Linear Algebra Done Right

Jiuru Lyu

June 18, 2025

Contents

1	Vector Spaces	3
	1.1 \mathbb{R}^n and \mathbb{C}^n	3
	1.2 Definition of Vector Space	5
	1.3 Subspace	7
2	Finite-Dimensional Vector Spaces	12
	2.1 Span and Linear Independence	12
	2.2 Bases	16
	2.3 Dimension	18
3	Linear Maps	20
	3.1 The Vector Space of Linear Maps	20
	3.2 Null Spaces and Ranges	24
	3.3 Matrices	28
	3.4 Invertibility and Isomorphic Vector Spaces	31
	3.5 Duality	35
	3.6 Quotients of Vector Spaces	43
4	Eigenvectors and Invariant Subspaces	47
	4.1 Invariant Subspaces	47
	4.2 Eigenvectors and Upper-Triangular Matrices	51
	4.3 Eigenspaces and Diagonal Matrices	56
5	Inner Product Spaces	60
	5.1 Inner Products and Norms	60
	5.2 Orthonormal Bases	68
	5.3 Orthogonal Complements and Minimization Problems	73
6	Operators on Inner Product Spaces	77
	6.1 Self-Adjoint and Normal Operators	77
	6.2 The Spectral Theorem	84
	6.3 Positive Operators and Isometries	87
	6.4 Polar Decomposition and SVD	91

7	Operators on Complex Vector Spaces	94
	7.1 Generalized Eigenvectors, Nilpotent Operators	. 94
	7.2 Decomposition of an Operator	. 98
	7.3 Characteristic and Minimal Polynomials	. 101
	7.4 Jordan Form	. 105
8	Operators on Real Vectors Spaces	108
	8.1 Complexification	. 108
	8.2 Operators on Real Inner Product Spaces	. 114
9	Trace and Determinant	121
	9.1 Trace	. 121
	9.2 Determinant	. 125

1 Vector Spaces

1.1 \mathbb{R}^n and \mathbb{C}^n

Definition 1.1.1 (Complex Number). A *complex number* is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we write it as a + bi. Notation 1.1.2. $\mathbb{C} := \{a + bi \mid a, b \in \mathbb{R}\}$

Definition 1.1.3 (Addition & Multiplication).

$$(a + bi) + (c + di) = (a + c) + (b + d)]i$$

 $(a+b\mathbf{i})(c+d\mathbf{i}) = (ac-bd) + (ad+bc)\mathbf{i}$

Theorem 1.1.4 Properties of Complex Arithmetic

- 1. commutativity: $\alpha + \beta = \beta + \alpha$; $\alpha \beta = \beta \alpha$, $\forall \alpha, \beta \in \mathbb{C}$.
- 2. associativity: $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda); \quad (\alpha\beta)\lambda = \alpha(\beta\lambda), \quad \forall \alpha, \beta, \lambda \in \mathbb{C}.$
- 3. identities: $\lambda + 0 = \lambda$; $\lambda \cdot 1 = \lambda, \forall \lambda \in \mathbb{C}$.
- 4. additive inverse: $\forall \alpha \in \mathbb{C}, \exists \text{ unique } \beta \in \mathbb{C} \text{ s.t. } \alpha + \beta = 0.$
- 5. multiplicative inverse: $\forall \alpha \in \mathbb{C}, \alpha \neq 0, \exists$ unique $\beta \in \mathbb{C}$ *s.t.* $\alpha \beta = 1$.
- 6. distributivity: $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$, $\forall \lambda, \alpha, \beta \in \mathbb{C}$.

Definition 1.1.5 (Subtraction). If $-\alpha$ is the additive inverse of α , *subtraction* on \mathbb{C} is defined by

$$\beta - \alpha = \beta + (-\alpha).$$

Definition 1.1.6 (Division). For $\alpha \neq 0$, let $\frac{1}{\alpha}$ denote the multiplicative inverse of α . Then, *division* on \mathbb{C} is defined by

$$\frac{\beta}{\alpha} = \beta \cdot \left(\frac{1}{\alpha}\right)$$

Notation 1.1.7. \mathbb{F} is either \mathbb{R} or \mathbb{C} .

Definition 1.1.8 (List/Tuple). Suppose *n* is a non-negative integer. A list of length *n* is an ordered collection of *n* elements separated by commas and surrounded by parentheses: $(x_1, x_2, x_3, \dots, x_n)$. Two lists are equal if and only if they have the same length and the same elements in the same order.

Remark. *Lists must have a FINITE length.*

Definition 1.1.9 (\mathbb{F}^n and Coordinate). \mathbb{F}^n is the set of all lists of length *n* of elements of \mathbb{F} :

$$\mathbb{F}^n \coloneqq \{ (x_1, \cdots, x_n) \mid x_i \in \mathbb{R} \forall i = 1, \cdots, n \},\$$

where x_i is the *i*th coordinate of (x_1, \dots, x_n) .

Example 1.1.10 $\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}$ and $\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}.$

Definition 1.1.11 (Addition on \mathbb{F}^n). *Addition* on \mathbb{F}^n is defined by adding corresponding coordinates:

 $(x_1, \cdots, x_n) + (y_1, \cdots, y_n) = (x_1 + y_1, \cdots, x_n + y_n).$

Theorem 1.1.12 Commutativity of Addition on \mathbb{F}^n If $x, y \in \mathbb{F}^n$, then x + y = y + x.

Proof 1. Suppose $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$. Then

$$x + y = (x_1 + y_1, \cdots, x_n + y_n)$$

= $(y_1 + x_1, \cdots, y_n + x_n) = y + x_n$

Definition 1.1.13 (Zero). Let 0 denote the list of length *n* whose coordinates are all $0: 0 := (0, \dots, 0)$. **Definition 1.1.14 (Additive Inverse on** \mathbb{F}^n). For $x \in \mathbb{F}^n$, the additive inverse of *x*, denoted -x, is the vector $-x \in \mathbb{F}^n$ *s.t.* x + (-x) = 0.

Definition 1.1.15 (Scalar Multiplication in \mathbb{F}^n). The product of a number $\lambda \in \mathbb{F}$ and a vector $x \in \mathbb{F}^n$ is computed by multiplying each coordinate of the vector by λ :

$$\lambda x = \lambda(x_1, \cdots, x_n) = (\lambda x_1, \cdots, \lambda x_n),$$

where $x = (x_1, \cdots, x_n) \in \mathbb{F}^n$.

Theorem 1.1.16 Properties of Arithmetic Operations on \mathbb{F}^n

- 1. $(x+y) + z = x + (y+z) \quad \forall x, y, z \in \mathbb{F}^n$
- 2. $(ab)x = a(bx) \quad \forall x \in \mathbb{F}^n \text{ and } \forall a, b \in \mathbb{F}.$
- 3. $1 \cdot x = x \quad \forall x \in \mathbb{F}^n \text{ and } 1 \in \mathbb{F}.$
- 4. $\lambda(x+y) = \lambda x + \lambda y \quad \forall \lambda \in \mathbb{R} \text{ and } \forall x, y \in \mathbb{F}^n.$
- 5. $(a+b)x = ax + bx \quad \forall a, b \in \mathbb{F} \text{ and } \forall x \in \mathbb{F}^n.$

1.2 Definition of Vector Space

Definition 1.2.1 (Addition on *V*). An *addition* on *V* is a function $(u, v) \mapsto u + v$ for all $u, v \in V$. **Definition 1.2.2 (Scalar Multiplication on** *V*). A *scalar multiplication* on *V* is a function $(\lambda, v) \mapsto \lambda v$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

Definition 1.2.3 (Vector Space). A *vector space* is a set *V* along with an addition on *V* and a scalar multiplication *s.t.* the following properties hold:

- 1. commutativity: $u + v = v + u \quad \forall u, v \in V$
- 2. associativity: (u + v) + w = u + (v + w) and $(ab)v = a(bv) \quad \forall u, v, w \in V$ and $\forall a, b \in \mathbb{F}$.
- 3. additive identity: $\exists 0 \in V$ s.t. $v + 0 = v \quad \forall v \in V$.
- 4. additive inverse: $\exists w \in V \text{ s.t. } v + w = 0 \quad \forall v \in V.$
- 5. multiplicative identity: $\exists 1 \in V \text{ s.t. } 1 \cdot v = v \quad \forall v \in V.$
- 6. distributive properties: a(u+v) = au + av and (a+b)v = av + bv $\forall u, v \in V$ and $a, b \in \mathbb{F}$.

Definition 1.2.4 (Vector). Elements of a vector space are called *vectors* or points.

Notation 1.2.5. *V* is a vector space over \mathbb{F} .

Definition 1.2.6 (Real and Complex Vector Space). A vector space over \mathbb{R} is called a *real vector space*, and a vector space over \mathbb{C} is called a *complex vector space*.

Theorem 1.2.7 Unique Additive Identity of Vector Spaces A vector space has a unique additive identity.

Proof 1. Suppose 0 and 0' are both additive identities for some vector space V. So,

0' = 0' + 0 Since 0 is an additive identity = 0 + 0' commutativity = 0. Since 0' is an additive identity

Then, 0' = 0.

Theorem 1.2.8 Unique Additive Inverse of Vector Spaces A vector in a vector space has a unique additive inverse.

Proof 2. Let V be a vector space. Suppose w and w' are additive inverses of v for some $v \in V$. Note that

```
w = w + 0
= w + (v + w')
= (w + v) + w
= 0 + w' = w'.
```

Notation 1.2.9. Let $v, w \in V$. Then, -v denotes the additive inverse of v. **Definition 1.2.10 (Subtraction).** w - v is defined to be w + (-v). **Theorem 1.2.11** $0 \cdot v = 0 \quad \forall v \in V.$

Proof 3. Since $v \in V$, we know

$$0 \cdot v = (0+0)v = 0 \cdot v + 0 \cdot v$$

$$0 \cdot v + (-0 \cdot v) = 0 \cdot + 0 \cdot + (-0 \cdot v)$$

$$0 = 0 \cdot v$$

Theorem 1.2.12 $a \cdot 0 = 0 \quad \forall a \in \mathbb{F}.$

Proof 4. For $a \in \mathbb{F}$, we have

$$a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0$$

 $a \cdot 0 + (-a \cdot 0) = a \cdot 0 + a \cdot 0 + (-a \cdot 0)$
 $0 = a \cdot 0.$

Theorem 1.2.13 $(-1)v = -v \quad \forall v \in V.$

Proof 5. For $v \in V$, we have

$$v + (-1)v = 1 \cdot v + (-1) \cdot v = (1 + (-1)) \cdot v = 0 \cdot v = 0.$$

Therefore, by definition, (-1)v = -v. Notation 1.2.14. \mathbb{F}^S

- 1. If S is a set, then \mathbb{F}^S denotes the set of functions from S to \mathbb{F} .
- 2. For $f, g \in \mathbb{F}^S$, the sum $f + g \in \mathbb{F}^S$ is the function defined by $(f + g)(x) = f(x) + g(x) \quad \forall x \in S$.
- 3. For $\lambda \in \mathbb{F}$ and $f \in \mathbb{F}^S$, the product $\lambda f \in \mathbb{F}^S$ is the function defined by $(\lambda f)(x) = \lambda f(x) \quad \forall x \in S$.

Theorem 1.2.15 \mathbb{F}^S is a vector space.

1.3 Subspace

Definition 1.3.1 (Subspace). A subset *U* of *V* is called a *subspace* of *V* if *U* is also a vector space using the same addition and scalar multiplication as on *V*.

Theorem 1.3.2 Conditions for a Subspace

A subset *U* of *V* is a subspace of *V* if and only if *U* satisfies the following conditions:

1. additive identity: $0 \in U$;

2. closed under addition: $u, w \in U \implies u + w \in U$;

3. closed under scalar multiplication: $a \in \mathbb{F}$ and $u \in U \implies au \in U$.

Proof 1.

 (\Rightarrow) Suppose U is a subspace of V. By definition, U is then a vector space, and so those conditions are automatically satisfied. \Box

(\Leftarrow) Suppose *U* satisfies the three conditions. Since *U* is a subset of *V*, *U* automatically has *associativity, commutativity, multiplicative identity,* and *distributivity.* So, we want to check *U* has additive inverse and additive identities.

For additive identity, we know $0 \in U$, by assumption.

For additive inverse, by condition #3, we know $-u = (-1)u \in U$. Then, U is a vector space.

Example 1.3.3 If $b \in \mathbb{F}$, then $\{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 if and only if b = 0.

Proof 2.

(⇒) Suppose $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 . Then, $0 = (0, 0, 0, 0) \in U$. So, $0 = 5 \cdot 0 + b$, or b = 0. \Box

(\Leftarrow) Suppose b = 0. Then, $x_3 = 5x_4$. So, $U = \{(x_1, x_2, 5x_4, x_4) \in \mathbb{F}^4\}$

- 1. $0 = (0, 0, 0, 0) \in U$
- 2. Note that

$$(x_1, x_2, 5x_4, x_4) + (y_1, y_2, 5y_4, y_4) = (x_1 + y_1, x_2 + y_2, 5(x_4 + y_4), x_4 + y_4) \in U$$

So, addition is closed under U.

3. $\forall a \in \mathbb{F}$, we have

$$a(x_1, x_2, 5x_4, x_4) = (ax_1, ax_2, 5(ax_4), ax_4) \in U$$

Then, *U* is a subspace of \mathbb{F}^4 .

Example 1.3.4 The set of continuous real-valued functions on interval [0, 1] is a subspace of $\mathbb{R}^{[0,1]}$. *Proof 3.*

- 1. 0 (zero mapping) $\in U$
- 2. Set f and $g \in C[0, 1]$, the set of continuous functions on interval [0, 1]. Then, $f + g \in C[0, 1]$.
- 3. From Calculus, we know that $\forall a \in \mathbb{F}$, $af \in \mathcal{C}[0,1]$.

Definition 1.3.5 (Sum of Subspaces). Suppose U_1, \dots, U_m are subspaces of V. The *sum* of U_1, \dots, U_m , denoted as $U_1 + \dots + U_m$, is the set of all possible sums of elements of U_1, \dots, U_m :

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_i \in U_i \quad \forall i = 1, \dots, m\}.$$

Example 1.3.6 Suppose $U = \{(x, 0, 0) \in \mathbb{F}^3 \mid x \in \mathbb{F}\}$ and $W = \{(0, y, 0) \in \mathbb{F}^3 \mid y \in \mathbb{F}\}$, then

$$U + W = \{(x, y, 0) \in \mathbb{F}^3 \mid x, y \in \mathbb{F}\}.$$

Theorem 1.3.7

Suppose U_1, \dots, U_m are subspaces of V. Then, $U_1 + \dots + U_m$ is the *smallest subspace* of V containing U_1, \dots, U_m .

Proof 4. Suppose U_1, \dots, U_m are subspaces of U. Let $U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_j \in U_j, j = 1, \dots m\}$. Suppose $w_j \in U_j$, then $w_1 + \dots + w_m \in U_1 + \dots + U_m$.

- 1. $U_1 + \cdots + U_m$ is a subspace of V.
 - (a) Note that

 $(u_1 + \dots + u_m) + (w_1 + \dots + w_m) = (u_1 + w_1) + \dots + (u_m + w_m) \in U_1 + \dots + U_m,$

- so $U_1 + \cdots + U_m$ is closed under addition.
- (b) Similarly, $U_1 + \cdots + U_m$ is closed under scalar multiplication.
- (c) Note that U_j is a subspace, so $0 \in U_j$. Hence, $(0, \dots, 0) = 0 \in U_1 + \dots + U_m$. \Box
- 2. Now, we want to show this subspace is the smallest subspace containing U_1, \dots, U_m . That is, we want to show $\forall W \supseteq U_1 \cup \dots \cup U_m$, we have $W \supseteq U_1 + \dots + U_m$.

Note that $U_j \subseteq U_1 + \cdots + U_m$, so we have $(U_1 \cup U_2 \cup \cdots \cup U_m) \subseteq U_1 + \cdots + U_m$. This means $U_1 + \cdots + U_m$ must contain U_1, \cdots, U_m . Let W be some subspace containing U_1, \cdots, U_m . Then, for $j = 1, \cdots, m$, we have $u_j \in U_j$, which indicates $u_j \in W$. Therefore, $u_1 + \cdots + u_m \in V$ and thus $U_1 + \cdots + U_m \subseteq W$.

Since *W* was arbitrary, we've shown $\forall W$ that contains $U_1, \dots, U_m, U_1 + \dots + U_m \subseteq W$. Therefore, $U_1 + \dots + U_m$ is the smallest.

8

Definition 1.3.8 (Direct Sum). Suppose U_1, \dots, U_m are subspaces of V. $U_1 + \dots + U_m$ is called a *direct* sum if each element of $U_1 + \dots + U_m$ can be written in only one way as a sum $u_1 + \dots + u_m$, where $u_j \in U_j$.

Notation 1.3.9. If $U_1 + \cdots + U_m$ is a direct sum, then we use $U_1 \oplus \cdots \oplus U_m$ to denote it.

Example 1.3.10 Let $U = \{(x, y, 0) \in \mathbb{F}^3 \mid x, y \in \mathbb{F}\}$ and $W = \{(0, 0, z) \in \mathbb{F}^3 \mid z \in \mathbb{F}\}$. Then, $\mathbb{F}^3 = U \oplus W$.

Proof 5. Note that $U + W = \{(x, y, z) \mid x, y, z \in \mathbb{F}\} = \mathbb{F}^3$. Suppose

$$(x, y, z) = (x, y, 0) + (0, 0, z),$$
(1)

for some $x, y, z \in \mathbb{F}$ and

$$(x, y, z) = (x', y', 0) + (0, 0, z')$$
⁽²⁾

for some $x', y', z' \in \mathbb{F}$. Then, (1)–(2):

$$(0,0,0) = (x - x', y - y', 0) + (0,0, z - z') = (x - x', y - y', z - z').$$

Then, x - x' = y - y' = z - z' = 0, which indicates x = x', y = y', z = z'. So, by definition U + W is a direct sum, or $\mathbb{F}^3 = U \oplus W$.

Example 1.3.11 Suppose U_i is the subspace of \mathbb{F}^n *s.t.*

$$U_{1} = \{x, 0, 0, \cdots, 0 \mid x \in \mathbb{F}\}$$
$$U_{2} = \{0, x, 0, \cdots, 0 \mid x \in \mathbb{F}\}$$
$$\vdots$$
$$U_{n} = \{0, 0, 0, \cdots, x \mid x \in \mathbb{F}\}$$

Then, $\mathbb{F}^n = U_1 \oplus U_2 \oplus \cdots \oplus U_n$.

Proof 6. Note that $\mathbb{F}^n = U_1 + U_2 + \cdots + U_n$ is evident. Now, we'll prove that $U_1 + U_2 + \cdots + U_n$ is a direct sum. Consider $x = (x_1, x_2, \cdots, x_n) \in \mathbb{F}^n$. Assume that

$$x = (x_1, 0, \cdots, 0) + \dots + (0, \cdots, 0, x_n)$$
(3)

and

$$x = (x'_1, 0, \cdots, 0) + \dots + (0, \cdots, 0, x'_n)$$
(4)

Then, from (3)-(4), we know that

$$0 = (x_1 - x'_1, \cdots, x_n - x'_n) = (0, 0, \cdots, 0).$$

Then, $\forall i = 1, \dots, n$ we have $x_i - x'_i = 0$, or $x_i = x'_i$. Therefore, by definition, we know $U_1 + \dots + U_n$ is a direct sum.

Example 1.3.12 Let

 $U_{1} = \{(x, y, 0) \mid x, y \in \mathbb{F}\}$ $U_{2} = \{(0, 0, z) \mid z \in \mathbb{F}\}$ $U_{3} = \{(0, y, y) \mid y \in \mathbb{F}\}$

Show that $U_1 + U_2 + U_3$ is not a direct sum.

Proof 7. Consider $(0,0,0) \in \mathbb{F}^3$. Note that

$$(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0)$$

and

$$(0,0,0) = (0,1,0) + (0,0,1) + (0,-1,-1).$$

Then, $U_1 + U_2 + U_3$ is not a direct sum by definition.

Theorem 1.3.13

Suppose U_1, \dots, U_m are subspaces of V. Then, $U_1 + \dots + U_m$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \dots + u_m$ is by taking each $u_j = 0$.

Proof 8.

 (\Rightarrow) Since $U_1 + \cdots + U_m$ is a direct sum, by definition, the only way to write $0 \in \mathbb{F}^n$ is to write it as

$$0 = 0 + \dots + 0$$
 where $0 \in U_i \forall i = 1, \dots, m$.

(\Leftarrow) Suppose the only way to write 0 as a sum $u_1 + \cdots + u_m$ is by taking each $u_j = 0$. Assume that for some $v \in V$, we have

$$v = u_1 + \dots + u_m, \quad u_j \in U_j \tag{5}$$

and

$$v = u'_1 + \dots + u'_m, \quad u'_j \in U_j.$$
 (6)

Then, by (5)-(6), and according to the conclusion from Example 1.3.11, we have

$$0 = (u_1 - u'_1) + \dots + (u_m - u'_m) = 0 + \dots + 0.$$

So, $\forall i \in 1, \dots, m$, we have $u_i - u'_i = 0$. that is, $u_i = u'_i$. So, $\forall v \in V$, there is only one way to write v as a sum of $u_1 + \dots + u$. Therefore, by definition, $U_1 + \dots + U_m$ is a direct sum.

Theorem 1.3.14

Suppose U and W are subspaces of V. Then, U + W is a direct sum if and only if $U \cap W = \{0\}$.

Proof 9.

(⇒) Suppose U + W is a direct sum. Assume $v \in U \cap W$. Then, $v \in U$ and $v \in W$. By definition of subspace, we know $-v \in W$ as well. Note that

$$0 = v + (-v) \in U \cap W.$$

Then, by Theorem 1.3.13, we know that the only representation of $0 \in U \cap W$ is 0 = 0 + 0 since $U \cap W$ is a direct sum. Hence, it must be that v = -v = 0, and thus $U \cap W = \{0\}$. \Box

(\Leftarrow) Suppose $U \cap W = \{0\}$. Let $u \in U$ and $w \in W$ s.t. u + w = 0. Then, we have u = -w. Since $-w \in W$, we know $u = -w \in W$. By $u \in U$ and $u \in W$, we know that $u \in U \cap W = \{0\}$. Therefore, 0 = 0 + 0 is the only to represent $0 \in U + W$. By Theorem 1.3.13, we know U + W is a direct sum.

