

where each A; is an upper-triangular matrix of the form

A1 0
1
0 Aj
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Theorem 7.4.5 Jordan Form
Suppose V is a complex vector space. If T € £(V'), then 3 a basis of V' that is a Jordan basis for 7.

Proof 2. First consider a nilpotent operator N € £(V). Suppose vy, ..., v, € L(V) satisfy the condi-
tion in Theorem 7.4.3. For each j, note that the list of vectors N"v;, N"™i-1v;, ..., Nvj;, v; correspond
to a matrix of V as

0 1 0
1
0 0
Hence, the conclusion holds for a nilpotent operator. Assume 7" € L(V). Let A\q,..., A, be distinct

eigenvalues of 7. Then, we have the generalized eigenspace decomposition:
V=G, T)® - ®&GAn,T),

where each (T'—\;I) |g(x,; ) is nilpotent. Thus, some basis of each G();, T') is aJordan basis of 7' — A, I.
So,

0 1 0
M((T = X0) lap,m ) = 1
0 0
and
A1 0
M<T |G(Aj,T)) =
1
0 Aj
Also, the dimension of the matrix is dim G(\;, T'). [
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8 Operators on Real Vectors Spaces

8.1 Complexification

Definition 8.1.1 (Complexification of V'/V). Suppose V' is a real vector space. The complexification
of V, denoted V¢, equals V' x V. An element of V¢ is an ordered pair (u, v), where u,v € V, but we will
write this as u + iv.

Definition 8.1.2 (Addition & Multiplication on 1¢).

1. Addition on V¢ is defined by
(ur +iv1) + (ug +iv2) = (w1 + u2) +i(v1 + v2).

fOI'ul,UQ,Ul,UQ eV.

2. Complex Scalar Multiplication on V¢ is defined by
(a+bi)(u+iv) = (au — bv) 4+ i(av + bu)

fora,b e Randu,v € V.

Theorem 8.1.3
Suppose V is a real vector space. Then, with the definition of addition and scalar multiplication
as above, V¢ is a complex vector space.

Proof'1.
1. Addition. Let u; + iv; € C.

(a) commutativity:

(u1 + ivl) + (UQ + i'UQ) = (u1 -+ 'LLQ) + i(’Ul + 1)2)
= (ug +u1) +i(ve +v1)
= (UQ + ivg) =+ (u1 =+ i’l)l). O

(b) associativity:

((ul,vl) + (UQ, 02)) + (U3,U3) (u1 + ug,v1 + 1)2) + (U3,Ug)

= (u1 + ug + ug, v1 + vo + v3)
(u1 + (UQ + U3) V1 + (1)2 + U3))
= (

u1,v1) + ((u2,v2) + (us,v3)). O
(c) identity:
(0,0) + (u,v) = (04+u,0+v) = (u+0,v+0)
= (u,v) 4+ (0,0)
= (u,v). O

(d) inverse:
(—u, —v) + (u,v) = (—u+u, —v +v) = (0,0). O
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2. Scalar Multiplication: Let (u,v) € V¢, a+ biand ¢+ di € C.

(@) identity:
(14 0i)(u+iv) = u +iv 4 Oiu — Ov = u + iv. O

(b) associativity: can be easily verified. omitted.

(c) distributivity: can be easily verified. omitted.

[ |

Theorem 8.1.4
Suppose V is a real vector space.

1. Ifv; ..., v, is a basis of V' (as a real vector space), then vy, ..., v, is a basis of V¢ (as a com-

plex vector space).
2. The dimension of V¢ (as a complex vector space) equals the dimension of V' (as a real
vector space).

Proof 2.
1. Suppose vy, ..., v, is a basis of V. Then, V' = span(vy,...,v,). Then, span(vy,...,v,) in V¢ con-

tains vy, ..., vy, iv1,...,iv,. Forany u + iv € V¢, we have

u+iv = (a1v1 + - + apvyp) +i(b1vy + - - - + byoy)
= ajvy + -+ app + b1ivy + - - + bpivy.
So, v1, ..., vp,iv1,...,iv, spans V. Note that
span(vi, ..., U, 1v1,...,iv,) = span(vy, ..., Uy).
Then, we get V¢ = span(vy,...,vy,). Now, let \jv; + - -+ + A,v, = 0for A\; € C. Then,
Re(Ajv1) + -+ Re(Mvp) =0 and  Im(M\ovy) + -+ 4+ Im(Ayv,) = 0.
Since Re();),Im();) € R, it must be that
Re(A1) =---=Re(A\,) =0 and Im(A\)=---=Im(\,)=0.
Then, we have
AM==X=0

Thatis, vy, ..., v, is L.I.. Hence, vq, ..., v, is a basis of V. O

2. We know immediately that (1) implies (2). The proof is complete.
[ |

Definition 8.1.5 (Complexification of 7'/7). Suppose V is a real vector space and 7' € L(V'). The
complexification of T, denoted T¢, is the operator Tc € L(V¢) defined by T¢(u + iv) = Tu + iTv for
u,v € V.
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Remark. It can be easily verified that this definition indeed gives an operator Tc € L(V¢).

