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1 VECTOR SPACES

1 Vector Spaces

1.1 Rn and Cn

Definition 1.1.1 (Complex Number). A complex number is an ordered pair (a, b), where a, b ∈ R, but
we write it as a+ bi.

Notation 1.1.2. C := {a+ bi | a, b ∈ R}
Definition 1.1.3 (Addition & Multiplication).

(a+ bi) + (c+ di) = (a+ c) + (b+ d)]i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Theorem 1.1.4 Properties of Complex Arithmetic

1. commutativity: α+ β = β + α; αβ = βα, ∀α, β ∈ C.

2. associativity: (α+ β) + λ = α+ (β + λ); (αβ)λ = α(βλ), ∀α, β, λ ∈ C.

3. identities: λ+ 0 = λ; λ · 1 = λ,∀λ ∈ C.

4. additive inverse: ∀α ∈ C, ∃ unique β ∈ C s.t. α+ β = 0.

5. multiplicative inverse: ∀α ∈ C, α ̸= 0, ∃ unique β ∈ C s.t. αβ = 1.

6. distributivity: λ(α+ β) = λα+ λβ, ∀λ, α, β ∈ C.

Definition 1.1.5 (Subtraction). If −α is the additive inverse of α, subtraction on C is defined by

β − α = β + (−α).

Definition 1.1.6 (Division). For α ̸= 0, let
1

α
denote the multiplicative inverse of α. Then, division on

C is defined by
β

α
= β ·

(
1

α

)
Notation 1.1.7. F is either R or C.
Definition 1.1.8 (List/Tuple). Suppose n is a non-negative integer. A list of length n is an ordered
collection of n elements separated by commas and surrounded by parentheses: (x1, x2, x3, · · · , xn).
Two lists are equal if and only if they have the same length and the same elements in the same order.

Remark. Lists must have a FINITE length.

Definition 1.1.9 (Fn and Coordinate). Fn is the set of all lists of length n of elements of F:

Fn := {(x1, · · · , xn) | xi ∈ R∀i = 1, · · · , n},

where xi is the ith coordinate of (x1, · · · , xn).
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1 VECTOR SPACES 1.1 Rn and Cn

Example 1.1.10 R2 = {(x, y) | x, y ∈ R} and R3 = {(x, y, z) | x, y, z ∈ R}.

Definition 1.1.11 (Addition on Fn). Addition on Fn is defined by adding corresponding coordinates:

(x1, · · · , xn) + (y1, · · · , yn) = (x1 + y1, · · · , xn + yn).

Theorem 1.1.12 Commutativity of Addition on Fn

If x, y ∈ Fn, then x+ y = y + x.

Proof 1. Suppose x = (x1, · · · , xn) and y = (y1, · · · , yn). Then

x+ y = (x1 + y1, · · · , xn + yn)

= (y1 + x1, · · · , yn + xn) = y + x.

■
Definition 1.1.13 (Zero). Let 0 denote the list of length n whose coordinates are all 0: 0 := (0, · · · , 0).
Definition 1.1.14 (Additive Inverse on Fn). For x ∈ Fn, the additive inverse of x, denoted −x, is the
vector −x ∈ Fn s.t. x+ (−x) = 0.

Definition 1.1.15 (Scalar Multiplication in Fn). The product of a number λ ∈ F and a vector x ∈ Fn is
computed by multiplying each coordinate of the vector by λ :

λx = λ(x1, · · · , xn) = (λx1, · · · , λxn),

where x = (x1, · · · , xn) ∈ Fn.

Theorem 1.1.16 Properties of Arithmetic Operations on Fn

1. (x+ y) + z = x+ (y + z) ∀x, y, z ∈ Fn

2. (ab)x = a(bx) ∀x ∈ Fn and ∀a, b ∈ F.

3. 1 · x = x ∀x ∈ Fn and 1 ∈ F.

4. λ(x+ y) = λx+ λy ∀λ ∈ R and ∀x, y ∈ Fn.

5. (a+ b)x = ax+ bx ∀a, b ∈ F and ∀x ∈ Fn.
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1 VECTOR SPACES 1.2 Definition of Vector Space

1.2 Definition of Vector Space

Definition 1.2.1 (Addition on V ). An addition on V is a function (u, v) 7→ u+ v for all u, v ∈ V.

Definition 1.2.2 (Scalar Multiplication on V ). A scalar multiplication on V is a function (λ, v) 7→ λv

for all λ ∈ F and v ∈ V.

Definition 1.2.3 (Vector Space). A vector space is a set V along with an addition on V and a scalar
multiplication s.t. the following properties hold:

1. commutativity: u+ v = v + u ∀u, v ∈ V

2. associativity: (u+ v) + w = u+ (v + w) and (ab)v = a(bv) ∀u, v, w ∈ V and ∀a, b ∈ F.

3. additive identity: ∃0 ∈ V s.t. v + 0 = v ∀v ∈ V.

4. additive inverse: ∃w ∈ V s.t. v + w = 0 ∀v ∈ V.

5. multiplicative identity: ∃1 ∈ V s.t. 1 · v = v ∀v ∈ V.

6. distributive properties: a(u+ v) = au+ av and (a+ b)v = av + bv ∀u, v ∈ V and a, b ∈ F.

Definition 1.2.4 (Vector). Elements of a vector space are called vectors or points.
Notation 1.2.5. V is a vector space over F.
Definition 1.2.6 (Real and Complex Vector Space). A vector space over R is called a real vector space,
and a vector space over C is called a complex vector space.

Theorem 1.2.7 Unique Additive Identity of Vector Spaces
A vector space has a unique additive identity.

Proof 1. Suppose 0 and 0′ are both additive identities for some vector space V . So,

0′ = 0′ + 0 Since 0 is an additive identity

= 0 + 0′ commutativity

= 0. Since 0′ is an additive identity

Then, 0′ = 0. ■

Theorem 1.2.8 Unique Additive Inverse of Vector Spaces
A vector in a vector space has a unique additive inverse.

Proof 2. Let V be a vector space. Suppose w and w′ are additive inverses of v for some v ∈ V . Note
that

w = w + 0

= w + (v + w′)

= (w + v) + w

= 0 + w′ = w′.

■
Notation 1.2.9. Let v, w ∈ V. Then, −v denotes the additive inverse of v.
Definition 1.2.10 (Subtraction). w − v is defined to be w + (−v).
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1 VECTOR SPACES 1.2 Definition of Vector Space

Theorem 1.2.11
0 · v = 0 ∀v ∈ V.

Proof 3. Since v ∈ V, we know

0 · v = (0 + 0)v = 0 · v + 0 · v
0 · v + (−0 · v) = 0 ·+0 ·+(−0 · v)

0 = 0 · v

■

Theorem 1.2.12
a · 0 = 0 ∀a ∈ F.

Proof 4. For a ∈ F, we have

a · 0 = a · (0 + 0) = a · 0 + a · 0
a · 0 + (−a · 0) = a · 0 + a · 0 + (−a · 0)

0 = a · 0.

■

Theorem 1.2.13
(−1)v = −v ∀v ∈ V.

Proof 5. For v ∈ V, we have

v + (−1)v = 1 · v + (−1) · v = (1 + (−1)) · v = 0 · v = 0.

Therefore, by definition, (−1)v = −v. ■
Notation 1.2.14. FS

1. If S is a set, then FS denotes the set of functions from S to F.

2. For f, g ∈ FS , the sum f + g ∈ FS is the function defined by (f + g)(x) = f(x) + g(x) ∀x ∈ S.

3. For λ ∈ F and f ∈ FS , the product λf ∈ FS is the function defined by (λf)(x) = λf(x) ∀x ∈ S.

Theorem 1.2.15
FS is a vector space.
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1 VECTOR SPACES 1.3 Subspace

1.3 Subspace

Definition 1.3.1 (Subspace). A subset U of V is called a subspace of V if U is also a vector space using
the same addition and scalar multiplication as on V .

Theorem 1.3.2 Conditions for a Subspace
A subset U of V is a subspace of V if and only if U satisfies the following conditions:

1. additive identity: 0 ∈ U ;

2. closed under addition: u,w ∈ U =⇒ u+ w ∈ U ;

3. closed under scalar multiplication: a ∈ F and u ∈ U =⇒ au ∈ U.

Proof 1.
(⇒) Suppose U is a subspace of V . By definition, U is then a vector space, and so those conditions

are automatically satisfied. □
(⇐) Suppose U satisfies the three conditions. Since U is a subset of V , U automatically has associa-

tivity, commutativity, multiplicative identity, and distributivity. So, we want to check U has additive
inverse and additive identities.

For additive identity, we know 0 ∈ U, by assumption.
For additive inverse, by condition #3, we know −u = (−1)u ∈ U.

Then, U is a vector space. ■

Example 1.3.3 If b ∈ F, then
{
(x1, x2, x3, x4) ∈ F4 | x3 = 5x4 + b

}
is a subspace of F4 if and only if

b = 0.
Proof 2.
(⇒) SupposeU =

{
(x1, x2, x3, x4) ∈ F4 | x3 = 5x4 + b

}
is a subspace of F4.Then, 0 = (0, 0, 0, 0) ∈

U. So, 0 = 5 · 0 + b, or b = 0. □
(⇐) Suppose b = 0. Then, x3 = 5x4. So, U =

{
(x1, x2, 5x4, x4) ∈ F4

}
1. 0 = (0, 0, 0, 0) ∈ U

2. Note that

(x1, x2, 5x4, x4) + (y1, y2, 5y4, y4) = (x1 + y1, x2 + y2, 5(x4 + y4), x4 + y4) ∈ U

So, addition is closed under U .

3. ∀a ∈ F, we have
a(x1, x2, 5x4, x4) = (ax1, ax2, 5(ax4), ax4) ∈ U

Then, U is a subspace of F4.

■

Example 1.3.4 The set of continuous real-valued functions on interval [0, 1] is a subspace of R[0,1].

Proof 3.
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1 VECTOR SPACES 1.3 Subspace

1. 0 (zero mapping)∈ U

2. Set f and g ∈ C[0, 1], the set of continuous functions on interval [0, 1]. Then, f + g ∈ C[0, 1].

3. From Calculus, we know that ∀a ∈ F, af ∈ C[0, 1].

■

Definition 1.3.5 (Sum of Subspaces). Suppose U1, · · · , Um are subspaces of V . The sum of U1, · · · , Um,

denoted as U1 + · · ·+ Um, is the set of all possible sums of elements of U1, · · · , Um:

U1 + · · ·+ Um = {u1 + · · ·+ um | ui ∈ Ui ∀i = 1, · · · ,m}.

Example 1.3.6 Suppose U =
{
(x, 0, 0) ∈ F3 | x ∈ F

}
and W =

{
(0, y, 0) ∈ F3 | y ∈ F

}
, then

U +W =
{
(x, y, 0) ∈ F3 | x, y ∈ F

}
.

Theorem 1.3.7
Suppose U1, · · · , Um are subspaces of V. Then, U1 + · · · + Um is the smallest subspace of V con-
taining U1, · · · , Um.

Proof 4. SupposeU1, · · · , Um are subspaces ofU . LetU1+· · ·+Um = {u1 + · · ·+ um | uj ∈ Uj , j = 1, · · ·m}.
Suppose wj ∈ Uj , then w1 + · · ·+ wm ∈ U1 + · · ·+ Um.

1. U1 + · · ·+ Um is a subspace of V .

(a) Note that

(u1 + · · ·+ um) + (w1 + · · ·+ wm) = (u1 + w1) + · · ·+ (um + wm) ∈ U1 + · · ·+ Um,

so U1 + · · ·+ Um is closed under addition.

(b) Similarly, U1 + · · ·+ Um is closed under scalar multiplication.

(c) Note that Uj is a subspace, so 0 ∈ Uj . Hence, (0, · · · , 0) = 0 ∈ U1 + · · ·+ Um. □

2. Now, we want to show this subspace is the smallest subspace containing U1, · · · , Um. That is, we
want to show ∀W ⊇ U1 ∪ · · · ∪ Um, we have W ⊇ U1 + · · ·+ Um.

Note that Uj ⊆ U1 + · · · + Um, so we have (U1 ∪ U2 ∪ · · · ∪ Um) ⊆ U1 + · · · + Um. This means
U1 + · · · + Um must contain U1, · · · , Um. Let W be some subspace containing U1, · · · , Um. Then,
for j = 1, · · · ,m, we have uj ∈ Uj , which indicates uj ∈W. Therefore, u1 + · · ·+ um ∈ V and thus
U1 + · · ·+ Um ⊆W.

SinceW was arbitrary, we’ve shown ∀W that contains U1, · · · , Um, U1 + · · ·+Um ⊆W. Therefore,
U1 + · · ·+ Um is the smallest.

■
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1 VECTOR SPACES 1.3 Subspace

Definition 1.3.8 (Direct Sum). Suppose U1, · · · , Um are subspaces of V. U1 + · · · + Um is called a direct
sum if each element of U1 + · · · + Um can be written in only one way as a sum u1 + · · · + um, where
uj ∈ Uj .

Notation 1.3.9. If U1 + · · ·+ Um is a direct sum, then we use U1 ⊕ · · · ⊕ Um to denote it.

Example 1.3.10 Let U =
{
(x, y, 0) ∈ F3 | x, y ∈ F

}
and W =

{
(0, 0, z) ∈ F3 | z ∈ F

}
. Then, F3 =

U ⊕W.

Proof 5. Note that U +W = {(x, y, z) | x, y, z ∈ F} = F3. Suppose

(x, y, z) = (x, y, 0) + (0, 0, z), (1)

for some x, y, z ∈ F and
(x, y, z) = (x′, y′, 0) + (0, 0, z′) (2)

for some x′, y′, z′ ∈ F. Then, (1)−(2):

(0, 0, 0) = (x− x′, y − y′, 0) + (0, 0, z − z′) = (x− x′, y − y′, z − z′).

Then, x− x′ = y− y′ = z − z′ = 0,which indicates x = x′, y = y′, z = z′. So, by definition U +W is
a direct sum, or F3 = U ⊕W. ■

Example 1.3.11 Suppose Uj is the subspace of Fn s.t.

U1 = {x, 0, 0, · · · , 0 | x ∈ F}
U2 = {0, x, 0, · · · , 0 | x ∈ F}

...

Un = {0, 0, 0, · · · , x | x ∈ F}

Then, Fn = U1 ⊕ U2 ⊕ · · · ⊕ Un.

Proof 6. Note that Fn = U1 +U2 + · · ·+Un is evident. Now, we’ll prove that U1 +U2 + · · ·+Un is
a direct sum. Consider x = (x1, x2, · · · , xn) ∈ Fn. Assume that

x = (x1, 0, · · · , 0) + · · ·+ (0, · · · , 0, xn) (3)

and
x = (x′1, 0, · · · , 0) + · · ·+ (0, · · · , 0, x′n) (4)

Then, from (3)-(4), we know that

0 = (x1 − x′1, · · · , xn − x′n) = (0, 0, · · · , 0).

Then, ∀i = 1, · · · , n we have xi − x′i = 0, or xi = x′i. Therefore, by definition, we know U1 + · · ·+ Un

is a direct sum. ■
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1 VECTOR SPACES 1.3 Subspace

Example 1.3.12 Let
U1 = {(x, y, 0) | x, y ∈ F}
U2 = {(0, 0, z) | z ∈ F}
U3 = {(0, y, y) | y ∈ F}

Show that U1 + U2 + U3 is not a direct sum.
Proof 7. Consider (0, 0, 0) ∈ F3. Note that

(0, 0, 0) = (0, 0, 0) + (0, 0, 0) + (0, 0, 0)

and
(0, 0, 0) = (0, 1, 0) + (0, 0, 1) + (0,−1,−1).

Then, U1 + U2 + U3 is not a direct sum by definition. ■

Theorem 1.3.13
Suppose U1, · · · , Um are subspaces of V . Then,U1+ · · ·+Um is a direct sum if and only if the only
way to write 0 as a sum u1 + · · ·+ um is by taking each uj = 0.

Proof 8.
(⇒) Since U1 + · · ·+ Um is a direct sum, by definition, the only way to write 0 ∈ Fn is to write it as

0 = 0 + · · ·+ 0 where 0 ∈ Ui∀i = 1, · · · ,m. □

(⇐) Suppose the only way to write 0 as a sum u1+ · · ·+um is by taking each uj = 0. Assume that for
some v ∈ V, we have

v = u1 + · · ·+ um, uj ∈ Uj (5)

and
v = u′1 + · · ·+ u′m, u′j ∈ Uj . (6)

Then, by (5)-(6), and according to the conclusion from Example 1.3.11, we have

0 = (u1 − u′1) + · · ·+ (um − u′m) = 0 + · · ·+ 0.

So, ∀i ∈ 1, · · · ,m, we have ui − u′i = 0. that is, ui = u′i. So, ∀v ∈ V, there is only one way to write v as a
sum of u1 + · · ·u +m. Therefore, by definition, U1 + · · ·+ Um is a direct sum. ■

Theorem 1.3.14
Suppose U amd W are subspaces of V . Then, U +W is a direct sum if and only if U ∩W = {0}.

Proof 9.
(⇒) Suppose U +W is a direct sum. Assume v ∈ U ∩W. Then, v ∈ U and v ∈ W. By definition of

subspace, we know −v ∈W as well. Note that

0 = v + (−v) ∈ U ∩W.
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1 VECTOR SPACES 1.3 Subspace

Then, by Theorem 1.3.13, we know that the only representation of 0 ∈ U ∩W is 0 = 0 + 0 since U ∩W
is a direct sum. Hence, it must be that v = −v = 0, and thus U ∩W = {0}. □

(⇐) Suppose U ∩ W = {0}. Let u ∈ U and w ∈ W s.t. u + w = 0. Then, we have u = −w. Since
−w ∈ W, we know u = −w ∈ W. By u ∈ U and u ∈ W, we know that u ∈ U ∩W = {0}. Therefore,
0 = 0 + 0 is the only to represent 0 ∈ U +W. By Theorem 1.3.13, we know U +W is a direct sum. ■

Remark. When extending Theorem 1.3.14 to 3 subspaces U1, U2, U3, we cannot conclude U1 ⊕U2 ⊕U3 if
we have U1 ∩ U2 = U1 ∩ U3 = U2 ∩ U3 = {0}. See Example 1.3.12 as a counterexample.

11



2 FINITE-DIMENSIONAL VECTOR SPACES

2 Finite-Dimensional Vector Spaces

2.1 Span and Linear Independence

Notation 2.1.1. We usually write list of vectors without using parentheses.

Example 2.1.2 (4, 1, 6), (9, 5, 7) is a list of vectors of length 2 in R3.

Definition 2.1.3 (Linear Combination). A linear combination of a list v1, · · · , vm of vectors in V is a
vector of the form

a1v1 + · · ·+ amvm,

where a1, · · · , am ∈ F.

Example 2.1.4 Since (17,−4, 2) = 6(2, 1,−3) + 5(1,−2, 4), we say (17,−4, 2) is a linear combination
of (2, 1,−3), (1,−2, 4).

Definition 2.1.5 (Span).

span(v1, · · · , vm) = {a1v1 + · · ·+ amvm | a1 · · · am ∈ F}.

Example 2.1.6 Consider span(e1, e2, e3) :

span(e1, e2, e3) = {a1e1 + a2e2 + a3e3 | a1, a2, a3 ∈ F}
= {(a1, a2, a3) | a1, a2, a3 ∈ F} = R3.

Theorem 2.1.7
The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the
list.

Proof 1. To prove this theorem, we will prove two parts: span is a subspace and span is the smallest
subspace.

1. Span is a subspace of V .

(a) By definition of span, we know span(v1, · · · , vm) = {a1v1 + · · ·+ amvm | a1, · · · , am ∈ F}. If
we set a1, · · · , am = 0, then we have 0 = 0v1 + · · ·+ 0vm. So, 0 ∈ spanv1, · · · , vm.

(b) Let a1v1 + · · ·+ amvm ∈ span(v1, · · · , vm) and b1v1 + · · ·+ bmvm ∈ span(v1, · · · , vm). Then,

(a1v1 + · · ·+ amvm) + (b1v1 + · · ·+ bmvm) = (a1 + b1)v1 + · · ·+ (am + bm)vm.

Since (a1+b1), · · · , (am+bm) ∈ F,we know (a1+b1)v1+ · · ·+(am+bm)vm ∈ span(v1, · · · , vm).

(c) Let λ ∈ F and a1v1 + · · ·+ amvm ∈ span(v1, · · · , vm). Then,

λ(a1v1 + · · ·+ amvm) = λa1v1 + · · ·+ λamvm.

12



2 FINITE-DIMENSIONAL VECTOR SPACES 2.1 Span and Linear Independence

Since λa1, · · · , λam ∈ F, we know that λ(a1v1 + · · ·+ amvm) ∈ span(v1, · · · , vm).

Therefore, we have proven that span is a subspace of V . □

2. Now, we want to show that span is the smallest subspace.

Let U be a subspace of V containing v1, · · · , vm. If we can show that span(v1, · · · , vm) ⊆ U , we
then know span is the smallest subspace containing v1, · · · , vm. Since U is a subspace contain-
ing v1, · · · , vm, it is closed under addition and scalar multiplication. So, a1v1 + · · · + amvm ∈
span(v1, · · · , vm). Therefore, span(v1, · · · , vm) ⊆ U.

■
Definition 2.1.8 (Span as a Verb). If span(v1, · · · , vm) = V, we say v1, · · · , vm spans V .
Definition 2.1.9 (Finite-Dimensional Vector Space). A vector space V is called finite-dimensional if ∃
a list of vectors, say v1, · · · , vm s.t. span(v1, · · · , vm) = V. In the following of this notes, we will use f-d as
a shortcut for saying “finite-dimensional.”
Definition 2.1.10 (Infinte-Dimensional Vector Space). A vector space V is infinite-dimensional if it is
not f-d. This is equivalent to say that ∀ lists of vectors in V , they do not span V .
Definition 2.1.11 (Polynomial Functions). A function p : F → F is called a polynomial with coeffi-
cients in F if ∃ a0, · · · , am ∈ F s.t. p(z) = a0 + a1z + a2z

2 + · · ·+ amz
m ∀z ∈ F.

Notation 2.1.12. We use P(F) to denote the set of all polynomial with coefficients in F.

Theorem 2.1.13
P(F) is a vector space over F.

Proof 2. Recall the definition of FF. We will show P(F) is a subspace of FF.

1. 0 = 0 + 0z + · · ·+ 0zm ∈ P(F).

2. Suppose p(z) = amz
m + · · · + a1z + a0 and q(z) = bnz

n + · · · + b1z + b0 ∈ P(F). WLOG, suppose
m > n, then we have p(z) + q(z) = amz

m + · · ·+ (an + bn)z
n + · · ·+ (a0 + b0) ∈ P(F).

3. Suppose λ ∈ F. Then, λp(z) = λ(amz
m + · · ·+ a1z + a0) = λamz

m + · · ·+ λa0 ∈ P(F).

Hence, we’ve shown P(F) is a subspace over F. ■
Definition 2.1.14 (Degree of a Polynomial). A polynomial p ∈ P(F) is said to have degree m if ∃ scalars
a0, · · · , am ∈ F with am ̸= 0 s.t. p(z) = amz

m + · · · + a1z + a0 ∀z ∈ F. We write deg p = m. Specially,
deg 0 := −∞ and deg a0 := 0 when a0 ̸= 0.

Definition 2.1.15 (Pm(F)). For m ∈ N+, Pm(F) denotes the set of all polynomial with coefficients in F
and degree≤ m. i.e.,

Pm(F) := {p ∈ P(F) | deg p ≤ m}.

Example 2.1.16 For each m ∈ N, Pm(F) is a f-d vector space.
Proof 3. Note that Pm(F) is a vector space because it is a subspace of P(F). Suppose p(z) ∈

Pm(F), then p(z) = a0 + a1z + · · ·+ amz
m ∈ span(1, z, · · · , zm). Then, by definition, Pm(F) is f-d. ■

Remark. In this proof, we are abusing notation by letting zk to denote a function.

13



2 FINITE-DIMENSIONAL VECTOR SPACES 2.1 Span and Linear Independence

Example 2.1.17 P(F) is infinite-dimensional.
Proof 4. For any list of vectors in P(F), by definition of list, the length of it is finite. Suppose

the highest degree in this list is m. Consider a polynomial with degree of m+ 1 : zm+1. Since zm+1

cannot be written as linear combinations of the list of polynomials, we know the list does not span
P(F). So, P(F) is infinite-dimensional. ■

Definition 2.1.18 (Linear Independence). A list v1, · · · , vm of vectors in V is called linearly independent
(L.I.) if the only choice of a1, · · · , am ∈ F that makes a1v1+· · ·+amvm = 0 is a1 = · · · = am = 0. Specially,
the empty list () is declared to be L.I..

Definition 2.1.19 (Linear Dependence). v1, · · · , vm is called linearly dependent if it is not L.I.. Or,

equivalently, v1, · · · , vm is linearly dependent if ∃ a1, · · · , am ∈ F not all 0 s.t.
m∑
i=0

aivi = 0.

Example 2.1.20 Let v1, · · · , vm ∈ V . If vj is a linear combination of other v’s, then v1, · · · , vm is
linearly dependent.

Proof 5. By assumption, vj = a1v1 + · · ·+ aj−1vj−1 + aj+1vj+a + · · ·+ amvm for some ai not all 0.
So, 0 = a1v1+ · · ·+ aj−1vj−1+ aj+1vj+1+ · · ·+ amvm− vj , a linear combination of v1, · · · , vm. Since
−vj has a coefficient of −1 ̸= 0, by definition, v1, · · · , vm is not L.I.. ■

Lemma 2.1.21 Linear Dependence Lemma Suppose v1, · · · , vm is a linearly dependent list in V . Then,
∃ j ∈ {1, · · · ,m} s.t. the following hold:

1. vj ∈ span(v1, · · · , vj−1)

2. if the jth term is removed from v1, · · · , vm, the span of the remaining list equals span(v1, · · · , vm).

Proof 6.

1. Since v1, · · · , vm is linearly dependent, a1v1 + · · · + amvm = 0, for some ai ̸= 0. Let j be the
maximized index s.t. aj ̸= 0. Then, aj+1 = · · · = am = 0, by this assumption. Hence,

ajvj = −a1v1 − · · · − aj−1vj−1 − aj+1vj+1 − · · · − amvm

= −a1v1 − · · · − aj−1vj−1

vj = −a1
aj
v1 − · · · − aj−1

aj
vj−1.

Since −a1
aj
, · · · ,−aj−1

aj
∈ F, we know vj ∈ span(v1, · · · , vj−1). □

2. Consider

span(v1, · · · , vj , · · · , vm) = span(v1, · · · ,−
a1
aj
v1 − · · · − aj−1

aj
vj−1, · · · , vm)

= span(v1, · · · , vj−1, vj+1, · · · , vm).

■
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2 FINITE-DIMENSIONAL VECTOR SPACES 2.1 Span and Linear Independence

Remark. By using this Lemma 2.1.21, we can do lots of proofs using the “step” strategy. Namely, we start
to remove vectors from a list that are linearly dependent to obtain a L.I. list. However, this “step” strategy
can only be used when dealing with FINITE-dimensional vector spaces.

Theorem 2.1.22
Let V be a f-d vector space. Let span(w1, · · · , wn) = V. Let u1, · · · , um be L.I.. Then, m ≤ n.

Proof 7.
Step 1 Note that u1, w1, · · · , wn is linearly dependent because u1 ∈ V = span(w1, · · · , wn). Then,

by Lemma 2.1.21, we can remove one of the w’s, say wj1. Then, the list becomes

{u1, w1, · · · , wn} \ {wj1}.

Step 2 Adjoin u2. Apply the same reasoning, since span({u1, w1, · · · , wn} \ {wj1}) = V, we know
{u1, u2, w1, · · · , wn} \ {wj1} is linearly dependent. Since u2 /∈ span(u1), Lemma 2.1.21 is not applicable
to u2. Now, we can remove another w from the list, say wj2. The list becomes

{u1, u2, w1, · · · , wn} \ {wj1, wj2}.

...
Step m After m steps, we list will become

{u1, · · · , um, w1, · · · , wn} \ {wj1, · · · , wjm}.

Since span({u1, · · · , um, w1, · · · , wn} \ {wj1, · · · , wjm}) = V, this list is still linearly dependent, so by
Lemma 2.1.21, we know ∃ w to be removed. Therefore, n ≥ m. ■

Theorem 2.1.23
Every subspace of a f-d vector space is f-d.

Proof 8. Suppose V to be a f-d vector space and U to be a subspace of V .
Step 1 If U = {0}, then U is f-d. If U ̸= {0}, then choose vi ∈ U s.t. v1 ̸= 0.

...
Step j IfU = span(v1, · · · , vj−1), thenU is f-d. IfU ̸= span(v1, · · · , vj−1), then choose vj ∈ U s.t. vj /∈

span(v1, · · · , vj−1).
By Lemma 2.1.21 and Theorem 2.1.22, we know this process will eventually terminate because the

vector list that spans U cannot be longer than any spanning list of V . Therefore, U is f-d. ■
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2 FINITE-DIMENSIONAL VECTOR SPACES 2.2 Bases

2.2 Bases

Definition 2.2.1 (Basis). A basis of V is a list of vectors in V that is L.I. and spans V .

Example 2.2.2

1. The standard basis of Fn:

(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1).

2. (1, 1, 0), (0, 0, 1) is a basis of V , where V =
{
(x, x, y) ∈ F3 | x, y ∈ F

}
.

Proof 1.

(a) Suppose a1(1, 1, 0) + a2(0, 0, 1) = 0, we have (a1, a1, a2) = 0. So, it must be a1 = a2 = 0.

Therefore, (1, 1, 0), (0, 0, 1) is L.I.. □

(b) Suppose (x, x, y) ∈ V. Note that (x, x, y) = x(1, 1, 0) + y(0, 0, 1), then, V =

span((1, 1, 0), (0, 0, 1)).

Therefore, we’ve proven (1, 1, 0), (0, 0, 1) is a basis of V according to the definition of basis. ■

Theorem 2.2.3 Criterion for Basis
A list v1, · · · , vn ∈ V is a basis list of V if and only if every v ∈ V can be written uniquely in the
form v = a1v1 + · · ·+ anvn, where ai ∈ F.

Proof 2.
(⇒) Let v1, · · · , vn be a basis of V . Let v ∈ V. By definition of basis, V = span(v1, · · · , vn). So,

v ∈ span(v1, · · · , vn), and thus v = a1v1+· · ·+anvn for some ai ∈ F.Assume for the sake of contradiction
that v = b1v1 + · · ·+ bnvn for some bi ̸= ai ∈ F. Then,

v − v = (a1 − b1)v1 + · · ·+ (an − bn)vn

0 = (a1 − b1)v1 + · · ·+ (an − bn)vn.

Since v1, · · · , vn is a basis, it is L.I.. So, 0 = 0v1+ · · ·+0vn. Therefore, we know a1−b1 = · · · = an−bn = 0.

That is, a1 = b1, · · · , an = bn. ⋇ This is a contradiction with the assumption that ∃ ai ̸= bi. Hence, it
must be that v = a1v1 + · · ·+ anvn is unique. □

(⇐) Suppose v = a1v1 + · · ·+ anvn is the unique representation ∀ v ∈ V. Then, v ∈ span(v1, · · · , vn).
Since v ∈ V, then V ⊆ span(v1, · · · , vn). However, v1, · · · , vn ∈ V, so span(v1, · · · , vn) ⊆ V. Therefore,
span(v1, · · · , vn) = V. To show v1, · · · , vn is L.I., further consider 0 = a1v1 + · · · + anvn. Since 0 ∈ V, by
assumption, ∃ a unique way to write 0 as a1v1 + · · ·+ anvn, and that unique way is to take every ai = 0.

Hence, by definition, we know v1, · · · , vn is L.I.. Since v1, · · · , vn is L.I. and span(v1, · · · , vn) = V, we
know v1, · · · , vn is a basis list of V . ■

Theorem 2.2.4
Every spanning list can be reduced to a basis of the vector space.
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2 FINITE-DIMENSIONAL VECTOR SPACES 2.2 Bases

Proof 3. Suppose V = span(v1, · · · , vn). If vi = 0, we just remove vi. So, let’s suppose vi ̸= 0.

Step 1 If v2 ∈ span(v1), delete it. If v2 /∈ span(v2), keep it.
...

Step j If vj ∈ span(v1, · · · , vj−1), delete it. If vj /∈ span(v1, · · · , vj−1), keep it.
...

Step n After n steps, we will have a “sub-list” from the original list s.t. it spans V and is L.I.. There-
fore, the basis list is contained in the spanning list. ■
Corollary 2.2.5 Every f-d vector space has a basis.

Proof 4. By definition, f-d vector space always has a spanning list. By Theorem 2.2.4, a spanning
list contain a basis. ■

Theorem 2.2.6
Every linearly independent list of vectors in a f-d vector space can be extended to a basis of the
vector space.

Proof 5. Suppose u1, · · · , um is L.I. in a f-d vector space of V . Let w1, · · · , wn be a basis of V .
Then, u1, · · · , um, w1, · · · , wn spans V . According to Lemma 2.1.21 and Theorem 2.1.22, we can reduce
u1, · · · , um, w1, · · · , wm to some list of u1, · · · , um and some w’s. ■

Theorem 2.2.7
Suppose V is f-d and U is a subspace of V . Then, there is a subspace W of V s.t. V = U ⊕W.

Proof 6. Since V is f-d, U , as V ’s subspace, is also f-d. So, ∃ a basis of U , say u1, · · · , um. Then,
u1, · · · , um is L.I. and ∈ V. By Theorem 2.2.6, this list can be extended to a basis

u1, · · · , um, w1, · · · , wn of V.