Remark. When extending Theorem 1.3.14 to 3 subspaces U_1, U_2, U_3 , we cannot conclude $U_1 \oplus U_2 \oplus U_3$ if we have $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = \{0\}$. See Example 1.3.12 as a counterexample.

2 Finite-Dimensional Vector Spaces

2.1 Span and Linear Independence

Notation 2.1.1. We usually write list of vectors without using parentheses.

Example 2.1.2 (4, 1, 6), (9, 5, 7) is a list of vectors of length 2 in \mathbb{R}^3 .

Definition 2.1.3 (Linear Combination). A *linear combination* of a list v_1, \dots, v_m of vectors in V is a vector of the form

$$a_1v_1 + \cdots + a_mv_m$$

where $a_1, \cdots, a_m \in \mathbb{F}$.

Example 2.1.4 Since (17, -4, 2) = 6(2, 1, -3) + 5(1, -2, 4), we say (17, -4, 2) is a linear combination of (2, 1, -3), (1, -2, 4).

Definition 2.1.5 (Span).

$$\operatorname{span}(v_1, \cdots, v_m) = \{a_1v_1 + \cdots + a_mv_m \mid a_1 \cdots a_m \in \mathbb{F}\}.$$

Example 2.1.6 Consider $span(e_1, e_2, e_3)$:

$$span(e_1, e_2, e_3) = \{a_1e_1 + a_2e_2 + a_3e_3 \mid a_1, a_2, a_3 \in \mathbb{F}\} \\= \{(a_1, a_2, a_3) \mid a_1, a_2, a_3 \in \mathbb{F}\} = \mathbb{R}^3.$$

Theorem 2.1.7

The span of a list of vectors in *V* is the smallest subspace of *V* containing all the vectors in the list.

Proof 1. To prove this theorem, we will prove two parts: span is a subspace and span is the smallest subspace.

- 1. Span is a subspace of V.
 - (a) By definition of span, we know $\operatorname{span}(v_1, \dots, v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1, \dots, a_m \in \mathbb{F}\}$. If we set $a_1, \dots, a_m = 0$, then we have $0 = 0v_1 + \dots + 0v_m$. So, $0 \in \operatorname{span}(v_1, \dots, v_m)$.
 - (b) Let $a_1v_1 + \cdots + a_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$ and $b_1v_1 + \cdots + b_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$. Then,

$$(a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots + b_mv_m) = (a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m.$$

Since $(a_1+b_1), \dots, (a_m+b_m) \in \mathbb{F}$, we know $(a_1+b_1)v_1 + \dots + (a_m+b_m)v_m \in \text{span}(v_1, \dots, v_m)$.

(c) Let $\lambda \in \mathbb{F}$ and $a_1v_1 + \cdots + a_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$. Then,

$$\lambda(a_1v_1 + \dots + a_mv_m) = \lambda a_1v_1 + \dots + \lambda a_mv_m.$$

Since $\lambda a_1, \dots, \lambda a_m \in \mathbb{F}$, we know that $\lambda(a_1v_1 + \dots + a_mv_m) \in \operatorname{span}(v_1, \dots, v_m)$.

Therefore, we have proven that span is a subspace of V. \Box

2. Now, we want to show that span is the smallest subspace.

Let *U* be a subspace of *V* containing v_1, \dots, v_m . If we can show that $\operatorname{span}(v_1, \dots, v_m) \subseteq U$, we then know span is the smallest subspace containing v_1, \dots, v_m . Since *U* is a subspace containing v_1, \dots, v_m , it is closed under addition and scalar multiplication. So, $a_1v_1 + \dots + a_mv_m \in \operatorname{span}(v_1, \dots, v_m)$. Therefore, $\operatorname{span}(v_1, \dots, v_m) \subseteq U$.

Definition 2.1.8 (Span as a Verb). If $span(v_1, \dots, v_m) = V$, we say v_1, \dots, v_m spans V.

Definition 2.1.9 (Finite-Dimensional Vector Space). A vector space *V* is called *finite-dimensional* if \exists a list of vectors, say v_1, \dots, v_m *s.t.* span $(v_1, \dots, v_m) = V$. In the following of this notes, we will use *f*-*d* as a shortcut for saying "finite-dimensional."

Definition 2.1.10 (Infinte-Dimensional Vector Space). A vector space *V* is infinite-dimensional if it is not *f*-*d*. This is equivalent to say that \forall lists of vectors in *V*, they do not span *V*.

Definition 2.1.11 (Polynomial Functions). A function $p : \mathbb{F} \to \mathbb{F}$ is called a *polynomial* with coefficients in \mathbb{F} if $\exists a_0, \dots, a_m \in \mathbb{F}$ *s.t.* $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m \quad \forall z \in \mathbb{F}$.

Notation 2.1.12. We use $\mathcal{P}(\mathbb{F})$ to denote the set of all polynomial with coefficients in \mathbb{F} .

Theorem 2.1.13

 $\mathcal{P}(\mathbb{F})$ is a vector space over \mathbb{F} .

Proof 2. Recall the definition of $\mathbb{F}^{\mathbb{F}}$. We will show $\mathcal{P}(\mathbb{F})$ is a subspace of $\mathbb{F}^{\mathbb{F}}$.

1.
$$0 = 0 + 0z + \dots + 0z^m \in \mathcal{P}(\mathbb{F}).$$

- 2. Suppose $p(z) = a_m z^m + \cdots + a_1 z + a_0$ and $q(z) = b_n z^n + \cdots + b_1 z + b_0 \in \mathcal{P}(\mathbb{F})$. WLOG, suppose m > n, then we have $p(z) + q(z) = a_m z^m + \cdots + (a_n + b_n) z^n + \cdots + (a_0 + b_0) \in \mathcal{P}(\mathbb{F})$.
- 3. Suppose $\lambda \in \mathbb{F}$. Then, $\lambda p(z) = \lambda(a_m z^m + \cdots + a_1 z + a_0) = \lambda a_m z^m + \cdots + \lambda a_0 \in \mathcal{P}(\mathbb{F})$.

Hence, we've shown $\mathcal{P}(\mathbb{F})$ is a subspace over \mathbb{F} .

Definition 2.1.14 (Degree of a Polynomial). A polynomial $p \in \mathcal{P}(\mathbb{F})$ is said to have *degree* m if \exists scalars $a_0, \dots, a_m \in \mathbb{F}$ with $a_m \neq 0$ *s.t.* $p(z) = a_m z^m + \dots + a_1 z + a_0 \quad \forall z \in \mathbb{F}$. We write deg p = m. Specially, deg $0 \coloneqq -\infty$ and deg $a_0 \coloneqq 0$ when $a_0 \neq 0$.

Definition 2.1.15 ($\mathcal{P}_m(\mathbb{F})$). For $m \in \mathbb{N}^+$, $\mathcal{P}_m(\mathbb{F})$ denotes the set of all polynomial with coefficients in \mathbb{F} and degree $\leq m$. i.e.,

$$\mathcal{P}_m(\mathbb{F}) \coloneqq \{ p \in \mathcal{P}(\mathbb{F}) \mid \deg p \le m \}.$$

Example 2.1.16 For each $m \in \mathbb{N}$, $\mathcal{P}_m(\mathbb{F})$ is a *f*-*d* vector space. **Proof 3.** Note that $\mathcal{P}_m(\mathbb{F})$ is a vector space because it is a subspace of $\mathcal{P}(\mathbb{F})$. Suppose $p(z) \in \mathcal{P}_m(\mathbb{F})$, then $p(z) = a_0 + a_1 z + \cdots + a_m z^m \in \text{span}(1, z, \cdots, z^m)$. Then, by definition, $\mathcal{P}_m(\mathbb{F})$ is *f*-*d*.

Remark. In this proof, we are abusing notation by letting z^k to denote a function.

Example 2.1.17 $\mathcal{P}(\mathbb{F})$ is infinite-dimensional.

Proof 4. For any list of vectors in $\mathcal{P}(\mathbb{F})$, by definition of list, the length of it is finite. Suppose the highest degree in this list is m. Consider a polynomial with degree of $m + 1 : z^{m+1}$. Since z^{m+1} cannot be written as linear combinations of the list of polynomials, we know the list does not span $\mathcal{P}(\mathbb{F})$. So, $\mathcal{P}(\mathbb{F})$ is infinite-dimensional.

Definition 2.1.18 (Linear Independence). A list v_1, \dots, v_m of vectors in V is called *linearly independent* (L.I.) if the only choice of $a_1, \dots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \dots + a_mv_m = 0$ is $a_1 = \dots = a_m = 0$. Specially, the empty list () is declared to be L.I..

Definition 2.1.19 (Linear Dependence). v_1, \dots, v_m is called *linearly dependent* if it is not L.I.. Or,

equivalently, v_1, \dots, v_m is *linearly dependent* if $\exists a_1, \dots, a_m \in \mathbb{F}$ not all 0 s.t. $\sum_{i=0}^{m} a_i v_i = 0$.

Example 2.1.20 Let $v_1, \dots, v_m \in V$. If v_j is a linear combination of other *v*'s, then v_1, \dots, v_m is linearly dependent.

Proof 5. By assumption, $v_j = a_1v_1 + \cdots + a_{j-1}v_{j-1} + a_{j+1}v_{j+a} + \cdots + a_mv_m$ for some a_i not all 0. So, $0 = a_1v_1 + \cdots + a_{j-1}v_{j-1} + a_{j+1}v_{j+1} + \cdots + a_mv_m - v_j$, a linear combination of v_1, \cdots, v_m . Since $-v_i$ has a coefficient of $-1 \neq 0$, by definition, v_1, \cdots, v_m is not L.I.

Lemma 2.1.21 Linear Dependence Lemma Suppose v_1, \dots, v_m is a linearly dependent list in *V*. Then, $\exists j \in \{1, \dots, m\}$ *s.t.* the following hold:

- 1. $v_i \in \text{span}(v_1, \cdots, v_{j-1})$
- 2. if the j^{th} term is removed from v_1, \dots, v_m , the span of the remaining list equals $\operatorname{span}(v_1, \dots, v_m)$.

Proof 6.

1. Since v_1, \dots, v_m is linearly dependent, $a_1v_1 + \dots + a_mv_m = 0$, for some $a_i \neq 0$. Let j be the maximized index *s.t.* $a_j \neq 0$. Then, $a_{j+1} = \dots = a_m = 0$, by this assumption. Hence,

$$a_{j}v_{j} = -a_{1}v_{1} - \dots - a_{j-1}v_{j-1} - a_{j+1}v_{j+1} - \dots - a_{m}v_{m}$$
$$= -a_{1}v_{1} - \dots - a_{j-1}v_{j-1}$$
$$v_{j} = -\frac{a_{1}}{a_{j}}v_{1} - \dots - \frac{a_{j-1}}{a_{j}}v_{j-1}.$$

Since $-\frac{a_1}{a_j}, \cdots, -\frac{a_{j-1}}{a_j} \in \mathbb{F}$, we know $v_j \in \operatorname{span}(v_1, \cdots, v_{j-1})$. \Box

2. Consider

$$span(v_1, \dots, v_j, \dots, v_m) = span(v_1, \dots, -\frac{a_1}{a_j}v_1 - \dots - \frac{a_{j-1}}{a_j}v_{j-1}, \dots, v_m)$$
$$= span(v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_m).$$

Remark. By using this Lemma 2.1.21, we can do lots of proofs using the "step" strategy. Namely, we start to remove vectors from a list that are linearly dependent to obtain a L.I. list. However, this "step" strategy can only be used when dealing with FINITE-dimensional vector spaces.

Theorem 2.1.22

Let V be a *f*-d vector space. Let $span(w_1, \dots, w_n) = V$. Let u_1, \dots, u_m be L.I.. Then, $m \leq n$.

Proof 7.

Step 1 Note that u_1, w_1, \dots, w_n is linearly dependent because $u_1 \in V = \text{span}(w_1, \dots, w_n)$. Then, by Lemma 2.1.21, we can remove one of the *w*'s, say w_{i1} . Then, the list becomes

$$\{u_1, w_1, \cdots, w_n\} \setminus \{w_{j1}\}.$$

Step 2 Adjoin u_2 . Apply the same reasoning, since $\operatorname{span}(\{u_1, w_1, \dots, w_n\} \setminus \{w_{j1}\}) = V$, we know $\{u_1, u_2, w_1, \dots, w_n\} \setminus \{w_{j1}\}$ is linearly dependent. Since $u_2 \notin \operatorname{span}(u_1)$, Lemma 2.1.21 is not applicable to u_2 . Now, we can remove another w from the list, say w_{j2} . The list becomes

$$\{u_1, u_2, w_1, \cdots, w_n\} \setminus \{w_{j1}, w_{j2}\}.$$

: Step m After m steps, we list will become

$$\{u_1,\cdots,u_m,w_1,\cdots,w_n\}\setminus\{w_{j1},\cdots,w_{jm}\}$$

Since $\operatorname{span}(\{u_1, \dots, u_m, w_1, \dots, w_n\} \setminus \{w_{j1}, \dots, w_{jm}\}) = V$, this list is still linearly dependent, so by Lemma 2.1.21, we know $\exists w$ to be removed. Therefore, $n \ge m$.

Theorem 2.1.23 Every subspace of a *f*-*d* vector space is *f*-*d*.

Proof 8. Suppose V to be a f-d vector space and U to be a subspace of V. Step 1 If $U = \{0\}$, then U is f-d. If $U \neq \{0\}$, then choose $v_i \in U$ s.t. $v_1 \neq 0$. Step j If $U = \text{span}(v_1, \dots, v_{j-1})$, then U is f-d. If $U \neq \text{span}(v_1, \dots, v_{j-1})$, then choose $v_j \in U$ s.t. $v_j \notin U$

span (v_1, \dots, v_{j-1}) . By Lemma 2.1.21 and Theorem 2.1.22, we know this process will eventually terminate because the vector list that spans U cannot be longer than any spanning list of V. Therefore, U is f-d.

2.2 Bases

Definition 2.2.1 (Basis). A *basis* of *V* is a list of vectors in *V* that is L.I. and spans *V*.

Example 2.2.2

1. The standard basis of \mathbb{F}^n :

 $(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1).$

2. (1,1,0), (0,0,1) is a basis of *V*, where $V = \{(x,x,y) \in \mathbb{F}^3 \mid x, y \in \mathbb{F}\}.$

Proof 1.

- (a) Suppose $a_1(1,1,0) + a_2(0,0,1) = 0$, we have $(a_1, a_1, a_2) = 0$. So, it must be $a_1 = a_2 = 0$. Therefore, (1,1,0), (0,0,1) is L.I.. \Box
- (b) Suppose $(x, x, y) \in V$. Note that (x, x, y) = x(1, 1, 0) + y(0, 0, 1), then, V = span((1, 1, 0), (0, 0, 1)).

Therefore, we've proven (1, 1, 0), (0, 0, 1) is a basis of *V* according to the definition of basis.

Theorem 2.2.3 Criterion for Basis

A list $v_1, \dots, v_n \in V$ is a basis list of V if and only if every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \dots + a_nv_n$, where $a_i \in \mathbb{F}$.

Proof 2.

(\Rightarrow) Let v_1, \dots, v_n be a basis of *V*. Let $v \in V$. By definition of basis, $V = \operatorname{span}(v_1, \dots, v_n)$. So, $v \in \operatorname{span}(v_1, \dots, v_n)$, and thus $v = a_1v_1 + \dots + a_nv_n$ for some $a_i \in \mathbb{F}$. Assume for the sake of contradiction that $v = b_1v_1 + \dots + b_nv_n$ for some $b_i \neq a_i \in \mathbb{F}$. Then,

$$v - v = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n$$
$$0 = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n.$$

Since v_1, \dots, v_n is a basis, it is L.I.. So, $0 = 0v_1 + \dots + 0v_n$. Therefore, we know $a_1 - b_1 = \dots = a_n - b_n = 0$. That is, $a_1 = b_1, \dots, a_n = b_n$. * This is a contradiction with the assumption that $\exists a_i \neq b_i$. Hence, it must be that $v = a_1v_1 + \dots + a_nv_n$ is unique. \Box

(\Leftarrow) Suppose $v = a_1v_1 + \cdots + a_nv_n$ is the unique representation $\forall v \in V$. Then, $v \in \text{span}(v_1, \cdots, v_n)$. Since $v \in V$, then $V \subseteq \text{span}(v_1, \cdots, v_n)$. However, $v_1, \cdots, v_n \in V$, so $\text{span}(v_1, \cdots, v_n) \subseteq V$. Therefore, $\text{span}(v_1, \cdots, v_n) = V$. To show v_1, \cdots, v_n is L.I., further consider $0 = a_1v_1 + \cdots + a_nv_n$. Since $0 \in V$, by assumption, \exists a unique way to write 0 as $a_1v_1 + \cdots + a_nv_n$, and that unique way is to take every $a_i = 0$. Hence, by definition, we know v_1, \cdots, v_n is L.I.. Since v_1, \cdots, v_n is L.I. and $\text{span}(v_1, \cdots, v_n) = V$, we know v_1, \cdots, v_n is a basis list of V.

Theorem 2.2.4

Every spanning list can be reduced to a basis of the vector space.

Proof 3. Suppose $V = \operatorname{span}(v_1, \dots, v_n)$. If $v_i = 0$, we just remove v_i . So, let's suppose $v_i \neq 0$. Step 1 If $v_2 \in \operatorname{span}(v_1)$, delete it. If $v_2 \notin \operatorname{span}(v_2)$, keep it.

:
Step
$$j$$
 If $v_j \in \operatorname{span}(v_1, \cdots, v_{j-1})$, delete it. If $v_j \notin \operatorname{span}(v_1, \cdots, v_{j-1})$, keep it.
:

Step n After n steps, we will have a "sub-list" from the original list *s.t.* it spans V and is L.I.. Therefore, the basis list is contained in the spanning list.

Corollary 2.2.5 Every *f*-*d* vector space has a basis.

Proof 4. By definition, *f*-*d* vector space always has a spanning list. By Theorem 2.2.4, a spanning list contain a basis. ■

Theorem 2.2.6

Every linearly independent list of vectors in a *f*-*d* vector space can be extended to a basis of the vector space.

Proof 5. Suppose u_1, \dots, u_m is L.I. in a *f*-*d* vector space of *V*. Let w_1, \dots, w_n be a basis of *V*. Then, $u_1, \dots, u_m, w_1, \dots, w_n$ spans *V*. According to Lemma 2.1.21 and Theorem 2.1.22, we can reduce $u_1, \dots, u_m, w_1, \dots, w_m$ to some list of u_1, \dots, u_m and some *w*'s.

Theorem 2.2.7

Suppose *V* is *f*-*d* and *U* is a subspace of *V*. Then, there is a subspace *W* of *V* s.t. $V = U \oplus W$.

Proof 6. Since V is *f*-*d*, U, as V's subspace, is also *f*-*d*. So, \exists a basis of U, say u_1, \dots, u_m . Then, u_1, \dots, u_m is L.I. and $\in V$. By Theorem 2.2.6, this list can be extended to a basis

$$u_1, \cdots, u_m, w_1, \cdots, w_n$$
 of V.

Let $W = \operatorname{span}(w_1, \cdots, w_n)$. We'll show $V = U \oplus W$.

1. WTS: V = U + W. Suppose $v \in V$. Then,

$$v = \underbrace{a_1 u_1 + \dots + a_m u_m}_{\in U} + \underbrace{b_1 w_1 + \dots + b_n w_n}_{\in W}.$$

So, $v \in U + W$, or V = U + W. \Box

2. WTS: $U \cap W = \{0\}$. Suppose $v \in U \cap W$. Then, $v \in U$ and $v \in W$. So,

$$v = a_1u_1 + \dots + a_mv_m = b_1w_1 + \dots + b_nw_n.$$

Hence,

$$a_1u_1 + \dots + a_mu_m - b_1w_1 - \dots - b_nw_n = 0.$$
(7)

Since by assumption, $u_1, \dots, u_m, w_1, \dots, w_n$ is a basis of V, so $u_1, \dots, u_m, w_1, \dots, w_n$ is L.I.. Therefore, the only way for Equation (7) to hold is when $a_1 = \dots = a_m = b_1 = \dots = b_n = 0$. Hence, $v = 0u_1 + \dots + u_m = 0$. That is, $U \cap W = \{0\}$.

Therefore, we've shown that $V = U \oplus W$.

2.3 Dimension

Theorem 2.3.1

Let B_1 and B_2 be two bases of V, then B_1 and B_2 have the same length.

Proof 1. Since B_1 is L.I. in V and B_2 spans V, by Theorem 2.1.22, we know $len(B_1) \le len(B_2)$. Interchanging the roles of B_1 and B_2 , we have $len(B_2) \le len(B_1)$. So, we have $len(B_1) = len(B_2)$. **Definition 2.3.2 (Dimension).** The *dimension* of a *f*-*d* vector space V is the length of any basis of V. **Notation 2.3.3.** We use dim V to denote the dimension of a *f*-*d* vector space V.

Example 2.3.4 dim $\mathbb{F}^n = n$ and dim $\mathcal{P}_m(\mathbb{F}) = m + 1$ $(1, z, z^2, \cdots, z^m)$.

Theorem 2.3.5 If *V* is *f*-*d* and *U* is a subspace of *V*, then $\dim U \leq \dim V$.

Proof 2. Let B_1 be a basis of U and B_2 be a basis of V. Then, B_1 is a L.I. list of V and B_2 spans V. Then, By Theorem 2.1.22, we know that $len(B_1) \leq len(B_2)$. So, by definition of dimension, we know $\dim U \leq \dim V$.

Extension. If *V* is f-d and *U* is a subspace of *V*, given $U \subsetneq V$, then dim $U < \dim V$.

Proof 3. Let u_1, \dots, u_m be a basis of U. Since $U \subsetneq V$, we know $V - U \neq \emptyset$. So, choose $v \in V - U$. Then, $v \notin \operatorname{span}(u_1, \dots, u_m)$. Therefore, u_1, \dots, u_m, v is L.I. in V. That is

 $\dim V \ge \dim(\operatorname{span}(u_1, \cdots, u_m, v))$ $> \dim(\operatorname{span}(u_1, \cdots, u_m))$ $= \dim U.$

Theorem 2.3.6 Let *V* be *f*-*d*, then every L.I. list of vectors in *V* with length dim *V* is a basis of *V*.