Example 8.1.6 Suppose A is an n x n matrix of real numbers. Define ' € L(R") by Tz = Aux.
Identifying the complexification of R™ with C”, we then have Ttz = Az for each z € C".

Theorem 8.1.7
Suppose V is a real vector space with basis v1,...,v, and T' € £(V). Then, M(T) = M(T¢),
where both matrices are with respect to the basis vy, ..., vy,.

Proof 3. Note that
T(C(Uk) = T@(Uk +1i- 0) =Tuv, +1iT0 = Tvy.

So, M(T) = M(T). [

Theorem 8.1.8
Every operator on a non-zero f-d vector space has an invariant subspace of dimension 1 or 2.

Proof 4. We only need to consider the real case. Let " € L(V), then T € L(V¢). Then, Tt has an
eigenvalue a + bi, and a corresponding eigenvector u + iv € V¢ S.t.

Te(u+iv) = (a+ bi)(u+iv) = Tu+iTv= (au—bv)+ (av + bu)i

So, Tu = au — bv and Tv = av + bu. Let U = span(u,v) in V. Then, au — bv, av 4+ bu € U. Therefore, U
is an invariant subspace of V under 7. If u, v is L.I., then dim U = 2; if u, v is linearly dependent, then
dimU = 1. |

Theorem 8.1.9
Suppose V is a real vector space and 7' € £(V). Then, the minimal polynomial of 7 equals the
minimal polynomial of 7'.

Proof'5. Suppose V is a real vector space and T' € L(V). Then,
(Te)"(u + iv) = T"u +iT"v.

Let p € P(R) be the minimal polynomial of T'. Then, p(Tc) = (p(T))c.
In fact, let p(z) = ag + a1x + - - - + ap2”, then p(Tc) = aol + a;Tc + - - - + a,T¢. So,

p(Te)(u+ iv) = ap(u +iv) + a1Te(u + iv) + -+ - + a, I¢ (u + iv)
= (apu + a1Tu+ -+ a,T"u) +i(apv + a1Tv + - - - + a, T"v)
= p(T)(u) +ip(T)(v)
= (p(T))c(u + iv).
So, p(Tc) = (p(T))c-

Since p(T) = 0, (p(T"))c = 0, and thus p(7¢) = 0.
Suppose g € P(C) is amonic polynomial and ¢(T¢)(u) =0 Vu € V. Letq(z) = bo+biz+---+bpz™,
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8 OPERATORS ON REAL VECTORS SPACES 8.1 Complexification

where b,, = 1, and r(z) = Re(bg) + Re(b12) + - - - + Re(b2™). So, ¢(Tc) = bol + biTc + -+ - + by, T = 0.
Thatis, (¢(T))c = 0. So, (¢(T))c(u+iv) = ¢(T)(u)+ig(T)(v) = 0. Then, itmustbe ¢(T)(u) =0 VYu e V.
So, bou + b1Tu + - - - + by, T™u = 0, which is equivalent to Re(bg)u + Re(b1)Tu + - - - Re(by,)T™u = 0. By
definition of »(T"), we have r(T") = 0.

Also, we have deg ¢ = degr. Further given p is the minimal polynomial of 7', degr > degp. Hence,
deg q = degr > degp. Thus, p is also a minimal polynomial of 7¢. |

Theorem 8.1.10
Suppose V' is areal vector space, T € £(V'), and A € R. Then, ) is an eigenvalue of 7t if and only
if A is an eigenvalue of 7.

Proof 6. Since the minimals of 7" and 7 are the same, the zeros of the minimal polynomials will
also be the same. Given zeros of the minimal polynomial of 7" are precisely the eigenvalues of 7', the
proof is therefore complete. [

Proof 7.

(=) Firstly, suppose A is an eigenvalue of 7. Then, 3v # 0 s.£. Tv = Av. So, T¢(v) = Av, and thus A
is an eigenvalue of 7. O

(«<) Conversely, suppose A is an eigenvalue of T¢. Then, Ju,v € V with u + iv # 0 s.L.

Te(u+iv) = A(u + iv).

So, Tu = Auand Tv = Av. Then, A must be an eigenvalue of 7'. [ |

Theorem 8.1.11
Suppose V is a real vector space, T' € L(V), A € C, j is an non-negative integer, and u,v € V.
Then, (Tc — AI)’ (u + iv) = 0 if and only if (Tc — A1) (u — iv) = 0.

Proof 8. To prove this theorem, we only have to prove the forward direction. We will prove by
induction on j.

[Base Case|If j = 0, then (Tt — AT)° = I. So, we have u + iv = 0. Then, v = 0, and v = 0. Therefore,
u—iv=0. U

‘ Inductive Steps ‘Assume j > 1 and the desired results holds for j — 1. That is,

(Te — XY Hu+iv) = (Tc — M) (u —iv) = 0.