Let W = span(w1, · · · , wn). We’ll show V = U ⊕W.

1. WTS: V = U +W. Suppose v ∈ V. Then,

v = a1u1 + · · ·+ amum︸ ︷︷ ︸
∈U

+ b1w1 + · · ·+ bnwn︸ ︷︷ ︸
∈W

.

So, v ∈ U +W, or V = U +W. □

2. WTS: U ∩W = {0}. Suppose v ∈ U ∩W. Then, v ∈ U and v ∈W. So,

v = a1u1 + · · ·+ amvm = b1w1 + · · ·+ bnwn.

Hence,
a1u1 + · · ·+ amum − b1w1 − · · · − bnwn = 0. (7)

Since by assumption, u1, · · · , um, w1, · · · , wn is a basis ofV , sou1, · · · , um, w1, · · · , wn isL.I..There-
fore, the only way for Equation (7) to hold is when a1 = · · · = am = b1 = · · · = bn = 0. Hence,
v = 0u1 + · · ·+ um = 0. That is, U ∩W = {0}.

Therefore, we’ve shown that V = U ⊕W. ■
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2.3 Dimension

Theorem 2.3.1
Let B1 and B2 be two bases of V , then B1 and B2 have the same length.

Proof 1. Since B1 is L.I. in V and B2 spans V , by Theorem 2.1.22, we know len(B1) ≤ len(B2).

Interchanging the roles of B1 and B2, we have len(B2) ≤ len(B1). So, we have len(B1) = len(B2). ■
Definition 2.3.2 (Dimension). The dimension of a f-d vector space V is the length of any basis of V .
Notation 2.3.3. We use dimV to denote the dimension of a f-d vector space V .

Example 2.3.4 dimFn = n and dimPm(F) = m+ 1 (1, z, z2, · · · , zm).

Theorem 2.3.5
If V is f-d and U is a subspace of V , then dimU ≤ dimV.

Proof 2. Let B1 be a basis of U and B2 be a basis of V . Then, B1 is a L.I. list of V and B2 spans V .
Then, By Theorem 2.1.22, we know that len(B1) ≤ len(B2). So, by definition of dimension, we know
dimU ≤ dimV. ■

Extension. If V is f-d and U is a subspace of V , given U ⊊ V, then dimU < dimV.

Proof 3. Let u1, · · · , um be a basis of U . Since U ⊊ V, we know V − U ̸= ∅. So, choose v ∈ V − U.

Then, v /∈ span(u1, · · · , um). Therefore, u1, · · · , um, v is L.I. in V . That is

dimV ≥ dim(span(u1, · · · , um, v))
> dim(span(u1, · · · , um))

= dimU.

■

Theorem 2.3.6
Let V be f-d, then every L.I. list of vectors in V with length dimV is a basis of V .

Proof 4. Let v1, · · · , vn ∈ V be L.I.. Let n = dimV. When extending the list to basis, we get

{v1,m · · · , vn} ∪∅

as a basis of V . That is, v1, · · · , vn has already been a basis of V . ■

Remark. The proof given above is not that straight-forward, so we are giving an easier-understanding
proof as follows.

Proof 5. Suppose for the sake of contradiction that ∃v1, · · · , vn ∈ V not a basis of V for n = dimV.

Then, span(v1, · · · , vn) ̸= V. That is, ∃ vn+1 s.t. vn+1 /∈ span(v1, · · · , vn). Adding vn+1 to the vector list,
we have v1, · · · , vn, vn+1 is L.I.. By Theorem 2.3.5, we know len(v1, · · · , vn+1) = n + 1 ≤ dimV. ⋇ This
contradicts with the fact that dimV = n < n + 1. So, our assumption is incorrect, and it must be that
v1, · · · , vn is a basis of V . ■
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Theorem 2.3.7
Suppose V is f-d. Then, every spanning list of vectors in V with length dimV is a basis of V .

Example 2.3.8 Show that 1, (x− 5)2, (x− 5)3 is a basis of the subspace U of P3(R) defined by

U =
{
p ∈ P3(R) | p′(5) = 0

}
.

Proof 6. Consider a1 + a2(x − 5)2 + a3(x − 5)3 = 0, we will get a1 = a2 = a3 = 0 easily from
the equation. Then, 1, (x − 5)2, (x − 5)3 is L.I.. So, by Theorem 2.3.5, we know dimU ≥ 3. Since
U ⊊ P3(R), we have dimU < dimP3(R) = 4. Therefore, dimU = 3 = len(1, (x − 5)2, (x − 5)3). By
Theorem 2.3.6, we know 1, (x− 5)2, (x− 5)3 is a basis of U . ■

Theorem 2.3.9
If U1 and U2 are subspaces of a f-d vector space, then

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2).

Proof 7. Let u1, · · · , um be a basis of U1 ∩U2, then dim(U1 ∩U2) = m. Also, u1, · · · , um is L.I. in U1, so
we can extend it to a basis of U1 as u1, · · · , um, v1, · · · , vj . Then, dim(U1) = m + j. Similarly, extending
u1, · · · , um to a basis of U2, we will get u1, · · · , um, w1, · · · , wk. So, dim(U2) = m + k. Now, we want to
show u1, · · · , um, v1, · · · , vj , w1, · · · , wk is a basis of U1 + U2.

1. Since U1, U2 ⊆ span(u1, · · · , um, v1, · · · , vj , w1, · · · , wk), we know that

span(u1, · · · , um, v1, · · · , vj , w1, · · · , wk) = U1 + U2. □

2. Suppose a1u1 + · · ·+ amum + b1v1 + · · ·+ bjvj + c1w1 + · · ·+ ckwk = 0. Then we know that

c1w1 + · · ·+ ckwk = −a1u1 − · · · − amum − b1v1 − · · · − bjvj .

Since c1w1 + · · · + ckwk ∈ U2, and −a1u1 − · · · − amum − b1v1 − · · · − bjvj ∈ U1, we know
that c1w1 + · · · + ckwk ∈ U1 ∩ U2. Therefore, c1w1 + · · · + ckwk = d1u1 + · · · + dmum. Since
u1, · · · , um, w1, · · · , wk is L.I.,we know c1 = · · · = ck = 0. So, −a1u1−· · ·−amum−b1v1−· · ·−bjvj =
0. Since u1, · · · , um, v1, · · · , vj is L.I., we have a1 = · · · = am = b1 = · · · = bj = 0. Therefore, we’ve
proven u1, · · · , um, v1, · · · , vj , w1, · · · , wk is L.I. and thus is a basis of U1 + U2. □

Since u1, · · · , um, v1, · · · , vj , w1, · · · , wk is a basis of U1+U2,we know dim(U1+U2) = m+ j+ k. Further
note that

dim(U1) + dim(U2)− dim(U1 ∩ U2) = (m+ j) + (m+ k)−m

= m+ j + k

= dim(U1 + U2).

■
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3 LINEAR MAPS

3 Linear Maps

Notation 3.0.1. In this section, we use V and W to denote vector spaces over F.

3.1 The Vector Space of Linear Maps

Definition 3.1.1 (Linear Map). A linear map from V to W is a function T : V → W with the following
properties:

• additivity: T (u+ v) = Tu+ Tv ∀u, v ∈ V.

• homogeneity: T (λv) = λ(Tv) ∀λ ∈ F and ∀v ∈ V.

Notation 3.1.2. The set of all linear maps from V to W is denoted by L(V,W ).

Example 3.1.3

1. Zero-mapping: 0 ∈ L(V,W ) is defined by 0v = 0.

2. Identity-mapping: I ∈ L(V, V ) is defined by Iv = v.

3. Differentiation: D ∈ L(P(R),P(R)) is defined by Dp = p′.

Proof 1. Note that (f + g)′ = f ′ + g′ and (λf)′ = λf ′. ■

4. Integration: T ∈ L(P(R),R) is defined by Tp =
∫ 1

0
p(x) dx

Proof 2. Note that
∫ 1

0
(f + g) =

∫ 1

0
f +

∫ 1

0
g and

∫ 1

0
λf = λ

∫ 1

0
f. ■

5. Backward shift: T ∈ L(F∞,F∞) as T (x1, x2, x3, · · · ) = (x2, x3, · · · ).

Proof 3. Note that

T (x1, x2, x3, · · · ) + T (y1, y2, y3, · · · ) = (x2, x3, · · · ) + (y2, y3, · · · )
= (x2 + y2, x3 + y3, · · · )
= T (x1 + y1, x2 + y2, x3 + y3, · · · ).

Therefore, T is additive. Homogeneity of T is travial and thus omitted here. ■

6. From Fn to Fm, we define T ∈ L(Fn,Fm) as

T (x1, · · · , xn) = (A1,1x1 + · · ·+A1,nxn, · · · , Am,1x1 + · · ·+Am,nxn),

where Aj,k ∈ F ∀j = 1, · · · ,m and k = 1, · · · , n.

Theorem 3.1.4
Suppose v1, · · · , vn is a basis of V and w1, · · · , wn ∈ W. Then, ∃ a unique linear map T : V →
W s.t. Tvj = wj ∀j = 1, · · · , n.
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Remark. If T in Theorem 3.1.1 is a linear mapping, we should have

1. T (v1 + · · ·+ vn) = Tv1 + · · ·+ Tvn = w1 + · · ·+ wn, by additivity of T , and

2. T (λjvj) = λjTvj , by homogeneity of T.

Combine the two properties, we should have

T (λ1v1 + · · ·+ λnvn) = λ1Tv1 + · · · = λnTvn = λ1w1 + · · ·+ λnwn.

This remark will be very helpful in our following proof of the theorem.

Proof 4. Let’s define T : V → W by T (c1v1 + · · · + cnvn) = c1w1 + · · · + cnwn, where c1, · · · , cn are
arbitrary elements of F. Now, we want to show that T is a linear mapping.

Suppose u, v ∈ V , u = a1v1 + · · ·+ anvn, and v = c1v1 + · · ·+ cnvn. Then, we have

T (u+ v) = T ((a1 + c1)v1 + · · ·+ (an + cn)vn)

= (a1 + c1)w1 + · · ·+ (an + cn)wn

= (a1w1 + · · ·+ anwn) + (c1w1 + · · ·+ cnwn)

= Tu+ Tv. □

Now, we want to show T has homogeneity. Suppose λ ∈ F. Then, we know

T (λv) = T (λc1v1 + · · ·+ λcnvn)

= λc1w1 + · · ·+ λcnwn

= λ(c1w1 + · · ·+ cnwn)

= λTv. □

Also, we want to show that this T satisfy the condition the theorem is asking (i.e., Tvj = wj). Note
that when cj = 0 and other c’s equal 0, we will get Tvj = wj . □

Finally, we will prove the uniqueness of this T . Suppose that T ′ ∈ L(V,W ) and T ′vj = wj . Let
c1, · · · , cn ∈ F. Then, T ′(cjvj) = cjwj . So, we know that T ′(c1v1 + · · · + cnvn) = c1w1 + · · · + cnwn.

However, by definition, we know c1w1 + · · · + cnwn = T (c1w1 + · · · + cnvn). So, we can conclude that
T ′(c1v1 + · · · + cnvn) = T (c1w1 + · · · + cnvn). Thus, T ′ = T, and thus the T we defined above is unique
in L(V,W ). ■
Definition 3.1.5 (Addition and Scalar Multiplication on L(V,W )). Suppose S, T ∈ L(V,W ) and λ ∈ F.
Then, the addition is defined as (S + T )(v) := Sv + Tv, and the scalar multiplication is defined as
(λT )(v) := λ(Tv) ∀v ∈ V .

Theorem 3.1.6
L(V,W ) is a vector space.

Proof 5.

1. additive identity: Note that the zero-mapping 0 ∈ L(V,W ) satisfies the following equation:

(0 + T )(v) = 0v + Tv = 0 + Tv = Tv. □
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2. commutativity: Note that

(S + T )(v) = Sv + Tv = Tv + Sv = (T + S)(v). □

3. associativity: Let S, T,R ∈ L(V,W ). Then,

((S + T ) +R)(v) = (S + T )(v) +Rv = Sv + Tv +Rv

= Sv + (Tv +Rv)

= Sv + (T +R)(v)

= (S + (T +R))(v).

Let a, b ∈ F. Then,

((ab)T )(v) = T (abv) = T (a(bv)) = aT (bv) = (a(bT ))(v). □

4. multiplicative identity: Note we have 1 ∈ F s.t.

(1 · T )(v) = T (1 · v) = Tv. □

5. additive inverse: Note that

(T + (−T ))(v) = Tv + (−T )(v) = Tv + T (−v) = T (v − v) = T0 = 0. □

6. distributivity: Note that
a(T + S)(v) = a(Tv + Sv) = aTv + aSv,

and
(a+ b)Tv = T ((a+ b)v) = T (av + bv) = T (av) + T (bv) = aTv + bTv.

■
Definition 3.1.7 (Product of Linear Maps). If T ∈ L(U, V ) and S ∈ L(V,W ), then the product ST ∈
L(U,W ) is defined by (ST )(u) = S(Tu) ∀u ∈ U.

Remark. Compare this definition with composite functions. ST is only defined when T maps into the
domain of S.

Theorem 3.1.8 Algebraic Properties of Products of Linear Maps

1. associativity: (T1T2)T3 = T1(T2T3).

2. identity: TI = IT = T, where I is the identity mapping

3. distributive properties: (S1 + S2)T = S1T + S2T and S(T1 + T2) = ST1 + ST2.

Proof 6. First, we want to show the associativity. Note that

[(T1T2)T3](v) = (T1T2)(T3v) = (T1)(T2(T3v)) = (T1)[(T2T3)(v)]. □

Then, we want to show the identity. This proof can be done using the following diagram:
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V

V

W

W

IV IW

T

□

Finally, we will show the distributive properties. Note that

[(S1 + S2)T ](v) = (S1 + S2)(Tv) = S1(Tv) + S2(Tv)

= (S1T )(v) + (S2T )(v)

= (S1T + S2T )(v).

Similarly, we can show

[S(T1 + T2)](v) = S[(T1 + T2)(v)] = S(T1v + T2v)

= S(T1v) + S(T2v)

= (ST1)(v) + (ST2)(v)

= (ST1 + ST2)(v).

■

Example 3.1.9 Suppose D ∈ L(P(R),P(R)) is the differentiation map, and T ∈ L(P(R),P(R)) be
defined by (Tp)(x) = x2p(x). Show that DT ̸= TD.

Proof 7. Note that (DT )p = D(Tp) = D(x2p(x)) = 2xp(x) + x2p′(x). Similarly, we can compute
a general formula for TD: (TD)p = T (Dp) = T (p′) = x2p′(x). Since 2xp(x) + x2p′(x) ̸= x2p′(x), we
know DT ̸= TD. ■

Theorem 3.1.10
Let T ∈ L(V,W ), then T (0) = 0.

Proof 8. Since T (0) = T (0 + 0) = T (0) + T (0), we know 0 = T (0), or T (0) = 0. ■
Corollary 3.1.11 If T (0) ̸= 0, then T /∈ L(V,W ).
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3.2 Null Spaces and Ranges

Definition 3.2.1 (Null Space/Kernel). For T ∈ L(V,W ), the null space of T , denoted null T , is the
subset of V consisting of those vectors that T maps to 0: null T = {v ∈ V | Tv = 0}.

Remark. Sometimes, null space of T is also called the kernal of T , denoted as kerT.

Example 3.2.2

1. Null space of zero-mapping: Let T be the zero mapping from V to W . Since Tv = 0 ∀v ∈ V,

we know null T = V.

2. D ∈ L(P(R),P(R)) as Dp = p′: nullD = {a | a ∈ R}.

3. T ∈ L(F∞,F∞) as T (x1, x2, x3, · · · ) = (x2, x3, · · · ): null T = {(a, 0, 0, · · · ) | a ∈ F}.

Theorem 3.2.3
Suppose T ∈ L(V,W ). Then, null T is a subspace of V .

Proof 1.

1. Note that T (0) = 0, so 0 ∈ null T. □

2. Suppose u, v ∈ null T. Then, Tu = Tv = 0. So, T (u + v) = Tu + Tv = 0 + 0 = 0. Hence,
u+ v ∈ null T. □

3. Suppose u ∈ null T and λ ∈ F. Then, Tu = 0. So, T (λu) = λTu = λ · 0 = 0. Therefore, λu ∈ null T.

■
Definition 3.2.4 (Injective/Injection). A function T : V → W is called injective of Tu = Tv implies
u = v.

Remark. Sometimes, the contrapositive will be much more helpful: T is injective if u ̸= v, then Tu ̸= v.

Theorem 3.2.5
Let T ∈ L(V,W ). Then, T is injective if and only if null T = {0}.

Proof 2.
(⇒) Suppose T is an injective. We’ve already known that {0} ⊆ null T . Then, we need to show

null T ⊆ {0}. Suppose v ∈ null T , then Tv = 0. However, since T is an injection, and Tv = T0 = 0, then
we have v = 0. So, null T ⊆ {0}. Therefore, it’s sufficient to say null T = {0}. □

(⇐) Suppose null T = {0}. Suppose u, v ∈ V and Tu = Tv. Then, Tu − Tv = T (u − v) = 0. Hence,
u− v ∈ null T . By null T = {0}, we know u− v = 0, so u = v. Then, T is an injection. ■
Definition 3.2.6 (Range/Image). For T ∈ L(V,W ), the range of T is the subset ofW consisting of those
vectors that are of the form Tv for some v ∈ V : range T = {Tv | v ∈ V }.

Theorem 3.2.7
If T ∈ L(V,W ), then range T is a subspace of W .
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Proof 3.

1. Since T (0) = 0, we know 0 ∈ range T. □

2. Suppose w1, w2 ∈ range T . Then, ∃v1, v2 ∈ V s.t. Tv1 = w1 and Tv2 = w2. Then, w1 + w2 =

Tv1 + Tv2 = T (v1 + v2). Since v1 + v2 ∈ V, we have w1 + w2 = T (v1 + v2) ∈ range T. □

3. Supposew ∈ range T and λ ∈ F. Then, ∃v ∈ V s.t. w = Tv. So, λw = λ(Tv) = T (λv). Since λv ∈ V,

λw = T (λv) ∈ range T.

■
Definition 3.2.8 (Surjective/Surjection). A function T : V →W is called surjective if range T =W .

Remark. A function T : V →W is called a bijection, or is bijective, if it is both injective and surjective.

Theorem 3.2.9 Fundamental Theorem of Linear Maps
Suppose V is f-d and T ∈ L(V,W ). Then, range T is f-d and

dimV = dimnull T + dim range T.

Proof 4. Let u1, · · · , um be a basis of null T. Then, dimnull T = m. By Theorem 3.2.3, we know null T

is a basis of V , so we can extend the basis to a basis of V : u1, · · · , um, v1, · · · , vn. Thus, dimV = m + n.
WTS: dim range T = n. Further WTS: Tv1, · · · , T vn is a basis of range T .

Suppose v ∈ V. Then
v = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn.

Since u1, · · · , um ∈ null T, we know Tu1, · · · , Tum = 0. Therefore,

Tv = a1Tu1 + · · ·+ amTum + b1Tv1 + · · ·+ bnTvn = b1Tv1 + · · ·+ bnTvn.

Hence, span(Tv1, · · · , T vn) = range T, and thus range T is f-d. Now, WTS: Tv1, · · · , T vn is L.I..
Consider c1Tv1 + · · ·+ cnTvn = 0. Then, T (c1v1 + · · ·+ cnvn) = 0. Hence, c1v1 + · · ·+ cnvn ∈ null T.

Since u1, · · · , um is a basis of null T, we know

c1v1 + · · ·+ cnvn = d1u1 + · · ·+ dmum f.s. di ∈ F.

So,
c1v1 + · · ·+ cnvn − d1u1 − · · · − dmum = 0. (8)

However, by assumption, we know v1, · · · , vn, u1, · · · , um is a basis of V , and thus it is L.I.. So, the only
way to make Equation (8) hold is by taking c1 = · · · = cn = −d1 = · · · = −dm = 0. Therefore, we’ve
shown Tv1, · · · , T vn is L.I., and thus is a basis of range T. Then, dim range T = n.

So, we’ve shown that dimnull T + dim range T = m+ n = dimV. ■

Theorem 3.2.10
Suppose V andW are f-d vector spaces s.t. dimV > dimW. Then, no linear map from V toW is
injective.
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Proof 5. Let T ∈ L(V,W ). By the Fundamental Theorem of Linear Maps, we have dimV =

dimnull T + dim range T . Then, we know

dimnull T = dimV − dim range T

≥ dimV − dimW > 0 [dim range T ≤ dimW ]

This implies that null T ̸= {0}. So, T is not injective by Theorem 3.2.5. ■

Theorem 3.2.11
Suppose V and W are f-d vector space s.t. dimV < dimW . Then, no linear map from V to W is
surjective.

Proof 6. We know
dim range T = dimV − dimnull T

≤ dimV < dimW

Then, T cannot be surjective by definition. ■

Example 3.2.12 Solving Linear Systems Using Linear Maps I
For a homogenous system of linear equations,

A1,1x1 + · · ·+A1,nxn = 0
...

Am,1x1 + · · ·+Am,nxn = 0

,

where Aj,k ∈ F and (x1, · · · , xn) ∈ Fn, we can defined a linear map T : Fn → Fm as

T (x1, · · · , xn) =

(
n∑

k=1

A1,kxk, · · · ,
n∑

k=1

Am,kxk

)
.

Apparently, (x1, · · · , xn) = 0 is a solution to the system, but the question is “If there are any non-
zero solutions for this linear system?”

Theorem 3.2.13
A homogeneous system of linear equations with more variables than equations has non-zero
solutions.

Proof 7. Suppose T ∈ L(V,W ). Then, dimV = n and dimW = m. Suppose n > m. So, dimV >

dimW. By the Theorem 3.2.5, we know T is not injective. ■

Example 3.2.14 Solving Linear Systems Using Linear Maps II
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For an inhomogeneous system of linear equations

n∑
k=1

A1,kxk = c1

...
n∑

k=1

Am,kxk = cm

,

where Aj,k ∈ F and (c1, · · · , cm) ∈ Fm and (x1, · · · , xn) ∈ Fn, we can define T : Fn → Fm by

T (x1, · · · , xm) =

(
n∑

k=1

A1,kxk, · · · ,
n∑

k=1

Am,kxk = c1

)
.

However, in this case, (x1, · · · , xn) = 0 may not be a solution to the system.

Theorem 3.2.15
An inhomogeneous system of linear equations with more equations than variables has no solu-
tion for some choice of the constant terms.

Proof 8. Suppose T ∈ L(V,W ). So, dimV = n and dimW = m. Suppose n < m. Then, dimV <

dimW. By Theorem 3.2.11, we know T is not surjective. ■
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3.3 Matrices

Definition 3.3.1 (Matrix). Let m,n ∈ Z+. An m-by-n matrix A is a rectangular array of elements of F
with m rows and n columns:

A =

A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

.
The notation Aj,k denotes the entry in row j, column k of A.
Definition 3.3.2 (Matrix of a Linear Map). Suppose T ∈ L(V,W ) and v1, · · · , vn is a basis of V and
w1, · · · , wm is a basis ofW . The matrix of T with respect to these bases is them×nmatrix M(T ) whose
Aj,k are defined by

Tvk = A1,kw1 + · · ·+Am,kwm.

If the bases are not clear from the context, then the notation M(T, (v1, · · · , vn), (w1, · · · , wm)) is used.

Example 3.3.3 Suppose T ∈ L(F2,F3) is defined by T (x, y) = (x + 3y, 2x + 5y, 7x + 9y). Find the
matrix of T with respect to the standard bases of F2 and F3.

Solution 1.
Note that T (1, 0) = (1, 2, 7) and T (0, 1) = (3, 5, 9). Then,

M(T ) =

1 3

2 5

7 9

.
□

Example 3.3.4 Suppose D ∈ L(P3(R),P2(R)) is the differentiation map defined by Dp = p′. Find
the matrix of D with respect to the standard bases of P3(R) and P2(R).

Solution 2.
Standard bases of P3(R) : 1, x, x2, x3. Standard bases of P2(R) : 1, x, x2. Since (xn)′ = nxn−1, so

we have
D(1) = 0 = 0 · 1 + 0 · x+ 0 · x2

D(x) = 1 = 1 · 1 + 0 · x+ 0 · x2

D(x2) = 2x = 0 · 1 + 2 · x+ 0 · x2

D(x3) = 3x2 = 0 · 1 + 0 · x+ 3 · x2

So, we have

M(D) =

0 1 0 0

0 0 2 0

0 0 0 3

.
□

Definition 3.3.5 (Matrix Addition). The sum of two matrices of the same size is the matrix obtained by
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adding corresponding entries in the matrices:A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

+

C1,1 · · · C1,n

...
...

Cm,1 · · · Cm,n

 =

 A1,1 + C1,1 · · · A1,n + C1,n

...
...

Am,1 + Cm,1 · · · Am,n + Cm,n

.

Theorem 3.3.6
Suppose S, T ∈ L(V,W ). Then, M(S + T ) = M(S) +M(T ).

Proof 3. Let v1, · · · , vn be a basis of V and w1, · · · , wn be a basis of W . Suppose M(S) = A and
M(T ) = C. Then, if 1 ≤ k ≤ n, we have

(S + T )vk = Svk + Tvk

= (A1,kw1 + · · ·+Am,kwm) + (C1,kw1 + · · ·+ Cm,kwm)

= (A1,k + C1,k)w1 + · · ·+ (Am,k + Cm,k)wm.

Hence, we have M(S + T ) = M(S) +M(T ). ■
Definition 3.3.7 (Scalar Multiplication of a Matrix). The product of a scalar and a matrix is the matrix
obtained by multiplying each entry in the matrix by the scalar:

λ

A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

 =

λA1,1 · · · λA1,n

...
...

λAm,1 · · · λAm,n

.
In other words, (λA)j,k = λAj,k.

Theorem 3.3.8
Suppose λ ∈ F and T ∈ L(V,W ). Then, M(λT ) = λM(T ).

Proof 4. Let v1, · · · , vn be a basis of V and M(T ) = A. When 1 ≤ k ≤ v, note that

(λT )vk = λ(Tvk)

= λ(A1,kw1 + · · ·+Am,kwm)

= (λA1,k)w1 + · · ·+ (λAm,k)wm.

So, M(λT ) = λM(T ). ■
Notation 3.3.9. Fm,n := the set of all m× n matrices with entries in F.

Theorem 3.3.10
Supposem,n ∈ Z+.With addition and scalar multiplication defined above, Fm,n is a vector space
and dimFm,n = mn.

Proof 5. It is trivial to prove Fm,n is a vector space. □
Define Aj,k as the matrix with 1 on its jth row, kth column and 0 elsewhere. Then, we can see that

Aj,k for j = 1, · · · ,m and k = 1, · · · , n is a basis for Fm,n. So, dimFm,n = m · n. ■
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Definition 3.3.11 (Matrix Multiplication). SupposeA is anm×nmatrix andC is an n×pmatrix. Then,
AC is defined to be the m× p matrix whose entry in row j. column k is given by

(AC)j,k =
n∑

r=1

Aj,rCr,k.

Remark. Matrix multiplication is not commutative. i.e., AC ̸= CA. However, it is distributive and
associative.

Theorem 3.3.12
If T ∈ L(U, V ) and S ∈ L(V,W ), then M(ST ) = M(S)M(T ).

Notation 3.3.13. Suppose A is an m× n matrix.

1. If 1 ≤ j ≤ m, then Aj,· denotes the 1× n matrix consisting of row j of A.

2. If 1 ≤ k ≤ n, then A·,k denotes the m× 1 matrix consisting of column k of A.

In other words,

A =

A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

; Aj,· =
(
Aj,1 · · · Aj,n

)
∈ F1,n; A·,k =

A1,k
...

Am,k

 ∈ Fm,1.

Theorem 3.3.14 Practical Interpretations of Matrix Multiplication

1. SupposeA is anm×nmatrix andC is ann×pmatrix. Then, (AC)j,k = Aj,·C·,k for 1 ≤ j ≤ m

and 1 ≤ k ≤ p.

2. SupposeA is anm×nmatrix andC is an n× pmatrix. Then, (AC)·,k = AC·,k for 1 ≤ k ≤ p.

3. Suppose A is an m× n matrix and C =

c1...
cn

 is an n× 1 matrix. Then,

AC = c1A·,1 + · · ·+ cnA·,n.

In other words, AC is a linear combination of the columns of A, with the scalars that mul-
tiply the columns coming from C.

Example 3.3.15 1 2

3 4

5 6

(5
1

)
= 5

1

3

5

+ 1

2

4

6

 =

 7

19

31

.
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3.4 Invertibility and Isomorphic Vector Spaces

Definition 3.4.1 (Invertible). A linear map T ∈ L(V,W ) is called invertible if ∃ a linear map S ∈
L(W,V ) s.t. ST equals the identity map on I and TS equals the identity map on W .
Definition 3.4.2 (Inverse). A linear map S ∈ L(W,V ) satisfying ST = I and TS = I is called an inverse
of T .

Theorem 3.4.3
An invertible linear map has a unique inverse.

Proof 1. Suppose T ∈ L(V,W ) is invertible. Let S1 and S2 be inverses of T .Then,

S1 = S1I = S1(TS2) = (S1T )S2 = IS2 = S2.

Thus, S1 = S2, and so inverse is unique. ■
Notation 3.4.4. If T is invertible, then its inverse is denoted by T−1.

Theorem 3.4.5
A linear map is invertible if and only if it is injective and surjective.

Proof 2.
(⇒) Let T ∈ L(V,W ) be invertible. Then, TT−1 = IW and T−1T = TV . Let Tv = 0. Note that

(T−1T )v = 0, so Iv = 0 and thus v = 0. Therefore, null T = {0}, and so T is an injection.
To show T is surjective, suppose w ∈W. Note that since T−1 ∈ L(W,V ), T−1w ∈ V. So,

T (T−1w) = (TT−1)w = TWw = w ∈W.

Therefore, T−1w is the v ∈ V we intend to find. Hence, T is also a surjection. □
(⇐) Let T be surjective and injective. For w ∈ W, define Sw ∈ V s.t. T (Sw) = w. So, we know

Sw is unique. Since (T ◦ S)w = w, we know (T ◦ S) = IW . Consider (S ◦ T )v = S(Tv), we have
T (S(Tv)) = Tv, by definition of S. Since T is injective, we know S(Tv) = V. So, (S ◦ T )v = v, and thus
ST = TV . Therefore T is invertible.

Now, we want to show S is a linear map. Let w1, w2 ∈W, then

T (S(w1 + w2)) = (TS)(w1 + w2) = IW (w1 + w2) = w1 + w2.

By definition, w1 + w2 = T (Sw1) + T (Sw3) = T (Sw1 + Sw2). So, T (S(w1 + w2)) = T (Sw1 + Sw2). By T
is an injection, we have S(w1 + w2) = Sw1 + Sw2. So, S is additive. Further consider

T (S(λw)) = λw = λ(T (Sw)) = T (λSw)

for some w ∈ W. Again, since T is injective, S(λw) = λSw. So, S has homogeneity. Then, S is a linear
map. ■
Definition 3.4.6 (Isomorphism). An isomorphism is an invertible linear map.
Definition 3.4.7 (Isomorphic). Two vector spaces are called isomorphic if there is an isomorphism
from one vector space onto the other one.
Notation 3.4.8. If two vector spaces V and W are isomorphic, we denote them as V ∼=W.
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Theorem 3.4.9
Suppose V and W are f-d vector spaces, then V ∼=W if and only if dimV = dimW.

Proof 3.
(⇒) Suppose V ∼=W. By Fundamental Theorem of Linear Maps, we know

dimV = dimnull T + dim range T.

Since V ∼= W, T is invertible and thus is injective and surjective. So, dimnull T = 0 and dim range T =

dimW. Therefore, dimV = 0 + dimW = dimW. □
(⇐) Suppose dimV = dimW. Suppose v1, · · · , vn andw1, · · · , wn are bases of V andW , respectively.

Then, dimV = dimW = n. Here, we want to define a bijection between V and W . Let T be defined as
Tvi = wi (i = 1, · · · , n).

Let Tv = 0. Then, T (a1v1+ · · ·+anvn) = 0. So, by definition, a1w1+ · · ·+anwn = 0. Sincew1, · · · , wn

is a basis, we have a1 = · · · = an = 0. So, null T = {0}, and thus T is an injection.
Let w ∈ W be any vector. Then, we know w = c1w1 + · · · + cnwn. Note that, by definition of T , we

have T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cnwn. Hence, ∀w ∈ W, ∃v = c1v1 + · · ·+ cnvn ∈ V s.t. Tv = w.

Therefore, T is a surjection.
Finally, it is trivial to show that T is indeed a linear map, and so the proof is complete. ■

Theorem 3.4.10
Suppose v1, · · · , vn is a basis of V and w1, · · · , wm is a basis of W . then, M is an isomorphism
between L(V,W ) and Fm,n.

Proof 4. We already know M is linear, so we just need to show M is a bijection.
To prove M is injective, consider M(T ) = 0 for some T ∈ L(V,W ). So, we get Tvk = 0. Since

v1, · · · , vn is a basis of V , we know Tv = 0 ∀v ∈ V . Then, T is the zero-mapping, or T = 0. Therefore,
nullM = {0}.

To show M is surjective, suppose A ∈ Fm,n. Let T be a linear map from V to W s.t.

Tvk =

m∑
j=1

Aj,kwj , k = 1, · · · , n.