Proof 4. Let $v_1, \dots, v_n \in V$ be L.I.. Let $n = \dim V$. When extending the list to basis, we get

 $\{v_1, m \cdots, v_n\} \cup \emptyset$

as a basis of V. That is, v_1, \dots, v_n has already been a basis of V.

Remark. The proof given above is not that straight-forward, so we are giving an easier-understanding proof as follows.

Proof 5. Suppose for the sake of contradiction that $\exists v_1, \dots, v_n \in V$ not a basis of V for $n = \dim V$. Then, $\operatorname{span}(v_1, \dots, v_n) \neq V$. That is, $\exists v_{n+1} \ s.t. \ v_{n+1} \notin \operatorname{span}(v_1, \dots, v_n)$. Adding v_{n+1} to the vector list, we have v_1, \dots, v_n, v_{n+1} is L.I.. By Theorem 2.3.5, we know $\operatorname{len}(v_1, \dots, v_{n+1}) = n + 1 \leq \dim V$. * This contradicts with the fact that $\dim V = n < n + 1$. So, our assumption is incorrect, and it must be that v_1, \dots, v_n is a basis of V.

Theorem 2.3.7

Suppose *V* is *f*-*d*. Then, every spanning list of vectors in *V* with length $\dim V$ is a basis of *V*.

Example 2.3.8 Show that $1, (x-5)^2, (x-5)^3$ is a basis of the subspace U of $\mathcal{P}_3(\mathbb{R})$ defined by

 $U = \{ p \in \mathcal{P}_3(\mathbb{R}) \mid p'(5) = 0 \}.$

Proof 6. Consider $a_1 + a_2(x-5)^2 + a_3(x-5)^3 = 0$, we will get $a_1 = a_2 = a_3 = 0$ easily from the equation. Then, $1, (x-5)^2, (x-5)^3$ is L.I.. So, by Theorem 2.3.5, we know $\dim U \ge 3$. Since $U \subsetneq \mathcal{P}_3(\mathbb{R})$, we have $\dim U < \dim \mathcal{P}_3(\mathbb{R}) = 4$. Therefore, $\dim U = 3 = \operatorname{len}(1, (x-5)^2, (x-5)^3)$. By Theorem 2.3.6, we know $1, (x-5)^2, (x-5)^3$ is a basis of U.

Theorem 2.3.9

If U_1 and U_2 are subspaces of a *f*-*d* vector space, then

 $\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2).$

Proof 7. Let u_1, \dots, u_m be a basis of $U_1 \cap U_2$, then $\dim(U_1 \cap U_2) = m$. Also, u_1, \dots, u_m is L.I. in U_1 , so we can extend it to a basis of U_1 as $u_1, \dots, u_m, v_1, \dots, v_j$. Then, $\dim(U_1) = m + j$. Similarly, extending u_1, \dots, u_m to a basis of U_2 , we will get $u_1, \dots, u_m, w_1, \dots, w_k$. So, $\dim(U_2) = m + k$. Now, we want to show $u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k$ is a basis of $U_1 + U_2$.

1. Since $U_1, U_2 \subseteq \text{span}(u_1, \cdots, u_m, v_1, \cdots, v_j, w_1, \cdots, w_k)$, we know that

$$\operatorname{span}(u_1, \cdots, u_m, v_1, \cdots, v_j, w_1, \cdots, w_k) = U_1 + U_2. \qquad \Box$$

2. Suppose $a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_jv_j + c_1w_1 + \cdots + c_kw_k = 0$. Then we know that

$$c_1w_1 + \dots + c_kw_k = -a_1u_1 - \dots - a_mu_m - b_1v_1 - \dots - b_jv_j.$$

Since $c_1w_1 + \cdots + c_kw_k \in U_2$, and $-a_1u_1 - \cdots - a_mu_m - b_1v_1 - \cdots - b_jv_j \in U_1$, we know that $c_1w_1 + \cdots + c_kw_k \in U_1 \cap U_2$. Therefore, $c_1w_1 + \cdots + c_kw_k = d_1u_1 + \cdots + d_mu_m$. Since $u_1, \cdots, u_m, w_1, \cdots, w_k$ is L.I., we know $c_1 = \cdots = c_k = 0$. So, $-a_1u_1 - \cdots - a_mu_m - b_1v_1 - \cdots - b_jv_j = 0$. Since $u_1, \cdots, u_m, v_1, \cdots, v_j$ is L.I., we have $a_1 = \cdots = a_m = b_1 = \cdots = b_j = 0$. Therefore, we've proven $u_1, \cdots, u_m, v_1, \cdots, v_j, w_1, \cdots, w_k$ is L.I. and thus is a basis of $U_1 + U_2$. \Box

Since $u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k$ is a basis of $U_1 + U_2$, we know $\dim(U_1 + U_2) = m + j + k$. Further note that

$$\dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2) = (m+j) + (m+k) - m$$
$$= m+j+k$$
$$= \dim(U_1 + U_2).$$

3 Linear Maps

Notation 3.0.1. In this section, we use *V* and *W* to denote vector spaces over \mathbb{F} .

3.1 The Vector Space of Linear Maps

Definition 3.1.1 (Linear Map). A *linear map* from *V* to *W* is a function $T : V \to W$ with the following properties:

- additivity: T(u+v) = Tu + Tv $\forall u, v \in V$.
- homogeneity: $T(\lambda v) = \lambda(Tv)$ $\forall \lambda \in \mathbb{F}$ and $\forall v \in V$.

Notation 3.1.2. The set of all linear maps from *V* to *W* is denoted by $\mathcal{L}(V, W)$.

Example 3.1.3

- 1. Zero-mapping: $0 \in \mathcal{L}(V, W)$ is defined by 0v = 0.
- 2. Identity-mapping: $I \in \mathcal{L}(V, V)$ is defined by Iv = v.
- 3. Differentiation: $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is defined by Dp = p'. *Proof 1.* Note that (f + g)' = f' + g' and $(\lambda f)' = \lambda f'$.

4. Integration:
$$T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$$
 is defined by $Tp = \int_0^1 p(x) \, dx$

Proof 2. Note that
$$\int_0^1 (f+g) = \int_0^1 f + \int_0^1 g$$
 and $\int_0^1 \lambda f = \lambda \int_0^1 f$.

5. Backward shift: $T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty})$ as $T(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots)$. *Proof 3.* Note that

$$T(x_1, x_2, x_3, \dots) + T(y_1, y_2, y_3, \dots) = (x_2, x_3, \dots) + (y_2, y_3, \dots)$$
$$= (x_2 + y_2, x_3 + y_3, \dots)$$
$$= T(x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots).$$

Therefore, T is additive. Homogeneity of T is travial and thus omitted here.

6. From \mathbb{F}^n to \mathbb{F}^m , we define $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$ as

$$T(x_1, \cdots, x_n) = (A_{1,1}x_1 + \cdots + A_{1,n}x_n, \cdots, A_{m,1}x_1 + \cdots + A_{m,n}x_n)$$

where $A_{j,k} \in \mathbb{F}$ $\forall j = 1, \cdots, m$ and $k = 1, \cdots, n$.

Theorem 3.1.4

Suppose v_1, \dots, v_n is a basis of V and $w_1, \dots, w_n \in W$. Then, \exists a unique linear map $T : V \to W$ *s.t.* $Tv_j = w_j \quad \forall j = 1, \dots, n$.

Remark. If T in Theorem 3.1.1 is a linear mapping, we should have

1.
$$T(v_1 + \cdots + v_n) = Tv_1 + \cdots + Tv_n = w_1 + \cdots + w_n$$
, by additivity of T, and

2. $T(\lambda_i v_i) = \lambda_i T v_i$, by homogeneity of T.

Combine the two properties, we should have

 $T(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 T v_1 + \dots = \lambda_n T v_n = \lambda_1 w_1 + \dots + \lambda_n w_n.$

This remark will be very helpful in our following proof of the theorem.

Proof 4. Let's define $T : V \to W$ by $T(c_1v_1 + \cdots + c_nv_n) = c_1w_1 + \cdots + c_nw_n$, where c_1, \cdots, c_n are arbitrary elements of \mathbb{F} . Now, we want to show that T is a linear mapping.

Suppose $u, v \in V$, $u = a_1v_1 + \cdots + a_nv_n$, and $v = c_1v_1 + \cdots + c_nv_n$. Then, we have

$$T(u+v) = T((a_1 + c_1)v_1 + \dots + (a_n + c_n)v_n)$$

= $(a_1 + c_1)w_1 + \dots + (a_n + c_n)w_n$
= $(a_1w_1 + \dots + a_nw_n) + (c_1w_1 + \dots + c_nw_n)$
= $Tu + Tv$.

Now, we want to show *T* has homogeneity. Suppose $\lambda \in \mathbb{F}$. Then, we know

$$T(\lambda v) = T(\lambda c_1 v_1 + \dots + \lambda c_n v_n)$$

= $\lambda c_1 w_1 + \dots + \lambda c_n w_n$
= $\lambda (c_1 w_1 + \dots + c_n w_n)$
= $\lambda T v.$

Also, we want to show that this *T* satisfy the condition the theorem is asking (i.e., $Tv_j = w_j$). Note that when $c_j = 0$ and other *c*'s equal 0, we will get $Tv_j = w_j$. \Box

Finally, we will prove the uniqueness of this *T*. Suppose that $T' \in \mathcal{L}(V, W)$ and $T'v_j = w_j$. Let $c_1, \dots, c_n \in \mathbb{F}$. Then, $T'(c_jv_j) = c_jw_j$. So, we know that $T'(c_1v_1 + \dots + c_nv_n) = c_1w_1 + \dots + c_nw_n$. However, by definition, we know $c_1w_1 + \dots + c_nw_n = T(c_1w_1 + \dots + c_nv_n)$. So, we can conclude that $T'(c_1v_1 + \dots + c_nv_n) = T(c_1w_1 + \dots + c_nv_n)$. Thus, T' = T, and thus the *T* we defined above is unique in $\mathcal{L}(V, W)$.

Definition 3.1.5 (Addition and Scalar Multiplication on $\mathcal{L}(V, W)$ **).** Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. Then, the *addition* is defined as $(S + T)(v) \coloneqq Sv + Tv$, and the *scalar multiplication* is defined as $(\lambda T)(v) \coloneqq \lambda(Tv) \quad \forall v \in V$.

Theorem 3.1.6 $\mathcal{L}(V, W)$ is a vector space.

Proof 5.

1. additive identity: Note that the zero-mapping $0 \in \mathcal{L}(V, W)$ satisfies the following equation:

$$(0+T)(v) = 0v + Tv = 0 + Tv = Tv.$$

2. commutativity: Note that

$$(S+T)(v) = Sv + Tv = Tv + Sv = (T+S)(v). \qquad \Box$$

3. associativity: Let $S, T, R \in \mathcal{L}(V, W)$. Then,

$$((S+T) + R)(v) = (S+T)(v) + Rv = Sv + Tv + Rv$$

= Sv + (Tv + Rv)
= Sv + (T + R)(v)
= (S + (T + R))(v).

Let $a, b \in \mathbb{F}$. Then,

$$((ab)T)(v) = T(abv) = T(a(bv)) = aT(bv) = (a(bT))(v). \qquad \Box$$

4. multiplicative identity: Note we have $1 \in \mathbb{F}$ *s.t.*

$$(1 \cdot T)(v) = T(1 \cdot v) = Tv. \qquad \Box$$

5. additive inverse: Note that

$$(T + (-T))(v) = Tv + (-T)(v) = Tv + T(-v) = T(v - v) = T0 = 0.$$

6. distributivity: Note that

$$a(T+S)(v) = a(Tv+Sv) = aTv + aSv,$$

and

$$(a+b)Tv = T((a+b)v) = T(av+bv) = T(av) + T(bv) = aTv + bTv.$$

Definition 3.1.7 (Product of Linear Maps). If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then the *product* $ST \in \mathcal{L}(U, W)$ is defined by $(ST)(u) = S(Tu) \quad \forall u \in U$.

Remark. Compare this definition with composite functions. *ST* is only defined when *T* maps into the domain of *S*.

Theorem 3.1.8 Algebraic Properties of Products of Linear Maps

- 1. associativity: $(T_1T_2)T_3 = T_1(T_2T_3)$.
- 2. identity: TI = IT = T, where *I* is the identity mapping
- 3. distributive properties: $(S_1 + S_2)T = S_1T + S_2T$ and $S(T_1 + T_2) = ST_1 + ST_2$.

Proof 6. First, we want to show the associativity. Note that

 $[(T_1T_2)T_3](v) = (T_1T_2)(T_3v) = (T_1)(T_2(T_3v)) = (T_1)[(T_2T_3)(v)]. \square$

Then, we want to show the identity. This proof can be done using the following diagram:

Finally, we will show the distributive properties. Note that

$$[(S_1 + S_2)T](v) = (S_1 + S_2)(Tv) = S_1(Tv) + S_2(Tv)$$

= $(S_1T)(v) + (S_2T)(v)$
= $(S_1T + S_2T)(v)$.

Similarly, we can show

$$[S(T_1 + T_2)](v) = S[(T_1 + T_2)(v)] = S(T_1v + T_2v)$$

= $S(T_1v) + S(T_2v)$
= $(ST_1)(v) + (ST_2)(v)$
= $(ST_1 + ST_2)(v)$.

Example 3.1.9 Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map, and $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be defined by $(Tp)(x) = x^2p(x)$. Show that $DT \neq TD$. **Proof 7.** Note that $(DT)p = D(Tp) = D(x^2p(x)) = 2xp(x) + x^2p'(x)$. Similarly, we can compute a general formula for TD: $(TD)p = T(Dp) = T(p') = x^2p'(x)$. Since $2xp(x) + x^2p'(x) \neq x^2p'(x)$, we know $DT \neq TD$.

Theorem 3.1.10 Let $T \in \mathcal{L}(V, W)$, then T(0) = 0.

Proof 8. Since T(0) = T(0+0) = T(0) + T(0), we know 0 = T(0), or T(0) = 0. Corollary 3.1.11 If $T(0) \neq 0$, then $T \notin \mathcal{L}(V, W)$.

3.2 Null Spaces and Ranges

Definition 3.2.1 (Null Space/Kernel). For $T \in \mathcal{L}(V, W)$, the *null space* of *T*, denoted null *T*, is the subset of *V* consisting of those vectors that *T* maps to 0: null $T = \{v \in V \mid Tv = 0\}$.

Remark. Sometimes, null space of T is also called the kernal of T, denoted as ker T.

Example 3.2.2

- 1. Null space of zero-mapping: Let *T* be the zero mapping from *V* to *W*. Since $Tv = 0 \quad \forall v \in V$, we know null T = V.
- 2. $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ as Dp = p': null $D = \{a \mid a \in \mathbb{R}\}$.
- 3. $T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty})$ as $T(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots)$: null $T = \{(a, 0, 0, \cdots) \mid a \in \mathbb{F}\}.$

Theorem 3.2.3

Suppose $T \in \mathcal{L}(V, W)$. Then, null *T* is a subspace of *V*.

Proof 1.

- 1. Note that T(0) = 0, so $0 \in \text{null } T$. \Box
- 2. Suppose $u, v \in \text{null } T$. Then, Tu = Tv = 0. So, T(u + v) = Tu + Tv = 0 + 0 = 0. Hence, $u + v \in \text{null } T$. \Box

3. Suppose $u \in \text{null } T$ and $\lambda \in \mathbb{F}$. Then, Tu = 0. So, $T(\lambda u) = \lambda Tu = \lambda \cdot 0 = 0$. Therefore, $\lambda u \in \text{null } T$.

Definition 3.2.4 (Injective/Injection). A function $T : V \to W$ is called *injective* of Tu = Tv implies u = v.

Remark. Sometimes, the contrapositive will be much more helpful: T is injective if $u \neq v$, then $Tu \neq v$.

Theorem 3.2.5

Let $T \in \mathcal{L}(V, W)$. Then, T is injective if and only if null $T = \{0\}$.

Proof 2.

(⇒) Suppose *T* is an injective. We've already known that $\{0\} \subseteq \text{null } T$. Then, we need to show null $T \subseteq \{0\}$. Suppose $v \in \text{null } T$, then Tv = 0. However, since *T* is an injection, and Tv = T0 = 0, then we have v = 0. So, null $T \subseteq \{0\}$. Therefore, it's sufficient to say null $T = \{0\}$. \Box

(\Leftarrow) Suppose null $T = \{0\}$. Suppose $u, v \in V$ and Tu = Tv. Then, Tu - Tv = T(u - v) = 0. Hence, $u - v \in$ null T. By null $T = \{0\}$, we know u - v = 0, so u = v. Then, T is an injection.

Definition 3.2.6 (Range/Image). For $T \in \mathcal{L}(V, W)$, the range of T is the subset of W consisting of those vectors that are of the form Tv for some $v \in V$: range $T = \{Tv \mid v \in V\}$.

Theorem 3.2.7

If $T \in \mathcal{L}(V, W)$, then range *T* is a subspace of *W*.

Proof 3.

- 1. Since T(0) = 0, we know $0 \in \operatorname{range} T$. \Box
- 2. Suppose $w_1, w_2 \in \text{range } T$. Then, $\exists v_1, v_2 \in V$ s.t. $Tv_1 = w_1$ and $Tv_2 = w_2$. Then, $w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2)$. Since $v_1 + v_2 \in V$, we have $w_1 + w_2 = T(v_1 + v_2) \in \text{range } T$. \Box
- 3. Suppose $w \in \text{range } T$ and $\lambda \in \mathbb{F}$. Then, $\exists v \in V$ s.t. w = Tv. So, $\lambda w = \lambda(Tv) = T(\lambda v)$. Since $\lambda v \in V$, $\lambda w = T(\lambda v) \in \text{range } T$.

Definition 3.2.8 (Surjective/Surjection). A function $T: V \to W$ is called *surjective* if range T = W.

Remark. A function $T: V \to W$ is called a bijection, or is bijective, if it is both injective and surjective.

Theorem 3.2.9 Fundamental Theorem of Linear Maps Suppose *V* is *f*-*d* and $T \in \mathcal{L}(V, W)$. Then, range *T* is *f*-*d* and

 $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T.$

Proof 4. Let u_1, \dots, u_m be a basis of null T. Then, dim null T = m. By Theorem 3.2.3, we know null T is a basis of V, so we can extend the basis to a basis of $V: u_1, \dots, u_m, v_1, \dots, v_n$. Thus, dim V = m + n. WTS: dim range T = n. Further WTS: Tv_1, \dots, Tv_n is a basis of range T.

Suppose $v \in V$. Then

 $v = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n.$

Since $u_1, \dots, u_m \in \text{null } T$, we know $Tu_1, \dots, Tu_m = 0$. Therefore,

 $Tv = a_1Tu_1 + \dots + a_mTu_m + b_1Tv_1 + \dots + b_nTv_n = b_1Tv_1 + \dots + b_nTv_n.$

Hence, span (Tv_1, \dots, Tv_n) = range *T*, and thus range *T* is *f*-*d*. Now, WTS: Tv_1, \dots, Tv_n is L.I..

Consider $c_1Tv_1 + \cdots + c_nTv_n = 0$. Then, $T(c_1v_1 + \cdots + c_nv_n) = 0$. Hence, $c_1v_1 + \cdots + c_nv_n \in \text{null } T$. Since u_1, \cdots, u_m is a basis of null T, we know

 $c_1v_1 + \cdots + c_nv_n = d_1u_1 + \cdots + d_mu_m$ f.s. $d_i \in \mathbb{F}$.

So,

$$c_1v_1 + \dots + c_nv_n - d_1u_1 - \dots - d_mu_m = 0.$$
 (8)

However, by assumption, we know $v_1, \dots, v_n, u_1, \dots, u_m$ is a basis of V, and thus it is L.I.. So, the only way to make Equation (8) hold is by taking $c_1 = \dots = c_n = -d_1 = \dots = -d_m = 0$. Therefore, we've shown Tv_1, \dots, Tv_n is L.I., and thus is a basis of range T. Then, dim range T = n.

So, we've shown that dim null T + dim range $T = m + n = \dim V$.

Theorem 3.2.10

Suppose *V* and *W* are *f*-*d* vector spaces *s.t.* dim $V > \dim W$. Then, no linear map from *V* to *W* is injective.

Proof 5. Let $T \in \mathcal{L}(V, W)$. By the Fundamental Theorem of Linear Maps, we have $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$. Then, we know

 $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$ $\geq \dim V - \dim W > 0 \quad [\dim \operatorname{range} T \le \dim W]$

This implies that null $T \neq \{0\}$. So, *T* is not injective by Theorem 3.2.5.

Theorem 3.2.11

Suppose *V* and *W* are *f*-*d* vector space *s.t.* dim $V < \dim W$. Then, no linear map from *V* to *W* is surjective.

Proof 6. We know

$$\dim \operatorname{range} T = \dim V - \dim \operatorname{null} T$$

 $\leq \dim V < \dim W$

Then, T cannot be surjective by definition.

Example 3.2.12 Solving Linear Systems Using Linear Maps I For a homogenous system of linear equations,

$$\begin{cases}
A_{1,1}x_1 + \dots + A_{1,n}x_n = 0 \\
\vdots \\
A_{m,1}x_1 + \dots + A_{m,n}x_n = 0
\end{cases}$$

where $A_{j,k} \in \mathbb{F}$ and $(x_1, \dots, x_n) \in \mathbb{F}^n$, we can defined a linear map $T : \mathbb{F}^n \to \mathbb{F}^m$ as

$$T(x_1, \cdots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \cdots, \sum_{k=1}^n A_{m,k} x_k\right).$$

Apparently, $(x_1, \dots, x_n) = 0$ is a solution to the system, but the question is "If there are any non-zero solutions for this linear system?"

Theorem 3.2.13

A homogeneous system of linear equations with more variables than equations has non-zero solutions.

Proof 7. Suppose $T \in \mathcal{L}(V, W)$. Then, dim V = n and dim W = m. Suppose n > m. So, dim $V > \dim W$. By the Theorem 3.2.5, we know T is not injective.