Consider
(Tec — MY ~HTe — M)(u +iv) = 0. 27
Writing A = a + bi, we have
(Te — M) (u+iv) = Te(u +iv) — (a + bi)(u + iv)
= (Tu — au + bv) +i(Tv — bu — av)

and B
(Tc — M) (u + iv) = Te(u + iv) — (@ — bi)(u + iv)

= (Tu — au+ bv) —i(Tv — bu + av).
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So, Eq. (27) becomes
(Te — XY (Tu — au + bv) +i(Tv — bu — av) = 0. (28)

Apply our inductive hypothesis to Eq. (28), we have
(Te — X 7H(Tu — au + bv) —i(Tv — bu + av)) = 0

Thatis, (Tc — M) ((Te — M) (u +iv)) = 0, or (T — M) (u + iv) = 0. |
Corollary 8.1.12 Suppose V is a real vector space, ' € L(V'), and A € C. Then, ) is an eigenvalue of 7¢
if and only if \ is an eigenvalue of T¢.

Proof 9. Take j = 1 in Theorem 8.1.11. The proofis completed. [

Theorem 8.1.13
Suppose V is a real vector space, T' € L(V), and A € C is an eigenvalue of 7. Then, the multi-
plicity of ) as an eigenvalue of T¢ equals the multiplicity of ) as an eigenvalue of T¢.

Proof 10. We only need to show dim G(\, T¢) = dim G(\, Tc). Select uy + ivy, . . ., Uy, + ivy, as a basis
of G(\, Tt). Then,
(Tc — M)¥™V (u; +iv;) =0 for each j.

Then, (T¢c — A4V (u; — iv;) = 0 by Theorem 8.1.11. Now, consider uj — ivy, .. ., up, — iv;,. Suppose
(a1 + b11)(ug —ivy) + - -+ + (am + b)) (U, — ivy,) = 0.

Then,
Z aju; + ijj + i(bju]' — ajvj) =0. (29)
j=1

Note that (aj — bjl) (Uj + ivj) = QU + ijj + i(bju]‘ — CLj’Uj). Then, Eq (29) becomes

m —
Zaj + bji(u]' + i’l)j) =0.

j=1
Since uq + ivy, ..., u, + v, is a basis, it mustbe a1 + 611 = -+ = a;, + bl = 0.S0, a1 + b1l = -+ =
am + bmi = 0. Therefore, we have u; — vy, ..., Uy, — ivy, is L.I. Now, let u — iv € G(\, T¢). Then,

u+iv = (a1 — bii)(ug +iv1) + -+ + (@ — i) (U, + iv,).

So, u—iv = (ay+b1i)(ug —ivy)+- - -+ (@ +bmi) (U —ivy, ). Hence, G(\, Tc) = span(uy —ivi, . . ., Uy —ivy, ).
Since

dimspan(uy + ivy, . .., Uy + ivy,) = dimspan(u) — vy, ..., Uy, — iUpy),
multiplicity of A equals multiplicity of . [
Theorem 8.1.14

Every operator on an odd-dimensional real vector space has an eigenvalue.

Proof 11. Suppose V is a real vector space with odd dimension. Let " € £(V). Then, by Corol-
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lary 8.1.12, we know non-real eigenvalues of 7¢ come in pairs and their multiplicities are the same by
Theorem 8.1.13. So,

Z(multiplicity of non-real eigenvalues) = an even number.
SinceV =G(M\,T) @ --- ® G(Ap, T), we have
Z(multiplicity of all eigenvalues) = dim V¢ = dim V' = an odd number.

So, there must be at least one real eigenvalues left. [

Theorem 8.1.15
Suppose V is a real vector space and 7' € L(V). Then, the coefficients of the characteristic
polynomial of 7t are all real.

Proof 12. Suppose )\ is a non-real eigenvalue of 7¢ with multiplicity m. Then, ) is also an eigenvalue
of T with multiplicity m. Then, characteristic polynomial of 7 must be in the form

(2 = V™= V" f(2) = (22 = A+ Nz + P) " f(2)
= (#* = 2(Re(0)z + W) " ().
Suppose f(z) = (z — t1)% -+ (2 — t,)% with each t; € R. Then, the characteristic polynomial of T¢

becomes
(22 = 2(Re(W)z +1AP) " (e = ) - (= = t)%,

with all real coefficients. [
Definition 8.1.16 (Characteristic Polynomial). Suppose V' is a real vector space and 7" € £(V'). Then,
the characteristic polynomial of T is defined to be the characteristic polynomial of 7.

Corollary 8.1.17 Degree and Zeros of Characteristic Polynomial Suppose V' is a real vector space and
T € L(V). Then,

1. the coefficients of the characteristic polynomial of 7" are all real;
2. the characteristic polynomial of 7" has degree dim V;

3. the eigenvalues of T" are precisely the real zeros of the characteristic polynomial of 7.

Theorem 8.1.18 Cayley-Hamilton Theorem
Suppose T' € L(V). Let g denote the characteristic polynomial of 7. Then, ¢(T") = 0.

Proof 13. We've shown Cayley-Hamilton holds on complex vector spaces. Assume V' is a real vector
space. Then, we know ¢(7¢) = 0, which implies ¢(7") = 0. [
Corollary 8.1.19 Suppose T' € L(V). Then,

1. the degree of the minimal polynomial of 7" is at most dim V;

2. the characteristic polynomial of 7" is a polynomial multiple of the minimal polynomial of 7.
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8.2 Operators on Real Inner Product Spaces

Theorem 8.2.1 Normal but Not Self-Adjoint Operators
Suppose V is a 2-dimensional real inner product space and 7' € £(V'). Then, the following are
equivalent:

1. T is normal but not self-adjoint;

2. The matrix of 7" with respect to every orthonormal basis of V" has the form (Z _b) , with
a

b # 0.