Obviously, M(T ) = A, and thus rangeM = Fm,n. So, M is also a surjection. ■

Theorem 3.4.11
Suppose V and W are f-d. Then, L(V,W ) is f-d and dimL(V,W ) = (dimV )(dimW ).

Proof 5. By Theorem 3.4.10 and Theorem 3.4.9, we know dimL(V,W ) = dimFm,n. Further by The-
orem 3.3.10, we know dimFm,n = (m)(n). As dimV = n and dimW = m, so we have

dimL(V,W ) = (dimV )(dimW ).

■
Definition 3.4.12 (Matrix of a Vector, M(v)). Suppose v ∈ V and v1, · · · , vn is a basis of V . The matrix
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of v with respect to this basis is the n× 1 matrix

M(v) =

c1...
cn

,
where c1, · · · , cn are scalars s.t. v = c1v1 + · · ·+ cnvn.

Theorem 3.4.13 M(T )·,k = M(vk)

Suppose T ∈ L(V,W ) and v1, · · · , vn is a basis of V andw1, · · · , wm is a basis ofW . Let 1 ≤ k ≤ n.
Then, the kth column of M(T ), which is denoted by M(T )·,k, equals M(vk).

Proof 6. This theorem is an immediate result by definitions of matrix of a linear mapping and a
vector. ■

Theorem 3.4.14
Suppose T ∈ L(V,W ) and v ∈ V . Suppose v1, · · · , vn is a basis of V and w1, · · · , wm is a basis of
W . Then, M(Tv) = M(T )M(v).

Proof 7. Note that v = c1v1+ · · ·+cnvn, so we have Tv = c1Tv1+ · · ·+cnTvn. So, by Theorem 3.4.13,
we know

M(Tv) = c1M(Tv1) + · · ·+ cnM(Tvn)

= c1M(T )·,1 + · · ·+ cnM(T )·,n

= M(T )M(v).

The final equality holds due to our interpretation of matrix multiplication as column linear combina-
tions (Theorem 3.3.14(3)) ■

Remark. M : Fn → Fn,1 is an isomorphism:

v = c1v1 + · · ·+ cnvn 7−→

c1...
cn

.
Proof 8. Suppose M(v) = 0 : M(c1v1 + · · · + cnvn) = 0. So, we have c1w1 + · · · + cnwn = 0. Since

w1, · · · , wn is a basis, c1 = · · · = cn = 0. So, v = 0. Therefore, nullM = {0}, and so M is injective. □

Now, prove M is surjective. Note that ∀

c1...
cn

, we have M(c1v1 + · · · + cnvn) =

c1...
cn

. So, M is a

surjection. □
Finally, its’ trivial to prove M is a linear map. □
Since M is both surjective and injective, M is an isomorphism. ■

Definition 3.4.15 (Operator). A linear map from a vector space to itself is called an operator.
Notation 3.4.16. The notation L(V ) denotes the set of all operators on V . So, L(v) = L(V, V ).
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Theorem 3.4.17
Suppose V is f-d and T ∈ L(V ). Then, the following are equivalent: (a) T is invertible; (b) T is
injective; and (c) T is surjective.

Proof 9.

1. Clearly (a) implies (b). □

2. Suppose (b): T is injective. So, null T = {0}. Then, by Fundamental Theorem of Linear Maps, we
know

dimV = dimnull T + dim range T = 0 + dim range T.

Since dim range T = dimV, we know T is surjective. □

3. Suppose (c): T is surjective. So, range T = V . Then, by Fundamental Theorem of Linear maps,
we have

dimnull T = dimV − dim range T = 0.

So, null T = {0}, and thus T is injective. Since T is surjective and injective, T is invertible.

■

Example 3.4.18 Show that for each polynomial q ∈ P(R), there exists a polynomial p ∈ P(F) such
that ((x2 + 5x+ 7)p)′′ = q.

Proof 10. We know that every non-zero polynomial must have a degree of m. So, we can think of
this problem under Pm(R). Note that

((x2 + 5x+ 7)p)′′ = 2p+ (4x+ 10)p′ + (x2 + 5x+ 7)p′′ = q.

Therefore, the degree of p and q should be the same. Define T : Pm(R) → Pm(R) as

Tp = ((x2 + 5x+ 7)p)′′.

Then, T is an operator on Pm(R). Consider Tp = 0. We have ax + b = (x2 + 5x + 7)p. Note that only
when p = 0, the equation above holds. So, it must be that p = 0 when Tp = 0. That is, null T = {0}, and
so T is injective. By Theorem 3.4.18, we know T is also surjective, and so our proof is complete. ■
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3.5 Duality

Definition 3.5.1 (Linear Functional). A linear functional on V is a linear map from V to F. That is, a
linear functional is an element of L(V,F).

Example 3.5.2

1. Fix (c1, · · · , cn) ∈ Fn. Define φ : Fn → F by φ(x1, · · · , xn) = c1x1 + · · · + cnxn. Then, φ is a
linear functional on Fn.

2. Define φ : P(R) → R as φ(p) = 3p′′(5) + 7p(4).

3. Define φ : P(R) → R as φ(p) =
∫ 1

0
p(x)dx.

Definition 3.5.3 (Dual Space/V ′/V ∗). The dual space of V , denoted as V ′, is the vector space of all
linear functionals on V . In other words, V ′ = L(V,F).

Theorem 3.5.4
Suppose V is f-d. Then, V ′ is also f-d and dimV ′ = dimV .

Proof 1. Note that for a general linear map, L(V,W ) ∼= Fm,n. So, L(V,F) = V ′ ∼= F1,n. Hence,

dimV ′ = dimF1,n = 1 · n = n = dimV.

■
Definition 3.5.5 (Dual Basis). If v1, · · · , vn is a basis of V , then the dual basis of v1, · · · , vn is the list
φ1, · · · , φn of elements of V ′, where each φj is the linear functional on V s.t.

φj(vk) =

{
1 if k = j

0 if k ̸= j
.

Example 3.5.6 Find the dual basis of e1, · · · , en ∈ Fn

Solution 2.

φ1(e1) = 1 φ2(e1) = 0 · · · φn(e1) = 0

φ1(e2) = 0 φ2(e2) = 1 · · · φn(e2) = 0
...

...
. . .

...
φ1(en) = 1 φ2(en) = 0 · · · φn(en) = 1

Define φj as

φj(x) = φj(x1, · · · , xn) = x1φj(e1) + · · ·+ xjφj(ej) + · · ·+ xnφj(en) = xj .

□
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Theorem 3.5.7
Suppose V is f-d. Then, the dual basis of a basis of V is a basis of V ′.

Proof 3. Suppose v1, · · · , vn is a basis of V andφ1, · · · , φn denotes the dual basis. Since we’ve shown
dimV = dimV ′ in Theorem 3.5.4, we only need to show φ1, · · · , φn is L.I.. Select c1φ1 + · · ·+ cnφn = 0.
Then,

(c1φ1 + · · ·+ cnφn)(v) = 0 ∀ v ∈ V.

Suppose v = v1 + · · ·+ vn, then

(c1φ1 + · · ·+ cnφn)(vj) = cj for j = 1, · · · , n.

So, (c1φ1+ · · ·+ cnφn)(v) = c1+ · · ·+ cn = 0. So, it must be that c1 = · · · = cn = 0. Therefore, φ1, · · · , φn

is L.I. and our proof is complete. ■
Definition 3.5.8 (Dual Map). If T ∈ L(V,W ), then the dual map of T is the linear map T ′ ∈ L(W ′, V ′)

defined by T ′(φ) = φ ◦ T for φ ∈W ′.

Remark. The following diagram represents dual map (but not an exact representation).

V

W

F

T

φ ∈ L(W,F) =W ′

T ′(φ) = φ ◦ T ∈ V ′

T ′

Also, dual map is a linear map, so it is additive and homogeneous.

1. T ′(φ+ ψ) = (φ+ ψ) ◦ T = φ ◦ T + ψ ◦ T = T ′(φ) + T ′(ψ).

2. T ′(λφ) = (λφ) ◦ T = λ(φ ◦ T ) = λT ′(φ).

Example 3.5.9 Suppose D : P(R) → P(R) as Dp = p′.

1. Define a linear functional φ : P(R) → R as φ(p) = p(3). Find D′(φ).

Solution 4.

(D′(φ))(p) = (φ ◦D)(p) = φ(Dp) = φ(p′) = p′(3).

□

2. Define φ : P(R) → R, a linear functional, as φ(p) =
∫ 1

0
p(x) dx. Find D′(φ).

Solution 5.

(D′(φ))(p) = (φ ◦D)(p) = φ(Dp) = φ(p′) =

∫ 1

0
p′(x) dx = p(1)− p(0).

□
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Theorem 3.5.10 Algebraic Properties of Dual Maps

1. (S + T )′ = S′ + T ′ ∀ S, T ∈ L(V,W )

2. (λT )′ = λT ′ ∀ T ∈ L(V,W )

3. (ST )′ = T ′S′ ∀ T ∈ L(U, V ) and S ∈ L(V,W )

Proof 6.

1. (S + T )′ ∈ L(W ′, V ′). Let φ ∈W ′. Then,

(S + T )′(φ) = φ ◦ (S + T ) = φ ◦ S + φ ◦ T = S′(φ) + T ′(φ) = (S′ + T ′)(φ). □

2. (λT )′ ∈ L(W ′, V ′). Let φ ∈W ′. Then,

(λT )′(φ) = φ ◦ (λT ) = λ(φ ◦ T ) = λT ′(φ) = (λT ′)(φ). □

3. (ST )′ ∈ L(W ′, U ′). Let φ ∈W ′. Then,

(ST )′(φ) = φ ◦ (ST ) = φ ◦ (S ◦ T ) = (φ ◦ S) ◦ T = (S′(φ)) ◦ T = T ′(S′(φ)) = (T ′S′)(φ).

■
Definition 3.5.11 (Transpose/At). The transpose of a matrix A, denoted At, is the matrix obtained
from A by interchanging the rows and columns. i.e., (At)k,j = Aj,k.

Remark. Transpose is additive and homogeneous. That is, (A+ C)t = At + Ct and (λA)t = λAt.

Theorem 3.5.12
If A is an m× n matrix and C is an n× p matrix, then (AC)t = CtAt.

Proof 7. Note that

(AC)tk,j = (AC)j,k =
n∑

r=1

Aj,rCr,k =

n∑
r=1

(Ct)k,r(A
t)r,j = (CtAt)k,j

■

Theorem 3.5.13
Suppose T ∈ L(V,W ). Then, M(T ′) = (M(T ))t.

Proof 8. Suppose v1, · · · , vn is a basis of V , w1, · · · , wm is a basis of W , φ1, · · · , φn is a basis of V ′,
and ψ1, · · · , ψm is a basis of W ′. Let A = M(T ) and C = M(T ′). Since T ′(ψj) = C1,jφ1 + · · · + Cn,jφn

and T ′(ψj) = ψj ◦ T , we have ψj ◦ T = C1,jφ1 + · · ·+ Cn,jφn. Consider

(ψj ◦ T )(vk) = (C1,jφ1 + · · ·+ Cn,jφn)(vk) = Ck,jφk(vk) = Ck,j .
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Also, we have

(ψj ◦ T )(vk) = ψj(Tvk) = ψj(A1,kw1 + · · ·+Am,kwm) = ψj(Aj,kwj) = Aj,k(φj(wj)) = Aj,k.

Therefore, we have Aj,k = Ck,j , and thus A = Ct. So, M(T ) = (M(T ′))t. ■
Definition 3.5.14 (Annihilator/U0). For U ⊆ V, the annihilator of U , denoted as U0, is defined by

U0 =
{
φ ∈ V ′ | φ(u) = 0 ∀u ∈ U

}
.

Theorem 3.5.15
Suppose U ⊆ V . Then U0 is a subspace of V ′.

Proof 9.

1. 0 ∈ U0: Since 0(u) = 0 ∀u ∈ U, then 0 ∈ U0. □

2. Let φ,ψ ∈ U0. Then,
(φ+ ψ)(u) = φ(u) + ψ(u) = 0.

So, φ+ ψ ∈ U0. □

3. Let λ ∈ F and φ ∈ U0. Then
(λφ)(u) = λφ(u) = λ · 0 = 0.

So, λφ ∈ U0.

■
Lemma 3.5.16 Suppose V is f-d vector space. IfU is a subspace of V and S ∈ L(U,W ), then there exists
T ∈ L(V,W ) s.t. Tu = Su ∀u ∈ U .

Proof 10. Supposeu1, · · · , um is a basis ofU . Then, we can extend it to a basis ofV asu1, · · · , um, vm+1, · · · , vn.
Define T ∈ L(V,W ) as Tui = Sui, Tvj = 0, where i = 1, · · · ,m and j = m+ 1, · · · , n. Note that

Tu = T (a1u1 + · · ·+ amum)

= a1Tu1 + · · ·+ amTum

= a1Su1 + · · ·+ amSum

= S(a1u1 + · · ·+ amum) = Su.

Therefore, we’ve found such a T . ■

Theorem 3.5.17
Let V be f-d and U be a subspace of V , then dimU + dimU0 = dimV.

Proof 11. Let i ∈ L(U, V ) as i(u) = u ∀u ∈ U . Then, i′ ∈ L(V ′, U ′). So, by Fundamental Theorem
of Linear Map, we know

dimV ′ = dimnull i′ + dim range i′. (9)
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By Theorem 3.5.4, we know dimV = dimV ′ Note that U0 = {φ ∈ V ′ | φ(u) = 0 ∀u ∈ U} and

null i′ =
{
φ ∈ V ′ | i′(φ) = 0

}
=
{
φ ∈ V ′ | φ ◦ i = 0

}
=
{
φ ∈ V ′ | (φ ◦ i)(u) = 0 ∀u ∈ U

}
=
{
φ ∈ V ′ | φ(u) = 0 ∀u ∈ U

}
So, U0 = null i′, and thus dimnull i′ = dimU0.

Further, if φ ∈ U ′, then φ : U → F. By Lemma 3.5.16, φ can be extended to ψ ∈ V ′ with ψ(u) =

φ(u) ∀u ∈ U . Note that i′(ψ) = ψ ◦ i, so (ψ ◦ i)(u) = ψ(u) = φ(u) ∀u ∈ U. Then, ∃ψ ∈ V ′ s.t. i′(ψ) = φ.
So, φ ∈ range U ′. So, dim range i′ = dimU ′ = dimU .

Substitute dimV ′ = dimV , dimnull i′ = dimU0, and dim range i′ = dimU to Equation (9), we get

dimV = dimU0 + dimU.

■

Theorem 3.5.18 The Null Space of T ′

Suppose V and W are f-d and T ∈ L(V,W ). Then,

1. null T ′ = (range T )0

2. dimnull T ′ = dimnull T + dimW − dimV

Proof 12.

1. (⊆) Suppose φ ∈ null T ′ ⊆W ′. Then, T ′(φ) = φ ◦ T = 0 ∈ V ′. So, we know

(φ ◦ T )(v) = 0 ∀v ∈ V. i.e., φ(Tv) = 0.

Note that Tv ∈ range T . By definition, we have φ ∈ (range T )0 □

(⊇) Suppose φ ∈ (range T )0. Then, φ(w) = 0 ∀w ∈ range T . That is, φ(Tv) = 0 ∀v ∈ V . So,
(φ ◦ T )(v) = 0 ∀v ∈ V . Hence, we know φ ◦ T = T ′(φ) = 0 ∈ V ′. Thus, φ ∈ null T ′ ■

2.
dimnull T ′ = dim(range T )0

= dimW − dim range T

= dimW − (dimV − dimnull T )

= dimW − dimV + dimnull T.

■

Theorem 3.5.19
Suppose V and W are f-d and T ∈ L(V,W ). Then, T is surjective if and only if T ′ is injective.

Proof 13.

39



3 LINEAR MAPS 3.5 Duality

(⇒) Suppose T is surjective. Then, dim range T =W . So, (range T )0 = {0}. Hence,

dimnull T ′ = dim(range T )0 = 0.

Thus, T ′ is injective. □
(⇐) Suppose T ′ is injective. Then,

dimnull T ′ = 0.

So, dim(range T )0 = dimnull T ′ = 0. Then, (range T )0 = {0}. So, dim range T = W , and thus T is
surjective. ■

Theorem 3.5.20 The Range of T ′

Suppose V and W are f-d and T ∈ L(V,W ). Then,

1. dim range T ′ = dim range T

2. range T ′ = (null T )0

Proof 14.

1. By Fundamental Theorem of Linear Map, we have

dim range T ′ = dimW ′ − dimnull T ′

= dimW ′ − dim(range T )0

= dimW ′ − dimW ′ + dim range T

= dim range T.

■

2. Suppose φ ∈ range T ′ ⊆ V ′. Then, ∃ψ ∈W ′ s.t. T ′(ψ) = ψ ◦ T = φ. Let v ∈ null T . Then,

φ(v) = (ψ ◦ T )(v) = ψ(Tv) = ψ(0) = 0.

Then, φ ∈ (null T )0. So, range T ′ ⊆ (null T )0. □

Note that
dim range T ′ = dim range T = dimV − dimnull T = dim(null T )0.

Then, range T ′ ⊆ (null T )0 and dim range T ′ = dim(null T )0, so it must be that range T ′ = (null T )0.

■

Theorem 3.5.21
Suppose V and W are f-d and T ∈ L(V,W ). Then, T is injective if and only if T ′ is surjective.

Proof 15.
(⇒) If T is injective, null T = {0}. So,

dimnull T = dimV − dim(null T )0 = dimV − dim range T ′ = 0.

So, dim range T ′ = dimV = dimV ′. Then, T ′ is surjective. □
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(⇐) If T ′ is surjective, dim range T ′ = dimV ′ = dimV . So,

dimnull T = dimV − dim(null T )0 = dimV − dim range T ′ = 0.

Then, null T = {0}, and so T is injective. ■
Definition 3.5.22 (Row Rank & Column Rank). Suppose A is an m× n matrix with entries in F.

1. The row rank of A is the dimension of the span of the rows of A in F1,n.

2. The column rank of A is the dimension of the span of the columns of A in Fm,1.

Theorem 3.5.23
Suppose V and W are f-d and T ∈ L(V,W ). Then, dim range T equals the column rank of M(T ).

Proof 16. Suppose v1, · · · , vn is a basis of V and w1, · · · , wm is a basis of W . Then,

Tvk = A1,kw1 + · · ·+Am,kwm

and thus

M(Tvk) =

A1,k
...

Am,k

 ∈ Fm,1

Therefore, M(T ) =
(
M(Tv1) · · · M(Tvn)

)
. Note that range T = span(Tv1, · · · , T vn).

Define M : span(Tv1, · · · , T vn) → span(M(Tv1), · · · ,M(Tvn)) as w 7→ M(w).

1. M is surjective: Note that

c1M(Tv1) + · · ·+ cnM(Tvn) = M(c1Tv1 + · · ·+ cnTvn).

Since c1Tv1 + · · ·+ cnTvn ∈ range T, we know M is surjective. □

2. M is injective: Let
M(c1Tv1 + · · ·+ cnTvn) = 0. (10)

We can reduce c1Tv1 + · · · + cnTvn to a basis Tvj1 , · · · , T vjm . Then, Equation (10) becomes

M(a1Tvj1+ · · ·+amTvjm) = 0. By definition of matrix, we know

a1
...
am

 = 0. So, a1 = · · · = am = 0

and a1Tvj1 + · · ·+ amTvjm = 0. So, M is injective. □

Since M is both surjective and injective, M is a bijection. Thus, M is an isomorphism between
span(Tv1, · · · , T vn) and span(M(Tv1), · · · ,M(Tvn)). In other words,

span(Tv1, · · · , T vn) ∼= span(M(Tv1), · · · ,M(Tvn)).

Then, dim span(Tv1, · · · , T vn) = dim span(M(Tv1), · · · ,M(Tvn)). That is,

dim range T = column rank of T.

41



3 LINEAR MAPS 3.5 Duality

■

Theorem 3.5.24 Row Rank Equals Column Rank
Suppose A ∈ Fm,n. Then, the row rank of A equals the column rank of A.

Proof 17. Define T : Fn,1 → Fm,1 by Tx = Ax. Then, M(T ) = A, where M(T ) is computed with
respect to the standard basis of Fn,1 and Fm,1. Note that

column rank of A = column rank of M(T )

= dim range T Theorem 3.5.23

= dim range T ′ Theorem 3.5.20(1)

= column rank of M(T ′)

= column rank of At Theorem 3.5.13

= row rank of A

■
Definition 3.5.25 (Rank). The rank of a matrix A ∈ Fm,n is the column rank of A, denoted as rankA.
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3.6 Quotients of Vector Spaces

Definition 3.6.1 (v + U/Affine Subset). Suppose v ∈ V and U is a subspace of V . Then

v + U := {v + u | u ∈ U}.

An affine subset of V is a subset of V of the form v + U for some v ∈ V and some subspace U of V . The
affine subset is said to be parallel to U .
Definition 3.6.2 (Quotient Space, V/U). Suppose U is a subspace of V . Then the quotient space V/U
is the set of all affine subsets of V parallel to U . In other words,

V/U := {v + U | v ∈ V }.

Example 3.6.3 If U =
{
(x, 2x) ∈ R2 | x ∈ R

}
, then R2/U is the set of all lines in R2 with slope of 2.

Theorem 3.6.4
Suppose U is a subspace of V and v, w ∈ V . Then, the following are equivalent:

1. v − w ∈ U

2. v + U = w + U

3. (v + U) ∩ (w + U) ̸= ∅

Proof 1.

1. We want to show (1) =⇒ (2). Suppose v−w ∈ U . Note that v+u = w+((v−w)+u). Since v−u

and u ∈ U , we have (v−w) + u ∈ U . So, v+ u ∈ w+U . Similarly, we can show that w+ u ∈ v+U.

Then, we have v + U = w + U. □

2. Now, we want to show (2) =⇒ (3): Suppose v+U = w+U . Then, we have (v+U)∩ (w+U) ̸= ∅,
which is evident from the assumption. □

3. Finally, we will show (3) =⇒ (1). Suppose (v + U) ∩ (w + U) ̸= ∅. Then, ∃u1, u2 ∈ U s.t. v + u1 =

w + u2. So we have v − w = u2 − u1 ∈ U.

■
Definition 3.6.5 (Addition & Scalar Multiplication on V/U). Suppose U is a subspace of V . Then,
addition and scalar multiplication is defined on V/U by

(v + U) + (w + U) = (v + w) + U

and
λ(v + U) = (λv) + U

for v, w ∈ U and λ ∈ F.
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Theorem 3.6.6
Suppose U is a subspace of V . Then, V/U , with the operations of addition and scalar multipli-
cation defined above, is a vector space.

Proof 2.

1. Addition on V/U makes sense.

Note the addition can be written in the language of mapping as + : V/U × V/U → V/U . So, we
have (v + U,w + U) 7→ (v + w) + U . Suppose ∃ v̂.ŵ ∈ V s.t. v + U = v̂ + U and w + U = ŵ + U .
Note that v − v̂ ∈ U and w − ŵ ∈ U by Theorem 3.6.4. Then, (v − v̂) + (w − ŵ) ∈ U . So, we have
(v + w)− (v̂ + ŵ)inU . Further, by Theorem 3.6.4, we have

(v + w) + U = (v̂ + ŵ) + U. □

2. Scalar multiplication on V/U makes sense.

We can write the scalar multiplication on V/U as a mapping: · : F × V/U → V/U defined as
(λ, v + U) 7→ λv + U . Suppose ∃ v̂ ∈ V s.t. v + U = v̂ + U . So we know v − v̂ ∈ U , and thus
λ(v − v̂) = λv − λv̂ ∈ U . By Theorem 3.6.4, we then have (λv) + U = (λv̂) + U . Thus, the scalar
multiplication makes sense. □

3. additive identity: 0 + U = U. □

4. additive inverse: (−v) + U. □

5. commutativity:

(v + U) + (w + U) = (v + w) + U = (w + v) + U

= (w + U) + (v + U). □

6. associativity:

[(v + U) + (w + U)] + (x+ U) = [(v + w) + U ] + (x+ U)

= [(v + w) + x] + U

= [v + (w + x)] + U

= (v + U) + [(w + x) + U ]

= (v + U) + [(x+ U) + (x+ U)]. □

7. multiplicative identity: 1 · (v + U) = (1 · v) + U = v + U. □

8. distributivity:
a[(v + U) + (w + U)] = a[(v + w) + U ]

= a(v + w) + U

= (av + aw) + U

= (av + U) + (aw + U)

= a(v + U) + a(w + U).
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(a+ b)(v + U) = (a+ b)v + U

= (av + bv) + U

= (av + U) + (bv + U)

= a(v + U) + b(v + U)

■
Definition 3.6.7 (Quotient Map). Suppose U is a subspace of V . The quotient map π is the linear map
π : V → V/U defined by π(v) := v + U ∀v ∈ V .

Remark. Here are some properties of the quotient map:

1. π(v) is defined ∀v ∈ V . Thus, π is surjective.

2. null π = {v ∈ V | π(v) = 0}. If π(v) = 0, then v + U = U = 0 + U . So, v − 0 ∈ U by Theorem 3.6.4.
Then, v ∈ U . So, null π ⊆ U . Further, ∀v ∈ U , if π(v) = 0, then v ∈ null π, then U ⊆ null π. So,
U = null π.

3. π(v + w) = (v + w) + U = (v + U) + (w + U) = π(v) + π(w).

4. π(λv) = (λv) + U = λ(v + U) = λπ(v).

Theorem 3.6.8
Suppose V is f-d and U is a subspace of V . Then

dimV/U = dimV − dimU.

Proof 3. By Fundamental Theorem of Linear Map, we have

dimV = dimnull π + dim range π. (11)

Since null π = U from the Remark, we have dimnull π = dimU. Further, since π is surjective as men-
tioned in the Remark, range π = V/U . Hence, dim range π = dimV/U . Therefore, Equation (11) be-
comes

dimV = dimU + dimV/U,

or we have
dimV/U = dimV − dimU

■
Definition 3.6.9 (T̃ ). Suppose T ∈ L(V,W ). Define T̃ : V/(null T ) →W by T̃ (v + null T )− Tv.

Proof 4.

1. This definition makes sense

Suppose u, v ∈ V s.t. u + null T = v + null T . By Theorem 3.6.4, we know u − v ∈ null T . Then,
T (u− v) = 0, or Tu = Tv. □

2. T̃ is a linear map.

T̃ [(u+ null T ) + (v + null T )] = T̃ [(u+ v) + null T ]

= T (u+ v)

= Tu+ Tv = T̃ (u+ null T ) + T̃ (v + null T ). □
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T̃ [λ(u+ null T )] = T̃ (λu+ null T )

= T (λu)

= λTu

= λT (u+ null T ).

■

Theorem 3.6.10
Suppose T ∈ L(V,W ). Then,

1. T̃ is injective.

2. range T̃ = range T .

3. V/(null T ) ∼= range T .

Proof 5.

1. Suppose v ∈ V and T̃ (v + null T ) = 0. Then, Tv = 0. So, v ∈ null T , or v − 0 ∈ null T . By Theorem
3.6.4, we then have v + null T = 0 + null T . Then, it implies null T̃ = 0. So, T̃ is injective. □

2. By definition of T̃ , it must be range T̃ = range T. □

3. Note that dimV/(null T ) = dimnull T̃ + dim range T̃ = 0 + dim range T . Then, by Theorem 3.4.9,
we know two vector spaces are isomorphic if and only if their dimensions are equal. Then,

V (null T ) ∼= range T.

■
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4 Eigenvectors and Invariant Subspaces

4.1 Invariant Subspaces

Theorem 4.1.1
Suppose V is f-d with dimV = n ≥ 1. Then, ∃ 1−dimensional subspaces U1, · · · , Un of V s.t.

V = U1 ⊕ · · · ⊕ Un.

Proof 1. Choose a basis v1, · · · , vn of V . Then, we know V = span(v1) + · · ·+ span(vn). Also, ∀v ∈ V ,
we have v = a1v1 + · · ·+ anvn with ajvj ∈ span(vj). Set a1v1 + · · ·+ anvn = 0. Since v1, · · · , vn is a basis,
it must be a1 = · · · = an = 0. Then,

V = span(v1)⊕ · · · ⊕ span(vn).

■

Theorem 4.1.2
Suppose U1, · · · , Um are f-d subspaces of V s.t. U1 + · · ·+Um is a direct sum. Then, U1 ⊕ · · · ⊕Um

is f-d and
dimU1 ⊕ · · · ⊕ Um = dimU1 + · · ·+ dimUm.

Proof 2. Suppose uk,1, · · · , uk.jk is a basis of the subspace Uk. Then, any vector in
m⊕
i=1

Ui is in the

form of u1 + · · ·+ um, uj ∈ Uj . Also,

ui =

ji∑
k=1

ai,kui,k.

So,

u1 + · · ·+ um =

j1∑
k=1

a1,ku1,k + · · ·+
jm∑
k=1

am,kum,k.

Then, u1 + · · ·+ um is a linear combination of u1,1, · · · , uj,m. So, the direct sum is f-d. □
Further, suppose

j1∑
k=1

a1,ku1,k + · · ·+
jm∑
k=1

am,kum,k = 0.

Since U1 + · · ·+ Um is a direct sum, it must be

j1∑
k=1

a1,ku1,k = · · · =
jm∑
k=1

aa,kum,k = 0.

Since we selected bases, a1,k = · · · = am,k = 0. So, u1,1, · · · , um,jm is a basis of U1 ⊕ · · · ⊕ Um. Then,

dimU1 ⊕ · · · ⊕ Um = dimU1 + · · ·+ dimUm.

■
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Definition 4.1.3 (Invariant Subspace). Suppose T ∈ L(V ). A subspaceU of V is called invariant under
T if u ∈ U implies Tu ∈ U .

Example 4.1.4 Suppose T ∈ L(V ). Show that each of the following subspaces of V is invariant
under T :

1. {0}

Proof 3. T0 = 0 ∈ {0} ■

2. V

Proof 4. u ∈ V =⇒ Tu ∈ V ■

3. null T

Proof 5. u ∈ null T =⇒ Tu = 0 ∈ range T ■

4. range T

Proof 6. u ∈ range T =⇒ Tu ∈ range T ■

Example 4.1.5 Suppose T ∈ L(P(R)) is defined by Tp = p′. Then, P4(R) is invariant under T .
Proof 7. Note that Tp4) ∈ P4(R). Then, P4(R) is invariant under T . ■

Definition 4.1.6 (Eigenvalue). Suppose T ∈ L(V ). A number λ ∈ F is called an eigenvalue of T if
∃ v ∈ V s.t. v ̸= 0 and Tv = λv.
Corollary 4.1.7 T has a 1−dimensional invariant subspace if and only if T has an eigenvalue.

Proof 8.
(⇒) Suppose span(v) is invariant under T . Let U be defined as U = {λv | λ ∈ F} = span(v). Then.

U is the invariant subspace under T and dimU = 1. Then, ∀v ∈ V , we have Tv ∈ U . Hence, ∃λ ∈
F s.t. Tv = λv. Then, λ is an eigenvalue. □

(⇐) Suppose λ ∈ F is an eigenvalue. Then, Tv = λv. Hence, span(v) is a 1 =dimensional invariant
subspace under T . ■

Theorem 4.1.8 Equivalent Conditions to be an Eigenvalue
Suppose V is f-d, T ∈ L(V ), and λ ∈ F. Then, the following are equivalent:

1. λ is an eigenvalue of T .

2. T − λI is not injective.

3. T − λI is not surjective.

4. T − λI is not invertible.

Proof 9.

1. (1) =⇒ (2): Suppose λ is an eigenvalue of T . Then, ∃v ∈ V s.t. v ̸= 0 and Tv − λv. So, Tv − λv =

(T − λI)v = 0. Since v ̸= 0, null (T − λI) ̸= {0}, and thus T is not injective. □
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2. Note that T − λI is an operator by itself. By Theorem 3.4.17, we know (2), (3), and (4) are equiva-
lent.

3. (4) =⇒ (1): Suppose T −λI is not invertible. Then, it is not injective. So, ∃v ̸= 0 s.t. (T −λI)v = 0.
That is, Tv − λIv = Tv − λv = 0. So, Tv = λv. Then, λ is an eigenvalue of T .

■
Definition 4.1.9 (Eigenvector). Suppose T ∈ L(V ) and λ ∈ F is an eigenvalue of T . A vector v ∈ V is
called an eigenvector of T corresponding to λ if v ̸= 0 and Tv = λv.
Corollary 4.1.10 A vector v ∈ V with v ̸= 0 is an eigenvector of T with respect to λ if and only if
v ∈ null (T − λI).

Proof 10. Note that Tv = λv if and only if (T − λI)v = 0. ■

Example 4.1.11 Suppose T ∈ L(F2) is defined by T (w, z) = (−z, w).

1. Find the eigenvalues and eigenvectors of T if F = R.

Solution 11.

Let T (2, z) = λ(w, z). So, (−z, w) = (λw, λz). Then, solve

{
−z = λw

w = λz
.

Then, we have λ2z + z = 0. If z ̸= 0, λ2 + 1 = 0. This equation has no solutions on R. So
T has no eigenvalues. If w = 0, z = 0, then T (w, z) = T (0.0) = T0. By definition, T has no
eigenvalues. □

2. Find the eigenvalues and eigenvectors of T if F = C.

Solution 12.