Example 3.2.14 Solving Linear Systems Using Linear Maps II

For an inhomogeneous system of linear equations

$$\begin{cases} \sum_{k=1}^{n} A_{1,k} x_k = c_1 \\ \vdots \\ \sum_{k=1}^{n} A_{m,k} x_k = c_m \end{cases}$$

where $A_{j,k} \in \mathbb{F}$ and $(c_1, \cdots, c_m) \in \mathbb{F}^m$ and $(x_1, \cdots, x_n) \in \mathbb{F}^n$, we can define $T : \mathbb{F}^n \to \mathbb{F}^m$ by

$$T(x_1, \cdots, x_m) = \left(\sum_{k=1}^n A_{1,k} x_k, \cdots, \sum_{k=1}^n A_{m,k} x_k = c_1\right).$$

However, in this case, $(x_1, \dots, x_n) = 0$ may not be a solution to the system.

Theorem 3.2.15

An inhomogeneous system of linear equations with more equations than variables has no solution for some choice of the constant terms.

Proof 8. Suppose $T \in \mathcal{L}(V, W)$. So, dim V = n and dim W = m. Suppose n < m. Then, dim $V < \dim W$. By Theorem 3.2.11, we know T is not surjective.

3.3 Matrices

Definition 3.3.1 (Matrix). Let $m, n \in \mathbb{Z}^+$. An *m*-by-*n* matrix A is a rectangular array of elements of \mathbb{F} with *m* rows and *n* columns:

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}.$$

The notation $A_{j,k}$ denotes the entry in row *j*, column *k* of *A*.

Definition 3.3.2 (Matrix of a Linear Map). Suppose $T \in \mathcal{L}(V, W)$ and v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. The *matrix of* T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ whose $A_{j,k}$ are defined by

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m.$$

If the bases are not clear from the context, then the notation $\mathcal{M}(T, (v_1, \cdots, v_n), (w_1, \cdots, w_m))$ is used.

Example 3.3.3 Suppose $T \in \mathcal{L}(\mathbb{F}^2, \mathbb{F}^3)$ is defined by T(x, y) = (x + 3y, 2x + 5y, 7x + 9y). Find the matrix of *T* with respect to the standard bases of \mathbb{F}^2 and \mathbb{F}^3 .

Solution 1. Note that T(1,0) = (1,2,7) and T(0,1) = (3,5,9). Then,

$$\mathcal{M}(T) = \begin{pmatrix} 1 & 3\\ 2 & 5\\ 7 & 9 \end{pmatrix}.$$

Example 3.3.4 Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by Dp = p'. Find the matrix of D with respect to the standard bases of $\mathcal{P}_3(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$.

Solution 2.

Standard bases of $\mathcal{P}_3(\mathbb{R}) : 1, x, x^2, x^3$. Standard bases of $\mathcal{P}_2(\mathbb{R}) : 1, x, x^2$. Since $(x^n)' = nx^{n-1}$, so we have

$D(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2$
$D(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2$
$D(x^2) = 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2$
$D(x^3) = 3x^2 = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2$

So, we have

$$\mathcal{M}(D) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Definition 3.3.5 (Matrix Addition). The sum of two matrices of the same size is the matrix obtained by

adding corresponding entries in the matrices:

$$\begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} + \begin{pmatrix} C_{1,1} & \cdots & C_{1,n} \\ \vdots & & \vdots \\ C_{m,1} & \cdots & C_{m,n} \end{pmatrix} = \begin{pmatrix} A_{1,1} + C_{1,1} & \cdots & A_{1,n} + C_{1,n} \\ \vdots & & \vdots \\ A_{m,1} + C_{m,1} & \cdots & A_{m,n} + C_{m,n} \end{pmatrix}$$

Theorem 3.3.6

Suppose $S, T \in \mathcal{L}(V, W)$. Then, $\mathcal{M}(S + T) = \mathcal{M}(S) + \mathcal{M}(T)$.

Proof 3. Let v_1, \dots, v_n be a basis of V and w_1, \dots, w_n be a basis of W. Suppose $\mathcal{M}(S) = A$ and $\mathcal{M}(T) = C$. Then, if $1 \le k \le n$, we have

$$(S+T)v_k = Sv_k + Tv_k$$

= $(A_{1,k}w_1 + \dots + A_{m,k}w_m) + (C_{1,k}w_1 + \dots + C_{m,k}w_m)$
= $(A_{1,k} + C_{1,k})w_1 + \dots + (A_{m,k} + C_{m,k})w_m.$

Hence, we have $\mathcal{M}(S+T) = \mathcal{M}(S) + \mathcal{M}(T)$.

Definition 3.3.7 (Scalar Multiplication of a Matrix). The *product of a scalar and a matrix* is the matrix obtained by multiplying each entry in the matrix by the scalar:

$$\lambda \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} = \begin{pmatrix} \lambda A_{1,1} & \cdots & \lambda A_{1,n} \\ \vdots & & \vdots \\ \lambda A_{m,1} & \cdots & \lambda A_{m,n} \end{pmatrix}.$$

In other words, $(\lambda A)_{j,k} = \lambda A_{j,k}$.

Theorem 3.3.8 Suppose $\lambda \in \mathbb{F}$ and $T \in \mathcal{L}(V, W)$. Then, $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

Proof 4. Let v_1, \dots, v_n be a basis of V and $\mathcal{M}(T) = A$. When $1 \le k \le v$, note that

$$\begin{aligned} (\lambda T)v_k &= \lambda(Tv_k) \\ &= \lambda(A_{1,k}w_1 + \dots + A_{m,k}w_m) \\ &= (\lambda A_{1,k})w_1 + \dots + (\lambda A_{m,k})w_m. \end{aligned}$$

So, $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

Notation 3.3.9. $\mathbb{F}^{m,n} \coloneqq$ the set of all $m \times n$ matrices with entries in \mathbb{F} .

Theorem 3.3.10

Suppose $m, n \in \mathbb{Z}^+$. With addition and scalar multiplication defined above, $\mathbb{F}^{m,n}$ is a vector space and dim $\mathbb{F}^{m,n} = mn$.

Proof 5. It is trivial to prove $\mathbb{F}^{m,n}$ is a vector space. \Box

Define $A_{j,k}$ as the matrix with 1 on its j^{th} row, k^{th} column and 0 elsewhere. Then, we can see that $A_{j,k}$ for $j = 1, \dots, m$ and $k = 1, \dots, n$ is a basis for $\mathbb{F}^{m,n}$. So, dim $\mathbb{F}^{m,n} = m \cdot n$.

Definition 3.3.11 (Matrix Multiplication). Suppose *A* is an $m \times n$ matrix and *C* is an $n \times p$ matrix. Then, *AC* is defined to be the $m \times p$ matrix whose entry in row *j*. column *k* is given by

$$(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k}.$$

Remark. Matrix multiplication is not commutative. i.e., $AC \neq CA$. However, it is distributive and associative.

Theorem 3.3.12 If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Notation 3.3.13. Suppose *A* is an $m \times n$ matrix.

- 1. If $1 \le j \le m$, then $A_{j,.}$ denotes the $1 \times n$ matrix consisting of row j of A.
- 2. If $1 \le k \le n$, then $A_{\cdot,k}$ denotes the $m \times 1$ matrix consisting of column k of A.

In other words,

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}; \qquad A_{j,\cdot} = \begin{pmatrix} A_{j,1} & \cdots & A_{j,n} \end{pmatrix} \in \mathbb{F}^{1,n}; \qquad A_{\cdot,k} = \begin{pmatrix} A_{1,k} \\ \vdots \\ A_{m,k} \end{pmatrix} \in \mathbb{F}^{m,1}.$$

Theorem 3.3.14 Practical Interpretations of Matrix Multiplication

1. Suppose A is an $m \times n$ matrix and C is an $n \times p$ matrix. Then, $(AC)_{j,k} = A_{j,\cdot}C_{\cdot,k}$ for $1 \le j \le m$ and $1 \le k \le p$.

2. Suppose *A* is an $m \times n$ matrix and *C* is an $n \times p$ matrix. Then, $(AC)_{\cdot,k} = AC_{\cdot,k}$ for $1 \le k \le p$.

3. Suppose *A* is an $m \times n$ matrix and $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ is an $n \times 1$ matrix. Then,

$$AC = c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n}.$$

In other words, *AC* is a linear combination of the columns of *A*, with the scalars that multiply the columns coming from *C*.

Example 3.3.15

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 7 \\ 19 \\ 31 \end{pmatrix}.$$

3.4 Invertibility and Isomorphic Vector Spaces

Definition 3.4.1 (Invertible). A linear map $T \in \mathcal{L}(V, W)$ is called *invertible* if \exists a linear map $S \in \mathcal{L}(W, V)$ *s.t.* ST equals the identity map on I and TS equals the identity map on W.

Definition 3.4.2 (Inverse). A linear map $S \in \mathcal{L}(W, V)$ satisfying ST = I and TS = I is called an *inverse* of T.

Theorem 3.4.3

An invertible linear map has a unique inverse.

Proof 1. Suppose $T \in \mathcal{L}(V, W)$ is invertible. Let S_1 and S_2 be inverses of T. Then,

$$S_1 = S_1 I = S_1 (TS_2) = (S_1 T) S_2 = IS_2 = S_2.$$

Thus, $S_1 = S_2$, and so inverse is unique.

Notation 3.4.4. If *T* is invertible, then its inverse is denoted by T^{-1} .

Theorem 3.4.5

A linear map is invertible if and only if it is injective and surjective.

Proof 2.

(\Rightarrow) Let $T \in \mathcal{L}(V, W)$ be invertible. Then, $TT^{-1} = I_W$ and $T^{-1}T = T_V$. Let Tv = 0. Note that $(T^{-1}T)v = 0$, so Iv = 0 and thus v = 0. Therefore, null $T = \{0\}$, and so T is an injection.

To show T is surjective, suppose $w \in W$. Note that since $T^{-1} \in \mathcal{L}(W, V), T^{-1}w \in V$. So,

$$T(T^{-1}w) = (TT^{-1})w = T_Ww = w \in W.$$

Therefore, $T^{-1}w$ is the $v \in V$ we intend to find. Hence, T is also a surjection.

(\Leftarrow) Let *T* be surjective and injective. For $w \in W$, define $Sw \in V$ *s.t.* T(Sw) = w. So, we know Sw is unique. Since $(T \circ S)w = w$, we know $(T \circ S) = I_W$. Consider $(S \circ T)v = S(Tv)$, we have T(S(Tv)) = Tv, by definition of *S*. Since *T* is injective, we know S(Tv) = V. So, $(S \circ T)v = v$, and thus $ST = T_V$. Therefore *T* is invertible.

Now, we want to show S is a linear map. Let $w_1, w_2 \in W$, then

$$T(S(w_1 + w_2)) = (TS)(w_1 + w_2) = I_W(w_1 + w_2) = w_1 + w_2.$$

By definition, $w_1 + w_2 = T(Sw_1) + T(Sw_3) = T(Sw_1 + Sw_2)$. So, $T(S(w_1 + w_2)) = T(Sw_1 + Sw_2)$. By *T* is an injection, we have $S(w_1 + w_2) = Sw_1 + Sw_2$. So, *S* is additive. Further consider

$$T(S(\lambda w)) = \lambda w = \lambda(T(Sw)) = T(\lambda Sw)$$

for some $w \in W$. Again, since *T* is injective, $S(\lambda w) = \lambda S w$. So, *S* has homogeneity. Then, *S* is a linear map.

Definition 3.4.6 (Isomorphism). An *isomorphism* is an invertible linear map.

Definition 3.4.7 (Isomorphic). Two vector spaces are called *isomorphic* if there is an isomorphism from one vector space onto the other one.

Notation 3.4.8. If two vector spaces V and W are isomorphic, we denote them as $V \cong W$.

Theorem 3.4.9

Suppose *V* and *W* are *f*-*d* vector spaces, then $V \cong W$ if and only if dim $V = \dim W$.

Proof 3.

 (\Rightarrow) Suppose $V \cong W$. By Fundamental Theorem of Linear Maps, we know

 $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T.$

Since $V \cong W$, *T* is invertible and thus is injective and surjective. So, dim null T = 0 and dim range $T = \dim W$. Therefore, dim $V = 0 + \dim W = \dim W$. \Box

(\Leftarrow) Suppose dim $V = \dim W$. Suppose v_1, \dots, v_n and w_1, \dots, w_n are bases of V and W, respectively. Then, dim $V = \dim W = n$. Here, we want to define a bijection between V and W. Let T be defined as $Tv_i = wi$ $(i = 1, \dots, n)$.

Let Tv = 0. Then, $T(a_1v_1 + \cdots + a_nv_n) = 0$. So, by definition, $a_1w_1 + \cdots + a_nw_n = 0$. Since w_1, \cdots, w_n is a basis, we have $a_1 = \cdots = a_n = 0$. So, null $T = \{0\}$, and thus T is an injection.

Let $w \in W$ be any vector. Then, we know $w = c_1w_1 + \cdots + c_nw_n$. Note that, by definition of T, we have $T(c_1v_1 + \cdots + c_nv_n) = c_1w_1 + \cdots + c_nw_n$. Hence, $\forall w \in W, \exists v = c_1v_1 + \cdots + c_nv_n \in V$ s.t. Tv = w. Therefore, T is a surjection.

Finally, it is trivial to show that *T* is indeed a linear map, and so the proof is complete.

Theorem 3.4.10

Suppose v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. then, \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{m,n}$.

Proof 4. We already know \mathcal{M} is linear, so we just need to show \mathcal{M} is a bijection.

To prove \mathcal{M} is injective, consider $\mathcal{M}(T) = 0$ for some $T \in \mathcal{L}(V, W)$. So, we get $Tv_k = 0$. Since v_1, \dots, v_n is a basis of V, we know $Tv = 0 \quad \forall v \in V$. Then, T is the zero-mapping, or T = 0. Therefore, null $\mathcal{M} = \{0\}$.

To show \mathcal{M} is surjective, suppose $A \in \mathbb{F}^{m,n}$. Let T be a linear map from V to W *s.t.*

$$Tv_k = \sum_{j=1}^m A_{j,k} w_j, \quad k = 1, \cdots, n.$$

Obviously, $\mathcal{M}(T) = A$, and thus range $\mathcal{M} = \mathbb{F}^{m,n}$. So, \mathcal{M} is also a surjection.

Theorem 3.4.11

Suppose *V* and *W* are *f*-*d*. Then, $\mathcal{L}(V, W)$ is *f*-*d* and dim $\mathcal{L}(V, W) = (\dim V)(\dim W)$.

Proof 5. By Theorem 3.4.10 and Theorem 3.4.9, we know $\dim \mathcal{L}(V, W) = \dim \mathbb{F}^{m,n}$. Further by Theorem 3.3.10, we know $\dim \mathbb{F}^{m,n} = (m)(n)$. As $\dim V = n$ and $\dim W = m$, so we have

$$\dim \mathcal{L}(V, W) = (\dim V)(\dim W)$$

Definition 3.4.12 (Matrix of a Vector, $\mathcal{M}(v)$ **).** Suppose $v \in V$ and v_1, \dots, v_n is a basis of V. The *matrix*

of v with respect to this basis is the $n \times 1$ matrix

$$\mathcal{M}(v) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix},$$

where c_1, \dots, c_n are scalars *s.t.* $v = c_1v_1 + \dots + c_nv_n$.

Theorem 3.4.13 $\mathcal{M}(T)_{\cdot,k} = \mathcal{M}(v_k)$

Suppose $T \in \mathcal{L}(V, W)$ and v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. Let $1 \le k \le n$. Then, the k^{th} column of $\mathcal{M}(T)$, which is denoted by $\mathcal{M}(T)_{\cdot,k}$, equals $\mathcal{M}(v_k)$.

Proof 6. This theorem is an immediate result by definitions of matrix of a linear mapping and a vector.

Theorem 3.4.14

Suppose $T \in \mathcal{L}(V, W)$ and $v \in V$. Suppose v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. Then, $\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v)$.

Proof 7. Note that $v = c_1v_1 + \cdots + c_nv_n$, so we have $Tv = c_1Tv_1 + \cdots + c_nTv_n$. So, by Theorem 3.4.13, we know

$$\mathcal{M}(Tv) = c_1 \mathcal{M}(Tv_1) + \dots + c_n \mathcal{M}(Tv_n)$$
$$= c_1 \mathcal{M}(T)_{\cdot,1} + \dots + c_n \mathcal{M}(T)_{\cdot,n}$$
$$= \mathcal{M}(T) \mathcal{M}(v).$$

The final equality holds due to our interpretation of matrix multiplication as column linear combinations (Theorem 3.3.14(3))

Remark. $\mathcal{M} : \mathbb{F}^n \to \mathbb{F}^{n,1}$ is an isomorphism:

$$v = c_1 v_1 + \dots + c_n v_n \longmapsto \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}.$$

Proof 8. Suppose $\mathcal{M}(v) = 0$: $\mathcal{M}(c_1v_1 + \cdots + c_nv_n) = 0$. So, we have $c_1w_1 + \cdots + c_nw_n = 0$. Since w_1, \cdots, w_n is a basis, $c_1 = \cdots = c_n = 0$. So, v = 0. Therefore, null $\mathcal{M} = \{0\}$, and so \mathcal{M} is injective. \Box

Now, prove \mathcal{M} is surjective. Note that $\forall \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$, we have $\mathcal{M}(c_1v_1 + \cdots + c_nv_n) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$. So, \mathcal{M} is a

surjection. \Box

Finally, its' trivial to prove \mathcal{M} is a linear map.

Since \mathcal{M} is both surjective and injective, \mathcal{M} is an isomorphism.

Definition 3.4.15 (Operator). A linear map from a vector space to itself is called an *operator*. **Notation 3.4.16.** The notation $\mathcal{L}(V)$ denotes the set of all operators on V. So, $\mathcal{L}(v) = \mathcal{L}(V, V)$.

Theorem 3.4.17

Suppose *V* is *f*-*d* and $T \in \mathcal{L}(V)$. Then, the following are equivalent: (a) *T* is invertible; (b) *T* is injective; and (c) *T* is surjective.

Proof 9.

- 1. Clearly (a) implies (b). \Box
- 2. Suppose (b): *T* is injective. So, null $T = \{0\}$. Then, by Fundamental Theorem of Linear Maps, we know

 $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = 0 + \dim \operatorname{range} T.$

Since dim range $T = \dim V$, we know T is surjective. \Box

3. Suppose (c): *T* is surjective. So, range T = V. Then, by Fundamental Theorem of Linear maps, we have

 $\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T = 0.$

So, null $T = \{0\}$, and thus T is injective. Since T is surjective and injective, T is invertible.

Example 3.4.18 Show that for each polynomial $q \in \mathcal{P}(\mathbb{R})$, there exists a polynomial $p \in \mathcal{P}(\mathbb{F})$ such that $((x^2 + 5x + 7)p)'' = q$.

Proof 10. We know that every non-zero polynomial must have a degree of m. So, we can think of this problem under $\mathcal{P}_m(\mathbb{R})$. Note that

$$((x^{2} + 5x + 7)p)'' = 2p + (4x + 10)p' + (x^{2} + 5x + 7)p'' = q.$$

Therefore, the degree of *p* and *q* should be the same. Define $T : \mathcal{P}_m(\mathbb{R}) \to \mathcal{P}_m(\mathbb{R})$ as

$$Tp = ((x^2 + 5x + 7)p)''.$$

Then, *T* is an operator on $\mathcal{P}_m(\mathbb{R})$. Consider Tp = 0. We have $ax + b = (x^2 + 5x + 7)p$. Note that only when p = 0, the equation above holds. So, it must be that p = 0 when Tp = 0. That is, null $T = \{0\}$, and so *T* is injective. By Theorem 3.4.18, we know *T* is also surjective, and so our proof is complete.

3.5 Duality

Definition 3.5.1 (Linear Functional). A *linear functional* on *V* is a linear map from *V* to \mathbb{F} . That is, a linear functional is an element of $\mathcal{L}(V, \mathbb{F})$.

Example 3.5.2

1. Fix $(c_1, \dots, c_n) \in \mathbb{F}^n$. Define $\varphi : \mathbb{F}^n \to \mathbb{F}$ by $\varphi(x_1, \dots, x_n) = c_1 x_1 + \dots + c_n x_n$. Then, φ is a linear functional on \mathbb{F}^n .

2. Define
$$\varphi : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$$
 as $\varphi(p) = 3p''(5) + 7p(4)$.

3. Define
$$\varphi : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$$
 as $\varphi(p) = \int_0^1 p(x) dx$.

Definition 3.5.3 (Dual Space/ V'/V^*). The *dual space* of *V*, denoted as *V'*, is the vector space of all linear functionals on *V*. In other words, $V' = \mathcal{L}(V, \mathbb{F})$.

Theorem 3.5.4 Suppose *V* is *f*-*d*. Then, *V'* is also *f*-*d* and dim $V' = \dim V$.

Proof 1. Note that for a general linear map, $\mathcal{L}(V, W) \cong \mathbb{F}^{m,n}$. So, $\mathcal{L}(V, \mathbb{F}) = V' \cong \mathbb{F}^{1,n}$. Hence,

$$\dim V' = \dim \mathbb{F}^{1,n} = 1 \cdot n = n = \dim V.$$

Definition 3.5.5 (Dual Basis). If v_1, \dots, v_n is a basis of V, then the *dual basis* of v_1, \dots, v_n is the list $\varphi_1, \dots, \varphi_n$ of elements of V', where each φ_j is the linear functional on V *s.t.*

$$\varphi_j(v_k) = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$

Example 3.5.6 Find the dual basis of $e_1, \cdots, e_n \in \mathbb{F}^n$

Solution 2.

$$\varphi_1(e_1) = 1 \quad \varphi_2(e_1) = 0 \quad \cdots \quad \varphi_n(e_1) = 0$$

$$\varphi_1(e_2) = 0 \quad \varphi_2(e_2) = 1 \quad \cdots \quad \varphi_n(e_2) = 0$$

$$\vdots \qquad \vdots \qquad \ddots \qquad \vdots$$

$$\varphi_1(e_n) = 1 \quad \varphi_2(e_n) = 0 \quad \cdots \quad \varphi_n(e_n) = 1$$

Define φ_i as

$$\varphi_j(x) = \varphi_j(x_1, \cdots, x_n) = x_1 \varphi_j(e_1) + \cdots + x_j \varphi_j(e_j) + \cdots + x_n \varphi_j(e_n) = x_j.$$

Theorem 3.5.7

Suppose V is *f*-*d*. Then, the dual basis of a basis of V is a basis of V'.