3. The matrix of 7" with respect to some orthonormal basis of V" has the form <Z _b) , with
a

b> 0.

Proof 1.
(1) = (2): Suppose T'T* = T*T but T # T*. Let e1, e2 be an orthonormal basis of V. Suppose

M(T, (e1, e2)) = (‘b‘ 2)

Then, Te; = ae;+bey. So, | Te1||* = |laer + be||* = a2+b2. Since T'isnormal <= ||Tw|| = ||T*v| Vv e
V.So, |T*e1||* = ||Te1||* = a® + b2 Note that

MT, (e1,62)) = (fj 2)

the conjugate transpose of M(T, (e1,e2)). So, ||T*e1||> = |jaer + cea||* = a2 + ¢2. Therefore, a® + b* =
a?+ 2 orb? =c% Then,b=corb= —c.

1. If c =0, then

M(T) = (‘CL ;) = M(T%).

That implies T = T*, which contradicts with our assumption that 7" # T*. So, this situation is
omitted.

2. So, ¢ = —b, and then M(T) = a = . Note if b = 0, then M(T') = (a O) = M(T*), contra-

b d 0 d
dicting with our assumption that 7" # T™*. So, b # 0.

Finally, since 7' is normal, we have M (T)M(T*) = M(T*)M(T). Thatis,

a —b a b a b a —b
(b d)(—b d>_<—b d)(b d) = ab—bd = —ab+bd = ab = bd.
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Since b # 0, we have a = d. So,

(2) = (3): Choose an orthonormal basis e, e5. Then,

a

M(T, (e1,e2)) = (b

_b> with b # 0.
a
Ifb > 0, then (3) holds. If b < 0, then

M(T, (e1,—e3)) = (_“b Z)

Then, —b > 0, which implies (3) holds. O
(3) = (1): Suppose 3 an orthonormal basis e;, e; s.1.

M(T,(el,eg)):(a _ab> with b > 0.

b
Then, M(T, (e1,e2))t = ab b . Since b > 0, M(T) # M(T)!. So, T is not self-adjoint. Since
— a
M(TYM(T*) = M(T*)M(T) is clear, we have shown T is normal. [ |

e D

Theorem 8.2.2
Suppose V is an inner product space, ' € L(V) is normal, and U is a subspace of V' that is
invariant under 7'. Then,

1. U* is invariant under T;
2. U isinvariant under 7*;
3. (To)* = (TY)|us

4. T|y € L(U) and T|;;. € £L(U+) are normal operators.

Proof 2.

1. Lete,..., e, be an orthonormal basis of U. Then, extend it to an orthonormal basis ey, ..., en, f1,. ..

of V. Since U is invariant under 7', T'v € U. Then, each Te; € U. Thatis, Te; is a linear combina-
tionofey,...,ey. Thus, M(T, (e1,...,em, f1,..., fn)) is of the form
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8.2 Operators on Real Inner Product Spaces

er -

*Em fl"'fn

Foreachj e {1,...,m},letTe; = ay je; + - - + am jem. Then, | Te;||* = a? . +--- + a?, ;- Then,

m

17j

m
MoATe =" (at;+-- +an;)-
j=1

j=1
Note that
M(T*) =
Then,
m m
* 2
D ITel =3 (af +
j=1 i=1
m m
Since Y || Te;||* =) [[T*e;||*, we have
j=1 i=1

m
j=1 j=1

Then, each b; ; = 0. So, B = 0,,x,. That s,

m
Z (af;+-- +ap;) = Z (af;

At 10

Bt Ct

by B ),

e em flfn

)

Then, foreach k € {1,...,n},Tf, =0e1 +--- + 0ep + c1 1 f1 + - - - + ¢ i fn. Thatis,

T fi, € span(fi,...

7fn) = UL‘

Therefore, Tv € UL whenever v € UL, Hence, U~ is invariant under 7. 0

2. Note that
M(T*) = (
Then, T*e; € span(ey, . ..
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3. LetS=T|y € L(U). Fixv e U. Then,Vu € U,
(Su,v) = (Tu,v) = (u, T*v).
From (2), we know T*v € U. Then, we have
(u, S*v) = (Su,v) = (u, T"v).
So, S*v = T*v. Thatis, (T|y)" = (T%)|v. O

4. Since T is normal, 7' commutes with 7%. By (3): (T|y)* = (T%)|y. So, we have (T|y)(T|y)* =
(T|y)*(T|y). That is, T| is normal. Similarly, interchanging the roles of U and U+,

(Tl )(Tlys)” = (Tly)" (T]ye)-

Then, Tj;. is also normal.

|
Lemma 8.2.3 Suppose A = and B = , where A; and B; are matrices
of the same size, then
A1 By 0
AB = )
0 A, B,

Theorem 8.2.4
Suppose V' is a real inner product space and 7' € £L(V). Then, the following are equivalent:

1. T is normal;

2. Jan orthonormal basis of V' with respect to which 7" has a block diagonal matrix s.z. each

a

blockis an 1 x 1 matrix or a 2 x 2 matrix of the form <Z _b> with b > 0.