Applying similar rational, z ̸= 0 and solve λ2 + 1 = 0. Then, we have λ = ±i. If λ = i, then
−z = iw. So, v = (w, z) = (w,−iw). If λ− i, then −z = −iw, or z = iw. So, v = (w, iw). □

Theorem 4.1.12
Let T ∈ L(V ). Suppose λ1, · · · , λm are distinct eigenvalues of T and v1, · · · , vm are corresponding
eigenvectors. Then, v1, · · · , vm is L.I..

Proof 13. Suppose for the sake of contradiction that v1, · · · , vm is linearly dependent. Let k be the
smallest positive integer s.t. vk ∈ span(v1, · · · , vk−1). Then, vk = a1v1 + · · ·+ ak−1vk−1. Applying T , we
have

λkvk = a1λ1v1 + · · ·+ ak−1λk−1vk−1. (12)

Since vk = a1v1 + · · ·+ ak−1vk−1, we also have

λkvk = a1λkv1 + · · ·+ ak−1λkvk−1. (13)

So, by Equation (13)-(12), we have

0 = a1(λk − λ1)v1 + · · ·+ ak−1(λk − λk−1)vk−1.
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By assumption, v1, · · · , vk−1 is L.I.. Then, it must be that a1 = · · · = ak−1 = 0 since λ1, · · · , λk are
distinct eigenvalues. Therefore, vk = a1v1 + · · ·+ ak−1vk−1 = 0.⋇ This contradicts with the fact that vk
is an eigenvector, which cannot be 0. So,it must be that v1, · · · , vm are L.I. ■

Theorem 4.1.13
Suppose V is f-d. Then, each operator on V has at most dimV distinct eigenvalues.

Proof 14. Let T ∈ L(V ). Suppose λ1, · · · , λm are distinct eigenvalues of T . Let v1, · · · , vm be corre-
sponding eigenvectors. By Theorem 4.1.12, we know v1, · · · , vm is L.I.. Further by Theorem 2.3.5, we
know dim span(v1, · · · , vm) ≤ dimV . That is, m ≤ dimV as desired. ■
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4.2 Eigenvectors and Upper-Triangular Matrices

Definition 4.2.1 (Tm). Suppose T ∈ L(V ) and m is a positive integer. Then, Tm is defined by

Tm := T · · ·T︸ ︷︷ ︸
m times

.

Specially, T 0 is defined to be the identity operator I on V . Further, if T is invertible with inverse T−1,
then T−m is defined by T−m := (T−1)m.

Theorem 4.2.2

TmTn = Tm+n; (Tm)n = Tmn.

Definition 4.2.3 (p(T )). Suppose T ∈ L(V ) and p ∈ P(F) is a polynomial given by

p(z) = a0 + a1z + a2z
2 + · · ·+ amz

m, z ∈ F.

Then, p(T ) is the operator defined by

p(T ) := aoI + a1T + a2T
2 + · · ·+ amT

m.

Example 4.2.4 SupposeD ∈ L(P(R)) is the differentiation operator defined byDq = q′ and p is the
polynomuial defined by p(x) = 7− 3x+ 5x2. Find p(D) and (p(D))q.

Solution 1.

p(D) = 7I − 3D + 5D2

(p(D))q = (7I − 3D + 5D2)q

= 7Iq − 3Dq + 5D2q

= 7q − 3q′ + 5q′′.

□

Theorem 4.2.5
If we fix an operator T ∈ L(V ), then the function from P(F) to L(V ) given by p 7→ p(T ) is linear.

Proof 2. Suppose f : P(F) → L(V ) is defined by p 7→ p(T ). Suppose

p = a0 + a1z + · · ·+ amz
m 7→ a0I + a1T + · · ·+ amT

m

and
q = b0 + b1z + · · ·+ bmz

m 7→ b0I + b1T + · · ·+ bmT
m.
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Then,
f(p+ q) = (a0 + b0)I + (a1 + b1)T + · · ·+ (am + bm)Tm

= (a0I + a1T + · · ·+ amT
m) + (b0I + b1T + · · ·+ bmT

m)

= f(p) + f(q).

Further, suppose λ ∈ F, then

f(λp) = λa0I + λa1T + · · ·+ λamT
m

= λ(a0I + a1T + · · ·+ amT
m)

= λf(p).

■
Definition 4.2.6 (Product of Polynomials). If p, q ∈ P(F), then pq ∈ P(F) is the polynomial defined by
(pq)(z) := p(z)q(z) for z ∈ F.

Remark. (pq)(z) = p(z)q(z) = q(z)p(z) = (qp)(z) for z ∈ F.

Theorem 4.2.7 Multiplicative Properties
Suppose p, q ∈ P(F) and T ∈ L(V ). Then

1. (pq)(T ) = p(T )q(T )

2. p(T )q(T ) = q(T )p(T )

Proof 3.

1. Suppose p(z) =
m∑
j=0

ajz
j and q(z) =

n∑
k=0

bkz
k. Then

(pq)(z) = p(z)q(z) =

m∑
j=0

ajz
j

n∑
k=0

bkz
k =

m∑
j=0

n∑
k=0

ajbkz
j+k

So, by definition, we have

p(T )q(T ) =
m∑
j=0

n∑
k=0

ajbkT
j+k =

 m∑
j=0

ajT
j

 ·

(
n∑

k=0

bkT
k

)
= p(T )q(T ). □

2. Similar to the Remark,
p(T )q(T ) = (pq)(T ) = (qp)(T ) = q(T )p(T ).

■

Theorem 4.2.8 Fundamental Theorem of Algebra
Every non-constant polynomial with complex coefficients has a zero.

Theorem 4.2.9 Existence of Eigenvalues
Every operator on a f-d, non-zero, complex vector space has an eigenvalue.
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Proof 4. Let V be a complex vector space with dimension n > 0. Suppose T ∈ L(V ). Choose
v ∈ V s.t. v ̸= 0. Then, v, Tv, T 2v, · · · , Tnv is linearly dependent because dimV = n but the length of
the list is n+ 1 > n. Hence, ∃ a0, a1, · · · , an not all 0 ∈ C s.t.

0 = a0v + a1Tv + · · ·+ anT
nv (14)

By Fundamental Theorem of Algebra (Theorem 4.2.8), we have

a0 + a1z + · · ·+ anz
n = c(z − λ1) · · · (z − λm)

with c ∈ C, c ̸= 0, and λj ∈ C. Then, Equation (14) becomes

0 = a0v + a1Tv + · · ·+ anT
nv

= (a0I + a1T + · · ·+ anT
n)v

= c(T − λ1I) · · · (T − λmI)v

Since v ̸= 0 and c ̸= 0, it must be some T − λiI = 0. Thus, T = λiI, and λi is an eigenvalue of T . ■
Definition 4.2.10 (Diagonal of a Matrix). The diagonal of a square matrix consists of the entires along
the line from the upper left corner to the bottom right corner.
Definition 4.2.11 (Upper-Triangular Matrix). A matrix is called upper-triangular if all the entires be-
low the diagonal equal 0. Typically, we present an upper triangular matrix in the formλ1 ∗

. . .

0 λn

.

Theorem 4.2.12 Conditions for Upper-Triangular Matrix
Suppose T ∈ L(V ) and v1, · · · , vn is a basis of V . Then, the following are equivalent:

1. the matrix of T with respect to v1, · · · , vn is upper triangular.

2. Tvj ∈ span(v1, · · · , vj) for each j = 1, · · · , n

3. span(1, · · · , vj) is invariant under T for each j = 1, · · · , n.

Proof 5.

1. First, we will show (1) ⇐⇒ (2).

Suppose M(T ) =

A1,1 · · · A1,n

. . .
...

0 An,n

. Then,

Tv1 = A1,1v1

Tv2 = A1,2v1 + a2,2v2

...

Tvj = A1,jv1 + · · ·+Aj,jvj .
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So, Tvj ∈ span(v1, · · · , vj). The reverse implication is trivial to prove. □

2. (3) =⇒ (2) is obvious and trivial to prove.

3. Lastly, we want to show (2) =⇒ (3).

Note that for each fixed j = 1, · · · , n, we have

Tv1 ∈ span(v1) ⊆ span(v1, · · · , vj)
Tv2 ∈ span(v1, v2) ⊆ span(v1, · · · , vj)

...

Tvj ∈ span(v1, · · · , vj)

Let v ∈ span(v1, · · · , vj). Then, v is a linear combination of v1, · · · , vj , then

Tv ∈ span(v1, · · · , vj).

That is, span(v1, · · · , vj) is invariant under T .

■
Definition 4.2.13 (Quotient Operator). Suppose T ∈ L(V ) and U is a subspace of V invariant under
T . The quotient operator T/U ∈ L(V/U) is defined by (T/U)(v + U) := Tv + U .

Proof 6. The definition makes sense, and here is the proof. If v + U = w + U , then v − w ∈ U . So,
T (v − w) ∈ U since U is invariant. That is, Tv − Tw ∈ U . Then, Tv + U = Tw + U . ■

Theorem 4.2.14
Suppose U is a subspace of V . Let v1 +U, · · · , vm +U be a basis of V/U and u1, · · · , un be a basis
of U . Then, v1, · · · , vm, u1, · · · , un is a basis of V .

Proof 7. Let v ∈ V . Then v + U ∈ V/U . So, v + U = a1v1 + · · · + amvm + U , uniquely. Then, by
Theorem 3.6.4, we have v−(a1v1+· · ·+amvm) ∈ U . Therefore, v−(a1v1+· · ·+amvm) = b1u1+· · ·+bnun,
uniquely. So, v = a1v1 + · · · + amvm + b1u1 + · · · + bnun. uniquely. By definition, v1, · · · , vm, u1, · · · , un
is a basis of V . ■

Theorem 4.2.15
Suppose V is a f-d complex vector space and T ∈ L(V ). Then, T has an upper-triangular matrix
with respect to some basis of V .

Proof 8.
Base Case When dimV = 1, the implication holds.

Inductive Steps Suppose the implication is true for some complex vector space with dimension of
n− 1. Let dimV = n and v1 be any eigenvector of T . Suppose U = span(v1). Then, U is invariant under
T . Note that dimV/U = dimV −dimU = n−1, so we can use the inductive hypothesis on the quotient
operator T/U ∈ L(V/U). Then, ∃ a basis v2 + U, · · · , vn + U ∈ V/U s.t. T/U has an upper-triangular
matrix. By Theorem 4.2.12, we have

(T/U)(vj + U) ∈ span(v2 + U, · · · , c = vj + U) for j ∈ {2, · · · , n}.
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So, Tvj + U = (c2v2 + · · ·+ cjvj) + U . Then,

Tvj − (c2v2 + · · ·+ cjvj) ∈ U = span(v1).

So, Tvj − (c2v2 + · · · + cjvj) = c1v1 for some c1 ∈ F. Then, Tvj = c1v1 + c2v2 + · · · + cjvj . So,
Tvj ∈ span(v1, · · · , vj) for j ∈ {1, · · · , n}. Since by Theorem 4.2.14, v1, · · · , vn is a basis of V , further
by Theorem 4.2.12, T has an upper-triangular matrix with respect to v1, · · · , vn. So, the implication is
true for dimV = n.

Since the implication is true for dimV = 1 and is true for dimV = nwhenever it is hold for dimV =

n − 1, by the Principle of Mathematical Induction, the implication is true for all positive integers n.
Hence, the proof is complete. ■
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4.3 Eigenspaces and Diagonal Matrices

Definition 4.3.1 (Diagonal Matrix). A diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal.
Definition 4.3.2 (Eigenspace,E(λ, T )). Suppose T ∈ L(V ) and λ ∈ F. The eigenspace of T correspond-
ing to λ, denoted E(λ, T ), is defined by

E(λ, T ) = null (T − λI).

In other words, E(λ, T ) is the set of all eigenvectors of T corresponding to λ, along with the 0 vector.

Theorem 4.3.3 Sum of Eigenspaces is a Direct Sum
Suppose V is f-d and T ∈ L(V ). Suppose also that λ1, · · · , λm are distinct eigenvalues of T . Then

E(λ1, T ) + · · ·+ E(λm, T )

is a direct sum. Further

dimE(λ1, T ) + · · ·+ dimE(λm, T ) ≤ dimV.

Proof 1. Suppose u1+ · · ·+um = 0, where uj ∈ E(λj , T ). If some ui ̸= 0, then u1+ · · ·+um can never
be 0 because u1, · · · , um, as eigenvectors corresponding to distinct eigenvalues, is L.I.. Hence, the only
way for u1 + · · ·+ um to be 0 is by taking u1 = · · · = um = 0. Hence, we know E(λ1, T ) + · · ·+ E(λm, T )

is a direct sum. □
By Theorem 4.1.2, we know

dimE(λ1, T ) + · · ·+ dimE(λm, T ) = dimE(λ1, T )⊕ · · · ⊕ E(λm, T )

≤ dimV.

■
Definition 4.3.4 (Diagonalizable). An operator T ∈ L(V ) is called diagonalizable if the operator has a
diagonal matrix with respect to some basis of V .

Theorem 4.3.5 Conditions Equivalent to Diagonalizability
Suppose V is f-d and T ∈ L(V ). Let λ1, · · · , λm denote the distinct eigenvalues of T . Then, the
following are equivalent:

1. T is diagonalizable.

2. V has a basis consisting of eigenvectors of T .

3. ∃ 1−dimensional subspacesU1, · · · , Un of V , each invariant under T , s.t. V = U1⊕· · ·⊕Un.

4. V = E(λ1, T )⊕ · · · ⊕ E(λm, T ).

5. dimV = dimE(λ1, T ) + · · ·+ dimE(λm, T ).

Remark. To prove this theorem, we will prove (1) ⇐⇒ (2), (2) ⇐⇒ (3), (2) =⇒ (4), (4) =⇒ (5), and
(5) =⇒ (2).
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Proof 2.

1. (1) ⇐⇒ (2): By definition, we know T is diagonalizable if and only if ∃ a basis v1, · · · , vn of T s.t.

M(T ) =

λ1 0
. . .

0 λn

,
which holds if and only if we have Tv1 = λ1v1, · · · , T vn = λnvn. i.e., v1, · · · , vn are eigenvectors of
T. □

2. (2) =⇒ (3): Suppose v1, · · · , vn is a basis of V . Then, for some v ∈ V , we have v = a1v1+ · · ·+anvn.
So, we know V = span(v1) + · · ·+ span(vn). Further, let a1v1 + · · ·+ amvm = 0. Since v1, · · · , vn is
a basis, it must be a1 = · · · = am = 0. So, there is only one way to represent 0. So,

V = span(v1)⊕ · · · ⊕ span(vn).

Now, we want to show each span(vj) is invariant. Consider T (cjvj) = cjTvj = cjλjvj ∈ span(vj).
So, span(vj) is invariant. □

3. (3) =⇒ (2): Suppose ∃ 1−dimensional subspaces U1, · · · , Un of V , each invariant under T , s.t.
V = U1⊕· · ·⊕Un. Then, ∀v ∈ V , we have v = a1u1+· · ·+anun uniquely. Then, u1, · · · , un is a basis
of V . Since U1, · · · , Un are 1−dimensional invariant subspaces, u1, · · · , un are the eigenvalues.
□

4. (2) =⇒ (4): Suppose V has a basis consisting of eigenvectors of T . Then, v = a1v1 + · · · + anvn
is a linear combination of eigenvectors of T . By definition, E(λj , T ) contains the eigenvectors
corresponding to λj . Further since λ1, · · · , λm is distinct, corresponding eigenvectors are L.I..
Then, E(λj , T ) ∩ E(λi, T ) = {0} if i ̸= j. Then, we have

v = a1v1 + · · ·+ anvn ∈ E(λ1, T ) + · · ·+ E(λm, T ).

Hence, V = E(λ1, T ) + · · ·+ E(λm, T ). Further by Theorem 4.3.3, we have

V = E(λ1, T )⊕ · · · ⊕ E(λm, T ). □

5. (4) =⇒ (5): This conclusion can be deduced from Theorem 4.3.3 and its proof.

6. (5) =⇒ (2): Suppose dimV = dimE(λ1, T ) + · · · + dimE(λm, T ). Select Bj , the basis of E(λj , T )

for j = 1, · · · ,m. Denote dimV = n. Then, if we put these bases together as B1, · · · , Bm, we
can write the collection as v1, · · · , vn. Suppose a1v1 + · · · + anvn = 0. Let uj denote the sum of
all the terms akvk s.t. vk ∈ E(λj , T ). Then, the equation becomes u1 + · · · + um = 0 and each
uj ∈ E(λj , T ). Since eigenvectors corresponding to distinct eigenvalues are L.I., it must be that
u1 = · · · = um = 0. Further, by definition of uj , and since u′ks are bases of E(λj , T ), it must be
a1 = · · · = an = 0. So, we know v1, · · · , vn is L.I.. Further, since len(v1, · · · , vn) = n = dimV , we
know that v1, · · · , vn is a basis of V .

■
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Theorem 4.3.6
If T ∈ L(V ) has dimV distinct eigenvalues, then T is diagonalizable.

Proof 3. Suppose T ∈ L(V )has dimV distinct eigenvalues: λ1, · · · , λdimV . Then, it has v1, · · · , vdimV

as corresponding eigenvectors and is L.I.. Note that len(v1, · · · , vdimV ) = dimV . So, v1, · · · , vdimV is a
basis of V . By Theorem 4.3.5, with respect to this basis consisting of eigenvectors, T has a diagonal
matrix. ■

Example 4.3.7 The Fibonacci Sequence F1, F2, · · · is defined by

F1 = F2 = 3 and Fn = Fn−2 + Fn−1 for n ≥ 3.

Define T ∈ L(R2) by T (x, y) = (y, x+ y).

1. Show that Tn(0, 1) = (Fn, Fn+1) for each n ∈ Z+.

Proof 4.

• Base Case: Note that T (0, 1) = (1, 1) = (F1, F2).

• Inductive Process: Suppose Tn−1(0, 1) = (Fn−1, Fn). Then,

Tn = [T (Tn−1)](0, 1) = T [Tn−1(0, 1)]

= T (Fn−1, Fn)

= (Fn, Fn−1 + Fn)

= (Fn, Fn+1).

So, Tn(0, 1) = (Fn, Fn+1) ∀ n ∈ Z+ by Principle of Mathematical Induction.

■

2. Find the eigenvalues of T .

Solution 5.

Suppose T (x, y) = λ(x, y). So, (y, x+y) = (λx, λy). Solve

{
y = λx

x+ y = λy
. That is, x+λx = λ2x,

or λ2x− λx− x = 0. It follows x ̸= 0, so solving λ2 − λ− 1 = 0, we get

λ1 =
1 +

√
5

2
and λ2 =

1−
√
5

2
.

□

3. Since T has two eigenvalues, T should have a basis of R2 consisting of eigenvectors. Find the
basis.

Solution 6.

58
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When λ1 =
1 +

√
5

2
, we have y = λx =

1 +
√
5

2
x. So, v1 =

(
x,

1 +
√
5

2
x

)
= x

(
1,

1 +
√
5

2

)
.

That is,

v1 =

(
1,

1 +
√
5

2

)
.

Similarly, we have

v2 =

(
1,

1−
√
5

2

)
.

Further, it follows that

M(T, v1, v2) =

(
λ1 0

0 λ2

)
.

□

4. Find Fn using an expression of n only.

Solution 7.

Note that (0, 1) =
1√
5
(v1 − v2). So, we have

Tn(0, 1) = Tn

(
1√
5
(v1 − v2)

)
=

1√
5
Tn(v1 − v2)

=
1√
5
(Tnv1 − Tnv2)

=
1√
5
(λn1v1 − λn2v2)

=
1√
5

((
1 +

√
5

2

)n(
1,

1 +
√
5

2

)
−

(
1−

√
5

2

)n(
1,

1−
√
5

2

))

=
1√
5

(1 +
√
5

2

)n

−

(
1−

√
5

2

)n

,

(
1 +

√
5

2

)n+1

−

(
1−

√
5

2

)n+1


= (Fn, Fn+1).

So, we have

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

□
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5 Inner Product Spaces

5.1 Inner Products and Norms

Definition 5.1.1 (Dot Product). For x, y ∈ Rn, the dot product of x and y, denoted x · y, is defined by

x · y = x1y1 + · · ·+ xnyn,

where x = (x1, · · · , xn) and y = (y1, · · · , yn).

Theorem 5.1.2 Properties of dot Product

1. x · x = x21 + · · ·+ x2n ≥ 0 ∀x ∈ Rn.

2. x · x = 0 if and only if x = 0.

3. For y ∈ Rn, define f : Rn → R as x 7→ x · y. Then, f is linear.

4. ∀x, y ∈ Rn, x · y = y · x.

Proof 1. Properties #1, #2, and #4 are trivial to prove, so the proof is omitted. Here we complete a
proof for property #3, linearity of dot product. Let f : Rn → R be defined as x 7→ x · y for a fixed y ∈ Rn.
Note that

f(a+ b) = (a+ b) · y = (a1 + b1)y1 + · · ·+ (an + bn)yn)

= (a1y1 + · · ·+ anyn) + (b1y1 + · · ·+ bnyn)

= f(a) + f(b).

Further, notice that
f(λx) = (λx) · y = (λx1)y1 + · · ·+ (λxn)yn

= λ(x1yx + · · ·+ xnyn = λf(x).

■

Remark. For w, z ∈ Cn, we define the dot product of w and z, denoted as ⟨w, z⟩, as

⟨w, z⟩ = w1z1 + · · ·+ wnzn.

Definition 5.1.3 (Inner Product). An inner product on V is a function that takes each ordered pair
(u, v) of elements of V to a number ⟨u, v⟩ ∈ F and has the following properties:

1. positivity: ⟨v, v⟩ ≥ 0 ∀v ∈ V .

2. definiteness: ⟨v, v⟩ = 0 if and only if v = 0.

3. additivity in first slot: ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ ∀u, v, w ∈ V .

4. homogeneity in first slot: ⟨λu, v⟩ = λ⟨u, v⟩ ∀λ ∈ F and ∀u, v ∈ V .

5. conjugate symmetry: ⟨u, v⟩ = ⟨v, u⟩ ∀u, v ∈ V.
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Example 5.1.4 Here, we offer some examples of inner product. Note that there might be multiple
inner products over a vector space, as long as the following the definition and properties given in
Definition 5.1.3.

1. Consider C[−1, 1], the set of continuous real-valued functions on the interval [−1, 1]. An inner

product can be defined as ⟨f, g⟩ =
∫ 1

−1
f(x)g(x) dx.

Proof 2.

(a) ⟨f, f⟩ =
∫ 1

−1
f2(x) dx ≥ 0.

(b) ⟨f, f⟩ = 0 if and only if f(x) = 0.

(c) Note that

⟨f + g, h⟩ =
∫ 1

−1
[f(x) + g(x)]h(x) dx

=

∫ 1

−1
f(x)h(x) + g(x)h(x) dx

=

∫ 1

−1
f(x)h(x) dx+

∫ 1

−1
g(x)h(x) dx

= ⟨f, h⟩+ ⟨g, h⟩.

(d) ⟨λf, g⟩ =
∫ 1

−1
λf(x)g(x) dx = λ

∫ 1

−1
f(x)g(x) dx = λ⟨f, g⟩.

(e) ⟨g, f⟩ =
∫ 1

−1
g(x)f(x) dx =

∫ 1

−1
f(x)g(x) dx = ⟨f, g⟩ = ⟨f, g⟩.

■

2. An inner product on P(R) can be defined as ⟨p, q⟩ =
∫ ∞

0
p(x)q(x)e−x dx

Proof 3. The definition makes sense. Consider the inner product as ⟨ ⟩ : P(R) × P(R) → R.
Note that ∞ /∈ R. So we need to show the improper integral converges to a finite number
under any circumstances. Consider

x2p(x)q(x)

ex
=
p(x)q(x)e−x

1
x2

.

Note that

lim
x→∞

p(x)q(x)e−x

1
x2

= 0

Further since
∫ ∞

0

1

x2
dx converges as it is a p-series with p = 2 > 1, we know it must be∫ ∞

0
p(x)q(x)e−x dx converges as well, by the comparison test. The remaining job is to show

this definition of ⟨ ⟩ indeed retain the five properties as required in Definition 5.1.3, which is
trivial and so is omitted. ■
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Definition 5.1.5 (Inner Product Space). An inner product space is a vector space V along with an inner
product on V .

Example 5.1.6 Euclidean Inner Product on Fn is defined as

⟨(w1, · · · , wn), (z1, · · · , zn)⟩ = w1z1 + · · ·+ wnzn,

where (w1, · · · , wn), (z1, · · · , zn) ∈ Fn.

Notation 5.1.7. For the rest of this Chapter, without otherwise specification, V denotes an inner prod-
uct space over F.

Remark. If not explicitly defined, the inner product is the Euclidean inner product as defined in Exam-
ple 5.1.6.

Theorem 5.1.8 Basic Properties of an Inner Product

1. For each fixed u ∈ V , the function that takes v to ⟨v, u⟩ is a linear map from V to F.

2. ⟨0, u⟩ = 0 for every u ∈ V .

3. ⟨u, 0⟩ = 0 for ever u ∈ V .

4. ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩ for all u, v, w ∈ V .

5. ⟨u, λv⟩ = λ⟨u, v⟩ ∀λ ∈ F and u, v ∈ V .

Proof 4.

1. Define f : V → F as v 7→ ⟨v, u⟩ for some fixed u ∈ V . Then,

f(v + w) = ⟨v + w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = f(v) + f(w).

f(λv) = ⟨λv, u⟩ = λ⟨v, u⟩ = λf(v). □

2. Since f is a linear map, then f(0) = ⟨0, u⟩ = 0. □

3. Note that ⟨u, 0⟩ = ⟨0, u⟩ = 0 = 0. □

4. Notice
⟨u, v + w⟩ = ⟨v + w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩

= ⟨v, u⟩+ ⟨w, u⟩
= ⟨u, v⟩+ ⟨u,w⟩. □

5. Observe that
⟨u, λv⟩ = ⟨λv, u⟩ = λ⟨v, u⟩

= λ · ⟨v, u⟩ = λ⟨u, v⟩.

■
Definition 5.1.9 (Norm). Suppose V is a vector space. Then, the norm of v is a real-valued function
∥ ∥ : V → R satisfying the following properties:
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1. ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if v = 0.

2. ∥αv∥ = |α|∥v∥ ∀α ∈ F and v ∈ V.

3. triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥ ∀u, v ∈ F.

Definition 5.1.10 (Norm Induced by An Inner Product). For v ∈ V , ∥v∥ =
√

⟨v, v⟩ is a norm on V .

Remark. We will prove Definition 5.1.10 is indeed a definition of norm that satisfies the conditions in-
dicated by Definition 5.1.9 throughout the rest of this section.

Theorem 5.1.11 Basic Properties of Norms
Let v ∈ V . Then,

1. ∥v∥ = 0 if and only if v = 0.

2. ∥λv∥ = |λ|∥v∥ ∀λ ∈ F.

Proof 5.

1. ∥v∥ = 0 if and only if
√
⟨v, v⟩ = 0, which is equivalent to ⟨v, v⟩ = 0. By properties of an inner

product, ⟨v, v⟩ = 0 if and only if v = 0. So, the proof is complete. □

2. Consider
∥λv∥2 = ⟨λv, λv⟩ = λ · λ⟨v, v⟩ = |λ|2⟨v, v⟩.

So, ∥λv∥ =
√

|λ|2⟨v, v⟩ = |λ|∥v∥.

■
Definition 5.1.12 (Orthogonal). Two vectors u, v ∈ V are called orthogonal if ⟨u, v⟩ = 0.

Theorem 5.1.13 Orthogonality and 0

1. 0 is orthogonal to every vector in V .

2. 0 is the only vector in V that is orthogonal to itself.

Proof 6.

1. As ⟨0, u⟩ = 0 ∀u ∈ V , the proof is complete. □

2. Note that ⟨v, v⟩ = 0 if and only if v = 0, so we complete the proof. □

■

Theorem 5.1.14 Pythagorean Theorem
Suppose u and v are orthogonal vectors in V , then

∥u+ v∥2 = ∥u∥2 + ∥v∥2.
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Proof 7. Note that
∥u+ v∥2 = ⟨u+ v, u+ v⟩

= ⟨u, u+ v⟩+ ⟨v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩.

Since u and v are orthogonal, ⟨u, v⟩ = ⟨v, u⟩ = 0. So, ∥u+ v∥2 = ⟨u, u⟩+ ⟨v, v⟩ = ∥u∥2 + ∥v∥2. ■

Theorem 5.1.15 An Orthogonal Decomposition

Suppose u, v ∈ V , with v ̸= 0. Set c =
⟨u, v⟩
∥v∥2

andw = u− ⟨u, v⟩
∥v∥2

v. Then, ⟩w, v⟩ = 0 and u = cv+w.

Proof 8.

0

v

cv

u

w

The idea is the find c, w s.t. ⟨v, w⟩ = 0 and w = u − cv. That is, u = w + cv. Since ⟨v, w⟩ = 0, then we
have

⟨v, u− cv⟩ = 0 = ⟨u− cv, v⟩ = ⟨u, v⟩ − c∥v∥2.

So,

c =
⟨u, v⟩
∥v∥2

and

w = u− cv = u− ⟨u, v⟩
∥v∥2

v.

■

Theorem 5.1.16 Cauchy-Schwarz Inequality
Suppose u, v ∈ V . Then,

|⟨u, v⟩| ≤ ∥u∥∥v∥.

This inequality is an equality if and only if one of u, v is a scalar multiples of the other.

Proof 9. If v = 0, then |⟨u, v⟩| = 0 = ∥u∥∥v∥. So, we can assume v ̸= 0. Consider the orthogonal
decomposition,

u =
⟨u, v⟩
∥v∥2

· v + w.
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Then, by the Pythagorean Theorem, we have

∥u∥2 =
∥∥∥∥⟨u, v⟩∥v∥2

· v
∥∥∥∥2 + ∥w∥2 = |⟨u, v⟩|2

∥v∥4
∥v∥2 + ∥w∥2

=
|⟨u, v⟩|2

∥v∥2
+ ∥w∥2 ≥ |⟨u, v⟩|2

∥v∥2

As ∥v∥2 > 0, we have ∥u∥2∥v∥2 ≥ |⟨u, v⟩|2. Further since ∥u∥ ≥ 0, ∥v∥ ≥ 0, and |⟨u, v⟩| ≥ 0, then

|⟨u, v⟩| ≤ ∥u∥∥v∥.

The equality holds if and only if ∥w∥2 = 0. That is, w = 0 from the orthogonal decomposition. In other
words, u and v are linearly dependent. ■

Theorem 5.1.17 Triangle Inequality
Suppose u, v ∈ V . Then

∥u+ v∥ ≤ ∥u∥+ ∥v∥.

This inequality is an equality if and only if one of u, v is a non-negative multiple of the other.

Proof 10. Note that

∥u+ v∥2 = ⟨u+ v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ⟨u, u⟩+ ⟨v, v⟩+ ⟨u, v⟩+ ⟨u, v⟩
= ∥u∥2 + ∥v∥2 + 2Re (⟨u, v⟩)
≤ ∥u∥2 + ∥v∥2 + 2|⟨u, v⟩|
≤ ∥u∥2 + ∥v∥2 + 2∥u∥∥v∥ Cauchy-Schwarz Inequality

= (∥u∥+ ∥v∥)2.

Since ∥u+ v∥ ≥ 0, ∥u∥ ≥ 0, and ∥v∥ ≥ 0, we have

∥u+ v∥ ≤ ∥u∥+ ∥v∥.

The equality holds if and only if ⟨u, v⟩ = ∥u∥∥v∥. That is, when u and v are linearly dependent to each
other. ■

Remark. After proving this triangle inequality, we finally, and officially, complete our proof to show the
norm induced by an inner product as stated in Definition 5.1.10 is indeed a norm satisfying the formal
definition of norms as stated in Definition 5.1.9.

Theorem 5.1.18 Parallelogram Equality
Suppose u, v ∈ V . Then

∥u+ v∥2 + ∥u− v∥2 = 2
(
∥u∥2 + ∥v∥2

)
.
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Proof 11. Note that

∥u+ v∥2 + ∥u− v∥2 = ⟨u+ v, u+ v⟩+ ⟨u− v, u− v⟩
= ⟨u, u⟩+ ⟨v, v⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨u, u⟩+ ⟨v, v⟩ − ⟨u, v⟩ − ⟨v, u⟩
= ∥u∥2 + ∥u∥2 + ∥v∥2 + ∥v∥2

= 2
(
∥u∥2 + ∥v∥2

)
.

■

Theorem 5.1.19
Suppose V is a real inner product space. Then,

⟨u, v⟩ = ∥u+ v∥2 − ∥u− v∥2

4
.

Proof 12. Note that

∥u+ v∥2 − ∥u− v∥2 = ⟨u+ v, u+ v⟩ − ⟨u− v, u− v⟩
= ∥u∥2 + ∥v∥2 + 2⟨u, v⟩ −

(
∥u∥2 + ∥v∥2 − 2⟨u, v⟩

)
= 4⟨u, v⟩.

So, we have

⟨u, v⟩ = ∥u+ v∥2 − ∥u− v∥2

4
.

■

Theorem 5.1.20
Suppose V is a complex inner product space. Then,

⟨u, v⟩ = ∥u+ v∥2 − ∥u− v∥2 + ∥u+ iv∥2i− ∥u− iv∥2i
4

.

Proof 13. Note that

⟨u+ v, u+ v⟩ − ⟨u− v, u− v⟩+ ⟨u+ iv, u+ iv⟩i− ⟨u− iv, u− iv⟩i
= 2⟨u, v⟩+ 2⟨v, u⟩+ (2⟨u, iv⟩+ 2⟨iv, u⟩)i
= 2⟨u, v⟩+ 2⟨v, u⟩+ (−2i⟨u, v⟩+ 2i⟨v, u⟩)i
= 2⟨u, v⟩+ 2⟨v, u⟩+ 2⟨u, v⟩ − 2⟨v, u⟩
= 4⟨u, v⟩.

so, we have

⟨u, v⟩ = ∥u+ v∥2 − ∥u− v∥2 + ∥u+ iv∥2i− ∥u− iv∥2i
4

.