Proof 3. Suppose v_1, \dots, v_n is a basis of V and $\varphi_1, \dots, \varphi_n$ denotes the dual basis. Since we've shown $\dim V = \dim V'$ in Theorem 3.5.4, we only need to show $\varphi_1, \dots, \varphi_n$ is L.I.. Select $c_1\varphi_1 + \dots + c_n\varphi_n = 0$. Then,

$$(c_1\varphi_1 + \dots + c_n\varphi_n)(v) = 0 \quad \forall v \in V$$

Suppose $v = v_1 + \cdots + v_n$, then

$$(c_1\varphi_1 + \dots + c_n\varphi_n)(v_j) = c_j$$
 for $j = 1, \dots, n$.

So, $(c_1\varphi_1 + \cdots + c_n\varphi_n)(v) = c_1 + \cdots + c_n = 0$. So, it must be that $c_1 = \cdots = c_n = 0$. Therefore, $\varphi_1, \cdots, \varphi_n$ is L.I. and our proof is complete.

Definition 3.5.8 (Dual Map). If $T \in \mathcal{L}(V, W)$, then the *dual map* of T is the linear map $T' \in \mathcal{L}(W', V')$ defined by $T'(\varphi) = \varphi \circ T$ for $\varphi \in W'$.

Remark. The following diagram represents dual map (but not an exact representation).

Also, dual map is a linear map, so it is additive and homogeneous.

- 1. $T'(\varphi + \psi) = (\varphi + \psi) \circ T = \varphi \circ T + \psi \circ T = T'(\varphi) + T'(\psi).$
- 2. $T'(\lambda \varphi) = (\lambda \varphi) \circ T = \lambda(\varphi \circ T) = \lambda T'(\varphi).$

Example 3.5.9 Suppose $D : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ as Dp = p'.

1. Define a linear functional $\varphi : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ as $\varphi(p) = p(3)$. Find $D'(\varphi)$. Solution 4.

$$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(p') = p'(3).$$

2. Define $\varphi : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$, a linear functional, as $\varphi(p) = \int_0^1 p(x) \, dx$. Find $D'(\varphi)$. Solution 5.

$$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(p') = \int_0^1 p'(x) \, \mathrm{d}x = p(1) - p(0).$$

36
Theorem 3.5.10 Algebraic Properties of Dual Maps

1.
$$(S+T)' = S' + T' \quad \forall S, T \in \mathcal{L}(V, W)$$

2.
$$(\lambda T)' = \lambda T' \quad \forall T \in \mathcal{L}(V, W)$$

3. $(ST)' = T'S' \quad \forall T \in \mathcal{L}(U, V) \text{ and } S \in \mathcal{L}(V, W)$

Proof 6.

1. $(S+T)' \in \mathcal{L}(W', V')$. Let $\varphi \in W'$. Then,

$$(S+T)'(\varphi) = \varphi \circ (S+T) = \varphi \circ S + \varphi \circ T = S'(\varphi) + T'(\varphi) = (S'+T')(\varphi). \quad \Box$$

2. $(\lambda T)' \in \mathcal{L}(W', V')$. Let $\varphi \in W'$. Then,

$$(\lambda T)'(\varphi) = \varphi \circ (\lambda T) = \lambda(\varphi \circ T) = \lambda T'(\varphi) = (\lambda T')(\varphi).$$

3. $(ST)' \in \mathcal{L}(W', U')$. Let $\varphi \in W'$. Then,

$$(ST)'(\varphi) = \varphi \circ (ST) = \varphi \circ (S \circ T) = (\varphi \circ S) \circ T = (S'(\varphi)) \circ T = T'(S'(\varphi)) = (T'S')(\varphi).$$

Definition 3.5.11 (Transpose/ A^t). The transpose of a matrix A, denoted A^t , is the matrix obtained from A by interchanging the rows and columns. i.e., $(A^t)_{k,j} = A_{j,k}$.

Remark. Transpose is additive and homogeneous. That is, $(A + C)^t = A^t + C^t$ and $(\lambda A)^t = \lambda A^t$.

Theorem 3.5.12 If A is an $m \times n$ matrix and C is an $n \times p$ matrix, then $(AC)^t = C^t A^t$.

Proof 7. Note that

$$(AC)_{k,j}^{t} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r}C_{r,k} = \sum_{r=1}^{n} (C^{t})_{k,r}(A^{t})_{r,j} = (C^{t}A^{t})_{k,j}$$

Theorem 3.5.13 Suppose $T \in \mathcal{L}(V, W)$. Then, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof 8. Suppose v_1, \dots, v_n is a basis of V, w_1, \dots, w_m is a basis of W, $\varphi_1, \dots, \varphi_n$ is a basis of V', and ψ_1, \dots, ψ_m is a basis of W'. Let $A = \mathcal{M}(T)$ and $C = \mathcal{M}(T')$. Since $T'(\psi_j) = C_{1,j}\varphi_1 + \dots + C_{n,j}\varphi_n$ and $T'(\psi_j) = \psi_j \circ T$, we have $\psi_j \circ T = C_{1,j}\varphi_1 + \dots + C_{n,j}\varphi_n$. Consider

$$(\psi_j \circ T)(v_k) = (C_{1,j}\varphi_1 + \dots + C_{n,j}\varphi_n)(v_k) = C_{k,j}\varphi_k(v_k) = C_{k,j}.$$

Also, we have

$$(\psi_j \circ T)(v_k) = \psi_j(Tv_k) = \psi_j(A_{1,k}w_1 + \dots + A_{m,k}w_m) = \psi_j(A_{j,k}w_j) = A_{j,k}(\varphi_j(w_j)) = A_$$

Therefore, we have $A_{j,k} = C_{k,j}$, and thus $A = C^t$. So, $\mathcal{M}(T) = (\mathcal{M}(T'))^t$. **Definition 3.5.14 (Annihilator**/ U^0). For $U \subseteq V$, the *annihilator* of U, denoted as U^0 , is defined by

$$U^0 = \{ \varphi \in V' \mid \varphi(u) = 0 \quad \forall u \in U \}.$$

Theorem 3.5.15 Suppose $U \subseteq V$. Then U^0 is a subspace of V'.

Proof 9.

- 1. $0 \in U^0$: Since $0(u) = 0 \quad \forall u \in U$, then $0 \in U^0$. \Box
- 2. Let $\varphi, \psi \in U^0$. Then,

$$(\varphi + \psi)(u) = \varphi(u) + \psi(u) = 0$$

```
So, \varphi + \psi \in U^0. \Box
```

3. Let $\lambda \in \mathbb{F}$ and $\varphi \in U^0$. Then

$$(\lambda \varphi)(u) = \lambda \varphi(u) = \lambda \cdot 0 = 0.$$

So, $\lambda \varphi \in U^0$.

Lemma 3.5.16 Suppose *V* is *f*-*d* vector space. If *U* is a subspace of *V* and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ *s.t.* $Tu = Su \quad \forall u \in U$.

Proof 10. Suppose u_1, \dots, u_m is a basis of U. Then, we can extend it to a basis of V as $u_1, \dots, u_m, v_{m+1}, \dots, v_n$. Define $T \in \mathcal{L}(V, W)$ as $Tu_i = Su_i$, $Tv_j = 0$, where $i = 1, \dots, m$ and $j = m + 1, \dots, n$. Note that

$$Tu = T(a_1u_1 + \dots + a_mu_m)$$

= $a_1Tu_1 + \dots + a_mTu_m$
= $a_1Su_1 + \dots + a_mSu_m$
= $S(a_1u_1 + \dots + a_mu_m) = Su.$

Therefore, we've found such a *T*.

Theorem 3.5.17

Let *V* be *f*-*d* and *U* be a subspace of *V*, then $\dim U + \dim U^0 = \dim V$.

Proof 11. Let $i \in \mathcal{L}(U, V)$ as $i(u) = u \quad \forall u \in U$. Then, $i' \in \mathcal{L}(V', U')$. So, by Fundamental Theorem of Linear Map, we know

$$\dim V' = \dim \operatorname{null} i' + \dim \operatorname{range} i'. \tag{9}$$

By Theorem 3.5.4, we know dim $V = \dim V'$ Note that $U^0 = \{\varphi \in V' \mid \varphi(u) = 0 \quad \forall u \in U\}$ and

null
$$i' = \{ \varphi \in V' \mid i'(\varphi) = 0 \}$$

= $\{ \varphi \in V' \mid \varphi \circ i = 0 \}$
= $\{ \varphi \in V' \mid (\varphi \circ i)(u) = 0 \quad \forall u \in U \}$
= $\{ \varphi \in V' \mid \varphi(u) = 0 \quad \forall u \in U \}$

So, $U^0 = \text{null } i'$, and thus dim null $i' = \dim U^0$.

Further, if $\varphi \in U'$, then $\varphi : U \to \mathbb{F}$. By Lemma 3.5.16, φ can be extended to $\psi \in V'$ with $\psi(u) = \varphi(u) \quad \forall u \in U$. Note that $i'(\psi) = \psi \circ i$, so $(\psi \circ i)(u) = \psi(u) = \varphi(u) \quad \forall u \in U$. Then, $\exists \psi \in V'$ s.t. $i'(\psi) = \varphi$. So, $\varphi \in \text{range } U'$. So, dim range $i' = \dim U' = \dim U$.

Substitute dim $V' = \dim V$, dim null $i' = \dim U^0$, and dim range $i' = \dim U$ to Equation (9), we get

 $\dim V = \dim U^0 + \dim U.$

Theorem 3.5.18 The Null Space of T'

Suppose *V* and *W* are *f*-*d* and $T \in \mathcal{L}(V, W)$. Then,

- 1. null $T' = (\text{range } T)^0$
- 2. dim null $T' = \dim \operatorname{null} T + \dim W \dim V$

Proof 12.

1. (\subseteq) Suppose $\varphi \in \text{null } T' \subseteq W'$. Then, $T'(\varphi) = \varphi \circ T = 0 \in V'$. So, we know

$$(\varphi \circ T)(v) = 0 \quad \forall v \in V. \quad \text{i.e., } \varphi(Tv) = 0.$$

Note that $Tv \in \operatorname{range} T$. By definition, we have $\varphi \in (\operatorname{range} T)^0$ \Box

(2) Suppose $\varphi \in (\operatorname{range} T)^0$. Then, $\varphi(w) = 0 \quad \forall w \in \operatorname{range} T$. That is, $\varphi(Tv) = 0 \quad \forall v \in V$. So, $(\varphi \circ T)(v) = 0 \quad \forall v \in V$. Hence, we know $\varphi \circ T = T'(\varphi) = 0 \in V'$. Thus, $\varphi \in \operatorname{null} T'$

2.

 $\dim \operatorname{null} T' = \dim(\operatorname{range} T)^0$ $= \dim W - \dim \operatorname{range} T$ $= \dim W - (\dim V - \dim \operatorname{null} T)$ $= \dim W - \dim V + \dim \operatorname{null} T.$

Theorem 3.5.19

Suppose V and W are f-d and $T \in \mathcal{L}(V, W)$. Then, T is surjective if and only if T' is injective.

Proof 13.

 (\Rightarrow) Suppose T is surjective. Then, dim range T = W. So, $(\operatorname{range} T)^0 = \{0\}$. Hence,

 $\dim \operatorname{null} T' = \dim (\operatorname{range} T)^0 = 0.$

Thus, T' is injective. \Box

(\Leftarrow) Suppose T' is injective. Then,

 $\dim \operatorname{null} T' = 0.$

So, dim $(\operatorname{range} T)^0 = \operatorname{dim} \operatorname{null} T' = 0$. Then, $(\operatorname{range} T)^0 = \{0\}$. So, dim range T = W, and thus T is surjective.

Theorem 3.5.20 The Range of T'

Suppose *V* and *W* are *f*-*d* and $T \in \mathcal{L}(V, W)$. Then,

- 1. dim range $T' = \dim \operatorname{range} T$
- 2. range $T' = (\operatorname{null} T)^0$

Proof 14.

1. By Fundamental Theorem of Linear Map, we have

$$\dim \operatorname{range} T' = \dim W' - \dim \operatorname{null} T'$$
$$= \dim W' - \dim (\operatorname{range} T)^0$$
$$= \dim W' - \dim W' + \dim \operatorname{range} T$$
$$= \dim \operatorname{range} T.$$

2. Suppose $\varphi \in \operatorname{range} T' \subseteq V'$. Then, $\exists \psi \in W' \text{ s.t. } T'(\psi) = \psi \circ T = \varphi$. Let $v \in \operatorname{null} T$. Then,

$$\varphi(v) = (\psi \circ T)(v) = \psi(Tv) = \psi(0) = 0.$$

Then, $\varphi \in (\operatorname{null} T)^0$. So, range $T' \subseteq (\operatorname{null} T)^0$. \Box

Note that

dim range T' = dim range T = dim V - dim null T = dim(null T)⁰.

Then, range $T' \subseteq (\text{null } T)^0$ and dim range $T' = \dim(\text{null } T)^0$, so it must be that range $T' = (\text{null } T)^0$.

Theorem 3.5.21

Suppose *V* and *W* are *f*-*d* and $T \in \mathcal{L}(V, W)$. Then, *T* is injective if and only if *T'* is surjective.

Proof 15.

 (\Rightarrow) If T is injective, null $T = \{0\}$. So,

 $\dim \operatorname{null} T = \dim V - \dim (\operatorname{null} T)^0 = \dim V - \dim \operatorname{range} T' = 0.$

So, dim range $T' = \dim V = \dim V'$. Then, T' is surjective. \Box

(\Leftarrow) If T' is surjective, dim range $T' = \dim V' = \dim V$. So,

 $\dim \operatorname{null} T = \dim V - \dim (\operatorname{null} T)^0 = \dim V - \dim \operatorname{range} T' = 0.$

Then, null $T = \{0\}$, and so T is injective.

Definition 3.5.22 (Row Rank & Column Rank). Suppose *A* is an $m \times n$ matrix with entries in \mathbb{F} .

- 1. The *row rank* of *A* is the dimension of the span of the rows of *A* in $\mathbb{F}^{1,n}$.
- 2. The *column rank* of A is the dimension of the span of the columns of A in $\mathbb{F}^{m,1}$.

Theorem 3.5.23

Suppose *V* and *W* are *f*-*d* and $T \in \mathcal{L}(V, W)$. Then, dim range *T* equals the column rank of $\mathcal{M}(T)$.

Proof 16. Suppose v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. Then,

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m$$

and thus

$$\mathcal{M}(Tv_k) = \begin{pmatrix} A_{1,k} \\ \vdots \\ A_{m,k} \end{pmatrix} \in \mathbb{F}^{m,1}$$

Therefore, $\mathcal{M}(T) = (\mathcal{M}(Tv_1) \cdots \mathcal{M}(Tv_n))$. Note that range $T = \operatorname{span}(Tv_1, \cdots, Tv_n)$. Define $\mathcal{M} : \operatorname{span}(Tv_1, \cdots, Tv_n) \to \operatorname{span}(\mathcal{M}(Tv_1), \cdots, \mathcal{M}(Tv_n))$ as $w \mapsto \mathcal{M}(w)$.

1. \mathcal{M} is surjective: Note that

$$c_1\mathcal{M}(Tv_1) + \dots + c_n\mathcal{M}(Tv_n) = \mathcal{M}(c_1Tv_1 + \dots + c_nTv_n).$$

Since $c_1Tv_1 + \cdots + c_nTv_n \in \text{range } T$, we know \mathcal{M} is surjective. \Box

2. \mathcal{M} is injective: Let

$$\mathcal{M}(c_1 T v_1 + \dots + c_n T v_n) = 0. \tag{10}$$

We can reduce $c_1Tv_1 + \cdots + c_nTv_n$ to a basis $Tv_{j_1}, \cdots, Tv_{j_m}$. Then, Equation (10) becomes $\mathcal{M}(a_1Tv_{j_1} + \cdots + a_mTv_{j_m}) = 0$. By definition of matrix, we know $\begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} = 0$. So, $a_1 = \cdots = a_m = 0$

 \square

and
$$a_1Tv_{j_1} + \cdots + a_mTv_{j_m} = 0$$
. So, \mathcal{M} is injective.

Since \mathcal{M} is both surjective and injective, \mathcal{M} is a bijection. Thus, \mathcal{M} is an isomorphism between $\operatorname{span}(Tv_1, \cdots, Tv_n)$ and $\operatorname{span}(\mathcal{M}(Tv_1), \cdots, \mathcal{M}(Tv_n))$. In other words,

$$\operatorname{span}(Tv_1,\cdots,Tv_n)\cong\operatorname{span}(\mathcal{M}(Tv_1),\cdots,\mathcal{M}(Tv_n))$$

Then, dim span (Tv_1, \dots, Tv_n) = dim span $(\mathcal{M}(Tv_1), \dots, \mathcal{M}(Tv_n))$. That is,

dim range T = column rank of T.

Theorem 3.5.24 Row Rank Equals Column Rank

Suppose $A \in \mathbb{F}^{m,n}$. Then, the row rank of A equals the column rank of A.

Proof 17. Define $T : \mathbb{F}^{n,1} \to \mathbb{F}^{m,1}$ by Tx = Ax. Then, $\mathcal{M}(T) = A$, where $\mathcal{M}(T)$ is computed with respect to the standard basis of $\mathbb{F}^{n,1}$ and $\mathbb{F}^{m,1}$. Note that

column rank of A = column rank of $\mathcal{M}(T)$ $= \dim \operatorname{range} T$ Theorem 3.5.23 $= \dim \operatorname{range} T'$ Theorem 3.5.20(1) $= \operatorname{column rank} \operatorname{of} \mathcal{M}(T')$ $= \operatorname{column rank} \operatorname{of} A^t$ Theorem 3.5.13 $= \operatorname{row rank} \operatorname{of} A$

Definition 3.5.25 (Rank). The *rank* of a matrix $A \in \mathbb{F}^{m,n}$ is the column rank of A, denoted as rank A.

3.6 Quotients of Vector Spaces

Definition 3.6.1 (v + U/Affine Subset). Suppose $v \in V$ and U is a subspace of V. Then

$$v + U \coloneqq \{v + u \mid u \in U\}.$$

An *affine subset* of *V* is a subset of *V* of the form v + U for some $v \in V$ and some subspace *U* of *V*. The affine subset is said to be *parallel* to *U*.

Definition 3.6.2 (Quotient Space, V/U). Suppose U is a subspace of V. Then the quotient space V/U is the set of all affine subsets of V parallel to U. In other words,

$$V/U \coloneqq \{v + U \mid v \in V\}.$$

Example 3.6.3 If $U = \{(x, 2x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$, then \mathbb{R}^2/U is the set of all lines in \mathbb{R}^2 with slope of 2.

Theorem 3.6.4

Suppose *U* is a subspace of *V* and $v, w \in V$. Then, the following are equivalent:

- 1. $v w \in U$
- 2. v + U = w + U
- 3. $(v+U) \cap (w+U) \neq \emptyset$

Proof 1.

- 1. We want to show (1) \implies (2). Suppose $v w \in U$. Note that v + u = w + ((v w) + u). Since v u and $u \in U$, we have $(v w) + u \in U$. So, $v + u \in w + U$. Similarly, we can show that $w + u \in v + U$. Then, we have v + U = w + U. \Box
- 2. Now, we want to show (2) \implies (3): Suppose v + U = w + U. Then, we have $(v + U) \cap (w + U) \neq \emptyset$, which is evident from the assumption. \Box
- 3. Finally, we will show (3) \implies (1). Suppose $(v + U) \cap (w + U) \neq \emptyset$. Then, $\exists u_1, u_2 \in U$ s.t. $v + u_1 = w + u_2$. So we have $v w = u_2 u_1 \in U$.

Definition 3.6.5 (Addition & Scalar Multiplication on V/U). Suppose *U* is a subspace of *V*. Then, *addition* and *scalar multiplication* is defined on V/U by

$$(v + U) + (w + U) = (v + w) + U$$

and

$$\lambda(v+U) = (\lambda v) + U$$

for $v, w \in U$ and $\lambda \in \mathbb{F}$.

Theorem 3.6.6

Suppose *U* is a subspace of *V*. Then, V/U, with the operations of addition and scalar multiplication defined above, is a vector space.

Proof 2.

1. Addition on V/U makes sense.

Note the addition can be written in the language of mapping as $+: V/U \times V/U \rightarrow V/U$. So, we have $(v + U, w + U) \mapsto (v + w) + U$. Suppose $\exists \hat{v}.\hat{w} \in V$ s.t. $v + U = \hat{v} + U$ and $w + U = \hat{w} + U$. Note that $v - \hat{v} \in U$ and $w - \hat{w} \in U$ by Theorem 3.6.4. Then, $(v - \hat{v}) + (w - \hat{w}) \in U$. So, we have $(v + w) - (\hat{v} + \hat{w})inU$. Further, by Theorem 3.6.4, we have

$$(v+w) + U = (\hat{v} + \hat{w}) + U.$$

2. Scalar multiplication on V/U makes sense.

We can write the scalar multiplication on V/U as a mapping: $\cdot : \mathbb{F} \times V/U \to V/U$ defined as $(\lambda, v + U) \mapsto \lambda v + U$. Suppose $\exists \hat{v} \in V$ *s.t.* $v + U = \hat{v} + U$. So we know $v - \hat{v} \in U$, and thus $\lambda(v - \hat{v}) = \lambda v - \lambda \hat{v} \in U$. By Theorem 3.6.4, we then have $(\lambda v) + U = (\lambda \hat{v}) + U$. Thus, the scalar multiplication makes sense. \Box

- 3. additive identity: 0 + U = U. \Box
- 4. additive inverse: (-v) + U. \Box
- 5. commutativity:

$$(v + U) + (w + U) = (v + w) + U = (w + v) + U$$

= $(w + U) + (v + U)$.