Proof 3.
(2) = (1): With respect to the basis given by (2),

Note that

M(T) = (Z _ab> and M(T") = (“b 2)
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0 | S B A ¥4 X G [

we have TT* = T*T. So, T is normal. O

(1) = (2): We will use induction on dim V. When dim V' = 1, the desired results hold. When
dim V' = 2,if T'is self-adjoint, then use the Real Spectrum Theorem, the desired results hold. If dim V' =
2 and T is not self-adjoint, by Theorem 8.2.1, the desired results also hold.

Now, assume that dim V' > 2 and the desired result holds on vector spaces of dimension smaller
than dim V. Let U be a subspace of V with dim U = 1, and U is invariant under 7'. If such a subspace
exists, (i.e., if 7" has an eigenvector v, then let U = span(v)). If no such subspace exists, let U be a
subspace of V' of dimension 2 that is invariant under 7.

If dimU = 1, choose a vector v with ||u| = 1. Then, u is an orthonormal basis of U, and M (T|y) is
1 x 1. IfdimU = 2, then T'|y € L(U) is normal by Theorem 8.2.2, but T'|s is not self-adjoint (otherwise
T|y would have an eigenvector). Thus, we can choose an orthonormal basis of U, say, ey, e, s.t.

M(Tly, (e, e2)) = (Z ‘b).

Since

a

Now, U+ is invariant under T and T'|;,. is normal by Theorem 8.2.2. Then, dim U+ < dim V. By our

inductive hypothesis, 3 an orthonormal basis f1, ..., f, of U* s.t.
1
M(Tly o, (fro- o f)) = —
UL, 1y--+5Jn - b a
1
Since V = U @ U+, we finally have
€1 €Em fl fn
€1
: a —b 0
’ b a
M(T) = &=
h \ Desired /
: 0
: Form
fn
which is in the desired form. |

Example 8.2.5 Let § € R. Then, the operator on R? of counter-clockwise rotation centered at the
origin by 6 is an isometry. The matrix of this operator with respect to the standard basis is

cosf) —sin0
sinf cosf |
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Remark. If0 is not an integer multiple of w, then no non-zero vector of R? gets mapped to a scalar
multiple of itself, and have the operator has no eigenvalues.

Theorem 8.2.6
Suppose V' is a real inner product space and S € £(V). Then, the following are equivalent:

1. Sis an isometry;

2. Jan orthonormal basis of V' with respect to which S has a block diagonal matrix s.z. each
block on the diagonal is an 1 x 1 matrix containing 1 or —1 or is a 2 x 2 matrix of the form

cosf —sinf
sinf cosf |’

with § € (0, 7).
Proof 4.
(1) = (2): Suppose S is an isometry. Then, S is normal. So, 3 an orthonormal basis ey, ..., e, s.L.
A
M (S, (61, =

cyen)) = ' - ,
b a

with b > 0. If Ais an entry in a 1 x 1 matrix along the diagonal, then 3 a basis vector e; s.t. Se; = Xe;.
So, |[Sejll = [Aesll = [Alllesll = llesll- So, [Al = 1, or A = £1.

Now, consider a 2 x 2 matrix of the form Z _b> with b > 0 along the diagonal. Then, 3 a basis
a

€;,€ei+1 S.I. Se; = ae; + be;11. So,

L= |leil® = [|Seill” = llae; + beira||”
= [laes|® + [[bei
=a’ 4+ 17
So, 36 € (0,7) s.t. a = cosf and b = sin 0, given b > 0. Therefore, this direction holds. O
(2) = (1): Suppose 3 an orthonormal basis of V' with respect to which the matrix of S has
the desired form. Thus, we have a direct sum decomposition: V = U; @ --- & U,,, where each U;

is a subspace of V' of dimension 1 or 2. Furthermore, any two vectors belonging to distinct U’s are
orthogonal, and each S|y, is an isometry mapping U; into U;. If v € V, we can write v = ug + - -+ + Uy,
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where each u; € U;. Applying S to the equation:

I1S0l|* = |Sur + -+ + S|
= [|Swl* + - + | Suml|?

= flual® + -+ ] = o).

Thus, S is an isometry. [
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9 TRACE AND DETERMINANT

9 Trace and Determinant

9.1 Trace

Remark. With respect to every basis of V, the matrix of the identity operator I € L(V) is the diagonal
matrix with 1’s on the diagonal and 0’s elsewhere.

Definition 9.1.1 (Identity Matrix//). Suppose n is a positive integer. The n x n diagonal matrix

1 0

is called the identity matrix and is denoted 1.
Definition 9.1.2 (Invertible/Inverse/A~!). A square matrix A is called invertible if there is a square
matrix B of the same size such that AB = BA = I; we call B the inverse of A and denote itby A~

Theorem 9.1.3
If A is an invertible square matrix, then 3 a unique matrix B s.t. AB = BA = I.