■
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Theorem 5.1.21
Let U be a vector space. If ∥ ∥ is a norm on U satisfying the parallelogram equality, then there is
an inner product ⟨ ⟩ on U s.t. ∥u∥ =

√
⟨u, u⟩ ∀u ∈ U.
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5.2 Orthonormal Bases

Definition 5.2.1 (Orthonormal). A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all the other vectors in the list. In other words, a list e1, · · · , em of vectors
in V is orthonormal if

⟨ej , ek⟩ =

{
1 if j = k

0 if j ̸= k
.

Theorem 5.2.2
If e1, · · · , em is an orthonormal list of vectors in V , then

∥a1e1 + · · ·+ amem∥2 = |a1|2 + · · ·+ |am|2 ∀a1, · · · , am ∈ F.

Proof 1. Note that

⟨a1e1, a2e2 + · · ·+ amem⟩ = ⟨a1e1, a2e2⟩+ · · ·+ ⟨a1e1, amem⟩ = 0.

So, by the Pythagorean Theorem, we have

∥a1e1 + · · ·+ amem∥2 = ∥a1e1∥2 + ∥a2e2 + · · ·+ amem∥2

= ∥a1e1∥2 + ∥a2e2∥2 + · · ·+ ∥amem∥2

= |a1|2 + |a2|2 + · · ·+ |am|2.

■

Theorem 5.2.3
Every orthonormal list of vectors is L.I..

Proof 2. Suppose e1, · · · , em is an orthonormal list of vectors in V . Then, ∥a1e1 + · · ·+ amem∥2 = 0.
By Theorem 5.2.2, it is equivalent to |a1|2 + · · ·+ |am|2 = 0. Since each |aj | ≥ 0, it must be aj = 0 for all
j = 1, · · · ,m. Therefore, the orthonormal list is L.I.. ■
Definition 5.2.4 (Orthonormal Basis). An orthonormal basis of V c is an orthonormal list of vectors in
V that is also a basis of V .

Theorem 5.2.5
Every orthonormal list of vectors in V with length dimV c is an orthonormal basis of V .

Proof 3. By Theorem 5.2.3, any orthonormal list of vectors must be L.I.. Further since it has length
dimV , it is a basis of V . So, by definition, it is an orthonormal basis of V . ■

Theorem 5.2.6
Suppose e1, · · · , en is an orthonormal basis of V and v ∈ V . Then, v = ⟨v, e1⟩e1 + · · · + ⟨v, en⟩en,
and ∥v∥2 = |⟨v, e1⟩|2 + · · ·+ |⟨v, en⟩|2.
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Proof 4. Suppose v ∈ V and v = a1e1 + · · ·+ anen. Then,

⟨v, ej⟩ = ⟨a1e1 + · · ·+ anen, ej⟩ = ⟨ajej , ej⟩ = aj .

So, we have
v = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en.

Further, by Theorem 5.2.2, we have

∥v∥2 = |⟨v, e1⟩|2 + · · ·+ |⟨v, en⟩|2.

■

Theorem 5.2.7 Gram-Schmidt Procedure
Suppose v1, · · · , vm is L.I. list of vectors in V . Let e1 =

v1
∥v1∥

. For j = 2, · · · ,m, define ej induc-

tively by

ej =
vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1

∥vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1∥
. (15)

Then, e1, · · · , em is an orthonormal list of vectors in V s.t. span(v1, · · · , vj) = span(e1, · · · , ej) for
j = 1, · · · ,m.

Proof 5. To prove that Gram-Schmidt Procedure indeed produces an orthonormal list of vectors in
V , we will use prove by mathematical induction.

Base Case Suppose j = 1, then span(v1) = span(e1) since v1 is a positive multiple of e1. So, the
conclusion holds when j = 1.

Inductive Steps Suppose for some 1 < j < m, we have span(v1, · · · , vj−1) = span(e1, · · · , ej−1).
Sincev1, · · · , vm is L.I., we know vj /∈ span(v1, · · · , vj−1). That is, vj /∈ span(e1, · · · , ej−1). (If vj ∈
span(e1, · · · , ej−1), then vj = ⟨vj , e1⟩e1 + · · · + ⟨vj , ej−1⟩ej−1.) Then, we are dividing by 0 in Equation
(15). So, we are not dividing by 0 in Equation (15). Dividing a vector by its norm produces a new
vector with norm 1, so ∥ej∥ = 1. Now, we want to verify ej is orthogonal to e1, · · · , ej−1. Pick some
k s.t. 1 ≤ k < j. Then

⟨ej , ek⟩ =
〈

vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1

∥vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1∥
, ek

〉
=

⟨vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1, ek⟩
∥⟨vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1∥

=
⟨vj , ek⟩ − ⟨vj , ek⟩

∥⟨vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1∥
= 0

Then, e1, · · · , ej is an orthonormal basis, and vj ∈ span(e1, · · · , ej) since vj is a linear combination of
e1, · · · , ej by Equation (15). Further, we have

dim span(v1, · · · , vj) = dim span(e1, · · · , ej)

and
span(v1, · · · , vj) ⊆ span(e1, · · · , ej).
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That is, exactly, span(v1, · · · , vj) = span(e1, · · · , ej). ■

Theorem 5.2.8
Every f-d inner product space has an orthonormal basis.

Proof 6. Suppose V is f-d, and select a basis of V . Apply Gram-Schmidt Procedure (Theorem 5.2.7)
to this basis, we then have an orthonormal basis of V . ■

Theorem 5.2.9
Suppose V is f-d. Then, every orthonormal list of vectors in V can be extended to an orthonor-
mal basis of V .

Proof 7. Suppose e1, · · · , em is an orthonormal list of vectors in V . Then, e1, · · · , em is L.I. and
can be extended to a basis e1, · · · , em, v1, · · · , vn of V . Apply Gram-Schmidt Procedure to this basis,
we get an orthonormal list e1, · · · , em, f1, · · · , fn. Here, e1, · · · , em is unchanged since they are already
orthonormal. Then, e1, · · · , em, f1, · · · , fn is an orthonormal basis of V . ■

Theorem 5.2.10
Suppose T ∈ L(V ). If T has an upper-triangular matrix with respect to some basis of V , then T
has an upper-triangular matrix with respect to some orthonormal basis of V .

Proof 8. Suppose M(T ) is upper-triangular with respect to a basis v1, · · · , vn of V . Then, we know
span(v1, · · · , vj) is invariant under T for j = 1, · · · , n. Apply Gram-Schmidt Procedure to v1, · · · , vn,
we will get an orthonormal basis e1, · · · , en of V . Further, since span(e1, · · · , ej) = span(v1, · · · , vj)
for j = 1, · · · , n, we know span(e1, · · · , ej) is invariant under T . Therefore, T has an upper-triangular
matrix with respect to the orthonormal basis e1, · · · , en. ■

Theorem 5.2.11 Schur’s Theorem
Suppose V is a f-d complex vector space and T ∈ L(V ). Then, T has an upper-triangular matrix
with respect to some orthonormal basis of V .

Proof 9. Since V is a f-d complex vector space, T must have an upper-triangular matrix with respect
to some basis of V . Further, by Theorem 5.2.10, T must have an upper-triangular matrix with respect
to an orthonormal basis of V . ■

Example 5.2.12 The function φ : F3 → F defined by

φ(z1, z2, z3) = 2z1 − 5z2 + z3

is a linear functional on F3. We could write this linear functional in the form φ(z) = ⟨z, u⟩ for every
z ∈ F3, where u = ⟨2,−5, 1⟩.
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Theorem 5.2.13 Riesz Representation Theorem
Suppose V is f-d andφ is a linear functional on V . Then, there is a unique vector u ∈ V s.t. φ(v) =
⟨v, u⟩ for every v ∈ V .

Proof 10. Let e1, · · · , en be an orthonormal basis of V . Then, for all v ∈ V , we have

v = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en.

So,
φ(v) = φ(⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en)

= ⟨v, e1⟩φ(e1) + · · ·+ ⟨v, en⟩φ(en)
= ⟨v, φ(e1)e1⟩+ · · ·+ ⟨v, φ(en)en⟩
= ⟨v, φ(e1)e1 + · · ·+ φ(en)en⟩.

Suppose ∃u1, u2 ∈ V s.t. φ(v) = ⟨v, u1⟩ = ⟨v, u2⟩. Then, ⟨v, u1⟩−⟨v, u2⟩ = ⟨v, u1−u2⟩ = 0. Let v = u1−u2,
then we have ⟨u1 − u2, u1 − u2⟩ = 0. So, it must be u1 = u2. Therefore, ∃ a unique u ∈ V and

u = φ(e1)e1 + · · ·+ φ(en)en s.t. φ(v) = ⟨v, u⟩ ∀v ∈ V.

■

Example 5.2.14 Find u ∈ P2(R) s.t.
∫ 1

−1
p(t)(cos(πt)) dt =

∫ 1

−1
p(t)u(t) dt for every p ∈ P2(R).

Remark. Define an inner product on P2(R) as ⟨p, q⟩ =
∫ 1

−1
p(x)q(x) dx to solve this problem.

Solution 11.

Let φ ∈ L(P2(R),R) be defined as φ(t) =

∫ 1

−1
p(t)(cos(πt)) dt. Note that 1, x, x2 is a basis of

P2(R). To find an orthonormal basis of P2(R), apply Gram-Schmidt Procedure, we have

e1 =
1

∥1∥
=

1√∫ 1

−1
1 · 1 dt

=

√
1

2
.

Since x− ⟨x, e1⟩e1 = x−
∫ 1

−1
x

√
1

2
dx ·

√
1

2
= x, and ∥x∥ =

√∫ 1

−1
x2 dx =

√
2

3
, we have

e2 =
x√
2

3

=

√
3

2
x.

Further, consider

x2 − ⟨x2, e1⟩e1 − ⟨x2, e2⟩e2 = x2 −
∫ 1

−1
x2
√

1

2
dx ·

√
1

2
−
∫ 1

−1
x2
√

3

2
x dx ·

√
3

2
x

= x2 − 1

3
,
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and note that ∥∥∥∥x2 − 1

3

∥∥∥∥ =

√∫ 1

−1

(
x2 − 1

3

)2

dx =

√∫ 1

−1
x4 − 2

3
x2 +

1

9
dx =

√
8

45
.

So, we have

e3 =
x2 − 1

3√
8

45

=

√
45

8

(
x2 − 1

3

)
.

That is, e1 =

√
1

2
, e2 =

√
3

2
x, e3 =

√
45

8

(
x2 − 1

3

)
is an orthonormal basis of P2(R). Then, we have

φ(e1) =

∫ 1

−1

√
1

2
cos(πt) dt =

√
1

2

∫ 1

−1
cos(πt) dt = 0

φ(e2) =

∫ 1

−1

√
3

2
t cos(πt) dt =

√
3

2

∫ 1

−1
t cos(πt) dt = 0

φ(e3) =

∫ 1

−1

√
45

8

(
t2 − 1

3

)
cos(πt) dt

=

√
45

8

∫ 1

−1
t2 cos(πt) dt−

√
45

8
· 1
3

∫ 1

−1
cos(πt) dt︸ ︷︷ ︸

0

=

√
45

8

∫ 1

−1
t2 cos(πt) dt

=

√
45

8

(
− 4

π2

)
.

So, by Theorem 5.2.15 and its proof, we know

u = φ(e1)e1 + φ(e2)e2 + φ(e3)e3 = 0 + 0 +

√
45

8

(
− 4

π2

)√
45

8

(
x2 − 1

3

)
=

45

8

(
− 4

π2

)(
x2 − 1

3

)
= − 45

2π2

(
x2 − 1

3

)
.

□
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5.3 Orthogonal Complements and Minimization Problems

Definition 5.3.1 (Orthogonal Complement,U⊥). IfU is a subset of V , then the orthogonal complement
of U , denoted U⊥, is the set of all vectors in V that are orthogonal to every vector in U :

U⊥ = {v ∈ v | ⟨v, u⟩ = 0 ∀u ∈ U}.

Theorem 5.3.2 Basic Properties of Orthogonal Complements

1. If U is a subset of V , then U⊥ is a subspace of V .

2. {0}⊥ = V .

3. V ⊥ = {0}.

4. If U is a subset of V , then U ∩ U⊥ ⊆ {0}.

5. If U and W are subsets of V and U ⊆W , then W⊥ ⊆ U⊥.

Proof 1.

1. Let v, w ∈ U⊥. Then ⟨v + w, u⟩ = ⟨v, w⟩ + ⟨w, u⟩ = 0 + 0 = 0. So, v + w ∈ U⊥. Further, suppose
λ ∈ F. Then ⟨λv, u⟩ = λ⟨v, u⟩ = λ · 0 = 0. So, λv ∈ U⊥. Finally since ⟨0, u⟩ = 0, we know 0 ∈ U⊥.
Then, U⊥ is a subspace of V . □

2. Since ⟨v, 0⟩ = 0 ∀v ∈ V , we know {0}⊥ = V . □

3. Suppose v ∈ V ⊥. Then, ⟨v, v⟩ = 0. By property of an inner product, it must be that v = 0. So,
V ⊥ = {0}. □

4. Suppose U is a subset of V . Let v ∈ U ∩ U⊥. Then, v ∈ U and v ∈ U⊥. So, ⟨v, v⟩ = 0. Then, it must
be that v = 0. So, U ∩ U⊥ ⊆ {0}. □

5. Suppose U and W are subsets of V with U ⊆ W . Suppose v ∈ W⊥. Then, ⟨v, u⟩ = 0 ∀u ∈ W .
Since U ⊆W , we have ⟨v, w⟩ = 0 ∀u ∈ U . That is, v ∈ U⊥. Then, we have W⊥ ⊆ U⊥.

■

Theorem 5.3.3
Suppose U is a f-d subspace of V . Then, V = U ⊕ U⊥.

Proof 2. Suppose u ∈ U and w ∈ U⊥. Then, ∀v ∈ V , we have v = cu + w for some c ∈ F and
⟨u,w⟩ = 0. Then, we have V = U + U⊥. Further, by Theorem 5.3.2(4), U ∩ U⊥ = {0} since U and U⊥

are all subspaces of V . Hence, V = U ⊕ U⊥. ■
Corollary 5.3.4 Suppose V is f-d and U is a subspace of V . Then, dimU⊥ = dimV − dimU.

Theorem 5.3.5
Suppose U is a f-d subspace of V . Then, U = (U⊥)⊥.

Proof 3.
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(⊆). Suppose u ∈ U . Then, ⟨u, v⟩ = 0 ∀v ∈ U⊥. Then, u ∈ (U⊥)⊥. That is, U ⊆ (U⊥)⊥. □
(⊇). Suppose v ∈ (U⊥)⊥. Then, v = u + w for some u ∈ U and w ∈ U⊥. Then, w = v − u ∈ (U⊥)⊥.

Since U ⊆ (U⊥)⊥, we know u ∈ U⊥. Then, v − u ∈ (U⊥)⊥. Hence, v − u ∈ U⊥ ∩ (U⊥)⊥. That is, v − u is
orthogonal to itself. So, it must be that v − u = 0 or v = u. Since u ∈ U and v ∈ U , we have shown that
(U⊥)⊥ ⊆ U . ■
Definition 5.3.6 (Orthogonal Projection, PU ). Suppose U is a f-d subspace of V . Then orthogonal
projection of V onto U is the operator PU ∈ L(V ) defined as follows: For v ∈ V , write v = u+w, where
u ∈ U and w ∈ U⊥. Then, PUv = u.

Remark. By Theorem 5.3.3, V = U ⊕ U⊥, which ensures each v ∈ V can be uniquely represented in the
form of u+ w with u ∈ U and w ∈ U⊥, and thus PU is well-defined.

Example 5.3.7 Suppose x ∈ V with x ̸= 0 and U = span(x). Show that

PUv =
⟨v, x⟩
∥x2∥

x ∀v ∈ V.

Proof 4. Suppose v ∈ V . Then,

v =
⟨v, x⟩
∥x2∥

x+

(
v − ⟨v, x⟩

∥x2∥
x

)
,

where
⟨v, x⟩
∥x2∥

x ∈ span(x) and v − ⟨v, x⟩
∥x2∥

x ∈ U⊥. Thus, PUv =
⟨v, x⟩
∥x2∥

x. ■

Theorem 5.3.8 Properties of Orthogonal Projections
Suppose U is a f-d subspace of V and v ∈ V . Then,

1. PU ∈ L(V ).

2. PUu = u ∀u ∈ U .

3. PUw = 0 ∀w ∈ U⊥.

4. range PU = U .

5. null PU = U⊥.

6. v − PUv ∈ U⊥.

7. P 2
U = PU .

8. ∥PUv∥ ≤ ∥v∥.

9. for every orthonormal basis e1, · · · , em of U ,

PUv = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em.

Proof 5.
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1. Suppose v1 = u1 + w1 and v2 = u2 + w2, where v1, v2 ∈ V , u1, u2 ∈ U , and w1, w2 ∈ U⊥. Then,
v1 + v2 = (u1 + u2) + (w1 + w2), where u1 + u2 ∈ U and w1 + w2 ∈ U⊥. So,

PU (v1 + v2) = u1 + u2 = PUv1 + PUv2.

Additionally, suppose λ ∈ F. Then, λv1 = λu1 + λw1, where λu1 ∈ U and λw1 ∈ U⊥. Then,

PU (λv1) = λu1 = λPU (v1). □

2. Suppose u ∈ U . Then, u = u+ 0, where u ∈ U and 0 ∈ U⊥. So, PUu = u. □

3. Suppose w ∈ U⊥. Then, w = 0 + w, where 0 ∈ U and w ∈ U⊥. So, PUw = 0. □

4. By definition of PU , we have range PU ⊆ U . By Theorem 5.3.8(2), we know U ⊆ range PU . So,
range PU = U. □

5. By Theorem 5.3.8(3), we have U⊥ ⊆ null PU . Further note if v ∈ null PU , then v = 0 + v with 0 + u

and v ∈ U⊥. So, null PU ⊆ U⊥. That is, null PU = U. □

6. If v = u+ w with u ∈ U and w ∈ U⊥, then

v − PUv = v − u = w ∈ U⊥. □

7. If v = u+ w with u ∈ U and w ∈ U⊥, then

(P 2
U )v = PU (PUv) = PUu = u = PUv.

So, P 2
U = PU . □

8. If v = u+ w with u ∈ U and w ∈ U⊥, then we have

∥PUv∥2 = ∥u∥2 ≤ ∥u∥2 + ∥w∥2 = ∥v∥2

by the Pythagorean Theorem. □

9. If v = u+ w with u ∈ U and w ∈ U⊥, then

v = u+ w = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em + (v − ⟨v, e1⟩e1 − · · · − ⟨v, em⟩em).

Since e1, · · · , em is an orthonormal basis ofU , we have ⟨ve1⟩e1+· · ·+⟨v, em⟩em ∈ U . Now, consider〈
⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em, v − ⟨v, e1⟩e1 − · · · − ⟨v, em⟩em

〉
=
〈
⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em, v

〉
− ∥u∥2

= ⟨v, e1⟩⟨e1, v⟩+ · · ·+ ⟨v, em⟩⟨em, v⟩ − ∥u∥2

= ⟨v, e1⟩⟨v, e1⟩+ · · ·+ ⟨v, em⟩⟨v, em⟩ − ∥u∥2

= |⟨v, e1⟩|2 + · · ·+ |⟨v, em⟩|2 − ∥u∥2

= ∥u∥2 − ∥u∥2 = 0 (By Theorem 5.2.2)

Then, v − ⟨v, e1⟩e1 − · · · − ⟨v, em⟩em ∈ U⊥. So, we have PUv = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em.

■
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Theorem 5.3.9 Minimizing the Distance to a Subspace
Suppose U is a f-d subspace of V , v ∈ V , and u ∈ U . Then, ∥v − PUv∥ ≤ ∥v − u∥. The inequality
is an equality if and only if u = PUv.

Proof 6. Note that ∥v − PUv∥2 ≤ ∥v − PUv∥2 + ∥PUv − u∥2 since ∥PUv − u∥2 ≥ 0. Further, since
v − PUv ∈ U⊥ by Theorem 5.3.8(6) and PUv − u ∈ U by the Pythagorean Theorem, we have

∥v − PUv∥2 + ∥PUv − u∥2 = ∥v = PUv + PUv − u∥2 = ∥v − u∥2.

Then, ∥u− PUv∥2 ≤ ∥v = PUv∥2 + ∥PUv − u∥2 = ∥v − u∥2. Since ∥v − PUv∥2 ≥ 0 and ∥v − u∥2 ≥ 0, we
have ∥v − PUv∥ ≤ ∥v − u∥. The equality holds if and only if ∥PUv − u∥2 = 0. That is, ∥PUv − u∥ = 0,
PUv − u = 0, or PUv = u. ■

Example 5.3.10 In R4, set U = span((1, 1, 0, 0), (1, 1, 1, 2)). Find u ∈ U s.t. ∥u− (1, 2, 3, 4)∥ is as small
as possible.

Solution 7.
By Theorem 5.3.9, we need to find PUv = ⟨v, e1⟩e1 + ⟨v, e2⟩e2. Thus, we need to use Gram-

Schmidt Procedure to find e1 and e2:

e1 =
1√
2
(1, 1, 0, 0) and e2 =

1√
5
(0, 0, 1, 2).

Set v = (1, 2, 3, 4), we have

PUv = ⟨(1, 2, 3, 4), 1√
2
(1, 1, 0, 0)⟩ 1√

2
(1, 1, 0, 0) + ⟨(1, 2, 3, 4), 1√

5
(0, 0, 1, 2)⟩ 1√

5
(0, 0, 1, 2)

=

(
3

2
,
3

2
,
11

5
,
22

5

)
.

□
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6 Operators on Inner Product Spaces

6.1 Self-Adjoint and Normal Operators

Definition 6.1.1 (Adjoint, T ∗). Suppose T ∈ L(V,W ). The adjoint of T is the function T ∗ :W → V s.t.

⟨Tv,w⟩ = ⟨v, T ∗w⟩

for every v ∈ V and every w ∈W .

Theorem 6.1.2
If T ∈ L(V,W ), then T ∗ ∈ L(W,V ).

Proof 1.

1. The definition of adjoint makes sense.

Suppose T ∈ L(V,W ). Fix w ∈ W . Let f : V → F be defined as v 7→ ⟨Tv,w⟩. Then, f is a linear
functional on V . Note that

f(au+ bv) = ⟨T (au+ bv), w⟩ = ⟨aTu+ bTv, w⟩
= a⟨Tu,w⟩+ b⟨Tv,w⟩
= af(u) + b(fv).

By Riesz Representation Theorem, we know f(v) = ⟨v,∆⟩ for some ∆ ∈ V . We call this unique ∆

as T ∗w. That is, for each w ∈ W , ∃ unique T ∗w ∈ V . So, T ∗ is well-defined as a function from W

to V . □

2. Adjoint is a linear map.

Suppose w1, w2 ∈W . If v ∈ V , then

⟨v, T ∗(w1 + w2)⟩ = ⟨Tv,w1 + w2⟩ = ⟨Tv,w1⟩+ ⟨Tv,w2⟩
= ⟨v, T ∗w1⟩+ ⟨v, T ∗w2⟩
= ⟨v, T ∗w1 + T ∗w2⟩.

So, T ∗(w1 + w2) = T ∗w1 + T ∗w2. □

Now fix w ∈W and λ ∈ F. If v ∈ V , then

⟨v, T ∗(λw)⟩ = ⟨Tv, λw⟩ = λ⟨Tv,w⟩
= λ⟨v, T ∗w⟩
= ⟨v, λT ∗w⟩.

So, we know T ∗(λw) = λT ∗w. □

Thus, we’ve shown T ∗ is a linear map as desired.

■
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Example 6.1.3 Define T : R3 → R2 by T (x1, x2, x3) = (x2 + 3x3, 2x1). Find a formula for T ∗.
Solution 2.
Define T ∗ : R2 → R3. Let y = (y1, y2) ∈ R2. Then,

⟨x, T ∗y⟩ = ⟨Tx, y⟩ = y1x2 + 3y1x3 + 2x1y2

= ⟨(x1, x2, x3), (2y2, y1, 3y1)⟩.

Thus, T ∗ : R2 → R3 is defined as T ∗(y1, y2) = (2y2, y1, 3y1). □

Example 6.1.4 Fix u ∈ V and x ∈ W . Define T ∈ L(V,W ) by Tv = ⟨v, u⟩x for every v ∈ V . Find a
formula for T ∗.

Solution 3.
Define T ∗ ∈ L(W,V ). Consider

⟨v, T ∗w⟩ = ⟨Tv,w⟩ =
〈
⟨v, u⟩x,w

〉
= ⟨v, u⟩⟨x,w⟩
=
〈
v, ⟨w, x⟩u

〉
.

So, we have T ∗w = ⟨w, x⟩u. □

Theorem 6.1.5 Properties of the Adjoint

1. (S + T )∗ = S∗ + T ∗ ∀S, T ∈ L(V,W ).

2. (λT )∗ = λT ∗ ∀λ ∈ F and T ∈ L(V,W ).

3. (T ∗)∗ = T ∀T ∈ L(V,W ).

4. I∗ = I, where I is the identity operator on V .

5. (ST )∗ = T ∗S∗ ∀T ∈ L(V,W ) and S ∈ L(W,U).

Proof 4.

1. Consider
⟨v, (S + T )∗w⟩ = ⟨(S + T )v, w⟩ = ⟨Sv,w⟩+ ⟨Tv,w⟩

= ⟨v, S∗w⟩+ ⟨v, T ∗w⟩
= ⟨v, S∗w + T ∗w⟩
= ⟨v, (S∗ + T ∗)w⟩.

So, we have (S + T )∗w = (S∗ + T ∗)w ∀w ∈W. □

2. Note that
⟨v, (λT )∗w⟩ = ⟨(λT )v, w⟩ = λ⟨Tv,w⟩

= λ⟨v, T ∗w⟩
= ⟨v, λT ∗w⟩.
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So, we get (λT )∗w = λT ∗w ∀w ∈W. □

3. Consider
⟨v, (T ∗)∗w⟩ = ⟨T ∗v, w⟩ = ⟨w, T ∗v⟩

= ⟨Tw, v⟩
= ⟨v, Tw⟩.

So, it is (T ∗)∗w = Tw ∀w ∈W. □

4. Note we have
⟨v, I∗w⟩ = ⟨Iv, w⟩ = ⟨v, w⟩.

So, I∗w = w ∀w ∈W . That is, I∗ = I. □

5. We have
⟨v, (ST )∗w⟩ = ⟨(ST )v, w⟩ = ⟨S(Tv), w⟩

= ⟨Tv, S∗w⟩
= ⟨v, T ∗(S∗w)⟩.

So, (ST )∗w = T ∗(S∗w) = (T ∗S∗)w ∀w ∈W.

■

Theorem 6.1.6 Null Space and Range of T ∗

Suppose T ∈ L(V,W ). Then,

1. null T ∗ = (range T )⊥.

2. range T = (T ∗)⊥.

3. null T = (range T ∗)⊥.

4. range T ∗ = (null T )⊥.

Proof 5.

1. Suppose w ∈ null T ∗. Then, T ∗w = 0. So, ⟨v, T ∗w⟩ = 0. That is, ⟨Tv,w⟩ = 0 ∀v ∈ 0. Then, w is
orthogonal to any Tv. That is,w ∈ (range T )⊥. Conversely, ifw ∈ (range T )⊥, we have ⟨Tv,w⟩ = 0,
and thus ⟨v, T ∗w⟩ = 0, or T ∗w = 0. That is, w ∈ null T ∗. Hence, null T ∗ = (range T )⊥. □

2. Note that (null T ∗)⊥ =
(
(range T )⊥

)⊥
= range T. □

3. Suppose v ∈ null T . Then, Tv = 0, and ⟨Tv,w⟩ = 0. So, ⟨v, T ∗w⟩ = 0 ∀w ∈ W . Then, v is
orthogonal to every vectors in T ∗w. So, v ∈ (range T ∗)⊥. In the other way around, if we assume
v ∈ (range T ∗)⊥, then ⟨v, T ∗w⟩ = ⟨Tv,w⟩ = 0. So, Tv = 0, and thus v ∈ null T . Hence, we have
null T = (range T ∗)⊥. □

4. Consider (null T )⊥ =
(
(range T ∗)⊥

)⊥
= range T ∗.

■
Definition 6.1.7 (Conjugate Transpose). The conjugate transpose of anm×nmatrix is the n×mmatrix
obtained by interchanging the rows and columns and then taking the conjugate of each entry.
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Theorem 6.1.8
Let T ∈ L(V,W ). Suppose e1, · · · , en is an orthonormal basis of V and f1, · · · , fm is an or-
thonormal basis of W . Then, M(T ∗, (f1, · · · , fm), (e1, · · · , em)) is the conjugate transpose of
M(T, (e1, · · · , en), (f1, · · · , fm)).

Proof 6. Suppose M(T ) denote the matrix M(T, (e1, · · · , en), (f1, · · · , fm)) and let M(T ∗) denote
the matrix M(T ∗, (f1, · · · , fm), (e1, · · · , em)). Then, note that Tek = ⟨Tek, f1⟩f1 + · · ·+ ⟨Tek, fm⟩fm. So,

(M(T ))j,k = ⟨Tek, fj⟩.

Further, consider T ∗fk = ⟨T ∗fk, e1⟩e1 + · · ·+ ⟨T ∗fk, en⟩en. That is,

(M(T ∗))j,k = ⟨T ∗fk, ej⟩ = ⟨ej , T ∗fk⟩

= ⟨Tej , fk⟩
= (M(T ))k,j

So, we’ve shown that M(T ∗) is the conjugate transpose of M(T ). ■
Definition 6.1.9 (Self-Adjoint). An operator T ∈ L(V ) is called self-adjoint if T = T ∗. In other words,
T ∈ L(V ) is self-adjoint if and only if ⟨Tv,w⟩ = ⟨v, Tw⟩ ∀v, w ∈ V .

Theorem 6.1.10
The sum of two self-adjoint operators is self-adjoint, and the product of a real scalar and a self-
adjoint operator is self-adjoint.

Proof 7.

1. Suppose T, S ∈ L(V ) are self-adjoint. Then,

(S + T )∗ = S∗ + T ∗ = S + T.

So, S + T is self-adjoint. □

2. Let λ ∈ R. Then,
(λT )∗ = λT ∗ = λT.

So, λT is self-adjoint.

■

Theorem 6.1.11
Every eigenvalue of a self-adjoint operator is real.

Proof 8. Suppose T is a self-adjoint operator on V . Let λ be an eigenvalue of T , and let v be a
non-zero vector in V s.t. Tv = λv. Then,

λ∥v∥2 = ⟨λv, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ∥v∥2.

So, it must be λ = λ, which means λ is real. ■
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Theorem 6.1.12
Suppose V is a complex inner product space and T ∈ L(V ). Suppose ⟨Tv, v⟩ = 0 ∀v ∈ V . Then,
T = 0.

Proof 9. Note that

⟨Tu,w⟩ = 1

4

[〈
T (u+ w), u+ w

〉
−
〈
T (u− w), u− w

〉]
+

i

4

[〈
T (u+ iw), u+ iw

〉
−
〈
T (u− iw), (u− iw)

〉]
= 0 ∀u,w ∈ V.

Let w = Tu ∈ V . Then, ⟨Tu, Tu⟩ = 0. That is, Tu = 0 ∀u ∈ V . So, T = 0. ■

Theorem 6.1.13
Suppose V is a complex inner product space and T ∈ L(V ). Then, T is self-adjoint if and only if
⟨Tv, v⟩ ∈ R ∀v ∈ V .

Proof 10.
(⇒) Let v ∈ V . Then,

⟨Tv, v⟩ − ⟨Tv, v⟩ = ⟨Tv, v⟩ − ⟨v, Tv⟩
= ⟨Tv, v⟩ − ⟨T ∗v, v⟩
= ⟨(T − T ∗)v, v⟩

(16)

If ⟨Tv, v⟩ ∈ R ∀v ∈ V , then Equation (16)= 0. That is, ⟨(T − T ∗)v, v⟩ = 0 ∀v ∈ V . So, T − T ∗ = 0, or
T = T ∗. That is, T is self-adjoint. □

(⇐) Conversely, if T is self-adjoint, then Equation (16)= 0. That is, ⟨Tv, v⟩ = ⟨Tv, v⟩ = 0, or we have
⟨Tv, v⟩ = ⟨Tv, v⟩. This is equivalent to the conclusion ⟨Tv, v⟩ ∈ R. ■

Theorem 6.1.14
Suppose T is a self-adjoint operator on V s.t. ⟨Tv, v⟩ = 0 ∀v = V . Then, T = 0.

Proof 11. We’ve already shown this to be true under a complex inner product space. Thus, we can
assume V is a real inner product space. If u,w ∈ V , then

⟨Tu,w⟩ = 1

4
⟨T (u+ w), u+ w⟩ − ⟨T (u− w), u− w⟩

= 0 ∀u,w ∈ V.

Let w = Tu. Then, ⟨Tu, Tu⟩ = 0, or Tu = 0 ∀u ∈ V . So, T = 0. ■
Definition 6.1.15 (Normal Operator). An operator on an inner product space is called normal if it
commutes with its adjoint. In other words, T ∈ L(V ) is normal if TT ∗ = T ∗T .