6. associativity:

$$[(v+U) + (w+U)] + (x+U) = [(v+w) + U] + (x+U)$$

= $[(v+w) + x] + U$
= $[v + (w+x)] + U$
= $(v+U) + [(w+x) + U]$
= $(v+U) + [(x+U) + (x+U)].$

- 7. multiplicative identity: $1 \cdot (v + U) = (1 \cdot v) + U = v + U$.
- 8. distributivity:

$$a[(v + U) + (w + U)] = a[(v + w) + U]$$

= $a(v + w) + U$
= $(av + aw) + U$
= $(av + U) + (aw + U)$
= $a(v + U) + a(w + U)$.

$$(a+b)(v+U) = (a+b)v + U$$

= $(av+bv) + U$
= $(av+U) + (bv+U)$
= $a(v+U) + b(v+U)$

Definition 3.6.7 (Quotient Map). Suppose *U* is a subspace of *V*. The *quotient map* π is the linear map $\pi : V \to V/U$ defined by $\pi(v) \coloneqq v + U \quad \forall v \in V$.

Remark. *Here are some properties of the quotient map:*

- 1. $\pi(v)$ is defined $\forall v \in V$. Thus, π is surjective.
- 2. null $\pi = \{v \in V \mid \pi(v) = 0\}$. If $\pi(v) = 0$, then v + U = U = 0 + U. So, $v 0 \in U$ by Theorem 3.6.4. Then, $v \in U$. So, null $\pi \subseteq U$. Further, $\forall v \in U$, if $\pi(v) = 0$, then $v \in$ null π , then $U \subseteq$ null π . So, U = null π .
- 3. $\pi(v+w) = (v+w) + U = (v+U) + (w+U) = \pi(v) + \pi(w).$
- 4. $\pi(\lambda v) = (\lambda v) + U = \lambda(v + U) = \lambda \pi(v).$

Theorem 3.6.8

Suppose *V* is *f*-*d* and *U* is a subspace of *V*. Then

$$\dim V/U = \dim V - \dim U.$$

Proof 3. By Fundamental Theorem of Linear Map, we have

$$\dim V = \dim \operatorname{null} \pi + \dim \operatorname{range} \pi. \tag{11}$$

Since null $\pi = U$ from the Remark, we have dim null $\pi = \dim U$. Further, since π is surjective as mentioned in the Remark, range $\pi = V/U$. Hence, dim range $\pi = \dim V/U$. Therefore, Equation (11) becomes

 $\dim V = \dim U + \dim V/U,$

or we have

$$\dim V/U = \dim V - \dim U$$

Definition 3.6.9 (\tilde{T}). Suppose $T \in \mathcal{L}(V, W)$. Define $\tilde{T} : V/(\operatorname{null} T) \to W$ by $\tilde{T}(v + \operatorname{null} T) - Tv$. *Proof 4.*

1. This definition makes sense

Suppose $u, v \in V$ s.t. u + null T = v + null T. By Theorem 3.6.4, we know $u - v \in \text{null } T$. Then, T(u - v) = 0, or Tu = Tv. \Box

2. \tilde{T} is a linear map.

$$\begin{split} \tilde{T}[(u + \operatorname{null} T) + (v + \operatorname{null} T)] &= \tilde{T}[(u + v) + \operatorname{null} T] \\ &= T(u + v) \\ &= Tu + Tv = \tilde{T}(u + \operatorname{null} T) + \tilde{T}(v + \operatorname{null} T). \end{split}$$

 $\tilde{T}[\lambda(u + \text{null } T)] = \tilde{T}(\lambda u + \text{null } T)$ $= T(\lambda u)$ $= \lambda T u$ $= \lambda T(u + \text{null } T).$

Theorem 3.6.10 Suppose $T \in \mathcal{L}(V, W)$. Then,

- 1. \tilde{T} is injective.
- 2. range $\tilde{T} = \operatorname{range} T$.
- 3. $V/(\operatorname{null} T) \cong \operatorname{range} T$.

Proof 5.

- 1. Suppose $v \in V$ and $\tilde{T}(v + \text{null } T) = 0$. Then, Tv = 0. So, $v \in \text{null } T$, or $v 0 \in \text{null } T$. By Theorem 3.6.4, we then have v + null T = 0 + null T. Then, it implies $\text{null } \tilde{T} = 0$. So, \tilde{T} is injective. \Box
- 2. By definition of \tilde{T} , it must be range $\tilde{T} = \operatorname{range} T$. \Box
- 3. Note that dim $V/(\text{null } T) = \dim \text{null } \tilde{T} + \dim \text{range } \tilde{T} = 0 + \dim \text{range } T$. Then, by Theorem 3.4.9, we know two vector spaces are isomorphic if and only if their dimensions are equal. Then,

 $V(\operatorname{null} T) \cong \operatorname{range} T.$

4 Eigenvectors and Invariant Subspaces

4.1 Invariant Subspaces

Theorem 4.1.1

Suppose V is *f*-*d* with dim $V = n \ge 1$. Then, $\exists 1$ -dimensional subspaces U_1, \dots, U_n of V s.t.

 $V = U_1 \oplus \cdots \oplus U_n.$

Proof 1. Choose a basis v_1, \dots, v_n of V. Then, we know $V = \operatorname{span}(v_1) + \dots + \operatorname{span}(v_n)$. Also, $\forall v \in V$, we have $v = a_1v_1 + \dots + a_nv_n$ with $a_jv_j \in \operatorname{span}(v_j)$. Set $a_1v_1 + \dots + a_nv_n = 0$. Since v_1, \dots, v_n is a basis, it must be $a_1 = \dots = a_n = 0$. Then,

$$V = \operatorname{span}(v_1) \oplus \cdots \oplus \operatorname{span}(v_n).$$

Theorem 4.1.2 Suppose U_1, \dots, U_m are *f*-*d* subspaces of *V* s.t. $U_1 + \dots + U_m$ is a direct sum. Then, $U_1 \oplus \dots \oplus U_m$ is *f*-*d* and

 $\dim U_1 \oplus \cdots \oplus U_m = \dim U_1 + \cdots + \dim U_m.$

Proof 2. Suppose $u_{k,1}, \dots, u_{k,j_k}$ is a basis of the subspace U_k . Then, any vector in $\bigoplus_{i=1}^m U_i$ is in the

form of
$$u_1 + \cdots + u_m$$
, $u_j \in U_j$. Also,

$$u_i = \sum_{k=1}^{j_i} a_{i,k} u_{i,k}.$$

So,

$$u_1 + \dots + u_m = \sum_{k=1}^{j_1} a_{1,k} u_{1,k} + \dots + \sum_{k=1}^{j_m} a_{m,k} u_{m,k}.$$

Then, $u_1 + \cdots + u_m$ is a linear combination of $u_{1,1}, \cdots, u_{j,m}$. So, the direct sum is *f*-*d*. Further, suppose

$$\sum_{k=1}^{j_1} a_{1,k} u_{1,k} + \dots + \sum_{k=1}^{j_m} a_{m,k} u_{m,k} = 0.$$

Since $U_1 + \cdots + U_m$ is a direct sum, it must be

$$\sum_{k=1}^{j_1} a_{1,k} u_{1,k} = \dots = \sum_{k=1}^{j_m} a_{a,k} u_{m,k} = 0.$$

Since we selected bases, $a_{1,k} = \cdots = a_{m,k} = 0$. So, $u_{1,1}, \cdots, u_{m,j_m}$ is a basis of $U_1 \oplus \cdots \oplus U_m$. Then,

$$\dim U_1 \oplus \cdots \oplus U_m = \dim U_1 + \cdots + \dim U_m.$$

47

Definition 4.1.3 (Invariant Subspace). Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Example 4.1.4 Suppose $T \in \mathcal{L}(V)$. Show that each of the following subspaces of V is invariant under T:

1. $\{0\}$ **Proof 3.** $T0 = 0 \in \{0\}$ 2. V **Proof 4.** $u \in V \implies Tu \in V$ 3. null T **Proof 5.** $u \in \text{null } T \implies Tu = 0 \in \text{range } T$ 4. range T**Proof 6.** $u \in \text{range } T \implies Tu \in \text{range } T$

Example 4.1.5 Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is defined by Tp = p'. Then, $\mathcal{P}_4(\mathbb{R})$ is invariant under T. *Proof* 7. Note that $Tp_4 \in \mathcal{P}_4(\mathbb{R})$. Then, $\mathcal{P}_4(\mathbb{R})$ is invariant under T.

Definition 4.1.6 (Eigenvalue). Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbb{F}$ is called an *eigenvalue* of T if $\exists v \in V$ *s.t.* $v \neq 0$ and $Tv = \lambda v$.

Corollary 4.1.7 *T* has a 1-dimensional invariant subspace if and only if *T* has an eigenvalue. *Proof 8.*

(\Rightarrow) Suppose span(v) is invariant under T. Let U be defined as $U = \{\lambda v \mid \lambda \in \mathbb{F}\} = \text{span}(v)$. Then. U is the invariant subspace under T and dim U = 1. Then, $\forall v \in V$, we have $Tv \in U$. Hence, $\exists \lambda \in \mathbb{F}$ *s.t.* $Tv = \lambda v$. Then, λ is an eigenvalue. \Box

(\Leftarrow) Suppose $\lambda \in \mathbb{F}$ is an eigenvalue. Then, $Tv = \lambda v$. Hence, $\operatorname{span}(v)$ is a $1 = \operatorname{dimensional invariant}$ subspace under T.

Theorem 4.1.8 Equivalent Conditions to be an Eigenvalue

Suppose *V* is *f*-*d*, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. Then, the following are equivalent:

- 1. λ is an eigenvalue of T.
- 2. $T \lambda I$ is not injective.
- 3. $T \lambda I$ is not surjective.
- 4. $T \lambda I$ is not invertible.

Proof 9.

1. (1) \implies (2): Suppose λ is an eigenvalue of T. Then, $\exists v \in V$ *s.t.* $v \neq 0$ and $Tv - \lambda v$. So, $Tv - \lambda v = (T - \lambda I)v = 0$. Since $v \neq 0$, null $(T - \lambda I) \neq \{0\}$, and thus T is not injective. \Box

- 2. Note that $T \lambda I$ is an operator by itself. By Theorem 3.4.17, we know (2), (3), and (4) are equivalent.
- 3. (4) \implies (1): Suppose $T \lambda I$ is not invertible. Then, it is not injective. So, $\exists v \neq 0 \text{ s.t. } (T \lambda I)v = 0$. That is, $Tv - \lambda Iv = Tv - \lambda v = 0$. So, $Tv = \lambda v$. Then, λ is an eigenvalue of T.

Definition 4.1.9 (Eigenvector). Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$ is an eigenvalue of T. A vector $v \in V$ is called an *eigenvector* of T corresponding to λ if $v \neq 0$ and $Tv = \lambda v$.

Corollary 4.1.10 A vector $v \in V$ with $v \neq 0$ is an eigenvector of T with respect to λ if and only if $v \in \text{null } (T - \lambda I)$.

Proof 10. Note that $Tv = \lambda v$ if and only if $(T - \lambda I)v = 0$.

Example 4.1.11 Suppose $T \in \mathcal{L}(\mathbb{F}^2)$ is defined by T(w, z) = (-z, w).

1. Find the eigenvalues and eigenvectors of *T* if $\mathbb{F} = \mathbb{R}$.

Solution 11.

Let
$$T(2, z) = \lambda(w, z)$$
. So, $(-z, w) = (\lambda w, \lambda z)$. Then, solve
$$\begin{cases} -z = \lambda w \\ w = \lambda z \end{cases}$$

Then, we have $\lambda^2 z + z = 0$. If $z \neq 0$, $\lambda^2 + 1 = 0$. This equation has no solutions on \mathbb{R} . So *T* has no eigenvalues. If w = 0, z = 0, then T(w, z) = T(0.0) = T0. By definition, *T* has no eigenvalues.

2. Find the eigenvalues and eigenvectors of *T* if $\mathbb{F} = \mathbb{C}$.

Solution 12.

Applying similar rational, $z \neq 0$ and solve $\lambda^2 + 1 = 0$. Then, we have $\lambda = \pm i$. If $\lambda = i$, then -z = iw. So, v = (w, z) = (w, -iw). If $\lambda - i$, then -z = -iw, or z = iw. So, v = (w, iw).

Theorem 4.1.12

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \dots, \lambda_m$ are distinct eigenvalues of T and v_1, \dots, v_m are corresponding eigenvectors. Then, v_1, \dots, v_m is L.I..

Proof 13. Suppose for the sake of contradiction that v_1, \dots, v_m is linearly dependent. Let k be the smallest positive integer *s.t.* $v_k \in \text{span}(v_1, \dots, v_{k-1})$. Then, $v_k = a_1v_1 + \dots + a_{k-1}v_{k-1}$. Applying T, we have

$$\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$$
 (12)

Since $v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}$, we also have

$$\lambda_k v_k = a_1 \lambda_k v_1 + \dots + a_{k-1} \lambda_k v_{k-1}. \tag{13}$$

So, by Equation (13)-(12), we have

 $0 = a_1(\lambda_k - \lambda_1)v_1 + \dots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$

By assumption, v_1, \dots, v_{k-1} is L.I.. Then, it must be that $a_1 = \dots = a_{k-1} = 0$ since $\lambda_1, \dots, \lambda_k$ are distinct eigenvalues. Therefore, $v_k = a_1v_1 + \dots + a_{k-1}v_{k-1} = 0$. * This contradicts with the fact that v_k is an eigenvector, which cannot be 0. So, it must be that v_1, \dots, v_m are L.I.

Theorem 4.1.13

Suppose *V* is *f*-*d*. Then, each operator on *V* has at most dim *V* distinct eigenvalues.

Proof 14. Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \dots, \lambda_m$ are distinct eigenvalues of T. Let v_1, \dots, v_m be corresponding eigenvectors. By Theorem 4.1.12, we know v_1, \dots, v_m is L.I.. Further by Theorem 2.3.5, we know $\dim \operatorname{span}(v_1, \dots, v_m) \leq \dim V$. That is, $m \leq \dim V$ as desired.

4.2 Eigenvectors and Upper-Triangular Matrices

Definition 4.2.1 (T^m). Suppose $T \in \mathcal{L}(V)$ and m is a positive integer. Then, T^m is defined by

$$T^m \coloneqq \underbrace{T \cdots T}_{m \text{ times}}.$$

Specially, T^0 is defined to be the identity operator I on V. Further, if T is invertible with inverse T^{-1} , then T^{-m} is defined by $T^{-m} := (T^{-1})^m$.

Theorem 4.2.2

$$T^m T^n = T^{m+n}; \qquad (T^m)^n = T^{mn}.$$

Definition 4.2.3 (p(T)). Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial given by

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m, \quad z \in \mathbb{F}.$$

Then, p(T) is the operator defined by

$$p(T) \coloneqq a_o I + a_1 T + a_2 T^2 + \dots + a_m T^m.$$

Example 4.2.4 Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is the differentiation operator defined by Dq = q' and p is the polynomulal defined by $p(x) = 7 - 3x + 5x^2$. Find p(D) and (p(D))q. *Solution 1.*

$$p(D) = 7I - 3D + 5D^{2}$$
$$(p(D))q = (7I - 3D + 5D^{2})q$$
$$= 7Iq - 3Dq + 5D^{2}q$$
$$= 7q - 3q' + 5q''.$$

Theorem 4.2.5 If we fix an operator $T \in \mathcal{L}(V)$, then the function from $\mathcal{P}(\mathbb{F})$ to $\mathcal{L}(V)$ given by $p \mapsto p(T)$ is linear.

Proof 2. Suppose $f : \mathcal{P}(\mathbb{F}) \to \mathcal{L}(V)$ is defined by $p \mapsto p(T)$. Suppose

$$p = a_0 + a_1 z + \dots + a_m z^m \mapsto a_0 I + a_1 T + \dots + a_m T^m$$

and

$$q = b_0 + b_1 z + \dots + b_m z^m \mapsto b_0 I + b_1 T + \dots + b_m T^m.$$

Then,

$$f(p+q) = (a_0 + b_0)I + (a_1 + b_1)T + \dots + (a_m + b_m)T^m$$

= $(a_0I + a_1T + \dots + a_mT^m) + (b_0I + b_1T + \dots + b_mT^m)$
= $f(p) + f(q).$

Further, suppose $\lambda \in \mathbb{F}$, then

$$f(\lambda p) = \lambda a_0 I + \lambda a_1 T + \dots + \lambda a_m T^m$$

= $\lambda (a_0 I + a_1 T + \dots + a_m T^m)$
= $\lambda f(p).$

Definition 4.2.6 (Product of Polynomials). If $p, q \in \mathcal{P}(\mathbb{F})$, then $pq \in \mathcal{P}(\mathbb{F})$ is the polynomial defined by $(pq)(z) \coloneqq p(z)q(z)$ for $z \in \mathbb{F}$.

Remark. (pq)(z) = p(z)q(z) = q(z)p(z) = (qp)(z) for $z \in \mathbb{F}$.

Theorem 4.2.7 Multiplicative Properties Suppose $p, q \in \mathcal{P}(\mathbb{F})$ and $T \in \mathcal{L}(V)$. Then

1.
$$(pq)(T) = p(T)q(T)$$

2.
$$p(T)q(T) = q(T)p(T)$$

Proof 3.

1. Suppose
$$p(z) = \sum_{j=0}^{m} a_j z^j$$
 and $q(z) = \sum_{k=0}^{n} b_k z^k$. Then
 $(pq)(z) = p(z)q(z) = \sum_{j=0}^{m} a_j z^j \sum_{k=0}^{n} b_k z^k = \sum_{j=0}^{m} \sum_{k=0}^{n} a_j b_k z^{j+k}$

So, by definition, we have

$$p(T)q(T) = \sum_{j=0}^{m} \sum_{k=0}^{n} a_j b_k T^{j+k} = \left(\sum_{j=0}^{m} a_j T^j\right) \cdot \left(\sum_{k=0}^{n} b_k T^k\right) = p(T)q(T). \qquad \Box$$

2. Similar to the Remark,

$$p(T)q(T) = (pq)(T) = (qp)(T) = q(T)p(T).$$

Theorem 4.2.8 Fundamental Theorem of Algebra

Every non-constant polynomial with complex coefficients has a zero.

Theorem 4.2.9 Existence of Eigenvalues

Every operator on a *f*-*d*, non-zero, complex vector space has an eigenvalue.

Proof 4. Let V be a complex vector space with dimension n > 0. Suppose $T \in \mathcal{L}(V)$. Choose $v \in V$ s.t. $v \neq 0$. Then, v, Tv, T^2v, \dots, T^nv is linearly dependent because dim V = n but the length of the list is n + 1 > n. Hence, $\exists a_0, a_1, \dots, a_n$ not all $0 \in \mathbb{C}$ s.t.

$$0 = a_0 v + a_1 T v + \dots + a_n T^n v \tag{14}$$

By Fundamental Theorem of Algebra (Theorem 4.2.8), we have

$$a_0 + a_1 z + \dots + a_n z^n = c(z - \lambda_1) \cdots (z - \lambda_m)$$

with $c \in \mathbb{C}$, $c \neq 0$, and $\lambda_i \in \mathbb{C}$. Then, Equation (14) becomes

$$0 = a_0 v + a_1 T v + \dots + a_n T^n v$$

= $(a_0 I + a_1 T + \dots + a_n T^n) v$
= $c(T - \lambda_1 I) \cdots (T - \lambda_m I) v$

Since $v \neq 0$ and $c \neq 0$, it must be some $T - \lambda_i I = 0$. Thus, $T = \lambda_i I$, and λ_i is an eigenvalue of T. **Definition 4.2.10 (Diagonal of a Matrix).** The *diagonal of a square matrix* consists of the entires along the line from the upper left corner to the bottom right corner.

Definition 4.2.11 (Upper-Triangular Matrix). A matrix is called *upper-triangular* if all the entires below the diagonal equal 0. Typically, we present an upper triangular matrix in the form

$$\begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

Theorem 4.2.12 Conditions for Upper-Triangular Matrix

Suppose $T \in \mathcal{L}(V)$ and v_1, \dots, v_n is a basis of V. Then, the following are equivalent:

- 1. the matrix of T with respect to v_1, \dots, v_n is upper triangular.
- 2. $Tv_j \in \operatorname{span}(v_1, \cdots, v_j)$ for each $j = 1, \cdots, n$
- 3. $\operatorname{span}(1, \dots, v_j)$ is invariant under T for each $j = 1, \dots, n$.

Proof 5.

1. First, we will show (1) \iff (2).

Suppose
$$\mathcal{M}(T) = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ & \ddots & \vdots \\ 0 & & A_{n,n} \end{pmatrix}$$
. Then,
 $Tv_1 = A_{1,1}v_1$
 $Tv_2 = A_{1,2}v_1 + a_{2,2}v_2$
 \vdots
 $Tv_j = A_{1,j}v_1 + \cdots + A_{j,j}v_j.$

So, $Tv_j \in \text{span}(v_1, \dots, v_j)$. The reverse implication is trivial to prove. \Box

- 2. (3) \implies (2) is obvious and trivial to prove.
- 3. Lastly, we want to show (2) \implies (3).

Note that for each fixed $j = 1, \dots, n$, we have

 $Tv_1 \in \operatorname{span}(v_1) \subseteq \operatorname{span}(v_1, \cdots, v_j)$ $Tv_2 \in \operatorname{span}(v_1, v_2) \subseteq \operatorname{span}(v_1, \cdots, v_j)$ \vdots $Tv_j \in \operatorname{span}(v_1, \cdots, v_j)$

Let $v \in \text{span}(v_1, \dots, v_j)$. Then, v is a linear combination of v_1, \dots, v_j , then

$$Tv \in \operatorname{span}(v_1, \cdots, v_j).$$

That is, $\operatorname{span}(v_1, \cdots, v_j)$ is invariant under *T*.

Definition 4.2.13 (Quotient Operator). Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V invariant under T. The *quotient operator* $T/U \in \mathcal{L}(V/U)$ is defined by $(T/U)(v + U) \coloneqq Tv + U$.

Proof 6. The definition makes sense, and here is the proof. If v + U = w + U, then $v - w \in U$. So, $T(v - w) \in U$ since U is invariant. That is, $Tv - Tw \in U$. Then, Tv + U = Tw + U.

Theorem 4.2.14

Suppose U is a subspace of V. Let $v_1 + U, \dots, v_m + U$ be a basis of V/U and u_1, \dots, u_n be a basis of U. Then, $v_1, \dots, v_m, u_1, \dots, u_n$ is a basis of V.