Proof 1. Suppose 3 two matrices B, B’ s.t.
AB=BA=1 and AB'=B'A=1.

Then, we have AB = AB’. So, BAB = BAB'. Therefore, IB=IB',or B=B'. [ ]

Theorem 9.1.4
Suppose T € L(V) and vy, ..., v, is a basis of V. Then, M(T, (v1, ..., v,)) is invertible if and only
if T' is invertible.

Proof 2.
(=) Suppose T is invertible, so 35 € £(V), ST = T'S = I. Then, M(ST) = M(T'S) = M(I). That
is,

So, M(T) is invertible. O
(<) Let A = M(T) is invertible. Then, 3 a matrix B s.t. AB=BA=1.LetS € L(V) s.t. B= M(S).
So,
M(T)M(S) = M(S)M(T) = M(I).

Thatis, M(T'S) = M(ST) =1,0r TS = ST = I. Then, by definition, 7' is invertible. [ |

Theorem 9.1.5
Suppose uy,...,u, and vy, ..., v, and wy, . . ., w,, are all bases of V. Suppose S, T € £(V). Then,

M(ST, (ury ..., up), (W1, ..., wy)) = M(S, (v1,...,00), (W1, ..., w,))M(T, (ur,...,up), (V,...,05)).
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Theorem 9.1.6

Suppose  wui,...,u, and wv,...,v, are bases of V. Then, the matrices
ML, (ug, ..., up), (v1,...,v,)) and M(I, (ui,...,uy),(vi,...,v,)) are invertible, and each is
the inverse of the other.

Proof 3. By Theorem 9.1.5, replacing w; with v, we have

I=M(I,(v1,...,0n), (U1, un)) M, (u1,...,up), (V1,...,00)).
Now, interchanging the roles of u’s and v’s, we get
I=M(I,(ui,...,un), (v1,...,00)) ML, (v1,...,00), (UL, ..., up)).

So, by definition, the desired result holds. [

Example 9.1.7 Consider the bases (4,2), (5,3) and (1, 0), (0, 1) of F2. Then,

M(I,((4,2),(5,3)),((1,0),(0,1))) = (;l 2)

because 1(4,2) = 4(1,0) +2(0,1) and 1(5,3) = 5(1,0) + 3(0, 1). Find the inverse of it.

Solution 4.
Suppose I(1,0) = a(4,2) + b(5,3) and 1(0,1) = ¢(4,2) + d(5, 3). Then, solve for

4a +5b=1 4c+5d =0
and
2a+3b=0 2c+3d=1

{a:3/2 nd {02—5/2
b= —1 d=2

3/2 —5/2
-1 2 )

we have

So, the inverse is

Theorem 9.1.8 Change of Basis Formula
Suppose T € L(V). Letuy,...,u, and vy, ..., v, be bases of V. Let

A= M, (u1, ... un), (V1,...,0n)).

Then
M(T, (u1, ..., up)) = AilM(T, (v1,...,0p))A.

Proof'5. By Theorem 9.1.5, replacing w; with u; and replace S with I, we have M(T, (u1,...,uy)) =
ATTM(T, (ua, .. . yup), (v1, . . ., vy,)). Again, by Theorem 9.1.5, replacing w; with v;, T with I, and S with
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T, we get

Therefore, we've shown
M(T, (ug,. .. up)) = A M(T, (1, . .., v,)) A.

Definition 9.1.9 (Trace of an Operator). Suppose T € L(V)

e If F = C, then the trace of T is the sum of the eigenvalues of 7', with each eigenvalue repeated
according to its multiplicity.

e If F = R, then the trace of 7' is the sum of the eigenvalues of T¢, with each eigenvalue repeated
according to its multiplicity.

The trace of T' is denoted tr 7T'.

Theorem 9.1.10
Suppose T € L(V). Letn = dim V. Then, tr T equals the negative of the coefficient of z"~! in the
characteristic polynomial of 7'.

Proof 6. Suppose )1, ..., \, are eigenvalues of 7" with each eigenvalue repeated according to its
multiplicity. Then, (z — A1) ---(z = Ap) = 2" — (A1 + -+ X))z L+ -+ (=1)"(\ - - - \y). Hence, we
complete the proof. [

Definition 9.1.11 (Trace of a Matrix). The trace of a square matrix A, denoted tr A, is defined to be the
sum of the diagonal entries of A.
Lemma 9.1.12 If A and B are square matrices of the same size, then tr(AB) = tr(BA).

Proof 7. Suppose

A - A Biy -+ By

A=+ - and B=| : .o
Anl Ann Bnl Bnn

= Z AjkBkj- SO,
k=1

Then, <AB)

JJ
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Lemma9.1.13 Let T € £(V). Suppose uy,...,u, and vy, ..., v, are bases of V. Then,
tr M(T, (ug, ..., up)) = tr M(T, (v1,...,0n)).
Proof 8. Let A = M(I, (u1,...,un), (v1,...,vy)). Then,

tr M(T, (u, ..., up)) =

Theorem 9.1.14
Suppose T' € L(V). Then, tr T' = tr M(T).