Example 6.1.16 Let T be the operator on F2 whose matrix with respect to the standard basis is(
2 −3

3 2

)
.
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Show that T is not self-adjoint but is still normal.

Proof 12. Since M(T ) =

(
2 −3

3 2

)
and M(T ∗) =

(
2 3

−3 2

)
, then M(T ) ̸= M(T ∗), and thus it

is not self-adjoint. However, note that(
2 −3

3 2

)(
2 3

−3 2

)
=

(
13 0

0 13

)

and (
2 3

−3 2

)(
2 −3

3 2

)
=

(
13 0

0 13

)
.

So, by definition, T is normal. ■

Theorem 6.1.17
An operator T ∈ L(V ) is normal if and only if ∥Tv∥ = ∥T ∗v∥ ∀v ∈ V .

Proof 13. Note that

T is normal ⇐⇒ T ∗T − TT ∗ = 0

⇐⇒
〈
(T ∗T − TT ∗)v, v

〉
= 0 ∀v ∈ V

⇐⇒ ⟨T ∗Tv, v⟩ = ⟨TT ∗v, v⟩ ∀v ∈ V

⇐⇒ ⟨Tv, Tv⟩ = ⟨T ∗v, T ∗v⟩ ∀v ∈ V

⇐⇒ ∥Tv∥2 = ∥T ∗v∥2 ∀v ∈ V.

Since ∥Tv∥ ≥ 0 and ∥T ∗v∥ ≥ 0, it is equivalent to

∥Tv∥ = ∥T ∗v∥ ∀v ∈ V.

■

Theorem 6.1.18
Suppose T ∈ L(V ) is normal and v ∈ V is an eigenvector of T with eigenvalue λ. Then, v is also
an eigenvector of T ∗ with eigenvalue λ.

Proof 14. Note that (T − λI)∗ = T ∗ − λI. Consider (T − λI)(T − λI)∗ = TT ∗ − λT − λT ∗ + λλ and
(T − λI)∗(T − λI) = T ∗T − λT − λT ∗ + λλ. Since, T is normal, TT ∗ = T ∗T . So.

(T − λI)(T − λI)∗ = (T − λI)∗(T − λI).

That is, T − λI is also normal. So, by Theorem 6.1.17, we have

∥(T − λI)v∥ = ∥(T ∗ − λI)v∥ = 0.

That is, T ∗v = λv, or v is an eigenvector of T ∗ with eigenvalue λ. ■
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Theorem 6.1.19
Suppose T ∈ L(V ) is normal. Then, eigenvectors of T corresponding to distinct eigenvalues are
orthogonal.

Proof 15. Suppose α, β are distinct eigenvalues of T , with corresponding eigenvectors u, v. Then,
Tu = αu and Tv = βv. By Theorem 6.1.18, we have T ∗v = βv. So, we have

(α− β)⟨u, v⟩ = ⟨αu, v⟩ − ⟨u, βv⟩
= ⟨Tu, v⟩ − ⟨U, T ∗v⟩
= ⟨Tu, v⟩ − ⟨Tu, v⟩
= 0.

Since α ̸= β, it must be ⟨u, v⟩ = 0. So, u and v are orthogonal. ■
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6.2 The Spectral Theorem

Theorem 6.2.1 Complex Spectral Theorem
Suppose F = C and T ∈ L(V ). Then, the following are equivalent:

1. T is normal.

2. V has an orthonormal basis consisting of eigenvectors of T .

3. T has a diagonal matrix with respect to some orthonormal basis of V .

Proof 1. Note that (2) ⇐⇒ (3) is obvious by Theorem 4.3.5. No we need to show (3) ⇐⇒ (1) to
complete the proof. □

Suppose (3). Then, M(T ) is diagonal. That is, M(T ∗) is also diagonal. Then, M(T )M(T ∗) =

M(T ∗)M(T ). That is M(TT ∗) = M(T ∗T ), or TT ∗ = T ∗T . So, T is normal. □
Suppose (1). That is, T is normal. Then, by Schur’s Theorem, ∃ an orthonormal basis e1, · · · , en of

V s.t. M(T, (e1, en)) is an upper triangular matrix. Suppose

M(T, (e1, · · · , en)) =

a1,1 · · · a1,n
. . .

...
0 an,n

.
Then,

M(T ∗, (e1, · · · , en)) =

a1,1 0
...

. . .

a1,n · · · an,n

.
Then, Te1 = a1,1e1 and T ∗e1 = a1,1e1 + · · · + a1,nen. Further, note that ∥Te1∥2 = |a1,1|2 and ∥T ∗e1∥2 =

|a1,1|2 + · · · + |a1,n|2. Since ∥Te1∥2 = ∥T ∗e1∥2, we have |a1,1|2 = |a1,1|2 + · · · + |a1,n|2. Then, it must be
that |a1,2|2 + · · ·+ |a1,n|2 = 0. Applying this procedure to ∥Te2∥2 = ∥T ∗e2∥2, · · · , ∥Ten∥2 = ∥T ∗en∥2, we
have |aj,k| = 0 when j ̸= k. So, M(T ) is a diagonal matrix. ■
Lemma 6.2.2 Invertible Quadratic Expressions Suppose T ∈ L(V ) is self-adjoint and b, c ∈ R are
s.t. b2 < 4c. Then, T 2 + bT + cI is invertible.

Proof 2. Let v ∈ V s.t. v ̸= 0. Note that

⟨(T 2 + bT + cI)v, v⟩ = ⟨T 2v, v⟩+ b⟨Tv, v⟩+ c⟨v, v⟩
= ⟨Tv, Tv⟩+ b⟨Tv, v⟩+ c∥v∥2 T is self − adjoint

≥ ∥Tv∥2 − |b|∥Tv∥∥v∥+ c∥v∥2 Cauchy − Schwarz

=

(
∥Tv∥ − |b|∥v∥

2

)2

+

(
c− b2

4

)
∥v∥2

> 0 b2 < 4c

Then, ∀v ̸= 0, ⟨(T 2+ bT + cI)v, v⟩ > 0. So, it must be that (T 2+ bT + cI)v = 0 if and only if v = 0. Then,
null (T 2 + bT + cI) = {0}. Thus, T 2 + bT + cI is injective, and thus it is invertible. ■
Lemma 6.2.3 Suppose V ̸= {0} and T ∈ L(V ) is a self-adjoint operator. Then, T has an eigenvalue.

Proof 3. Let m = dimV and choose v ∈ V . Then, v, Tv, · · · , Tnv cannot be L.I. because we have
n+ 1 > dimV vectors in the list. So, ∃a0, · · · , an ∈ R s.t. a0v + a1Tv + · · ·+ anT

nv = 0. Make the a’s the
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coefficient of a polynomial then

a0 + a1x+ · · ·+ anx
n = c(x2 + b1x+ c1) · · · (x2 + bMx+ cM )(x− λ1) · · · (x− λm),

where c is a non-zero real number, each bj , cj , λj ∈ R, each bj < 4cj , and m+M ≥ 1. Then, we have

0 = a0v + a1Tv + · · ·+ anT
nv

= (a0I + a1T + · · ·+ anT
n)v

= c(T 2 + b1T + c1I) · · · (T 2 + bMT + cMI)(T − λ1I) · · · (T − λmI).

By Lemma 6.2.2, T 2 + bjT + cjI is invertible. Since c ̸= 0, it must be that 0 = (T − λ1I) · · · (T − λmI).
Hence, T − λjI is not injective for at least one j. So, T has at least one eigenvalue. ■
Definition 6.2.4 (Restriction Operator, T |U ). Suppose T ∈ L(V ) and U is an invariant subspace of V
under T . Then, the restriction operator, T |U ∈ L(V ), is defined as T |U (u) = Tu for u ∈ U .

Theorem 6.2.5
Suppose T ∈ L(V ) is self-adjoint and U is a subspace of V that is invariant under T . Then,

1. U⊥ is invariant under T ;

2. T |U ∈ L(U) is self-adjoint;

3. T |U⊥ ∈ L(U⊥) is self-adjoint.

Proof 4.

1. Suppose v ∈ U⊥ and u ∈ U . Then, ⟨v, Tu⟩ = ⟨Tv, u⟩ = 0 since U is invariant under T (and hence
Tu ∈ U ) and v ∈ U⊥. Then, we have Tv ∈ U⊥ ∀v ∈ U⊥, proving U⊥ is an invariant subspace
under T. □

2. Note that if u, v ∈ U , then

⟨(T |U )u, v⟩ = ⟨Tu, v⟩ = ⟨u, Tv⟩ = ⟨u, (T |U )v⟩.

Therefore, T |U is self-adjoint. □

3. Replace U with U⊥ in (2) and apply the conclusion from (1), and we complete the proof.

■

Theorem 6.2.6 Real Spectral Theorem
Suppose F = R and T ∈ L(V ). Then, the following are equivalent:

1. T is self-adjoint;

2. V has an orthonormal basis consisting of eigenvectors of T .

3. T has a diagonal matrix with respect to some orthonormal basis of V .

Proof 5. Similar to the complex case, (2) ⇐⇒ (3) is obvious. So, we will show (3) =⇒ (1) and
(1) =⇒ (2) to complete the proof. □
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Suppose (3) holds. Then, M(T ) is diagonal. So, we have M(T )t = M(T ). That is, T = T ∗, and thus
T is self-adjoint. □

Suppose (1) holds. We will use mathematical induction on dimV . Base Case When dimV = 1.

Clearly, (1) =⇒ (2). Inductive Steps Assume dimV > 1 and (1) =⇒ (2) holds for all cases with dimen-
sion dimV − 1. Let u be an eigenvector of T with ∥u∥ = 1. Let U = span(u). Then, dimU = 1. Since
V = U ⊕ U⊥, we know dimU⊥ = dimV − dimU = dimV − 1. So, (1) =⇒ (2) holds on U⊥. That is, ∃ an
orthonormal basis of U⊥ consisting of eigenvectors of T |U⊥ . Now, add u to this orthonormal basis, we
get a basis of V . Further since u ∈ U , this basis is an orthonormal basis of V consisting of eigenvectors
of T . ■
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6.3 Positive Operators and Isometries

Definition 6.3.1 (Positive Operator). An operator T ∈ L(V ) is called positive if T is self-adjoint and
⟨Tv, v⟩ ≥ 0 ∀v ∈ V .
Definition 6.3.2 (Square Root). An operator R is called a square root of an operator T if R2 = T .

Example 6.3.3 Suppose T ∈ L(R3) and R ∈ L(R3) be defined as T (z1, z2, z3) = (z3, 0, 0) and
R(z1, z2, z3) = (z2, z3, 0). Then, R is a square root of T .

Proof 1. Since R2(z1, z2, z3) = R(z2, z3, 0) = (z3, 0, 0) = T (z1, z2, z3), R is a square root of T . ■

Theorem 6.3.4 Characterization of Positive Operators
Let T ∈ L(V ). Then, the following are equivalent:

1. T is positive;

2. T is self-adjoint and all the eigenvalues of T are non-negative;

3. T has a positive square root;

4. T has a self-adjoint square root;

5. ∃ an operator R ∈ L(V ) s.t. T = R∗R.

Proof 2.
(1) =⇒ (2): Since T is positive, then T is self-adjoint. Let λ be an eigenvalue of T . Then, Tv = λv for

some v ∈ V . Then, ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩ = λ∥v∥2. Since T is positive, ⟨Tv, v⟩ ≥ 0. Further since
∥v∥2 ≥ 0, it must also be λ ≥ 0. So, we complete the proof. □

(2) =⇒ (3): Suppose T is self-adjoint and all the eigenvalues of T are non-negative. By the Spectrum
Theorem, ∃ an orthonormal basis e1, · · · , en, where e1, · · · , en are eigenvectors of T . Let λ1, · · · , λn be
the corresponding eigenvalues, where λj ≥ 0. Let R ∈ L(V ) s.t. Rej =

√
λjej . Then

⟨Rv, v⟩ =
〈
a1
√
λ1e1 + · · ·+ an

√
λnen, a1e1 + · · ·+ anen

〉
= |a1|2

√
λ1 + · · ·+ |an|2

√
λn ≥ 0.

Further, we can verity R is self-adjoint (proof omitted). So, R is positive by definition. Note that

R2ej = R
(√

λjej

)
=
√
λj
√
λjej = λjej = Tej .

So, R is a square root of T . □
(3) =⇒ (4): Suppose T has a positive square root. By definition, positive operators are self-adjoint.

□
(4) =⇒ (5): Suppose T has a self-adjoint square root. Then, we have R ∈ L(V ) s.t. R∗ = R and

R2 = T . That is, T = R2 = RR = R∗R. □
(5) =⇒ (1): Suppose ∃ an operator R ∈ L(V ) s.t. T = T ∗T . Then,

T ∗ = (R∗R)∗ = R∗(R∗)∗ = R∗R = T.
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So, T is self-adjoint. Now, since

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ = ∥Rv∥2 ≥ 0,

we have T is a positive operator. ■

Theorem 6.3.5
Each positive operator on V has a unique positive square root.

Proof 3. Let T be a positive operator on V . Select v to be an eigenvector of T with correspond-
ing eigenvalue of λ. Then, we have Tv = λv. Let R be a positive square root of T . Apply Spectrum
Theorem to R, then ∃ an orthonormal basis e1, · · · , en, where e1, · · · , en are eigenvectors of R. Then,
∃λ1, · · · , λn ≥ 0 s.t. Rej =

√
λjej . Suppose v ∈ V and v = a1e1 + · · ·+ anen. Then,

Rv = a1
√
λ1e1 + · · ·+ an

√
λnen and R2v = a1λ1e1 + · · ·+ anλnen.

Further, Tv = λv = λa1e1 + · · ·+ λanen. Since R2v = Tv, we know

a1(λ1 − λ)e1 + · · ·+ an(λn − λ)en = 0.

Since e1, · · · , en is an orthonormal basis, for each j = 1, · · · , n, we have aj(λj − λ) = 0. So, it must be
aj = 0 or λj = λ. If aj = 0, then we can delet it from the representation of v. So,

v =
∑

{j|λj=λ}

ajej

Hence,
Rv =

∑
{j|λj=λ}

aj
√
λej =

√
λv.

■
Definition 6.3.6 (Isometry). An operator S ∈ L(V ) is called an isometry if ∥Sv∥ = ∥v∥ ∀v ∈ V . In
other words, an operator is an isometry if ti preserves norms.

Example 6.3.7 Let λ1, · · · , λn ∈ F with |λj | and S ∈ L(V ) s.t. Sej = λjej for some orthonormal
bases e1, · · · , en of V . Then, S is an isometry.

Proof 4. Let v ∈ V . Then, v = ⟨v, e1⟩e1 + · · · + ⟨v, en⟩en. So, ∥v∥2 = |⟨v, e1⟩|2 + · · · + |⟨v, en⟩|2.
Further, Sv = λ1⟨v, e1⟩e1 + · · · + λn⟨v, en⟩en, and thus ∥Sv∥2 = |λ1|2|⟨v, e1⟩|2 + · · · + |λn|2|⟨v, en⟩|2.
Since |λj | = 1, we know

∥Sv∥2 = |⟨v, e1⟩|2 + · · ·+ |⟨v, en⟩|2 = ∥v∥2.

So, ∥Sv∥ = ∥v∥ since ∥Sv∥ ≥ 0 and ∥v∥ ≥ 0. That is, by definition, S is an isometry. ■
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Theorem 6.3.8 Characterization of Isometries
Suppose S ∈ L(V ). Then, the following are equivalent:

1. S is an isometry.

2. ⟨Su, Sv⟩ = ⟨u, v⟩ ∀u, v ∈ V ;

3. Se1, · · · , Sen is orthonormal for every orthonormal list of vectors e1, · · · , en in V ;

4. ∃ an orthonormal basis e1, · · · , en of V s.t. Se1, · · · , Sen is orthonormal;

5. S∗S = I;

6. SS∗ = I;

7. S∗ is an isometry;

8. S is invertible and S−1 = S∗.

Proof 5.
(1) =⇒ (2): Note that

⟨Su, Sv⟩ = ∥Su+ Sv∥2 − ∥Su− Sv∥2

4
=

∥S(u+ v)∥2 − ∥S(u− v)∥2

4

=
∥u+ v∥2 − ∥u− v∥2

4

= ⟨u, v⟩ □

(2) =⇒ (3): We have

⟨Sei, Sej⟩ = ⟨ei, ej⟩ =

{
1 if i = j

0 if i ̸= j

So, Se1, · · · , Sen are orthonormal. □
(3) =⇒ (4): Suppose e1, · · · , em is orthonormal. We can extend it to a basis ofV : e1, · · · , em, vm+1, · · · , vn.

Then, apply the Gram-Schmidt Procedure, we get an orthonormal basis, e1, · · · , em, em+1, · · · , en of V .
□

(4) =⇒ (5): Suppose e1, · · · , en is an orthonormal basis of V . Then,

⟨S∗Sej , ek⟩ = ⟨Sej , Sek⟩ = ⟨ej , ej⟩.

Suppose u, v ∈ V s.t. u = a1e1 + · · ·+ anen and v = b1e1 + · · ·+ bnen. Then,

⟨S∗Su, v⟩ = ⟨Su, Sv⟩ = ⟨S(a1e1 + · · ·+ anen), S(b1e1 + · · ·+ bnen)⟩
= ⟨a1Se1 + · · ·+ anSen, b1Se1 + · · ·+ bnSen⟩
= ⟨a1Se1, b1Se1⟩+ · · ·+ ⟨anSen, bnSen⟩
= a1b1∥Se1∥2 + · · ·+ anbn∥Sen∥2

= a1b1 + · · ·+ anbn

= ⟨u, v⟩.
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So, S∗Su = u, or S∗S = I. □
(5) =⇒ (6): Suppose S∗S = I. Then, S = S∗. So, SS∗ = I. □
(6) =⇒ (7): Suppose S∗S = I. Then,

∥S∗v∥2 = ⟨S∗v, S∗v⟩ = ⟨SS∗v, v⟩ = ⟨v, v⟩ = ∥v∥2. □

(7) =⇒ (8): Suppose S∗ is an isometry. Then, we know S∗S = I and SS∗ = I by the proofs done
above. So, S is invertible, and S−1 = S∗. □

(8) =⇒ (1): Finally, suppose S is invertible and S−1 = S∗. Then, S∗S = I. Note that

∥Sv∥2 = ⟨Sv, Sv⟩ = ⟨S∗Sv, v⟩ = ⟨v, v⟩ = ∥v∥2.

■

Theorem 6.3.9
Suppose V is a complex inner product space and S ∈ L(V ). Then, S is an isometry if and only
if ∃ an orthonormal basis of V consisting of eigenvectors of S whose corresponding eigenvalues
all have absolute value of 1.

Proof 6.
(⇒): By the Spectrum Theorem, ∃ an orthonormal basis e1, · · · , en, where e1, · · · , en are eigenvec-

tors of S. Suppose λ1, · · · , λn are the corresponding eigenvalues. Then, we have

∥Sej∥ = ∥λjej∥ = |λj |.

Since S is an isometry, ∥Sej∥ = ∥ej∥ = 1. So, |λj | = ∥Sej∥ = 1. □
(⇐): This direction is proven in Example 6.3.7. ■
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6.4 Polar Decomposition and SVD

Notation 6.4.1. If T is a positive operator, then
√
T denotes the unique positive square root of T .

Remark. We want to verify that the definition of
√
T ∗T is reasonable: ⟨T ∗Tv, v⟩ = ⟨Tv, Tv⟩ ≥ 0. Also,

(T ∗T )∗ = T ∗T . So, T ∗T is a positive operator, and thus
√
T ∗T is well-defined.

Theorem 6.4.2 Polar Decomposition
Suppose T ∈ L(V ). Then, ∃ an isometry S ∈ L(V ) s.t. T = S

√
T ∗T .

Proof 1.
Step 1 Characteristics of range

√
T ∗T : Note that

∥Tv∥2 = ⟨Tv, Tv⟩ = ⟨T ∗Tv, v⟩

= ⟨
√
T ∗T

√
T ∗Tv, v⟩

= ⟨
√
T ∗Tv,

√
T ∗Tv⟩

= ∥
√
T ∗Tv∥2.

So, ∀v ∈ V , we have ∥Tv∥ = ∥
√
T ∗Tv∥. Define S1 : range

√
T ∗T → range T as S1

(√
T ∗Tv

)
= Tv. Then,

we have ∥S1
√
T ∗Tv∥ = ∥Tv∥.

1. Now, we want to verify that S1 is well-defined. Suppose v1, v2 ∈ V s.t.
√
T ∗Tv1 =

√
T ∗Tv2. Then,

∥Tv1 − Tv2∥ = ∥T (v1 − v2)∥ = ∥
√
T ∗T (v1 − v2)∥

= ∥
√
T ∗Tv1 −

√
T ∗Tv2∥

= 0.

So, S1 is well-defined.

2. Further, we want to show S1 is linear. By using the linearity of T , we can easily prove that S1 is
also linear.

3. Additionally, S1 is surjective by definition of S1.

4. Also, S1 is isometry. Note that ∀u ∈ range
√
T ∗T , we have ∥S1u∥ = ∥u∥ since ∥

√
T ∗Tv∥ = ∥Tv∥.

5. Hence, S1 is injective: Note that ∥S1v∥ = 0 if and only if ∥v∥ = 0, which is equivalent to v = 0. So,
null S1 = {0}. □

Step 2 Extend S1 to an isometry on V . Note that we have dim range
√
T ∗T = dim range T . So, we

know dim
(
range

√
T ∗T

)⊥
= dim (range T )⊥. Select an orthonormal basis e1, · · · , em of

(
range

√
T ∗T

)⊥
and an orthonormal basis f1, · · · , fm of (range T )⊥. Now, let’s define S2 :

(
range

√
T ∗T

)⊥
→ (range T )⊥

as S1(a1e1 + · · ·+ amem) = a1f1+ · · ·+ amfm. We can then not only show S2 is well-defined but also S2
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is linear. Moreover, ∀w ∈
(
range

√
T ∗T

)⊥
, if w = a1e1 + · · ·+ amem, we have

∥S2w∥2 = ∥S2(a1e1 + · · ·+ amem)∥2 = ∥a1f1 + · · ·+ amfm∥2

= |a1|2 + · · ·+ |am|2

= ∥a1e1 + · · ·+ amem∥2

= ∥w∥2.

So, ∥S2w∥ = ∥w∥. Now, we define

Sv =

S1v, v ∈ range
√
T ∗T

S2v, v ∈
(
range

√
T ∗T

)⊥
Note that since V = range

√
T ∗T ⊕

(
range

√
T ∗T

)⊥
, we can uniquely represent v ∈ V as v = u + w

for some u ∈ range
√
T ∗T and w ∈

(
range

√
T ∗T

)⊥
. Hence, we can also write the definition of S as

Sv = S1u + S2w. If we select
√
T ∗Tv ∈ range

√
T ∗T , then we have S

(√
T ∗Tv

)
= S1

(√
T ∗Tv

)
= Tv.

Therefore, T = S
√
T ∗T ∀v ∈ V. □

Finally, we will show S is an isometry. Note that v = u+ w. So, by Pythagorean Theorem,

∥Sv∥2 = ∥S1u+ S2w∥2∥S1u∥2 + ∥S2w∥2

= ∥u∥2 + ∥w∥2

= ∥v∥2.

■
Definition 6.4.3 (Singular Values). Suppose T ∈ L(V ). The singular values of T are the eigenvalues of√
T ∗T , with each eigenvalue λ repeated dimE

(
λ,

√
T ∗T

)
times.

Example 6.4.4 Define T ∈ L(F4) by

T (z1, z2, z3, z4) = (0, 3z1, 2z2,−3z4).

Find the singular values of T .
Solution 2.
Suppose v = (z1, z2, z3, z4) ∈ F4 and w = (y1, y2, y3, y4) ∈ F4. Consider

⟨v, T ∗w⟩ = ⟨Tv,w⟩
= ⟨(0, 3z1, 2z2,−3z4), (y1, y2, y3, y4)⟩
= 3z1y2 + 2z2y3 − 3z4y4

= ⟨(z1, z2, z3, z3), (3y2, 2y3, 0,−3y4)⟩.

So, T ∗w = T ∗(y1, y2, y3, y4) = (3y2, 2y3, 0,−3y4). Then, T ∗T (z1, z2, z3, z4) = (9z1, 4z2, 0, 9z4). Then,√
T ∗T (z2, z2, z3, z4) = (3z1, 2z2, 0, 3z4). So, the eigenvalues of

√
T ∗T are 3, 2, and 0. Also,

dimE
(
3,
√
T ∗T

)
= 2, dimE

(
2,
√
T ∗T

)
= dimE

(
0,
√
T ∗T

)
= 1.
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So, the singular values are 3, 3, 2, 0. □

Theorem 6.4.5 Singular Value Decomposition (SVD)
Suppose T ∈ L(V ) has singular values s1, · · · , sn. Then, ∃ orthonormal bases e1, · · · , en and
f1, · · · , fn of V s.t.

Tv = s1⟨v, e1⟩f1 + · · ·+ sn⟨v, en⟩fn

for every v ∈ V .

Remark. Relevant Theorem used in proving SVD: Spectrum Theorem, Characterization and Properties
of Isometry, and Polar Decomposition.

Proof 3. Apply the Spectrum Theorem to
√
T ∗T , we know ∃ an orthonormal basis e1, · · · , en of V s.t.

√
T ∗Tej = sjej ∀j = 1, · · · , n.

Note that ∀v ∈ V , we have
v = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en (17)

Apply
√
T ∗T to Equation (17) we have

√
T ∗Tv = s1⟨v, e1⟩e1 + · · ·+ sn⟨v, en⟩en. (18)

By Polar Decomposition, ∃ an isometry S ∈ L(V ) s.t. T = S
√
T ∗T . Apply S to Equation (18), we get

S
(√

T ∗Tv
)
= s1⟨v, e1⟩Se1 + · · ·+ sn⟨v, en⟩Sen.

By the characteristics of isometry, since e1, · · · , en is an orthonormal basis, Se1, · · · , Sen is also an or-
thonormal basis. Let fj = Sej . Then,

Tv = S
√
T ∗Tv = s1⟨v, ee⟩f1 + · · ·+ sn⟨v, en⟩fn.

■

Theorem 6.4.6
Suppose T ∈ L(V ). Then, the singular values of T are the non-negative square roots of the
eigenvalues of T ∗T , with each eigenvalue λ repeated dimE(λ, T ∗T ) times.

Proof 4. By the Spectrum Theorem, ∃ an orthonormal basis e1, · · · , en and non-negative number
λ1, · · · , λn s.t. T ∗Tej = λjej ∀j = 1, · · · , n. Then, we have

√
T ∗Tej =

√
λjej ∀j = 1, · · · , n, which

completes the proof. ■
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7 Operators on Complex Vector Spaces

7.1 Generalized Eigenvectors, Nilpotent Operators

Theorem 7.1.1
Suppose T ∈ L(V ). Then,

{0} ⊆ null T 0 ⊆ null T 1 ⊆ · · · ⊆ null T k ⊆ null T k+1 ⊆ · · ·

Proof 1. Let k ∈ N+. Let v ∈ null T k. Then, T kv = 0. Then, we know T (T kv) = T k+1v = 0. So,
v ∈ null T k+1. That is, null T k ⊆ null T k+1 as desired. ■

Theorem 7.1.2
Suppose T ∈ L(V ). Suppose m is a non-negative integer s.t. null Tm = null Tm+1. Then,

null Tm = null Tm+1 = null Tm+2 = null Tm+3 = · · ·

Proof 2. Let k ∈ N. We’ve already shown null Tm+k ⊆ null Tm+k+1 in Theorem 7.1.1. Now, let
v ∈ null Tm+k+1. So, Tm+k+1(v) = 0. That is, Tm+1

(
T kv

)
= 0. So, T kv ∈ null Tm+1 = null Tm. In other

words, Tm
(
T kv

)
= Tm+k(v) = 0. So, v ∈ null Tm+k. Then, null Tm+k+1 ⊆ null Tm+k. Hence,

null Tm+k = null Tm+k+1.

■

Theorem 7.1.3
Suppose T ∈ L(V ). Let n = dimV . Then,

null Tn = null Tn+1 = null Tn+2 = · · ·

Proof 3. Suppose for the sake of contradiction that null Tn ̸= null Tn+1. Then,

null T 0 ⊈ null T ⊈ T 2 ⊈ · · · ⊈ null Tn ⊈ Tn+1.

As the symbol ⊈ means “contained in but not equal to,” at each of the strict inclusions in the chain
above, the dimension increases by at least 1. That is, dimnull Tn+1 ≥ n + 1. ⋇ This is a contradiction
because a subspace of V (null Tn+1) cannot be a dimension larger than dimV = n. So, it must be that
our assumption is wrong, and null Tn = null Tn+1. ■

Theorem 7.1.4
Suppose T ∈ L(V ). Let n = dimV . Then,

V = null Tn ⊕ range Tn.

Proof 4. Note that dimV = dimnull Tn + dim range Tn by the Fundamental Theorem of Linear
Maps. So, we only need to prove (null Tn) ∩ (range Tn) = {0}. Let v ∈ (null Tn) ∩ (range Tn). Then,
∃u ∈ V s.t. v = Tnu. Since v ∈ null Tn, TNv = Tn(Tnu) = 0. That is, T 2nu = Tnv = 0. Therefore, u ∈
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null T 2n = null Tn. So, we now have Tnu = 0. Hence, v = Tnu = 0. Then, i (null Tn) ∩ (range Tn) = {0},
and thus V = null Tn ⊕ range Tn. ■
Definition 7.1.5 (Generalized Eigenvector). Suppose T ∈ L(V ) and λ is an eigenvalue of T . A vector
v ∈ V is called a generalized eigenvector of T corresponding to λ if v ̸= 0 and (T − λI)jv = 0 for some
positive integer j.
Definition 7.1.6 (Generalized Eigenspace, G(λ, T )). Suppose T ∈ L(V ) and λ ∈ F. The generalized
eigenspace of T corresponding to λ, denoted G(λ, T ), is defined to be the set of all generalized eigen-
vectors of T corresponding to λ, along with the 0 vector.

Theorem 7.1.7
Suppose T ∈ L(V ) and λ ∈ F. Then,

G(λ, T ) = null (T − λI)dimV .

Proof 5.
(⊆): Let v ∈ G(λ, T ). Then, ∃ j ∈ N+ s.t.

v ∈ null (T − λI)j .

Since null (T − λI)j ⊆ null (T − λ)j+1 ⊆ · · · ⊆ null (T − λI)dimV , we have v ∈ null (T − λI)dimV . So,
G(λ, T ) ⊆ null (T − λI)dimV .

(⊇): Conversely, suppose v ∈ null (T − λI)dimV . Then,

(T − λI)dimV v = 0.

By definition, v is a generalized eigenvector, and so v ∈ G(λ, T ). Then, null (T − λI)dimV ⊆ G(λ, T ). ■

Theorem 7.1.8
Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T and v1, . . . , vm are corresponding
generalized eigenvectors. Then, v1, . . . , vm is L.I..

Proof 6. Let a1, . . . , am ∈ C s.t.
0 = a1v1 + · · ·+ amvm. (19)

Let k be the largest non-negative integer such that (T − λ1I)
kv1 ̸= 0. Let w = (T − λ1)

kv1, then

(T − λ1I)w = (T = λ1I)(T − λ1I)
kv = 0

= (T − λ1I)
k+1v = 0

So, w is an eigenvector, and
Tw = λ1w. (20)

Minus λw from both sides of Equation (20), we have

(T − λI)w = (λ1 − λ)w ∀v ∈ F

Then, (T−λI)nw = (λ1−λ)nw, λ ∈ F, n = dimV . Apply the operator (T−λ1I)k(T−λ2I)n · · · (T−λmI)m
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7 OPERATORS ON COMPLEX VECTOR SPACES 7.1 Generalized Eigenvectors, Nilpotent Operators

to both sides of Equation (19), we have

0 = (T − λ1I)
k(T − λ2I)

n · · · (T − λmI)
n(a1v1 + · · ·+ amvm)

= (T − λ1I)
k(T − λ2I)

n · · · (T − λmI)
n(amvm) + · · ·+ (T − λ1I)

k(T − λ2I)
n · · · (T − λmI)

n(a1v1)

= (T − λ1I)
k(T − λ2I)

n · · · (T − λmI)
n(a1v1)

= a1(T − λ2I)
n · · · (T − λmI)

nw

= a1 (T − λ1I)
k(T − λ2I)

n · · · (T − λmI)
n︸ ︷︷ ︸

̸=0

w︸︷︷︸
̸=0

So, it must be a1 = 0. Apply the same rationale, we can show a1 = · · · = am = 0. Therefore, v1, . . . , vm
is L.I. by definition. ■
Definition 7.1.9 (Nilpotent). An operator is called nilpotent if some power of it equals 0.

Theorem 7.1.10
Suppose N ∈ L(V ) is nilpotent. Then, NdimV = 0.

Proof 7. Note that null (N − 0I)dimV = G(0, N) = V . So, we have proven NdimV = 0. ■
Lemma 7.1.11 Suppose N ∈ L(V ) has a basis such that M(N) is an upper-triangular matrix with its
diagonal all 0. Then, N is nilpotent.

Proof 8. Suppose the basis is v1, . . . , vn and

A = M(N) =

0 ∗
. . .

0

.
Then,

Nv1 = 0

Nv2 = A1,2v1 + 0, N2v2 = A1,2Nv1 = 0

...

Nvn = A1,nv1 + · · ·+An−1,nvn−1 + 0.