Proof 7. Let $v \in V$. Then $v + U \in V/U$. So, $v + U = a_1v_1 + \cdots + a_mv_m + U$, uniquely. Then, by Theorem 3.6.4, we have $v - (a_1v_1 + \cdots + a_mv_m) \in U$. Therefore, $v - (a_1v_1 + \cdots + a_mv_m) = b_1u_1 + \cdots + b_nu_n$, uniquely. So, $v = a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_nu_n$. uniquely. By definition, $v_1, \cdots, v_m, u_1, \cdots, u_n$ is a basis of V.

Theorem 4.2.15

Suppose *V* is a *f*-*d* complex vector space and $T \in \mathcal{L}(V)$. Then, *T* has an upper-triangular matrix with respect to some basis of *V*.

Proof 8.

Base Case When $\dim V = 1$, the implication holds.

Inductive Steps Suppose the implication is true for some complex vector space with dimension of n-1. Let dim V = n and v_1 be any eigenvector of T. Suppose $U = \operatorname{span}(v_1)$. Then, U is invariant under T. Note that dim $V/U = \dim V - \dim U = n-1$, so we can use the inductive hypothesis on the quotient operator $T/U \in \mathcal{L}(V/U)$. Then, \exists a basis $v_2 + U, \dots, v_n + U \in V/U$ s.t. T/U has an upper-triangular matrix. By Theorem 4.2.12, we have

$$(T/U)(v_j + U) \in \text{span}(v_2 + U, \cdots, c = v_j + U) \text{ for } j \in \{2, \cdots, n\}.$$

So, $Tv_i + U = (c_2v_2 + \dots + c_jv_j) + U$. Then,

$$Tv_j - (c_2v_2 + \dots + c_jv_j) \in U = \operatorname{span}(v_1).$$

So, $Tv_j - (c_2v_2 + \cdots + c_jv_j) = c_1v_1$ for some $c_1 \in \mathbb{F}$. Then, $Tv_j = c_1v_1 + c_2v_2 + \cdots + c_jv_j$. So, $Tv_j \in \text{span}(v_1, \cdots, v_j)$ for $j \in \{1, \cdots, n\}$. Since by Theorem 4.2.14, v_1, \cdots, v_n is a basis of V, further by Theorem 4.2.12, T has an upper-triangular matrix with respect to v_1, \cdots, v_n . So, the implication is true for dim V = n.

Since the implication is true for $\dim V = 1$ and is true for $\dim V = n$ whenever it is hold for $\dim V = n - 1$, by the Principle of Mathematical Induction, the implication is true for all positive integers n. Hence, the proof is complete.

4.3 Eigenspaces and Diagonal Matrices

Definition 4.3.1 (Diagonal Matrix). A *diagonal matrix* is a square matrix that is 0 everywhere except possibly along the diagonal.

Definition 4.3.2 (Eigenspace, $E(\lambda, T)$). Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The *eigenspace* of T corresponding to λ , denoted $E(\lambda, T)$, is defined by

$$E(\lambda, T) = \operatorname{null}(T - \lambda I).$$

In other words, $E(\lambda, T)$ is the set of all eigenvectors of T corresponding to λ , along with the 0 vector.

Theorem 4.3.3 Sum of Eigenspaces is a Direct Sum Suppose *V* is *f*-*d* and $T \in \mathcal{L}(V)$. Suppose also that $\lambda_1, \dots, \lambda_m$ are distinct eigenvalues of *T*. Then

 $E(\lambda_1, T) + \dots + E(\lambda_m, T)$

is a direct sum. Further

 $\dim E(\lambda_1, T) + \dots + \dim E(\lambda_m, T) \leq \dim V.$

Proof 1. Suppose $u_1 + \cdots + u_m = 0$, where $u_j \in E(\lambda_j, T)$. If some $u_i \neq 0$, then $u_1 + \cdots + u_m$ can never be 0 because u_1, \cdots, u_m , as eigenvectors corresponding to distinct eigenvalues, is L.I.. Hence, the only way for $u_1 + \cdots + u_m$ to be 0 is by taking $u_1 = \cdots = u_m = 0$. Hence, we know $E(\lambda_1, T) + \cdots + E(\lambda_m, T)$ is a direct sum. \Box

By Theorem 4.1.2, we know

$$\dim E(\lambda_1, T) + \dots + \dim E(\lambda_m, T) = \dim E(\lambda_1, T) \oplus \dots \oplus E(\lambda_m, T)$$
$$\leq \dim V.$$

Definition 4.3.4 (Diagonalizable). An operator $T \in \mathcal{L}(V)$ is called *diagonalizable* if the operator has a diagonal matrix with respect to some basis of V.

Theorem 4.3.5 Conditions Equivalent to Diagonalizability

Suppose *V* is *f*-*d* and $T \in \mathcal{L}(V)$. Let $\lambda_1, \dots, \lambda_m$ denote the distinct eigenvalues of *T*. Then, the following are equivalent:

1. *T* is diagonalizable.

2. V has a basis consisting of eigenvectors of T.

3. $\exists 1$ -dimensional subspaces U_1, \dots, U_n of V, each invariant under T, *s.t.* $V = U_1 \oplus \dots \oplus U_n$.

4.
$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T).$$

5. dim $V = \dim E(\lambda_1, T) + \dots + \dim E(\lambda_m, T)$.

Remark. To prove this theorem, we will prove (1) \iff (2), (2) \iff (3), (2) \implies (4), (4) \implies (5), and (5) \implies (2).

Proof 2.

1. (1) \iff (2): By definition, we know *T* is diagonalizable if and only if \exists a basis v_1, \dots, v_n of *T* s.t.

$$\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

which holds if and only if we have $Tv_1 = \lambda_1 v_1, \dots, Tv_n = \lambda_n v_n$. i.e., v_1, \dots, v_n are eigenvectors of T. \Box

2. (2) \implies (3): Suppose v_1, \dots, v_n is a basis of V. Then, for some $v \in V$, we have $v = a_1v_1 + \dots + a_nv_n$. So, we know $V = \operatorname{span}(v_1) + \dots + \operatorname{span}(v_n)$. Further, let $a_1v_1 + \dots + a_mv_m = 0$. Since v_1, \dots, v_n is a basis, it must be $a_1 = \dots = a_m = 0$. So, there is only one way to represent 0. So,

$$V = \operatorname{span}(v_1) \oplus \cdots \oplus \operatorname{span}(v_n).$$

Now, we want to show each span (v_j) is invariant. Consider $T(c_jv_j) = c_jTv_j = c_j\lambda_jv_j \in \text{span}(v_j)$. So, span (v_j) is invariant. \Box

- 3. (3) \implies (2): Suppose $\exists 1$ -dimensional subspaces U_1, \dots, U_n of V, each invariant under T, *s.t.* $V = U_1 \oplus \dots \oplus U_n$. Then, $\forall v \in V$, we have $v = a_1u_1 + \dots + a_nu_n$ uniquely. Then, u_1, \dots, u_n is a basis of V. Since U_1, \dots, U_n are 1-dimensional invariant subspaces, u_1, \dots, u_n are the eigenvalues. \Box
- 4. (2) \implies (4): Suppose *V* has a basis consisting of eigenvectors of *T*. Then, $v = a_1v_1 + \cdots + a_nv_n$ is a linear combination of eigenvectors of *T*. By definition, $E(\lambda_j, T)$ contains the eigenvectors corresponding to λ_j . Further since $\lambda_1, \cdots, \lambda_m$ is distinct, corresponding eigenvectors are L.I.. Then, $E(\lambda_j, T) \cap E(\lambda_i, T) = \{0\}$ if $i \neq j$. Then, we have

$$v = a_1 v_1 + \dots + a_n v_n \in E(\lambda_1, T) + \dots + E(\lambda_m, T).$$

Hence, $V = \mathbb{E}(\lambda_1, T) + \cdots + E(\lambda_m, T)$. Further by Theorem 4.3.3, we have

$$V = \mathbb{E}(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T). \qquad \Box$$

- 5. (4) \implies (5): This conclusion can be deduced from Theorem 4.3.3 and its proof.
- 6. (5) ⇒ (2): Suppose dim V = dim E(λ₁, T) + ··· + dim E(λ_m, T). Select B_j, the basis of E(λ_j, T) for j = 1, ··· , m. Denote dim V = n. Then, if we put these bases together as B₁, ··· , B_m, we can write the collection as v₁, ··· , v_n. Suppose a₁v₁ + ··· + a_nv_n = 0. Let u_j denote the sum of all the terms a_kv_k s.t. v_k ∈ E(λ_j, T). Then, the equation becomes u₁ + ··· + u_m = 0 and each u_j ∈ E(λ_j, T). Since eigenvectors corresponding to distinct eigenvalues are L.I., it must be that u₁ = ··· = u_m = 0. Further, by definition of u_j, and since u'_ks are bases of E(λ_j, T), it must be a₁ = ··· = a_n = 0. So, we know v₁, ··· , v_n is L.I.. Further, since len(v₁, ··· , v_n) = n = dim V, we know that v₁, ··· , v_n is a basis of V.

Theorem 4.3.6

If $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues, then T is diagonalizable.

Proof 3. Suppose $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues: $\lambda_1, \dots, \lambda_{\dim V}$. Then, it has $v_1, \dots, v_{\dim V}$ as corresponding eigenvectors and is L.I.. Note that $\operatorname{len}(v_1, \dots, v_{\dim V}) = \dim V$. So, $v_1, \dots, v_{\dim V}$ is a basis of V. By Theorem 4.3.5, with respect to this basis consisting of eigenvectors, T has a diagonal matrix.

Example 4.3.7 The *Fibonacci Sequence* F_1, F_2, \cdots is defined by

 $F_1 = F_2 = 3$ and $F_n = F_{n-2} + F_{n-1}$ for $n \ge 3$.

Define $T \in \mathcal{L}(\mathbb{R}^2)$ by T(x, y) = (y, x + y).

1. Show that $T^n(0,1) = (F_n, F_{n+1})$ for each $n \in \mathbb{Z}^+$.

Proof 4.

- Base Case: Note that $T(0,1) = (1,1) = (F_1, F_2)$.
- Inductive Process: Suppose $T^{n-1}(0,1) = (F_{n-1},F_n)$. Then,

$$T^{n} = [T(T^{n-1})](0,1) = T[T^{n-1}(0,1)]$$

= $T(F_{n-1}, F_{n})$
= $(F_{n}, F_{n-1} + F_{n})$
= $(F_{n}, F_{n+1}).$

So, $T^n(0,1) = (F_n, F_{n+1}) \quad \forall n \in \mathbb{Z}^+$ by Principle of Mathematical Induction.

2. Find the eigenvalues of T.

Solution 5.

Suppose $T(x, y) = \lambda(x, y)$. So, $(y, x+y) = (\lambda x, \lambda y)$. Solve $\begin{cases} y = \lambda x \\ x + y = \lambda y \end{cases}$. That is, $x + \lambda x = \lambda^2 x$, or $\lambda^2 x - \lambda x - x = 0$. It follows $x \neq 0$, so solving $\lambda^2 - \lambda - 1 = 0$, we get

$$\lambda_1 = \frac{1+\sqrt{5}}{2}$$
 and $\lambda_2 = \frac{1-\sqrt{5}}{2}$

3. Since T has two eigenvalues, T should have a basis of \mathbb{R}^2 consisting of eigenvectors. Find the basis.

Solution 6.

When
$$\lambda_1 = \frac{1+\sqrt{5}}{2}$$
, we have $y = \lambda x = \frac{1+\sqrt{5}}{2}x$. So, $v_1 = \left(x, \frac{1+\sqrt{5}}{2}x\right) = x\left(1, \frac{1+\sqrt{5}}{2}\right)$.
That is,
 $v_1 = \left(1, \frac{1+\sqrt{5}}{2}\right)$.
Similarly, we have
 $v_2 = \left(1, \frac{1-\sqrt{5}}{2}\right)$.
Further, it follows that
 $\mathcal{M}(T, v_1, v_2) = \begin{pmatrix}\lambda_1 & 0\\ 0 & \lambda_2\end{pmatrix}$.
4. Find F_n using an expression of n only.
Solution 7.
Note that $(0, 1) = \frac{1}{\sqrt{5}}(v_1 - v_2)$. So, we have
 $T^n(0, 1) = T^n\left(\frac{1}{\sqrt{5}}(v_1 - v_2)\right)$
 $= \frac{1}{\sqrt{5}}T^n(v_1 - v_2)$
 $= \frac{1}{\sqrt{5}}T^n(v_1 - 2^n)$
 $= \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\left(1, \frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^n\left(1, \frac{1-\sqrt{5}}{2}\right)\right)$
 $= \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)$
 $= (F_n, F_{n+1}).$

5 Inner Product Spaces

5.1 Inner Products and Norms

Definition 5.1.1 (Dot Product). For $x, y \in \mathbb{R}^n$, the *dot product* of x and y, denoted $x \cdot y$, is defined by

$$x \cdot y = x_1 y_1 + \dots + x_n y_n$$

where $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$.

Theorem 5.1.2 Properties of dot Product 1. $x \cdot x = x_1^2 + \dots + x_n^2 \ge 0 \quad \forall x \in \mathbb{R}^n$. 2. $x \cdot x = 0$ if and only if x = 0. 3. For $y \in \mathbb{R}^n$, define $f : \mathbb{R}^n \to \mathbb{R}$ as $x \mapsto x \cdot y$. Then, f is linear. 4. $\forall x, y \in \mathbb{R}^n, x \cdot y = y \cdot x$.

Proof 1. Properties #1, #2, and #4 are trivial to prove, so the proof is omitted. Here we complete a proof for property #3, linearity of dot product. Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined as $x \mapsto x \cdot y$ for a fixed $y \in \mathbb{R}^n$. Note that

$$f(a+b) = (a+b) \cdot y = (a_1+b_1)y_1 + \dots + (a_n+b_n)y_n)$$

= $(a_1y_1 + \dots + a_ny_n) + (b_1y_1 + \dots + b_ny_n)$
= $f(a) + f(b).$

Further, notice that

$$f(\lambda x) = (\lambda x) \cdot y = (\lambda x_1)y_1 + \dots + (\lambda x_n)y_n$$
$$= \lambda (x_1y_x + \dots + x_ny_n = \lambda f(x))$$

Remark. For $w, z \in \mathbb{C}^n$, we define the dot product of w and z, denoted as $\langle w, z \rangle$, as

$$\langle w, z \rangle = w_1 \overline{z_1} + \dots + w_n \overline{z_n}.$$

Definition 5.1.3 (Inner Product). An *inner product* on *V* is a function that takes each ordered pair (u, v) of elements of *V* to a number $\langle u, v \rangle \in \mathbb{F}$ and has the following properties:

- 1. positivity: $\langle v, v \rangle \ge 0 \quad \forall v \in V.$
- 2. definiteness: $\langle v, v \rangle = 0$ if and only if v = 0.
- 3. additivity in first slot: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \quad \forall u, v, w \in V.$
- 4. homogeneity in first slot: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle \quad \forall \lambda \in \mathbb{F} \text{ and } \forall u, v \in V.$
- 5. conjugate symmetry: $\langle u, v \rangle = \overline{\langle v, u \rangle} \quad \forall u, v \in V.$

Example 5.1.4 Here, we offer some examples of inner product. Note that there might be multiple inner products over a vector space, as long as the following the definition and properties given in Definition 5.1.3.

1. Consider $\mathbb{C}[-1, 1]$, the set of continuous real-valued functions on the interval [-1, 1]. An inner product can be defined as $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx$.

Proof 2.

(a)
$$\langle f, f \rangle = \int_{-1}^{1} f^2(x) \, \mathrm{d}x \ge 0.$$

- (b) $\langle f, f \rangle = 0$ if and only if f(x) = 0.
- (c) Note that

$$\begin{split} \langle f+g,h\rangle &= \int_{-1}^{1} [f(x)+g(x)]h(x) \,\mathrm{d}x \\ &= \int_{-1}^{1} f(x)h(x) + g(x)h(x) \,\mathrm{d}x \\ &= \int_{-1}^{1} f(x)h(x) \,\mathrm{d}x + \int_{-1}^{1} g(x)h(x) \,\mathrm{d}x \\ &= \langle f,h\rangle + \langle g,h\rangle. \end{split}$$

(d)
$$\langle \lambda f, g \rangle = \int_{-1}^{1} \lambda f(x)g(x) \, \mathrm{d}x = \lambda \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x = \lambda \langle f, g \rangle.$$

(e) $\langle g, f \rangle = \int_{-1}^{1} g(x)f(x) \, \mathrm{d}x = \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x = \langle f, g \rangle = \overline{\langle f, g \rangle}.$

2. An inner product on $\mathcal{P}(\mathbb{R})$ can be defined as $\langle p,q\rangle = \int_0^\infty p(x)q(x)e^{-x}\,\mathrm{d}x$

Proof 3. The definition makes sense. Consider the inner product as $\langle \rangle : \mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R}) \to \mathbb{R}$. Note that $\infty \notin \mathbb{R}$. So we need to show the improper integral converges to a finite number under any circumstances. Consider

$$\frac{x^2 p(x)q(x)}{e^x} = \frac{p(x)q(x)e^{-x}}{\frac{1}{x^2}}.$$

Note that

$$\lim_{x \to \infty} \frac{p(x)q(x)e^{-x}}{\frac{1}{x^2}} = 0$$

Further since $\int_0^\infty \frac{1}{x^2} dx$ converges as it is a *p*-series with p = 2 > 1, we know it must be $\int_0^\infty p(x)q(x)e^{-x} dx$ converges as well, by the comparison test. The remaining job is to show this definition of $\langle \rangle$ indeed retain the five properties as required in Definition 5.1.3, which is trivial and so is omitted.

Definition 5.1.5 (Inner Product Space). An *inner product space* is a vector space V along with an inner product on V.

Example 5.1.6 Euclidean Inner Product on \mathbb{F}^n is defined as

 $\langle (w_1, \cdots, w_n), (z_1, \cdots, z_n) \rangle = w_1 \overline{z_1} + \cdots + w_n \overline{z_n},$

where $(w_1, \cdots, w_n), (z_1, \cdots, z_n) \in \mathbb{F}^n$.

Notation 5.1.7. For the rest of this Chapter, without otherwise specification, *V* denotes an inner product space over \mathbb{F} .

Remark. If not explicitly defined, the inner product is the Euclidean inner product as defined in Example 5.1.6.

Theorem 5.1.8 Basic Properties of an Inner Product

- 1. For each fixed $u \in V$, the function that takes v to $\langle v, u \rangle$ is a linear map from V to \mathbb{F} .
- 2. $\langle 0, u \rangle = 0$ for every $u \in V$.
- 3. $\langle u, 0 \rangle = 0$ for ever $u \in V$.
- 4. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for all $u, v, w \in V$.
- 5. $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle \quad \forall \lambda \in \mathbb{F} \text{ and } u, v \in V.$

Proof 4.

1. Define $f: V \to \mathbb{F}$ as $v \mapsto \langle v, u \rangle$ for some fixed $u \in V$. Then,

$$f(v+w) = \langle v+w, u \rangle = \langle v, u \rangle + \langle w, u \rangle = f(v) + f(w)$$

$$f(\lambda v) = \langle \lambda v, u \rangle = \lambda \langle v, u \rangle = \lambda f(v). \qquad \Box$$

- 2. Since *f* is a linear map, then $f(0) = \langle 0, u \rangle = 0$. \Box
- 3. Note that $\langle u, 0 \rangle = \overline{\langle 0, u \rangle} = \overline{0} = 0.$
- 4. Notice

$$\begin{split} \langle u, v + w \rangle &= \overline{\langle v + w, u \rangle} = \overline{\langle v, u \rangle + \langle w, u \rangle} \\ &= \overline{\langle v, u \rangle} + \overline{\langle w, u \rangle} \\ &= \langle u, v \rangle + \langle u, w \rangle. \quad \Box \end{split}$$

5. Observe that

$$\begin{split} \langle u, \lambda v \rangle &= \overline{\langle \lambda v, u \rangle} = \overline{\lambda \langle v, u \rangle} \\ &= \overline{\lambda} \cdot \overline{\langle v, u \rangle} = \overline{\lambda} \langle u, v \rangle \end{split}$$

Definition 5.1.9 (Norm). Suppose *V* is a vector space. Then, the *norm* of *v* is a real-valued function $|| || : V \to \mathbb{R}$ satisfying the following properties:

- 1. $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.
- 2. $\|\alpha v\| = |\alpha| \|v\| \quad \forall \alpha \in \mathbb{F} \text{ and } v \in V.$
- 3. triangle inequality: $||u + v|| \le ||u|| + ||v|| \quad \forall u, v \in \mathbb{F}$.

Definition 5.1.10 (Norm Induced by An Inner Product). For $v \in V$, $||v|| = \sqrt{\langle v, v \rangle}$ is a *norm* on *V*.

Remark. We will prove Definition 5.1.10 is indeed a definition of norm that satisfies the conditions indicated by Definition 5.1.9 throughout the rest of this section.

Theorem 5.1.11 Basic Properties of Norms Let $v \in V$. Then,

- 1. ||v|| = 0 if and only if v = 0.
- 2. $\|\lambda v\| = |\lambda| \|v\| \quad \forall \lambda \in \mathbb{F}.$

Proof 5.

- 1. ||v|| = 0 if and only if $\sqrt{\langle v, v \rangle} = 0$, which is equivalent to $\langle v, v \rangle = 0$. By properties of an inner product, $\langle v, v \rangle = 0$ if and only if v = 0. So, the proof is complete. \Box
- 2. Consider

$$\|\lambda v\|^2 = \langle \lambda v, \lambda v \rangle = \lambda \cdot \overline{\lambda} \langle v, v \rangle = |\lambda|^2 \langle v, v \rangle.$$

So,
$$\|\lambda v\| = \sqrt{|\lambda|^2 \langle v, v \rangle} = |\lambda| \|v\|.$$

Definition 5.1.12 (Orthogonal). Two vectors $u, v \in V$ are called *orthogonal* if $\langle u, v \rangle = 0$.

Theorem 5.1.13 Orthogonality and 0

- 1. 0 is orthogonal to every vector in V.
- 2. 0 is the only vector in V that is orthogonal to itself.

Proof 6.