Proof 9. By Lemma 9.1.13, we know tr M(T') is independent of the choice of basis. Use the basis
introduced by block diagonal matrix with upper-triangular blocks in previous Chapters, we have the
desired result. If 7" is defined on a real vector space, then consider tr M(7T') on T¢. [

Theorem 9.1.15
Suppose S, T € L(V). Then, tr(S+7T) =tr S + tr 7.

Proof 10. Choose a basis of V. Then,

tr(S+7)=tr M(S+1T)
= tr(M(S) + M(T))
= tr M(S) + tr M(T')

=trS+tr7.
|
Theorem 9.1.16
Boperators S, T € L(V) s.t. ST — TS = I.
Proof11.Let S,T € L(V). Then,
tr(ST —TS) = tr(ST) — tx(T'S)
= tr M(ST) — tr M(TS)
= tr(M(S)M(T)) — tr(M(T)M(5S))
=0.
Since tr I = dim V # 0, tr(I) # tr(ST — TS). So, it must be that A5, T € L(V) s.t. ST — TS = I. [ |
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9.2 Determinant
Definition 9.2.1 (Determinant of an Operator/det 7). Suppose T' € L(V).

e If F = C, then the determinant of T is the product of the eigenvalues of 7', with each eigenvalue
repeated according to its multiplicity.

e If F = R, then the determinant of T is the product of the eigenvalues of T, with each eigenvalue
repeated according to its multiplicity.

The determinant of 7" is denoted by det 7.

Theorem 9.2.2
Suppose T' € L(V). Let n = dimV. Then, det T" equals (—1)" times the constant term of the
characteristic polynomial of 7'.

Proof 1. Suppose A1,...,\, are eigenvalues of 7" with each eigenvalue repeated according to its
multiplicity. Then,

(z=M) (2= An) = 2" = A+ 4+ X)) o  H (1) (AL \y).

Hence, we complete the proof. [

Theorem 9.2.3
Suppose T' € L£(V). Then, the characteristic polynomial of 7" can be written as

2" — (trT)2" L4+ 4 (=1)*(det T).

Proof 2. By Theorem 9.1.10 and Theorem 9.2.2, we complete the proof. [

Theorem 9.2.4
An operator on V is invertible if and only if its determinant is non-zero.

Proof 3. First, suppose V is complexand 7" € £(V'). Note that

T is invertible < T is bijective

T is injective

null 7" = {0}

Tv # 0 whenever v # 0

0 is not an eigenvalue of T’
detT" # 0.

rroue

Now, consider the case where V is real, then

T is invertible < 0 is not an eigenvalue of T’
<= 0isnotan eigenvalue of 7Tt
< detT # 0.
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Theorem 9.2.5
Suppose T' € L£(V). Then, the characteristic polynomial of T equals det(zI — T').

Proof 4. Suppose V is a complex vector space. If \, z € C, then ) is an eigenvalue of 7" if and only if
Jv #£0s.t. Tv = lv. Then, zIv — Tv = zv — Av. So,

(zI —T)v = (2 — M.
Therefore, we have z — ) is an eigenvalue of zI — T'. Let d be the multiplicity of ), then
d=dim G\, T) = null (T — \I)4mV,
Note that (T'— \) = (z — A\)I — (2I — T'). Then,
(T — XDV = [(z = NI — (2 — T4V,

So, we have
null (7 = AD®™Y = null (2 = \)I — (21 = T)]"™ V.

Thatis, G(A\,T) = G(z — A\, zI — T). So, dimG(\,T) = G(z — A\, zI — T). Then, the multiplicity of z — A
isalso d.

Let \1,..., \, denote the eigenvalues of 7. Then, z — Ay, ...,z — )\, are precisely the eigenvalues of
zI —T.So,det(z] —T) = (z— A1)--- (2 — \n), the characteristic polynomial of T'.

Now, consider the case if V' is a real vector space. Then, apply the proof above to 7, and then we

complete the proof. [
Definition 9.2.6 (Permutation/permn). A permutation of (1,...,n) is a list (m;, ..., m,) that contains
each of the numbers 1,...,n exactly once. The set of all permutations of (1,...,7n) is denoted perm n.

Definition 9.2.7 (Sign of a Permutation). The sign of a permutation (m1, ..., my;) is defined to be 1 if

the number of pairs of integers (j, k) with 1 < j < k < n s.t. j appears after £ in the list (mq,...,my,)
is even, and —1 if the number of such pairs is odd. In other words, the sign of a permutation is 1 if
the natural order has been changed an even number of times, and is —1 if the natural order has been
changed an odd number of times.

Example 9.2.8 For the permutation (2,4,5,3), we have the following pairs of integers:
(2,4),(2,5),(2,3),(4,5),(4,3), (5,3), among which (4,3) and (5,3) are of unnatural order. So,
sign(2,4,5,3) = 1.

Theorem 9.2.9
Interchanging two entries in a permutation multiplies the sign of the permutation by —1.

Proof 5. Suppose we have my,...,m;,...,mj,..., my, and we want the interchange m; and m; to
getmy,...,mj, ..., M4y ..., Mp.

1. Adjacent Case: m; and m; are adjacent to each other.
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Let number of pairs of reverse order from the original permutation to be N. Then
sign(original permutation) = (—1)".
(@) If m; < m;m then after the interchange, we get one more reverse order, and so

sign(interchanged permutation) = (—1)V*! = (—=1)(-1)".