So, Nnvn = A1,nN
n−1v1 + A2,nN

n−1v2 + · · · + An−1,nN
n−1vn−1 = 0. That is, Nn = 0. So, we’ve shown

that N is nilpotent. ■

Theorem 7.1.12 Matrix of a Nilpotent Operator
Suppose N is a nilpotent operator on V . Then, ∃ a basis of V with respect to which the matrix of
N has the form 0 ∗

. . .

0 0

;

where all entries on and below the diagonal are 0’s.

Proof 9. Let k ∈ N ∪ {0} be the smallest such that Nk = 0. So, we have nullNk = V and k ≤ n. So,
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N j ̸= 0 ∀j < k. So, we have

{0} = nullN0 ⊊ nullN1 ⊊ nullN2 ⊊ · · · ⊊ nullNk.

Select v11, . . . , v
1
n, v

2
1, . . . , v

2
n2
, . . . , vk1 , . . . , v

k
nk

as a basis of N . It can be also written as v1, . . . , vn.

1. Let j be an index such that vj ∈ nullN . Then, Nvj = 0.

2. Let j be an index such that vj ∈ nullN2. Then, N2(vj) = N(Nvj) = 0. So, Nvj ∈ nullN .

So, Nvj =
∑

{i|vi∈null N}

Ai,jvj , i < j. ■

Theorem 7.1.13
Let T ∈ L(V ) s.t. T is no nilpotent. Suppose dimV = n. Then, V = null Tn−1 ⊕ range Tn−1.

Proof 10. Since T is not nilpotent, Nn ̸= 0. So, nullNn ⊊ V . That is,

0 ⊆ null T ⊆ null T 2 ⊆ · · · ⊆ null Tn−1 ⊆ null Tn ⊊ V.

So, it must be the case that null Tn−1 = null Tn.
Suppose v ∈

(
null Tn−1

)
∩
(
range Tn−1

)
. Then, ∃u ∈ V s.t. Tn−1u = v. Note that

Tn−1v = Tn−1
(
Tn−1u

)
= T 2n−2u = Tnu = 0.

So, u ∈ null Tn = null Tn−1. That is, Tn−1u = 0. So, v = 0. Then,
(
null Tn−1

)
∩
(
range Tn−1

)
= {0}, and

thus V = null Tn−1 ⊕ range Tn−1. ■

Theorem 7.1.14
Suppose T ∈ L(V ), α, β ∈ F with α ̸= β. Then,

G(α, T ) ∩G(β, T ) = {0}.

Proof 11. Let v ∈ G(α, T ) ∩ G(β, T ) with v ̸= 0. Then, we know v is a generalized eigenvector of α
and β at the same time. However, given α ̸= β, their corresponding generalized eigenvectors should
be L.I.. ⋇ This contradicts with the fact that v cannot be L.I. with v. Then, our assumption is wrong,
and G(α, T ) ∩G(β, T ) = {0}. ■
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7.2 Decomposition of an Operator

Theorem 7.2.1
Suppose T ∈ L(V ) and p = P(F). Then, null p(T ) and range p(T ) are invariant under T .

Proof 1. Let v ∈ null p(T ). Then, p(T )(Tv) = T (p(T )v) = T (0) = 0. So, null p(T ) is invariant under
T . Suppose v ∈ range p(T ), then ∃u ∈ V s.t. p(T )u = v. Then, Tv = T (p(T )u) = p(T )(Tu) ∈ range p(T ).
So, range p(T ) is also invariant under T . ■

Theorem 7.2.2
Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm be the distinct eigenvalues of
T . Then,

1. V = G(λ1, T )⊕ · · · ⊕G(λm, T ).

2. each G(λj , T ) is invariant under T .

3. each (T − λjI) |G(λj ,T ) is nilpotent.

Proof 2.

1. We will prove it by induction. Obviously, the conclusion follows when n = 1. Now, consider n > 1.
Suppose the conclusion holds for all spaces with dimension ≤ n− 1.

WTS: the conclusion is true for dimV = n.

Consider V = null (T − λ1I)
n ⊕ range (T − λ1I)

n = G(λ1, T ) ⊕ U if we fix U = range (T − λ1I)
n.

Obviously ,G(λ1, T ) ̸= {0}. So, dimU < n, and so our inductive hypothesis is applicable to U .
Note that G(λi, T ) ∩ G(λj , T ) = {0} if i ̸= j. Then, λ2, . . . , λm are eigenvalues of T |U . So, U =

G(λ2, T |U )⊕ · · · ⊕G(λm, T |U ). Then, V = G(λ1, T )⊕G(λ2, T |U )⊕ · · · ⊕G(λm, T |U ).

WTS: G(λj , T |U ) = G(λj , T )

Note that G(λj , T |U ) ⊆ G(λj , T ) is evident. Conversely, suppose v ∈ G(λk, T ) ⊆ V . Then,
v = v1 + u for some v1 ∈ G(λ1, T ) and u ∈ U . Further, by our inductive hypothesis, we have

u = v2 + · · ·+ vm for some vj ∈ G(λj , T |U ) ⊆ G(λj , T ).

Then, v = v1 + u = v1 + v2 + · · ·+ vm ∈ G(λk, T ). That is, v1 + · · ·+ (vk − v) + · · ·+ vm = 0. Then,
v1 ∈ G(λ1, T ), . . . , vk − v ∈ G(λk, T ), . . . , vm ∈ G(λm, T ). Therefore, v1, . . . , vk − v, . . . , vm are L.I..
So, it must be that v1 = · · · = vk − 2 = · · · = vm = 0. So, v = v1 + u = 0 + u = u. Then, v ∈ U .
So, v ∈ G(λk, T ) ∩ U = G(λk, T |U ). As k was arbitrary, we’ve shown G(λk, U) ⊆ G(λk, T |U ). So,
G(λj , T |U ) = G(λj , T ). We complete our proof.

2. Note that G(λj , T ) = null (T − λjI)
n = null p(T ) if p(z) = (z − λj)

n. By Theorem 7.2.1, null p(T ) is
invariant under T . So, it follows that G(λj , T ) is also invariant under T . □

3. By definition, we have G(λj , T ) = null (T − λjI)
n. Then,

[
(T − λjI) |G(λj ,T )

]n
= 0. So, by defini-

tion, (T − λjI) |G(λj ,T ) is nilpotent.

■
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Corollary 7.2.3 Suppose V is a complex vector space and T ∈ L(V ). Then, ∃ a basis of V consisting of
generalized eigenvectors of T .
Definition 7.2.4 (Multiplicity). Suppose T ∈ L(V ). The (algebraic) multiplicity of an eigenvalue λ of
T is defined to be the dimension of the corresponding generalized eigenspaceG(λ, T ). In other words,
the multiplicity of an eigenvalue λ of T equals dimnull (T − λI)dimV . The geometric multiplicity of an
eigenvalue λ of T is dimE(λ, T ).

Theorem 7.2.5
Suppose V is a complex vector space and T ∈ L(V ). Then, the sum of the multiplicities of all
eigenvalues of T equals dimV .

Proof 3. By Theorem 7.2.2 (1), we know V = G(λ1, T )⊕ · · · ⊕G(λm, T ). So, we have

dimV = dimG(λ1, T ) + · · ·+ dimG(λm, T ).

■
Definition 7.2.6 (Block Diagonal Matrix). A block diagonal matrix is a square matrix of the formA1 0

. . .

0 Am

,
where A1, . . . , Am are square matrices lying along the diagonal and all the other entries of the matrix
equal 0.

Theorem 7.2.7
Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm be the distinct eigenvalues
of T , with multiplicities d1, . . . , dm. Then, ∃ a basis of V with respect to which T has a black
diagonal matrix of the form A1 0

. . .

0 Am

,
where each aj is dj-by-dj upper-triangular matrix of the form

Aj =

λj ∗
. . .

0 λj

.
Proof 4. Note that Tvk = A1,kv1 + · · · + Ak,kvk + · · · + An,kvn. Also, (T − λjI) |G(λj ,T ) is nilpotent.

For each G(λj , T ), choose a basis of G(λj , T ) and dimG(λj , T ) = dj . Then,

M
(
(T − λjI) |G(λj ,T )

)
=

0 ∗
. . .

0 0

.
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7 OPERATORS ON COMPLEX VECTOR SPACES 7.2 Decomposition of an Operator

Since M
(
(T − λjI) |G(λj ,T )

)
= M

(
T |G(λj ,T )

)
−M(λjI), we have

M
(
T |G(λj ,T )

)
=

0 ∗
. . .

0 0

+M(λjI)

=

0 ∗
. . .

0 0

+

λj ∗
. . .

0 λj



=

λj ∗
. . .

0 λj

.
Put all the bases of G(λj , T ) together, we have completed the proof. ■
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7.3 Characteristic and Minimal Polynomials

Definition 7.3.1 (Characteristic Polynomial). Suppose V is a complex vector space and T ∈ L(V ). Let
λ1, . . . , λm denote the distinct eigenvalues of T , with multiplicities d1, . . . , dm. The polynomial

(z − λ1)
d1 · · · (z − λm)dm

is called the characteristic polynomial of T .

Theorem 7.3.2
Suppose V is a complex vector space and T ∈ L(V ). Then,

1. the characteristic polynomial of T has degree dimV ;

2. the zeros of the characteristic polynomial of T are eigenvalues of T .

Proof 1.

1. Note that V = G(λ1, T ) ⊕ · · · ⊕ G(λm, T ). So, dimV = d1 + · · · + dm. That is, the characteristic
polynomial of T has degree dimV . □

2. By the definition of characteristic polynomial, it is evidently true.

■

Theorem 7.3.3 Cayley-Hamilton Theorem
Suppose V is a complex vector space and T ∈ L(V ). Let q denote the characteristic polynomial
of T . Then, q(T ) = 0.

Proof 2. Suppose λ1, . . . , λm are distinct eigenvalues of T and d1, . . . , dm are their corresponding
multiplicities. For each j = 1, . . . ,m, we have (T−λjI) |G(λj ,T ) is nilpotent. Then, (T−λjI)dj |G(λj ,T )= 0.
Since q(z) = (z − λ1)

d1 · · · (z − λm)dm , we know q(T ) = (T − λ1I)
d1 · · · (T − λmI)

dm . Consider v ∈ V .
Since V = G(λ1, T )⊕ · · · ⊕G(λm, T ), then v = a1v1 + · · ·+ amvm, where vj ∈ G(λj , T ). Then,

q(T )v = q(T )(a1v1 + · · ·+ amvm)

= a1q(T )v1 + · · ·+ amq(T )vm.

For simplicity, consider

q(T )vj = (T − λ1I)
d1 · · · (T − λmI)

dmvj

= (T − λ1I)
d1 · · · (T − λmI)

dm(T − λjI)
djvj .

Since vj ∈ G(λj , T ), we know (T − λjI)
djvj = 0. Then, q(T )vj = 0 for each j = 1, . . . ,m. So, q(T )v = 0.

That is, q(T ) = 0. ■
Definition 7.3.4 (Monic Polynomial). A monic polynomial is a polynomial whose highest-degree co-
efficient equals 1.
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Theorem 7.3.5
Suppose T ∈ L(V ). Then, ∃ a unique monic polynomial p of smallest degree such that p(T ) = 0.

Proof 3. Let dimV = n. Then, the list I, T, T 2, . . . , Tn2
is not L.I. in L(V ) because L(V ) has dimen-

sion n2 and we have a list of length n2 + 1. Let m be the smallest positive integer such that the list
I, T, T 2, . . . , Tm is linearly dependent. Then, by the Linear Dependence Lemma, Tm is a linear combi-
nation of I, T, . . . , Tm−1. So, we have

a0I + a1T + a2T
2 + · · ·+ am−1T

m−1 + Tm = 0 (21)

Define a monic p ∈ P(F) as p(z) = a0 + z1z + a2z
2 + · · ·+ am−1z

m−1 + zm. Then, Equation (21) implies
p(T ) = 0. Now, we will prove the uniqueness. Suppose ∃ a monic q ∈ P(F) with deg q = m s.t. q(T ) = 0.
Then, (p− q)(T ) = p(T )− q(T ) = 0 and deg(p− q) < m. Hence, p = q. ■
Definition 7.3.6 (Minimal Polynomial). Suppose T ∈ L(V ). Then, the minimal polynomial of T is the
unique monic polynomial p of smallest degree such that p(T ) = 0.
Corollary 7.3.7 By the Cayley-Hamilton Theorem, the minimal polynomial of each T ∈ L(V ) has
degree ≤ dimV .

Theorem 7.3.8 Division Algorithm of Polynomials
Suppose p, s ∈ P(F) with s ̸= 0. Then, ∃ unique q, r ∈ P(F) s.t. p = sq + r and deg r < deg s.

Proof 4. Let deg p = n and deg s = m. If n < m, then q = 0 and r = p. Now, we assume n ≥ m.
Define T : Pn−m(F)× Pm−1(F) → Pn(F) as T (q, r) = sq + r. It is easy to verify that T is a linear map. If
(q, r) ∈ null T , then sq+r = 0. So, q = r = 0. That is, dimnull T = 0 and T is injective. Further, note that
dim(Pn−m(F)×Pm−1(F)) = (n−m+1)+(m−1+1) = n+1 and dim range T = n+1 = dimPn(F). Since
range T ⊆ Pn(F) and dim range T = dimPn(F), we have range T = Pn(F). Therefore, T is surjective. ■

Theorem 7.3.9
Suppose T ∈ L(V ) and q ∈ P(F). Then, q(T ) = 0 if and only if q is a polynomial multiple of the
minimal polynomial of T .

Proof 5. Let p be the minimal polynomial of T .
(⇐): Suppose q = sp. Then, q(T ) = s(T )p(T ) = 0. □
(⇒): Suppose q(T ) = 0. By division algorithm of polynomials, q = sp + r with deg r < deg p. Then,

q(T ) = s(T )p(T ) + r(T ) = 0. Note that p(T ) = 0, so r(T ) = 0. Then, r = 0. It must be q = sp. ■

Theorem 7.3.10 Characteristic Polynomial and Minimal Polynomial
Suppose F = C and T ∈ L(V ). Then, the characteristic polynomial of T is a polynomial multiple
of the minimal polynomial of T .

Proof 6. Suppose q is a characteristic polynomial of T . Then, by Cayley-Hamilton Theorem, q(T ) =
0. Further by Theorem 7.3.9, q is a polynomial multiple of the minimal polynomial of T . ■
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Theorem 7.3.11
Let T ∈ L(V ). Then, the zeros of the minimal polynomial of T are precisely the eigenvalues of T .

Remark. “Precisely” means “is and only is.” So, we need to prove the theorem from two directions.

Proof 7. Suppose p(z) = a0 + a1z + a2z
2 + · · ·+ am−1z

m−1 + zm is the minimal polynomial of T .
(⇒): Suppose p(λ) = 0. WTS: λ is the eigenvalue. Since p(λ) = 0, we have p(z) = (z − λ)q(z).

Then, p(T ) = (T − λI)q(T ) = 0. Then, deg q < deg p and p(T )v = (T − λI)q(T )v = 0 ∀v ∈ V . So,
∃v ∈ V s.t. q(T )v ̸= 0. So, it must be that T − λI is not injective, and thus λ is an eigenvalue of T . □

(⇐): Suppose λ ∈ F is an eigenvalue of T . Then, ∃v ∈ V s.t. Tv = λvwith v ̸= 0. Consider T jv = λjv.
Then,

p(T )V = (a0I + a1T + · · ·+ am−1T
m−1 + Tm)v

= (a0 + a1λ+ · · ·+ am−1λ
m−1 + λm)v

= p(λ)v = 0

Since v ̸= 0, it must be p(λ) = 0. ■

Example 7.3.12 Suppose T ∈ L(C3) be defined as

T (z1, z2, z3) = (6z1 + 3z2 + 4z3, 6z2 + 2z3, 7z3).

Then,

M(T ) =

6 3 4

0 6 2

0 0 7

.
Find the minimal polynomial of T .

Solution 8.

Since M(T ) =

6 3 4

0 6 2

0 0 7

, the eigenvalues of T are 6, 6, 7. The multiplicity of 6 is 2 and that of 7

is 1. So, the characteristic polynomial of T is q(z) = (z − 6)2(z − 7). Then, the minimal polynomial
is polynomial multiple of (z − 6)(z − 7). So, the minimal polynomial of T should be (z − 6)(z − 7)

or (z − 6)2(z − 7). Note that

M
[
(T − 6I)2(T − 7I)

]
= (M(T − 6I))2M(T − 7I)

=

0 0 10

0 0 2

0 0 1


−1 3 4

0 −1 2

0 0 0


=

and

M[(T − 6I)(T − 7I)] =

0 3 4

0 0 2

0 0 1


−1 3 4

0 −1 2

0 0 0

 ̸= 0.

So, (z − 6)2(z − 7) is the minimal polynomial of T . □
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Example 7.3.13 Find the minimal polynomial of operator T ∈ L(C3) defined by T (z1, z2, z3) =

(6z1, 6z2, 7z3).
Solution 9.
Note that

M(T ) =

6 0 0

0 6 0

0 0 7

.
Then, the characteristic polynomial is q(z) = (z − 6)2(z − 7). The minimal polynomial could be
(z − 6)2(z − 7) or (z − 6)(z − 7). Since

M[(T − 6I)(T − 7I)] = M(T − 6I)M(T − 7I)

=

0 0 0

0 0 0

0 0 1


−1 0 0

0 −1 0

0 0 0

 = 0,

the minimal polynomial of T is (z − 6)(z − 7). □

Theorem 7.3.14
Suppose T ∈ L(V ). T is invertible if and only if the constant term in the minimal polynomial of
T is non-zero.

Proof 10. Let p(z) = a0 + a1z + · · ·+ am−1z
m−1 + zm be the minimal polynomial of T .

(⇒) We will prove the contrapositive: “If a0 = 0, then T is not invertible.” Suppose a0 = 0. Then,

p(z) = a1z + · · ·+ am−1z
m−1 + zm.

Then, p(0) = 0. So, 0 is an eigenvalue of T . That is, Tv = 0 for some v ̸= 0. Then, T is not injective, and
thus is not invertible. □

(⇐) We will prove the contrapositive: “If T is not invertible, then a0 = 0.” Suppose T is not invert-
ible. Then, T is not injective. So, ∃v ̸= 0 s.t. Tv = 0. That is, Tv = 0 · v or 0 is an eigenvalue of T . So,
p(z) = zq(z), and thus a0 = 0. ■

Theorem 7.3.15
Suppose V is a complex vector space and T ∈ L(V ). V has a basis consisting of eigenvectors of
T if and only if the minimal polynomial of T has no repeated roots.
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7.4 Jordan Form

Example 7.4.1 Let N ∈ L(F4) be the nilpotent operator N(z1, z2, z3, z4) = (0, z1, z2, z3). Let v =

(1, 0, 0, 0). Then, Nv = (0, 1, 0, 0), N2v = (0, 0, 1, 0), and N3v = (0, 0, 0, 1). Note that v,Nv,N2v,N3v

is a basis of F4, and the matrix of N with respect to this basis is
0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

.

Example 7.4.2 Let N ∈ L(F6) be the nilpotent operator defined by

N(z1, z2, z3, z4, z5, z6) = (0, z1, z2, 0, z4, 0).

Let v1 = (1, 0, 0, 0, 0, 0), v2 = (0, 0, 0, 1, 0, 0), and v3 = (0, 0, 0, 0, 0, 1). Then, we have N2v1, Nv1, Nv2,
v2, v3 to be a basis of F6. The matrix of N with respect to this basis is

0 1 0

0 0 1

0 0 0

 0 0

0 0

0 0

0

0

0

0 0 0

0 0 0

(
0 1

0 0

)
0

0

0 0 0 0 0
(
0
)



Theorem 7.4.3
Suppose N ∈ L(V ) is nilpotent. Then, ∃v1, . . . , vn ∈ V and m1, . . . ,mn ∈ N+ such that

1. Nm1v1, . . . , Nv1, v1, . . . , N
mnvn, . . . , Nvn, vn is a basis of V ;

2. Nm1+1v1 = · · · = Nmn+1vn = 0.

Proof 1. We will prove by induction on dimV .
Base Case When dimV = 1, the conclusions obviously hold.

Inductive Steps Assume dimV > 1 and the conclusions hold for all spaces with dimension smaller
than dimV . Since N is nilpotent, it is not injective and thus is not surjective. So, rangeN ⊊ V . That is,
dim rangeN < dimV . Since N is nilpotent, it is not injective and thus is not surjective. So, rangeN ⊊
V . that is, dim rangeN < dimV . Apply the inductive hypothesis on rangeN . Consider N |range N∈
L(rangeN), then ∃v1, . . . , vn ∈ rangeN and m1, . . . ,mn ∈ N+ such that

Nm1v1, . . . , Nv1, v1, . . . , N
mnvn, . . . , Nvn, vn. (22)

is a basis of rangeN , and Nm1+1v1 = · · · = Nmn+1vn = 0. For each j, vj ∈ rangeN . Then, ∃uj ∈
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V s.t. vj = Nuj . So, Nk+1uj = Nkvj ∀k ∈ N+. We now claim the following list of vectors is L.I.:

Nm1+1u1, . . . , Nu1, u1, . . . , N
mn+1un, . . . , Nun, un (23)

Let am1+1
1 Nm1+1u1 + · · ·+ a11Nu1 + a01u1 + · · ·+ amn+1

n Nmn+1un + · · ·+ a1nNun + a0nun = 0. Then,

am1+1
1 Nm1v1 + · · ·+ a11v1 + a01u1 + · · ·+ amn+1

n Nmnvn + · · ·+ a1nvn + a0nun = 0. (24)

Apply N to both sides of the Equation (24),

am1+1
1 Nm1+1v1︸ ︷︷ ︸

0

+ · · ·+ a11Nv1 + a01Nu1︸︷︷︸
v1

+ · · ·+ amn+1
n Nmn+1vn︸ ︷︷ ︸

0

+ · · ·+ a1nNvn + a0nNun︸︷︷︸
vn

= 0.

So,
am1
1 Nm1v1 + · · ·+ a11Nv1 + a01v1 + · · ·+ amn

n Nmnvn + · · ·+ a1nNvn + a0nvn = 0.

Since Equation (22) is a basis, it must be all the coefficients equal to 0. Meanwhile, reconsider Equation
(24). It becomes

am1+1
1 Nm1v1 + · · ·+ amn+1

n Nmnvn = 0.

As Nm1 , . . . , Nmn is included in the list of vector stated in Equation (22), they must also be L.I.. Thus,
we have am1+1

1 = · · · = amn+1
n = 0. So, we have proven the claim by showing Equation (23) is indeed a

list of L.I. vectors. Now, extend Equation (23) into a bassi of V :

Nm1+1u1, . . . , Nu1, u1, . . . , N
mn+1un, . . . , Nun, un, w1, . . . , wp (25)

Then, each Nwj ∈ rangeN = span(Equation (22)) s.t. Nwj = Nxj . Now, suppose un+j = wj − xj , and
we have Nun+j = 0. Hence,

Nm1+1u1, . . . , Nu1, u1, . . . , N
mn+1un, . . . , Nun, un, un+1, . . . , un+p (26)

spans V because it contains each xj and un+j and thuswj . Since Equation (25) and Equation (26) have
the same length, Equation (26) is a basis of V satisfying the desired condition. ■
Definition 7.4.4 (Jordan Basis). Suppose T ∈ L(V ). A basis of V is called a Jordan basis of T if M(T )

with respect to this basis has a block diagonal matrixA1 0
. . .

0 Ap

,
where each Aj is an upper-triangular matrix of the form

λj 1 0
. . . . . .

. . . 1

0 λj

.
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Theorem 7.4.5 Jordan Form
Suppose V is a complex vector space. If T ∈ L(V ), then ∃ a basis of V that is a Jordan basis for T .

Proof 2. First consider a nilpotent operatorN ∈ L(V ). Suppose v1, . . . , vn ∈ L(V ) satisfy the condi-
tion in Theorem 7.4.3. For each j, note that the list of vectors Nmjvj , N

mj−1vj , . . . , Nvj , vj correspond
to a matrix of N as 

0 1 0
. . . . . .

. . . 1

0 0.


Hence, the conclusion holds for a nilpotent operator. Assume T ∈ L(V ). Let λ1, . . . , λm be distinct
eigenvalues of T . Then, we have the generalized eigenspace decomposition:

V = G(λ1, T )⊕ · · · ⊕G(λm, T ),

where each (T −λjI) |G(λj ,T ) is nilpotent. Thus, some basis of eachG(λj , T ) is a Jordan basis of T −λjI.
So,

M
(
(T − λjI) |G(λj ,T )

)
=


0 1 0

. . . . . .
. . . 1

0 0


and

M
(
T |G(λj ,T )

)
=


λj 1 0

. . . . . .
. . . 1

0 λj

.
Also, the dimension of the matrix is dimG(λj , T ). ■
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8 Operators on Real Vectors Spaces

8.1 Complexification

Definition 8.1.1 (Complexification of V /VC). Suppose V is a real vector space. The complexification
of V , denoted VC, equals V × V . An element of VC is an ordered pair (u, v), where u, v ∈ V , but we will
write this as u+ iv.
Definition 8.1.2 (Addition & Multiplication on VC).

1. Addition on VC is defined by

(u1 + iv1) + (u2 + iv2) = (u1 + u2) + i(v1 + v2).

for u1, u2, v1, v2 ∈ V .

2. Complex Scalar Multiplication on VC is defined by

(a+ bi)(u+ iv) = (au− bv) + i(av + bu)

for a, b ∈ R and u, v ∈ V .

Theorem 8.1.3
Suppose V is a real vector space. Then, with the definition of addition and scalar multiplication
as above, VC is a complex vector space.

Proof 1.

1. Addition. Let uj + ivj ∈ C.

(a) commutativity:

(u1 + iv1) + (u2 + iv2) = (u1 + u2) + i(v1 + v2)

= (u2 + u1) + i(v2 + v1)

= (u2 + iv2) + (u1 + iv1). □

(b) associativity:

((u1, v1) + (u2, v2)) + (u3, v3) = (u1 + u2, v1 + v2) + (u3, v3)

= (u1 + u2 + u3, v1 + v2 + v3)

= (u1 + (u2 + u3), v1 + (v2 + v3))

= (u1, v1) + ((u2, v2) + (u3, v3)). □

(c) identity:
(0, 0) + (u, v) = (0 + u, 0 + v) = (u+ 0, v + 0)

= (u, v) + (0, 0)

= (u, v). □

(d) inverse:
(−u,−v) + (u, v) = (−u+ u,−v + v) = (0, 0). □
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2. Scalar Multiplication: Let (u, v) ∈ VC, a+ bi and c+ di ∈ C.

(a) identity:
(1 + 0i)(u+ iv) = u+ iv + 0iu− 0v = u+ iv. □

(b) associativity: can be easily verified. omitted.

(c) distributivity: can be easily verified. omitted.

■

Theorem 8.1.4
Suppose V is a real vector space.

1. If v1 . . . , vn is a basis of V (as a real vector space), then v1, . . . , vn is a basis of VC (as a com-
plex vector space).

2. The dimension of VC (as a complex vector space) equals the dimension of V (as a real
vector space).

Proof 2.

1. Suppose v1, . . . , vn is a basis of V . Then, V = span(v1, . . . , vn). Then, span(v1, . . . , vn) in VC con-
tains v1, . . . , vn, iv1, . . . , ivn. For any u+ iv ∈ VC, we have

u+ iv = (a1v1 + · · ·+ anvn) + i(b1v1 + · · ·+ bnvn)

= a1v1 + · · ·+ anvn + b1iv1 + · · ·+ bnivn.

So, v1, . . . , vn, iv1, . . . , ivn spans VC. Note that

span(v1, . . . , vn, iv1, . . . , ivn) = span(v1, . . . , vn).

Then, we get VC = span(v1, . . . , vn). Now, let λ1v1 + · · ·+ λnvn = 0 for λj ∈ C. Then,

Re(λ1v1) + · · ·+Re(λnvn) = 0 and Im(λ1v1) + · · ·+ Im(λnvn) = 0.

Since Re(λj), Im(λj) ∈ R, it must be that

Re(λ1) = · · · = Re(λn) = 0 and Im(λ1) = · · · = Im(λn) = 0.

Then, we have
λ1 = · · · = λn = 0.

That is, v1, . . . , vn is L.I.. Hence, v1, . . . , vn is a basis of VC. □

2. We know immediately that (1) implies (2). The proof is complete.

■
Definition 8.1.5 (Complexification of T/TC). Suppose V is a real vector space and T ∈ L(V ). The
complexification of T , denoted TC, is the operator TC ∈ L(VC) defined by TC(u + iv) = Tu + iTv for
u, v ∈ V .
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Remark. It can be easily verified that this definition indeed gives an operator TC ∈ L(VC).

Example 8.1.6 Suppose A is an n × n matrix of real numbers. Define T ∈ L(Rn) by Tx = Ax.
Identifying the complexification of Rn with Cn, we then have TCz = Az for each z ∈ Cn.

Theorem 8.1.7
Suppose V is a real vector space with basis v1, . . . , vn and T ∈ L(V ). Then, M(T ) = M(TC),
where both matrices are with respect to the basis v1, . . . , vn.

Proof 3. Note that
TC(vk) = TC(vk + i · 0) = Tvk + iT0 = Tvk.

So, M(T ) = M(TC). ■

Theorem 8.1.8
Every operator on a non-zero f-d vector space has an invariant subspace of dimension 1 or 2.

Proof 4. We only need to consider the real case. Let T ∈ L(V ), then TC ∈ L(VC). Then, TC has an
eigenvalue a+ bi, and a corresponding eigenvector u+ iv ∈ VC s.t.

TC(u+ iv) = (a+ bi)(u+ iv) =⇒ Tu+ iTv = (au− bv) + (av + bu)i

So, Tu = au − bv and Tv = av + bu. Let U = span(u, v) in V . Then, au − bv, av + bu ∈ U . Therefore, U
is an invariant subspace of V under T . If u, v is L.I., then dimU = 2; if u, v is linearly dependent, then
dimU = 1. ■

Theorem 8.1.9
Suppose V is a real vector space and T ∈ L(V ). Then, the minimal polynomial of TC equals the
minimal polynomial of T .

Proof 5. Suppose V is a real vector space and T ∈ L(V ). Then,

(TC)
n(u+ iv) = Tnu+ iTnv.

Let p ∈ P(R) be the minimal polynomial of T . Then, p(TC) = (p(T ))C.
In fact, let p(x) = a0 + a1x+ · · ·+ anx

n, then p(TC) = a0I + aiTC + · · ·+ anT
n
C . So,

p(TC)(u+ iv) = a0(u+ iv) + a1TC(u+ iv) + · · ·+ anT
n
C (u+ iv)

= (a0u+ a1Tu+ · · ·+ anT
nu) + i(a0v + a1Tv + · · ·+ anT

nv)

= p(T )(u) + ip(T )(v)

= (p(T ))C(u+ iv).

So, p(TC) = (p(T ))C.
Since p(T ) = 0, (p(T ))C = 0, and thus p(TC) = 0.
Suppose q ∈ P(C) is a monic polynomial and q(TC)(u) = 0 ∀u ∈ V . Let q(z) = b0+b1z+· · ·+bmzm,
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where bm = 1, and r(z) = Re(b0) + Re(b1z) + · · ·+Re(bmz
m). So, q(TC) = b0I + b1TC + · · ·+ bmT

m
C = 0.

That is, (q(T ))C = 0. So, (q(T ))C(u+iv) = q(T )(u)+iq(T )(v) = 0. Then, it must be q(T )(u) = 0 ∀u ∈ V .
So, b0u+ b1Tu+ · · ·+ bmT

mu = 0, which is equivalent to Re(b0)u+Re(b1)Tu+ · · ·Re(bm)Tmu = 0. By
definition of r(T ), we have r(T ) = 0.

Also, we have deg q = deg r. Further given p is the minimal polynomial of T , deg r ≥ deg p. Hence,
deg q = deg r ≥ deg p. Thus, p is also a minimal polynomial of TC. ■

Theorem 8.1.10
Suppose V is a real vector space, T ∈ L(V ), and λ ∈ R. Then, λ is an eigenvalue of TC if and only
if λ is an eigenvalue of T .

Proof 6. Since the minimals of T and TC are the same, the zeros of the minimal polynomials will
also be the same. Given zeros of the minimal polynomial of T are precisely the eigenvalues of T , the
proof is therefore complete. ■

Proof 7.
(⇒) Firstly, suppose λ is an eigenvalue of T . Then, ∃ v ̸= 0 s.t. Tv = λv. So, TC(v) = λv, and thus λ

is an eigenvalue of TC . □
(⇐) Conversely, suppose λ is an eigenvalue of TC. Then, ∃u, v ∈ V with u+ iv ̸= 0 s.t.

TC(u+ iv) = λ(u+ iv).

So, Tu = λu and Tv = λv. Then, λ must be an eigenvalue of T . ■

Theorem 8.1.11
Suppose V is a real vector space, T ∈ L(V ), λ ∈ C, j is an non-negative integer, and u, v ∈ V .
Then, (TC − λI)j(u+ iv) = 0 if and only if (TC − λ̄I)j(u− iv) = 0.

Proof 8. To prove this theorem, we only have to prove the forward direction. We will prove by
induction on j.

Base Case If j = 0, then (TC − λI)0 = I. So, we have u+ iv = 0. Then, u = 0, and v = 0. Therefore,
u− iv = 0. □

Inductive Steps Assume j ≥ 1 and the desired results holds for j − 1. That is,

(TC − λI)j−1(u+ iv) =⇒ (TC − λ̄I)j−1(u− iv) = 0.