(b) If m; > mj, then after the interchange, we get one less reverse order. So,

sign(interchanged permutation) = (—1)V ! = = (—1)(-1)N.

2. General Case: m; and m; are not adjacent.

Then, suppose we need £ times to move m; to the position right after m;. We need k — 1 times to
move m; to the position m; initially at. So,

sign(interchangedpermutation) = (—1)NT28=1 = (—1)(-1)V.

Definition 9.2.10 (Determinant of a Matrix, det A). Suppose A is an n x n matrix such that
Ay - Ag

Anl Ann

) )

The determinant of A, denoted det A, is defined by

det A = Z (sign(mi,...,mp))Am, 1 Am,n-
(m1,...,mn)Epermn
Example 9.2.11 Compute determinant of an upper triangular matrix
A *
A= )
0 Apn
Solution 6.
By definition,
det A = > (sign(ma, -, M) Amy 1 - Ay
(m1,...,mn)Epermn
Note that
0 i<
Ay 70 i<y
=0 i>j
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Consider (1,...,n) € permn, sign(1,...,,n) = 1,and A,,, 1 --- A, » becomes ay 1 - - - A, ,,. Now, if
(m1,...,my) # (1,...,n), we can find some A; ; = 0 with i > j. So,

det A = (sign(1,...,n))A11- - Appn=A11- - Ann.

Theorem 9.2.12
Suppose A is a square matrix and B is the matrix obtained from A by interchanging two columns.
Then,

det A = —det B.
Proof 7. Suppose A € Fn xnand A = (Al e Ay e Ay e An>. Then, by construction,
we know B = (Al e Ay A e An). So,
det A = Z (sign(ma,...,mn))Amy 1 Amgio  Amy i Aman
(m1,...,mn)Epermn
and
det B = Z (sign(ml,...,mn))Amhl "'Amj,j"'Ami,i"'Amn,n
(m1,...,myn)Epermn
Note that
sign(mi,...,mi,...,mj,...,my) = (=1)sign(my,...,mj,...,m4,...,myp).

So, by the linear properties of summation, we have

det A = — det B.

Theorem 9.2.13
If A is a square matrix that has two equal columns, then det A = 0.

Proof 8. Interchanging the two equal columns, we still get the same matrix, A. Further, by Theorem
9.2.12, we have

det A= —det A,
suggesting det A = 0. [
Theorem 9.2.14
Suppose A = <A.71 e A.m) isann x n matrix and (m, ..., my) is a permutation. Then,
det (A.,ml S A.,mn) — (sign(my, ..., mn)) det A.
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Theorem 9.2.15 Determinant is a Linear Function of Each Column

Suppose k,n are positive integers with 1 < k£ < n. Fixn x 1 matrices A.;,--- , A.,, except A. .
Then, the function that takes an n x 1 column vector A. ;, to det (A.,l e Ay oo A.m) isa
linear map.

Theorem 9.2.16 Determinant is Multiplicative
Suppose A and B are square matrices of the same size. Then,

det(AB) = det(BA) = (det A)(det B).

Theorem 9.2.17
LetT € L£(V). Suppose u,...,u, and vy, ..., v, are bases of V. Then,

det M(T, (u1,...,up)) = det M(T, (vi,...,vp)).

Theorem 9.2.18
Suppose T' € L(V). Then, det T = det M(T).

Theorem 9.2.19
Suppose S, T € L(V). Then,

det(ST) = det(T'S) = (det T')(det S).

129



	1 Vector Spaces
	1.1 Rn and Cn
	1.2 Definition of Vector Space
	1.3 Subspace

	2 Finite-Dimensional Vector Spaces
	2.1 Span and Linear Independence
	2.2 Bases
	2.3 Dimension

	3 Linear Maps
	3.1 The Vector Space of Linear Maps
	3.2 Null Spaces and Ranges
	3.3 Matrices
	3.4 Invertibility and Isomorphic Vector Spaces
	3.5 Duality
	3.6 Quotients of Vector Spaces

	4 Eigenvectors and Invariant Subspaces
	4.1 Invariant Subspaces
	4.2 Eigenvectors and Upper-Triangular Matrices
	4.3 Eigenspaces and Diagonal Matrices

	5 Inner Product Spaces
	5.1 Inner Products and Norms
	5.2 Orthonormal Bases
	5.3 Orthogonal Complements and Minimization Problems

	6 Operators on Inner Product Spaces
	6.1 Self-Adjoint and Normal Operators
	6.2 The Spectral Theorem
	6.3 Positive Operators and Isometries
	6.4 Polar Decomposition and SVD

	7 Operators on Complex Vector Spaces
	7.1 Generalized Eigenvectors, Nilpotent Operators
	7.2 Decomposition of an Operator
	7.3 Characteristic and Minimal Polynomials
	7.4 Jordan Form

	8 Operators on Real Vectors Spaces
	8.1 Complexification
	8.2 Operators on Real Inner Product Spaces

	9 Trace and Determinant
	9.1 Trace
	9.2 Determinant