Consider
(TC − λI)j−1(TC − λI)(u+ iv) = 0. (27)

Writing λ = a+ bi, we have

(TC − λI)(u+ iv) = TC(u+ iv)− (a+ bi)(u+ iv)

= (Tu− au+ bv) + i(Tv − bu− av)

and
(TC − λ̄I)(u+ iv) = TC(u+ iv)− (a− bi)(u+ iv)

= (Tu− au+ bv)− i(Tv − bu+ av).
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So, Eq. (27) becomes
(TC − λI)j−1(Tu− au+ bv) + i(Tv − bu− av) = 0. (28)

Apply our inductive hypothesis to Eq. (28), we have

(TC − λ̄I)j−1((Tu− au+ bv)− i(Tv − bu+ av)) = 0

That is, (TC − λ̄I)j−1((TC − λ̄I)(u+ iv)) = 0, or (TC − λ̄I)j(u+ iv) = 0. ■
Corollary 8.1.12 Suppose V is a real vector space, T ∈ L(V ), and λ ∈ C. Then, λ is an eigenvalue of TC
if and only if λ̄ is an eigenvalue of TC.

Proof 9. Take j = 1 in Theorem 8.1.11. The proof is completed. ■

Theorem 8.1.13
Suppose V is a real vector space, T ∈ L(V ), and λ ∈ C is an eigenvalue of TC. Then, the multi-
plicity of λ as an eigenvalue of TC equals the multiplicity of λ̄ as an eigenvalue of TC.

Proof 10. We only need to show dimG(λ, TC) = dimG(λ̄, TC). Select u1+ iv1, . . . , um+ ivm as a basis
of G(λ, TC). Then,

(TC − λI)dimV (uj + ivj) = 0 for each j.

Then, (TC − λ̄I)dimV (uj − ivj) = 0 by Theorem 8.1.11. Now, consider u1 − iv1, . . . , um − ivm. Suppose

(a1 + b1i)(u1 − iv1) + · · ·+ (am + bmi)(um − ivm) = 0.

Then,
m∑
j=1

ajuj + bjvj + i(bjuj − ajvj) = 0. (29)

Note that (aj − bj i)(uj + ivj) = ajuj + bjvj + i(bjuj − ajvj). Then, Eq. (29) becomes

m∑
j=1

aj + bj i(uj + ivj) = 0.

Since u1 + iv1, . . . , um + ivm is a basis, it must be a1 + b1i = · · · = am + bmi = 0. So, a1 + b1i = · · · =
am + bmi = 0. Therefore, we have u1 − iv1, . . . , um − ivm is L.I.. Now, let u− iv ∈ G(λ̄, TC). Then,

u+ iv = (a1 − b1i)(u1 + iv1) + · · ·+ (am − bmi)(um + ivm).

So, u−iv = (a1+b1i)(u1−iv1)+· · ·+(am+bmi)(um−ivm). Hence,G(λ̄, TC) = span(u1−iv1, . . . , um−ivm).
Since

dim span(u1 + iv1, . . . , um + ivm) = dim span(u1 − iv1, . . . , um − ivm),

multiplicity of λ equals multiplicity of λ̄. ■

Theorem 8.1.14
Every operator on an odd-dimensional real vector space has an eigenvalue.

Proof 11. Suppose V is a real vector space with odd dimension. Let T ∈ L(V ). Then, by Corol-
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lary 8.1.12, we know non-real eigenvalues of TC come in pairs and their multiplicities are the same by
Theorem 8.1.13. So, ∑

(multiplicity of non-real eigenvalues) = an even number.

Since V = G(λ1, T )⊕ · · · ⊕G(λm, T ), we have∑
(multiplicity of all eigenvalues) = dimVC = dimV = an odd number.

So, there must be at least one real eigenvalues left. ■

Theorem 8.1.15
Suppose V is a real vector space and T ∈ L(V ). Then, the coefficients of the characteristic
polynomial of TC are all real.

Proof 12. Suppose λ is a non-real eigenvalue of TC with multiplicitym. Then, λ̄ is also an eigenvalue
of TC with multiplicity m. Then, characteristic polynomial of TC must be in the form

(z − λ)m(z − λ̄)mf(z) =
(
z2 − (λ+ λ̄)z + |λ|2

)m
f(z)

=
(
z2 − 2(Re(λ))z + |λ|2

)m
f(z).

Suppose f(z) = (z − t1)
d1 · · · (z − tr)

dr with each tj ∈ R. Then, the characteristic polynomial of TC
becomes (

z2 − 2(Re(λ))z + |λ|2
)m

(z − t1)
d1 · · · (z − tr)

dr ,

with all real coefficients. ■
Definition 8.1.16 (Characteristic Polynomial). Suppose V is a real vector space and T ∈ L(V ). Then,
the characteristic polynomial of T is defined to be the characteristic polynomial of TC.
Corollary 8.1.17 Degree and Zeros of Characteristic Polynomial Suppose V is a real vector space and
T ∈ L(V ). Then,

1. the coefficients of the characteristic polynomial of T are all real;

2. the characteristic polynomial of T has degree dimV ;

3. the eigenvalues of T are precisely the real zeros of the characteristic polynomial of T .

Theorem 8.1.18 Cayley-Hamilton Theorem
Suppose T ∈ L(V ). Let q denote the characteristic polynomial of T . Then, q(T ) = 0.

Proof 13. We’ve shown Cayley-Hamilton holds on complex vector spaces. Assume V is a real vector
space. Then, we know q(TC) = 0, which implies q(T ) = 0. ■
Corollary 8.1.19 Suppose T ∈ L(V ). Then,

1. the degree of the minimal polynomial of T is at most dimV ;

2. the characteristic polynomial of T is a polynomial multiple of the minimal polynomial of T .
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8.2 Operators on Real Inner Product Spaces

Theorem 8.2.1 Normal but Not Self-Adjoint Operators
Suppose V is a 2-dimensional real inner product space and T ∈ L(V ). Then, the following are
equivalent:

1. T is normal but not self-adjoint;

2. The matrix of T with respect to every orthonormal basis of V has the form

(
a −b
b a

)
, with

b ̸= 0.

3. The matrix of T with respect to some orthonormal basis of V has the form

(
a −b
b a

)
, with

b > 0.

Proof 1.
(1) =⇒ (2): Suppose TT ∗ = T ∗T but T ̸= T ∗. Let e1, e2 be an orthonormal basis of V . Suppose

M(T, (e1, e2)) =

(
a c

b d

)
.

Then, Te1 = ae1+be2. So, ∥Te1∥2 = ∥ae1 + be2∥2 = a2+b2. Since T is normal ⇐⇒ ∥Tv∥ = ∥T ∗v∥ ∀ v ∈
V . So, ∥T ∗e1∥2 = ∥Te1∥2 = a2 + b2. Note that

M(T, (e1, e2)) =

(
a b

c d

)
,

the conjugate transpose of M(T, (e1, e2)). So, ∥T ∗e1∥2 = ∥ae1 + ce2∥2 = a2 + c2. Therefore, a2 + b2 =

a2 + c2, or b2 = c2. Then, b = c or b = −c.

1. If c = b, then

M(T ) =

(
a c

c d

)
= M(T ∗).

That implies T = T ∗, which contradicts with our assumption that T ̸= T ∗. So, this situation is
omitted.

2. So, c = −b, and then M(T ) =

(
a −b
b d

)
. Note if b = 0, then M(T ) =

(
a 0

0 d

)
= M(T ∗), contra-

dicting with our assumption that T ̸= T ∗. So, b ̸= 0.

Finally, since T is normal, we have M(T )M(T ∗) = M(T ∗)M(T ). That is,(
a −b
b d

)(
a b

−b d

)
=

(
a b

−b d

)(
a −b
b d

)
=⇒ ab− bd = −ab+ bd =⇒ ab = bd.
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Since b ̸= 0, we have a = d. So,

M(T ) =

(
a −b
b a

)
, b ̸= 0. □

(2) =⇒ (3): Choose an orthonormal basis e1, e2. Then,

M(T, (e1, e2)) =

(
a −b
b a

)
with b ̸= 0.

If b > 0, then (3) holds. If b < 0, then

M(T, (e1,−e2)) =

(
a b

−b a

)
.

Then, −b > 0, which implies (3) holds. □
(3) =⇒ (1): Suppose ∃ an orthonormal basis e1, e2 s.t.

M(T, (e1, e2)) =

(
a −b
b a

)
with b > 0.

Then, M(T, (e1, e2))
t =

(
a b

−b a

)
. Since b > 0, M(T ) ̸= M(T )t. So, T is not self-adjoint. Since

M(T )M(T ∗) = M(T ∗)M(T ) is clear, we have shown T is normal. ■

Theorem 8.2.2
Suppose V is an inner product space, T ∈ L(V ) is normal, and U is a subspace of V that is
invariant under T . Then,

1. U⊥ is invariant under T ;

2. U is invariant under T ∗;

3. (T |U )∗ = (T ∗)|U ;

4. T |U ∈ L(U) and T |U⊥ ∈ L(U⊥) are normal operators.

Proof 2.

1. Let e1, . . . , em be an orthonormal basis ofU . Then, extend it to an orthonormal basis e1, . . . , em, f1, . . . , fn
of V . Since U is invariant under T , Tu ∈ U . Then, each Tej ∈ U . That is, Tej is a linear combina-
tion of e1, . . . , em. Thus, M(T, (e1, . . . , em, f1, . . . , fn)) is of the form
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M(T ) =

e1
...
em
f1
...
fn

e1 · · · em f1 · · · fn

A B

C0

For each j ∈ {1, . . . ,m}, let Tej = a1,je1 + · · ·+ am,jem. Then, ∥Tej∥2 = a21,j + · · ·+ a2m,j . Then,

m∑
j=1

∥Tej∥2 =
m∑
j=1

(
a21,j + · · ·+ a2m,j

)
.

Note that

M(T ∗) =

 At 0

Bt Ct

.
Then,

m∑
j=1

∥T ∗ej∥2 =
m∑
j=1

(
a21,j + · · ·+ a2m,j + b2j,1 + · · ·+ b2j,n

)
.

Since
m∑
j=1

∥Tej∥2 =
m∑
j=1

∥T ∗ej∥2, we have

m∑
j=1

(
a21,j + · · ·+ a2m,j

)
=

m∑
j=1

(
a21,j + · · ·+ a2m,j + b2j,1 + · · ·+ b2j,n

)
.

Then, each bi,j = 0. So, B = 0m×n. That is,

M(T ) =

e1
...
em
f1
...
fn

e1 · · · em f1 · · · fn

A 0

C0

Then, for each k ∈ {1, . . . , n}, Tfk = 0e1 + · · ·+ 0em + c1,kf1 + · · ·+ cn,kfn. That is,

Tfk ∈ span(f1, . . . , fn) = U⊥.

Therefore, Tv ∈ U⊥ whenever v ∈ U⊥. Hence, U⊥ is invariant under T. □

2. Note that

M(T ∗) =

(
At 0

0 Ct

)
.

Then, T ∗ej ∈ span(e1, . . . , em) = U . So, U is invariant under T ∗. □
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3. Let S = T |U ∈ L(U). Fix v ∈ U . Then, ∀ u ∈ U ,

⟨Su, v⟩ = ⟨Tu, v⟩ = ⟨u, T ∗v⟩.

From (2), we know T ∗v ∈ U . Then, we have

⟨u, S∗v⟩ = ⟨Su, v⟩ = ⟨u, T ∗v⟩.

So, S∗v = T ∗v. That is, (T |U )∗ = (T ∗)|U . □

4. Since T is normal, T commutes with T ∗. By (3): (T |U )∗ = (T ∗)|U . So, we have (T |U )(T |U )∗ =

(T |U )∗(T |U ). That is, T |U is normal. Similarly, interchanging the roles of U and U⊥,

(T |U⊥)(T |U⊥)∗ = (T |U⊥)∗(T |U⊥).

Then, TU⊥ is also normal.

■

Lemma 8.2.3 Suppose A =

A1 0
. . .

0 Am

 and B =

B1 0
. . .

0 Bm

, where Aj and Bj are matrices

of the same size, then

AB =

A1B1 0
. . .

0 AmBm

.
Theorem 8.2.4
Suppose V is a real inner product space and T ∈ L(V ). Then, the following are equivalent:

1. T is normal;

2. ∃ an orthonormal basis of V with respect to which T has a block diagonal matrix s.t. each

block is an 1× 1 matrix or a 2× 2 matrix of the form

(
a −b
b a

)
with b > 0.

Proof 3.
(2) =⇒ (1): With respect to the basis given by (2),

M(t)M(t∗) = M(T ∗)M(T ).

Note that

M(T ) =


. . . (

a −b
b a

)
. . .

 and M(T ∗) =


. . . (

a b

−b a

)
. . .

.
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Since (
a −b
b a

)(
a b

−b a

)
=

(
a2 + b2 0

0 a2 + b2

)
=

(
a b

−b a

)(
a −b
b a

)
,

we have TT ∗ = T ∗T . So, T is normal. □
(1) =⇒ (2): We will use induction on dimV . When dimV = 1, the desired results hold. When

dimV = 2, if T is self-adjoint, then use the Real Spectrum Theorem, the desired results hold. If dimV =

2 and T is not self-adjoint, by Theorem 8.2.1, the desired results also hold.
Now, assume that dimV > 2 and the desired result holds on vector spaces of dimension smaller

than dimV . Let U be a subspace of V with dimU = 1, and U is invariant under T . If such a subspace
exists, (i.e., if T has an eigenvector v, then let U = span(v)). If no such subspace exists, let U be a
subspace of V of dimension 2 that is invariant under T .

If dimU = 1, choose a vector u with ∥u∥ = 1. Then, u is an orthonormal basis of U , and M(T |U ) is
1× 1. If dimU = 2, then T |U ∈ L(U) is normal by Theorem 8.2.2, but T |U is not self-adjoint (otherwise
T |U would have an eigenvector). Thus, we can choose an orthonormal basis of U , say, e1, e2, s.t.

M(T |U , (e1, e2)) =

(
a −b
b a

)
.

Now, U⊥ is invariant under T and T |U⊥ is normal by Theorem 8.2.2. Then, dimU⊥ < dimV . By our
inductive hypothesis, ∃ an orthonormal basis f1, . . . , fn of U⊥ s.t.

M(T |U⊥ , (f1, . . . , fn)) =



1
. . . (

a −b
b a

)
. . .

1


Since V = U ⊕ U⊥, we finally have

M(T ) =

e1
...
em
f1
...
fn

e1 · · · em f1 · · · fn

a −b
b a

0

Desired
Form0

which is in the desired form. ■

Example 8.2.5 Let θ ∈ R. Then, the operator on R2 of counter-clockwise rotation centered at the
origin by θ is an isometry. The matrix of this operator with respect to the standard basis is(

cos θ − sin θ

sin θ cos θ

)
.
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Remark. If θ is not an integer multiple of π, then no non-zero vector of R2 gets mapped to a scalar
multiple of itself, and have the operator has no eigenvalues.

Theorem 8.2.6
Suppose V is a real inner product space and S ∈ L(V ). Then, the following are equivalent:

1. S is an isometry;

2. ∃ an orthonormal basis of V with respect to which S has a block diagonal matrix s.t. each
block on the diagonal is an 1× 1 matrix containing 1 or −1 or is a 2× 2 matrix of the form(

cos θ − sin θ

sin θ cos θ

)
,

with θ ∈ (0, π).

Proof 4.
(1) =⇒ (2): Suppose S is an isometry. Then, S is normal. So, ∃ an orthonormal basis e1, . . . , en s.t.

M(S, (e1, . . . , en)) =



. . .

λ
. . . (

a −b
b a

)
. . .


,

with b > 0. If λ is an entry in a 1 × 1 matrix along the diagonal, then ∃ a basis vector ej s.t. Sej = λej .
So, ∥Sej∥ = ∥λej∥ = |λ|∥ej∥ = ∥ej∥. So, |λ| = 1, or λ = ±1.

Now, consider a 2 × 2 matrix of the form

(
a −b
b a

)
with b > 0 along the diagonal. Then, ∃ a basis

ei, ei+1 s.t. Sei = aei + bei+1. So,

1 = ∥ei∥2 = ∥Sei∥2 = ∥aei + bei+1∥2

= ∥aei∥2 + ∥bei+1∥2

= a2 + b2.

So, ∃θ ∈ (0, π) s.t. a = cos θ and b = sin θ, given b > 0. Therefore, this direction holds. □
(2) =⇒ (1): Suppose ∃ an orthonormal basis of V with respect to which the matrix of S has

the desired form. Thus, we have a direct sum decomposition: V = U1 ⊕ · · · ⊕ Um, where each Uj

is a subspace of V of dimension 1 or 2. Furthermore, any two vectors belonging to distinct U ’s are
orthogonal, and each S|Uj is an isometry mapping Uj into Uj . If v ∈ V , we can write v = u1 + · · ·+ um,
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where each uj ∈ Uj . Applying S to the equation:

∥Sv∥2 = ∥Su1 + · · ·+ Sum∥2

= ∥Su1∥2 + · · ·+ ∥Sum∥2

= ∥u1∥2 + · · ·+ ∥um∥2 = ∥v∥2.

Thus, S is an isometry. ■

120



9 TRACE AND DETERMINANT

9 Trace and Determinant

9.1 Trace

Remark. With respect to every basis of V , the matrix of the identity operator I ∈ L(V ) is the diagonal
matrix with 1’s on the diagonal and 0’s elsewhere.

Definition 9.1.1 (Identity Matrix/I). Suppose n is a positive integer. The n× n diagonal matrix1 0
. . .

0 1


is called the identity matrix and is denoted I.
Definition 9.1.2 (Invertible/Inverse/A−1). A square matrix A is called invertible if there is a square
matrix B of the same size such that AB = BA = I; we call B the inverse of A and denote it by A−1.

Theorem 9.1.3
If A is an invertible square matrix, then ∃ a unique matrix B s.t. AB = BA = I.

Proof 1. Suppose ∃ two matrices B,B′ s.t.

AB = BA = I and AB′ = B′A = I.

Then, we have AB = AB′. So, BAB = BAB′. Therefore, IB = IB′, or B = B′. ■

Theorem 9.1.4
Suppose T ∈ L(V ) and v1, . . . , vn is a basis of V . Then, M(T, (v1, . . . , vn)) is invertible if and only
if T is invertible.

Proof 2.
(⇒) Suppose T is invertible, so ∃S ∈ L(V ), ST = TS = I. Then, M(ST ) = M(TS) = M(I). That

is,
M(S)M(T ) = M(T )M(S) = I.

So, M(T ) is invertible. □
(⇐) Let A = M(T ) is invertible. Then, ∃ a matrix B s.t. AB = BA = I. Let S ∈ L(V ) s.t. B = M(S).

So,
M(T )M(S) = M(S)M(T ) = M(I).

That is, M(TS) = M(ST ) = I, or TS = ST = I. Then, by definition, T is invertible. ■

Theorem 9.1.5
Suppose u1, . . . , un and v1, . . . , vn and w1, . . . , wm are all bases of V . Suppose S, T ∈ L(V ). Then,

M(ST, (u1, . . . , un), (w1, . . . , wn)) = M(S, (v1, . . . , vn), (w1, . . . , wn))M(T, (u1, . . . , un), (v1, . . . , vn)).
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Theorem 9.1.6
Suppose u1, . . . , un and v1, . . . , vn are bases of V . Then, the matrices
M(I, (u1, . . . , un), (v1, . . . , vn)) and M(I, (u1, . . . , un), (v1, . . . , vn)) are invertible, and each is
the inverse of the other.

Proof 3. By Theorem 9.1.5, replacing wj with uj , we have

I = M(I, (v1, . . . , vn), (u1, . . . , un))M(I, (u1, . . . , un), (v1, . . . , vn)).

Now, interchanging the roles of u’s and v’s, we get

I = M(I, (u1, . . . , un), (v1, . . . , vn))M(I, (v1, . . . , vn), (u1, . . . , un)).

So, by definition, the desired result holds. ■

Example 9.1.7 Consider the bases (4, 2), (5, 3) and (1, 0), (0, 1) of F2. Then,

M(I, ((4, 2), (5, 3)), ((1, 0), (0, 1))) =

(
4 5

2 3

)

because I(4, 2) = 4(1, 0) + 2(0, 1) and I(5, 3) = 5(1, 0) + 3(0, 1). Find the inverse of it.
Solution 4.
Suppose I(1, 0) = a(4, 2) + b(5, 3) and I(0, 1) = c(4, 2) + d(5, 3). Then, solve for{

4a+ 5b = 1

2a+ 3b = 0
and

{
4c+ 5d = 0

2c+ 3d = 1
,

we have {
a = 3/2

b = −1
and

{
c = −5/2

d = 2
.

So, the inverse is (
3/2 −5/2

−1 2

)
.

□

Theorem 9.1.8 Change of Basis Formula
Suppose T ∈ L(V ). Let u1, . . . , un and v1, . . . , vn be bases of V . Let

A = M(I, (u1, . . . , un), (v1, . . . , vn)).

Then
M(T, (u1, . . . , un)) = A−1M(T, (v1, . . . , vn))A.

Proof 5. By Theorem 9.1.5, replacing wj with uj and replace S with I, we have M(T, (u1, . . . , un)) =

A−1M(T, (u1, . . . , un), (v1, . . . , vn)). Again, by Theorem 9.1.5, replacing wj with vj , T with I, and S with
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T , we get
M(T, (u1, . . . , un), (v1, . . . , vn)) = M(T, (v1, . . . , vn))A.

Therefore, we’ve shown
M(T, (u1, . . . , un)) = A−1M(T, (v1, . . . , vn))A.

■
Definition 9.1.9 (Trace of an Operator). Suppose T ∈ L(V )

• If F = C, then the trace of T is the sum of the eigenvalues of T , with each eigenvalue repeated
according to its multiplicity.

• If F = R, then the trace of T is the sum of the eigenvalues of TC, with each eigenvalue repeated
according to its multiplicity.

The trace of T is denoted trT .

Theorem 9.1.10
Suppose T ∈ L(V ). Let n = dimV . Then, trT equals the negative of the coefficient of zn−1 in the
characteristic polynomial of T .

Proof 6. Suppose λ1, . . . , λn are eigenvalues of T with each eigenvalue repeated according to its
multiplicity. Then, (z − λ1) · · · (z − λn) = zn − (λ1 + · · · + λn)z

n−1 + · · · + (−1)n(λ! · · ·λn). Hence, we
complete the proof. ■
Definition 9.1.11 (Trace of a Matrix). The trace of a square matrixA, denoted trA, is defined to be the
sum of the diagonal entries of A.
Lemma 9.1.12 If A and B are square matrices of the same size, then tr(AB) = tr(BA).

Proof 7. Suppose

A =

A11 · · · A1n

...
. . .

...
An1 · · · Ann

 and B =

B11 · · · B1n

...
. . .

...
Bn1 · · · Bnn

.

Then,
(
AB
)
jj

=
n∑

k=1

AjkBkj . So,

tr(AB) =
n∑

j=1

(
AB
)
jj

=
n∑

j=1

n∑
k=1

AjkBkj

=

n∑
k=1

n∑
j=1

BkjAjk

=
n∑

k=1

(
BA
)
kk

= tr(BA).

■
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Lemma 9.1.13 Let T ∈ L(V ). Suppose u1, . . . , un and v1, . . . , vn are bases of V . Then,

trM(T, (u1, . . . , un)) = trM(T, (v1, . . . , vn)).

Proof 8. Let A = M(I, (u1, . . . , un), (v1, . . . , vn)). Then,

trM(T, (u1, . . . , un)) = tr
(
A−1M(T, (v1, . . . , vn))A

)
= tr

(
(M(T, (v1, . . . , vn))A)A

−1
)

= tr
(
M(T, (v1, . . . , vn))(AA

−1)
)

= trM(T, (v1, . . . , vn)).

■

Theorem 9.1.14
Suppose T ∈ L(V ). Then, trT = trM(T ).

Proof 9. By Lemma 9.1.13, we know trM(T ) is independent of the choice of basis. Use the basis
introduced by block diagonal matrix with upper-triangular blocks in previous Chapters, we have the
desired result. If T is defined on a real vector space, then consider trM(T ) on TC. ■

Theorem 9.1.15
Suppose S, T ∈ L(V ). Then, tr(S + T ) = trS + trT .

Proof 10. Choose a basis of V . Then,

tr(S + T ) = trM(S + T )

= tr(M(S) +M(T ))

= trM(S) + trM(T )

= trS + trT.

■

Theorem 9.1.16
∄ operators S, T ∈ L(V ) s.t. ST − TS = I.

Proof 11. Let S, T ∈ L(V ). Then,

tr(ST − TS) = tr(ST )− tr(TS)

= trM(ST )− trM(TS)

= tr(M(S)M(T ))− tr(M(T )M(S))

= 0.

Since tr I = dimV ̸= 0, tr(I) ̸= tr(ST − TS). So, it must be that ∄S, T ∈ L(V ) s.t. ST − TS = I. ■
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9.2 Determinant

Definition 9.2.1 (Determinant of an Operator/detT ). Suppose T ∈ L(V ).

• If F = C, then the determinant of T is the product of the eigenvalues of T , with each eigenvalue
repeated according to its multiplicity.

• If F = R, then the determinant of T is the product of the eigenvalues of TC, with each eigenvalue
repeated according to its multiplicity.

The determinant of T is denoted by detT .

Theorem 9.2.2
Suppose T ∈ L(V ). Let n = dimV . Then, detT equals (−1)n times the constant term of the
characteristic polynomial of T .

Proof 1. Suppose λ1, . . . , λn are eigenvalues of T with each eigenvalue repeated according to its
multiplicity. Then,

(z − λ1) · · · (z − λn) = zn − (λ1 + · · ·+ λn)z
n−1 + · · ·+ (−1)n(λ1 · · ·λn).

Hence, we complete the proof. ■

Theorem 9.2.3
Suppose T ∈ L(V ). Then, the characteristic polynomial of T can be written as

zn − (trT )zn−1 + · · ·+ (−1)n(detT ).

Proof 2. By Theorem 9.1.10 and Theorem 9.2.2, we complete the proof. ■

Theorem 9.2.4
An operator on V is invertible if and only if its determinant is non-zero.

Proof 3. First, suppose V is complex and T ∈ L(V ). Note that

T is invertible ⇐⇒ T is bijective

⇐⇒ T is injective

⇐⇒ null T = {0}
⇐⇒ Tv ̸= 0 whenever v ̸= 0

⇐⇒ 0 is not an eigenvalue of T

⇐⇒ detT ̸= 0.

Now, consider the case where V is real, then

T is invertible ⇐⇒ 0 is not an eigenvalue of T

⇐⇒ 0 is not an eigenvalue of TC

⇐⇒ detT ̸= 0.
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■

Theorem 9.2.5
Suppose T ∈ L(V ). Then, the characteristic polynomial of T equals det(zI − T ).

Proof 4. Suppose V is a complex vector space. If λ, z ∈ C, then λ is an eigenvalue of T if and only if
∃ v ̸= 0 s.t. Tv = λv. Then, zIv − Tv = zv − λv. So,

(zI − T )v = (z − λ)v.

Therefore, we have z − λ is an eigenvalue of zI − T . Let d be the multiplicity of λ, then

d = dimG(λ, T ) = null (T − λI)dimV .

Note that (T − λI) = (z − λ)I − (zI − T ). Then,

(T − λI)dimV = [(z − λ)I − (zI − T )]dimV .

So, we have
null (T − λI)dimV = null [(z − λ)I − (zI − T )]dimV .

That is, G(λ, T ) = G(z − λ, zI − T ). So, dimG(λ, T ) = G(z − λ, zI − T ). Then, the multiplicity of z − λ

is also d.
Let λ1, . . . , λn denote the eigenvalues of T . Then, z − λ1, . . . , z − λn are precisely the eigenvalues of

zI − T . So, det(zI − T ) = (z − λ1) · · · (z − λn), the characteristic polynomial of T .
Now, consider the case if V is a real vector space. Then, apply the proof above to TC, and then we

complete the proof. ■
Definition 9.2.6 (Permutation/permn). A permutation of (1, . . . , n) is a list (m1, . . . ,mn) that contains
each of the numbers 1, . . . , n exactly once. The set of all permutations of (1, . . . , n) is denoted permn.
Definition 9.2.7 (Sign of a Permutation). The sign of a permutation (m1, . . . ,mn) is defined to be 1 if
the number of pairs of integers (j, k) with 1 ≤ j < k ≤ n s.t. j appears after k in the list (m1, . . . ,mn)

is even, and −1 if the number of such pairs is odd. In other words, the sign of a permutation is 1 if
the natural order has been changed an even number of times, and is −1 if the natural order has been
changed an odd number of times.

Example 9.2.8 For the permutation (2, 4, 5, 3), we have the following pairs of integers:
(2, 4), (2, 5), (2, 3), (4, 5), (4, 3), (5, 3), among which (4, 3) and (5, 3) are of unnatural order. So,
sign(2, 4, 5, 3) = 1.

Theorem 9.2.9
Interchanging two entries in a permutation multiplies the sign of the permutation by −1.

Proof 5. Suppose we have m1, . . . ,mi, . . . ,mj , . . . ,mn and we want the interchange mi and mj to
get m1, . . . ,mj , . . . ,mi, . . . ,mn.

1. Adjacent Case: mi and mj are adjacent to each other.
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Let number of pairs of reverse order from the original permutation to be N . Then

sign(original permutation) = (−1)N .

(a) If mi < mjm then after the interchange, we get one more reverse order, and so

sign(interchanged permutation) = (−1)N+1 = (−1)(−1)N .

(b) If mi > mj , then after the interchange, we get one less reverse order. So,

sign(interchanged permutation) = (−1)N−1 =
(−1)N

(−1)
= (−1)(−1)N .

2. General Case: mi and mj are not adjacent.

Then, suppose we need k times to move mi to the position right after mj . We need k − 1 times to
move mj to the position mi initially at. So,

sign(interchangedpermutation) = (−1)N+2k−1 = (−1)(−1)N .

■
Definition 9.2.10 (Determinant of a Matrix, detA). Suppose A is an n× n matrix such that

A =

A1,1 · · · A1,n

...
. . .

...
An,1 · · · An,n

.
The determinant of A, denoted detA, is defined by

detA =
∑

(m1,...,mn)∈permn

(sign(m1, . . . ,mn))Am1,1 · · ·Amn,n.

Example 9.2.11 Compute determinant of an upper triangular matrix

A =

A1,1 ∗
. . .

0 An,n

.
Solution 6.
By definition,

detA =
∑

(m1,...,mn)∈permn

(sign(m1, . . . ,mn))Am1,1 · · ·Amn,n.

Note that

Aij

{̸
= 0 i ≤ j

= 0 i > j
.
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Consider (1, . . . , n) ∈ permn, sign(1, . . . , , n) = 1, and Am1,1 · · ·Amn,n becomes a1,1 · · ·An,n. Now, if
(m1, . . . ,mn) ̸= (1, . . . , n), we can find some Ai,j = 0 with i > j. So,

detA = (sign(1, . . . , n))A1,1 · · ·An,n = A1,1 · · ·An,n.

□

Theorem 9.2.12
SupposeA is a square matrix andB is the matrix obtained fromAby interchanging two columns.
Then,

detA = −detB.

Proof 7. Suppose A ∈ Fn× n and A =
(
A1 · · · Ai · · · Aj · · · An

)
. Then, by construction,

we know B =
(
A1 · · · Aj · · · Ai · · · An

)
. So,

detA =
∑

(m1,...,mn)∈permn

(sign(m1, . . . ,mn))Am1,1 · · ·Ami,i · · ·Amj ,j · · ·Amn,n

and
detB =

∑
(m1,...,mn)∈permn

(sign(m1, . . . ,mn))Am1,1 · · ·Amj ,j · · ·Ami,i · · ·Amn,n

Note that
sign(m1, . . . ,mi, . . . ,mj , . . . ,mn) = (−1) sign(m1, . . . ,mj , . . . ,mi, . . . ,mn).

So, by the linear properties of summation, we have

detA = −detB.

■

Theorem 9.2.13
If A is a square matrix that has two equal columns, then detA = 0.

Proof 8. Interchanging the two equal columns, we still get the same matrix,A. Further, by Theorem
9.2.12, we have

detA = −detA,

suggesting detA = 0. ■

Theorem 9.2.14
Suppose A =

(
A·,1 · · · A·,n

)
is an n× n matrix and (m1, . . . ,mn) is a permutation. Then,

det
(
A·,m1 · · · A·,mn

)
= (sign(m1, . . . ,mn)) detA.
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Theorem 9.2.15 Determinant is a Linear Function of Each Column
Suppose k, n are positive integers with 1 ≤ k ≤ n. Fix n × 1 matrices A·,1, · · · , A·,n except A·,k.

Then, the function that takes an n× 1 column vector A·,k to det
(
A·,1 · · · A·,k · · · A·,n

)
is a

linear map.

Theorem 9.2.16 Determinant is Multiplicative
Suppose A and B are square matrices of the same size. Then,

det(AB) = det(BA) = (detA)(detB).

Theorem 9.2.17
Let T ∈ L(V ). Suppose u1, . . . , un and v1, . . . , vn are bases of V . Then,

detM(T, (u1, . . . , un)) = detM(T, (v1, . . . , vn)).

Theorem 9.2.18
Suppose T ∈ L(V ). Then, detT = detM(T ).

Theorem 9.2.19
Suppose S, T ∈ L(V ). Then,

det(ST ) = det(TS) = (detT )(detS).
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