- 1. As $\langle 0, u \rangle = 0$ $\forall u \in V$, the proof is complete. \Box
- 2. Note that $\langle v, v \rangle = 0$ if and only if v = 0, so we complete the proof. \Box

Theorem 5.1.14 Pythagorean Theorem

Suppose u and v are orthogonal vectors in V, then

 $||u+v||^2 = ||u||^2 + ||v||^2.$

Proof 7. Note that

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

= $\langle u, u + v \rangle + \langle v, u + v \rangle$
= $\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle.$

Since u and v are orthogonal, $\langle u, v \rangle = \langle v, u \rangle = 0$. So, $||u + v||^2 = \langle u, u \rangle + \langle v, v \rangle = ||u||^2 + ||v||^2$.

Theorem 5.1.15 An Orthogonal Decomposition

Suppose $u, v \in V$, with $v \neq 0$. Set $c = \frac{\langle u, v \rangle}{\|v\|^2}$ and $w = u - \frac{\langle u, v \rangle}{\|v\|^2}v$. Then, $\langle w, v \rangle = 0$ and u = cv + w.

Proof 8.

The idea is the find c, w s.t. $\langle v, w \rangle = 0$ and w = u - cv. That is, u = w + cv. Since $\langle v, w \rangle = 0$, then we have

$$\langle v, u - cv \rangle = 0 = \langle u - cv, v \rangle = \langle u, v \rangle - c ||v||^2.$$

So,

and

$$c = \frac{\langle u, v \rangle}{\|v\|^2}$$

$$w = u - cv = u - \frac{\langle u, v \rangle}{\|v\|^2} v.$$

Theorem 5.1.16 Cauchy-Schwarz Inequality

Suppose $u, v \in V$. Then,

 $|\langle u,v\rangle| \le \|u\| \|v\|.$

This inequality is an equality if and only if one of u, v is a scalar multiples of the other.

Proof 9. If v = 0, then $|\langle u, v \rangle| = 0 = ||u|| ||v||$. So, we can assume $v \neq 0$. Consider the orthogonal decomposition,

$$u = \frac{\langle u, v \rangle}{\|v\|^2} \cdot v + w.$$

Then, by the Pythagorean Theorem, we have

$$\begin{aligned} \|u\|^2 &= \left\| \frac{\langle u, v \rangle}{\|v\|^2} \cdot v \right\|^2 + \|w\|^2 = \frac{|\langle u, v \rangle|^2}{\|v\|^4} \|v\|^2 + \|w\|^2 \\ &= \frac{|\langle u, v \rangle|^2}{\|v\|^2} + \|w\|^2 \ge \frac{|\langle u, v \rangle|^2}{\|v\|^2} \end{aligned}$$

As $||v||^2 > 0$, we have $||u||^2 ||v||^2 \ge |\langle u, v \rangle|^2$. Further since $||u|| \ge 0$, $||v|| \ge 0$, and $|\langle u, v \rangle| \ge 0$, then

 $|\langle u, v \rangle| \le ||u|| ||v||.$

The equality holds if and only if $||w||^2 = 0$. That is, w = 0 from the orthogonal decomposition. In other words, u and v are linearly dependent.

Theorem 5.1.17 Triangle Inequality Suppose $u, v \in V$. Then

 $||u+v|| \le ||u|| + ||v||.$

This inequality is an equality if and only if one of u, v is a non-negative multiple of the other.

Proof 10. Note that

$$\begin{aligned} |u+v||^2 &= \langle u+v, u+v \rangle \\ &= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \\ &= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle} \\ &= ||u||^2 + ||v||^2 + 2 \operatorname{Re} \left(\langle u, v \rangle \right) \\ &\leq ||u||^2 + ||v||^2 + 2 |\langle u, v \rangle| \\ &\leq ||u||^2 + ||v||^2 + 2 ||u|| ||v|| \quad \text{Cauchy-Schwarz Inequality} \\ &= (||u|| + ||v||)^2. \end{aligned}$$

Since $||u + v|| \ge 0$, $||u|| \ge 0$, and $||v|| \ge 0$, we have

 $||u + v|| \le ||u|| + ||v||.$

The equality holds if and only if $\langle u, v \rangle = ||u|| ||v||$. That is, when u and v are linearly dependent to each other.

Remark. After proving this triangle inequality, we finally, and officially, complete our proof to show the norm induced by an inner product as stated in Definition 5.1.10 is indeed a norm satisfying the formal definition of norms as stated in Definition 5.1.9.

Theorem 5.1.18 Parallelogram Equality Suppose $u, v \in V$. Then $\|u + v\|^2 + \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2).$

Proof 11. Note that

$$\begin{aligned} \|u+v\|^2 + \|u-v\|^2 &= \langle u+v, u+v \rangle + \langle u-v, u-v \rangle \\ &= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle u, u \rangle + \langle v, v \rangle - \langle u, v \rangle - \langle v, u \rangle \\ &= \|u\|^2 + \|u\|^2 + \|v\|^2 + \|v\|^2 \\ &= 2(\|u\|^2 + \|v\|^2). \end{aligned}$$

Theorem 5.1.19 Suppose *V* is a real inner product space. Then,

$$\langle u, v \rangle = \frac{\|u+v\|^2 - \|u-v\|^2}{4}.$$

Proof 12. Note that

$$||u+v||^{2} - ||u-v||^{2} = \langle u+v, u+v \rangle - \langle u-v, u-v \rangle$$

= $||u||^{2} + ||v||^{2} + 2\langle u, v \rangle - (||u||^{2} + ||v||^{2} - 2\langle u, v \rangle)$
= $4\langle u, v \rangle$.

So, we have

$$\langle u, v \rangle = \frac{\|u+v\|^2 - \|u-v\|^2}{4}.$$

Theorem 5.1.20

Suppose *V* is a complex inner product space. Then,

$$\langle u, v \rangle = \frac{\|u+v\|^2 - \|u-v\|^2 + \|u+\mathrm{i}v\|^2\mathrm{i} - \|u-\mathrm{i}v\|^2\mathrm{i}}{4}.$$

Proof 13. Note that

$$\begin{split} \langle u+v, u+v \rangle - \langle u-v, u-v \rangle + \langle u+\mathrm{i}v, u+\mathrm{i}v \rangle \mathrm{i} - \langle u-\mathrm{i}v, u-\mathrm{i}v \rangle \mathrm{i} \\ &= 2\langle u, v \rangle + 2\langle v, u \rangle + (2\langle u, \mathrm{i}v \rangle + 2\langle \mathrm{i}v, u \rangle) \mathrm{i} \\ &= 2\langle u, v \rangle + 2\langle v, u \rangle + (-2\mathrm{i}\langle u, v \rangle + 2\mathrm{i}\langle v, u \rangle) \mathrm{i} \\ &= 2\langle u, v \rangle + 2\langle v, u \rangle + 2\langle u, v \rangle - 2\langle v, u \rangle \\ &= 4\langle u, v \rangle. \end{split}$$

so, we have

$$\langle u, v \rangle = \frac{\|u+v\|^2 - \|u-v\|^2 + \|u+iv\|^2 i - \|u-iv\|^2 i}{4}.$$

Theorem 5.1.21

Let U be a vector space. If || || is a norm on U satisfying the parallelogram equality, then there is an inner product $\langle \rangle$ on U s.t. $||u|| = \sqrt{\langle u, u \rangle} \quad \forall u \in U$.

5.2 Orthonormal Bases

Definition 5.2.1 (Orthonormal). A list of vectors is called *orthonormal* if each vector in the list has norm 1 and is orthogonal to all the other vectors in the list. In other words, a list e_1, \dots, e_m of vectors in V is orthonormal if

$$\langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

Theorem 5.2.2

If e_1, \cdots, e_m is an orthonormal list of vectors in V, then

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2 \quad \forall a_1, \dots, a_m \in \mathbb{F}.$$

Proof 1. Note that

$$\langle a_1e_1, a_2e_2 + \dots + a_me_m \rangle = \langle a_1e_1, a_2e_2 \rangle + \dots + \langle a_1e_1, a_me_m \rangle = 0.$$

So, by the Pythagorean Theorem, we have

$$||a_1e_1 + \dots + a_me_m||^2 = ||a_1e_1||^2 + ||a_2e_2 + \dots + a_me_m||^2$$

= $||a_1e_1||^2 + ||a_2e_2||^2 + \dots + ||a_me_m||^2$
= $|a_1|^2 + |a_2|^2 + \dots + |a_m|^2$.

Theorem 5.2.3 Every orthonormal list of vectors is L.I..

Proof 2. Suppose e_1, \dots, e_m is an orthonormal list of vectors in *V*. Then, $||a_1e_1 + \dots + a_me_m||^2 = 0$. By Theorem 5.2.2, it is equivalent to $|a_1|^2 + \dots + |a_m|^2 = 0$. Since each $|a_j| \ge 0$, it must be $a_j = 0$ for all $j = 1, \dots, m$. Therefore, the orthonormal list is L.I..

Definition 5.2.4 (Orthonormal Basis). An *orthonormal basis* of *V* c is an orthonormal list of vectors in *V* that is also a basis of *V*.

Theorem 5.2.5

Every orthonormal list of vectors in V with length dim Vc is an orthonormal basis of V.

Proof 3. By Theorem 5.2.3, any orthonormal list of vectors must be L.I.. Further since it has length $\dim V$, it is a basis of V. So, by definition, it is an orthonormal basis of V.

Theorem 5.2.6

Suppose e_1, \dots, e_n is an orthonormal basis of V and $v \in V$. Then, $v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$, and $||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_n \rangle|^2$. **Proof 4.** Suppose $v \in V$ and $v = a_1e_1 + \cdots + a_ne_n$. Then,

$$\langle v, e_j \rangle = \langle a_1 e_1 + \dots + a_n e_n, e_j \rangle = \langle a_j e_j, e_j \rangle = a_j.$$

So, we have

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n.$$

Further, by Theorem 5.2.2, we have

$$||v||^{2} = |\langle v, e_{1} \rangle|^{2} + \dots + |\langle v, e_{n} \rangle|^{2}$$

Theorem 5.2.7 Gram-Schmidt Procedure

Suppose v_1, \dots, v_m is L.I. list of vectors in V. Let $e_1 = \frac{v_1}{\|v_1\|}$. For $j = 2, \dots, m$, define e_j inductively by

$$e_{j} = \frac{v_{j} - \langle v_{j}, e_{1} \rangle e_{1} - \dots - \langle v_{j}, e_{j-1} \rangle e_{j-1}}{\|v_{j} - \langle v_{j}, e_{1} \rangle e_{1} - \dots - \langle v_{j}, e_{j-1} \rangle e_{j-1}\|}.$$
(15)

Then, e_1, \dots, e_m is an orthonormal list of vectors in V s.t. $\operatorname{span}(v_1, \dots, v_j) = \operatorname{span}(e_1, \dots, e_j)$ for $j = 1, \dots, m$.

Proof 5. To prove that Gram-Schmidt Procedure indeed produces an orthonormal list of vectors in *V*, we will use prove by mathematical induction.

Base Case Suppose j = 1, then $\operatorname{span}(v_1) = \operatorname{span}(e_1)$ since v_1 is a positive multiple of e_1 . So, the conclusion holds when j = 1.

Inductive Steps Suppose for some 1 < j < m, we have $\operatorname{span}(v_1, \dots, v_{j-1}) = \operatorname{span}(e_1, \dots, e_{j-1})$. Since v_1, \dots, v_m is L.I., we know $v_j \notin \operatorname{span}(v_1, \dots, v_{j-1})$. That is, $v_j \notin \operatorname{span}(e_1, \dots, e_{j-1})$. (If $v_j \in \operatorname{span}(e_1, \dots, e_{j-1})$, then $v_j = \langle v_j, e_1 \rangle e_1 + \dots + \langle v_j, e_{j-1} \rangle e_{j-1}$.) Then, we are dividing by 0 in Equation (15). So, we are not dividing by 0 in Equation (15). Dividing a vector by its norm produces a new vector with norm 1, so $||e_j|| = 1$. Now, we want to verify e_j is orthogonal to e_1, \dots, e_{j-1} . Pick some $k \, s.t. \, 1 \leq k < j$. Then

$$\begin{split} \langle e_j, e_k \rangle &= \left\langle \frac{v_j - \langle v_j, e_1 \rangle e_1 - \dots - \langle v_j, e_{j-1} \rangle e_{j-1}}{\|v_j - \langle v_j, e_1 \rangle e_1 - \dots - \langle v_j, e_{j-1} \rangle e_{j-1}\|}, e_k \right\rangle \\ &= \frac{\langle v_j - \langle v_j, e_1 \rangle e_1 - \dots - \langle v_j, e_{j-1} \rangle e_{j-1}, e_k \rangle}{\|\langle v_j - \langle v_j, e_1 \rangle e_1 - \dots - \langle v_j, e_{j-1} \rangle e_{j-1}\|} \\ &= \frac{\langle v_j, e_k \rangle - \langle v_j, e_k \rangle}{\|\langle v_j - \langle v_j, e_1 \rangle e_1 - \dots - \langle v_j, e_{j-1} \rangle e_{j-1}\|} \\ &= 0 \end{split}$$

Then, e_1, \dots, e_j is an orthonormal basis, and $v_j \in \text{span}(e_1, \dots, e_j)$ since v_j is a linear combination of e_1, \dots, e_j by Equation (15). Further, we have

$$\dim \operatorname{span}(v_1, \cdots, v_j) = \dim \operatorname{span}(e_1, \cdots, e_j)$$

and

$$\operatorname{span}(v_1,\cdots,v_j)\subseteq \operatorname{span}(e_1,\cdots,e_j)$$

That is, exactly, $\operatorname{span}(v_1, \cdots, v_j) = \operatorname{span}(e_1, \cdots, e_j)$.

Theorem 5.2.8

Every *f*-*d* inner product space has an orthonormal basis.

Proof 6. Suppose *V* is *f*-*d*, and select a basis of *V*. Apply Gram-Schmidt Procedure (Theorem 5.2.7) to this basis, we then have an orthonormal basis of *V*. ■

Theorem 5.2.9

Suppose V is *f*-*d*. Then, every orthonormal list of vectors in V can be extended to an orthonormal basis of V.

Proof 7. Suppose e_1, \dots, e_m is an orthonormal list of vectors in V. Then, e_1, \dots, e_m is L.I. and can be extended to a basis $e_1, \dots, e_m, v_1, \dots, v_n$ of V. Apply Gram-Schmidt Procedure to this basis, we get an orthonormal list $e_1, \dots, e_m, f_1, \dots, f_n$. Here, e_1, \dots, e_m is unchanged since they are already orthonormal. Then, $e_1, \dots, e_m, f_1, \dots, f_n$ is an orthonormal basis of V.

Theorem 5.2.10

Suppose $T \in \mathcal{L}(V)$. If *T* has an upper-triangular matrix with respect to some basis of *V*, then *T* has an upper-triangular matrix with respect to some orthonormal basis of *V*.

Proof 8. Suppose $\mathcal{M}(T)$ is upper-triangular with respect to a basis v_1, \dots, v_n of V. Then, we know $\operatorname{span}(v_1, \dots, v_j)$ is invariant under T for $j = 1, \dots, n$. Apply Gram-Schmidt Procedure to v_1, \dots, v_n , we will get an orthonormal basis e_1, \dots, e_n of V. Further, since $\operatorname{span}(e_1, \dots, e_j) = \operatorname{span}(v_1, \dots, v_j)$ for $j = 1, \dots, n$, we know $\operatorname{span}(e_1, \dots, e_j)$ is invariant under T. Therefore, T has an upper-triangular matrix with respect to the orthonormal basis e_1, \dots, e_n .

Theorem 5.2.11 Schur's Theorem

Suppose *V* is a *f*-*d* complex vector space and $T \in \mathcal{L}(V)$. Then, *T* has an upper-triangular matrix with respect to some orthonormal basis of *V*.

Proof 9. Since V is a f-d complex vector space, T must have an upper-triangular matrix with respect to some basis of V. Further, by Theorem 5.2.10, T must have an upper-triangular matrix with respect to an orthonormal basis of V.

Example 5.2.12 The function $\varphi : \mathbb{F}^3 \to \mathbb{F}$ defined by

$$\varphi(z_1, z_2, z_3) = 2z_1 - 5z_2 + z_3$$

is a linear functional on \mathbb{F}^3 . We could write this linear functional in the form $\varphi(z) = \langle z, u \rangle$ for every $z \in \mathbb{F}^3$, where $u = \langle 2, -5, 1 \rangle$.

Theorem 5.2.13 Riesz Representation Theorem

Suppose *V* is *f*-*d* and φ is a linear functional on *V*. Then, there is a unique vector $u \in V$ *s.t.* $\varphi(v) = \langle v, u \rangle$ for every $v \in V$.

Proof 10. Let e_1, \dots, e_n be an orthonormal basis of V. Then, for all $v \in V$, we have

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n.$$

So,

$$\varphi(v) = \varphi(\langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n)$$

= $\langle v, e_1 \rangle \varphi(e_1) + \dots + \langle v, e_n \rangle \varphi(e_n)$
= $\langle v, \overline{\varphi(e_1)} e_1 \rangle + \dots + \langle v, \overline{\varphi(e_n)} e_n \rangle$
= $\langle v, \overline{\varphi(e_1)} e_1 + \dots + \overline{\varphi(e_n)} e_n \rangle.$

Suppose $\exists u_1, u_2 \in V$ s.t. $\varphi(v) = \langle v, u_1 \rangle = \langle v, u_2 \rangle$. Then, $\langle v, u_1 \rangle - \langle v, u_2 \rangle = \langle v, u_1 - u_2 \rangle = 0$. Let $v = u_1 - u_2$, then we have $\langle u_1 - u_2, u_1 - u_2 \rangle = 0$. So, it must be $u_1 = u_2$. Therefore, \exists a unique $u \in V$ and

 $u = \overline{\varphi(e_1)}e_1 + \dots + \overline{\varphi(e_n)}e_n \text{ s.t. } \varphi(v) = \langle v, u \rangle \quad \forall v \in V.$

Example 5.2.14 Find $u \in \mathcal{P}_2(\mathbb{R})$ *s.t.* $\int_{-1}^1 p(t)(\cos(\pi t)) dt = \int_{-1}^1 p(t)u(t) dt$ for every $p \in \mathcal{P}_2(\mathbb{R})$. **Remark.** Define an inner product on $\mathcal{P}_2(\mathbb{R})$ as $\langle p, q \rangle = \int_{-1}^1 p(x)q(x) dx$ to solve this problem.

Solution 11.

Let $\varphi \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}), \mathbb{R})$ be defined as $\varphi(t) = \int_{-1}^{1} p(t)(\cos(\pi t)) dt$. Note that $1, x, x^2$ is a basis of $\mathcal{P}_2(\mathbb{R})$. To find an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$, apply Gram-Schmidt Procedure, we have

$$e_1 = \frac{1}{\|1\|} = \frac{1}{\sqrt{\int_{-1}^{1} 1 \cdot 1 \, \mathrm{d}t}} = \sqrt{\frac{1}{2}}.$$

Since
$$x - \langle x, e_1 \rangle e_1 = x - \int_{-1}^1 x \sqrt{\frac{1}{2}} \, \mathrm{d}x \cdot \sqrt{\frac{1}{2}} = x$$
, and $||x|| = \sqrt{\int_{-1}^1 x^2 \, \mathrm{d}x} = \sqrt{\frac{2}{3}}$, we have
 $e_2 = \frac{x}{\sqrt{\frac{2}{3}}} = \sqrt{\frac{3}{2}}x.$

Further, consider

$$x^{2} - \langle x^{2}, e_{1} \rangle e_{1} - \langle x^{2}, e_{2} \rangle e_{2} = x^{2} - \int_{-1}^{1} x^{2} \sqrt{\frac{1}{2}} \, \mathrm{d}x \cdot \sqrt{\frac{1}{2}} - \int_{-1}^{1} x^{2} \sqrt{\frac{3}{2}} x \, \mathrm{d}x \cdot \sqrt$$

and note that

$$\left\|x^2 - \frac{1}{3}\right\| = \sqrt{\int_{-1}^1 \left(x^2 - \frac{1}{3}\right)^2 \mathrm{d}x} = \sqrt{\int_{-1}^1 x^4 - \frac{2}{3}x^2 + \frac{1}{9} \mathrm{d}x} = \sqrt{\frac{8}{45}}.$$

So, we have

$$e_3 = \frac{x^2 - \frac{1}{3}}{\sqrt{\frac{8}{45}}} = \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3}\right).$$

That is, $e_1 = \sqrt{\frac{1}{2}}, e_2 = \sqrt{\frac{3}{2}}x, e_3 = \sqrt{\frac{45}{8}}\left(x^2 - \frac{1}{3}\right)$ is an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$. Then, we have

$$\begin{split} \varphi(e_1) &= \int_{-1}^1 \sqrt{\frac{1}{2}} \cos(\pi t) \, \mathrm{d}t = \sqrt{\frac{1}{2}} \int_{-1}^1 \cos(\pi t) \, \mathrm{d}t = 0\\ \varphi(e_2) &= \int_{-1}^1 \sqrt{\frac{3}{2}} t \cos(\pi t) \, \mathrm{d}t = \sqrt{\frac{3}{2}} \int_{-1}^1 t \cos(\pi t) \, \mathrm{d}t = 0\\ \varphi(e_3) &= \int_{-1}^1 \sqrt{\frac{45}{8}} \left(t^2 - \frac{1}{3} \right) \cos(\pi t) \, \mathrm{d}t\\ &= \sqrt{\frac{45}{8}} \int_{-1}^1 t^2 \cos(\pi t) \, \mathrm{d}t - \sqrt{\frac{45}{8}} \cdot \frac{1}{3} \underbrace{\int_{-1}^1 \cos(\pi t) \, \mathrm{d}t}_0\\ &= \sqrt{\frac{45}{8}} \int_{-1}^1 t^2 \cos(\pi t) \, \mathrm{d}t \\ &= \sqrt{\frac{45}{8}} \left(-\frac{4}{\pi^2} \right). \end{split}$$

So, by Theorem 5.2.15 and its proof, we know

$$u = \varphi(e_1)e_1 + \varphi(e_2)e_2 + \varphi(e_3)e_3 = 0 + 0 + \sqrt{\frac{45}{8}} \left(-\frac{4}{\pi^2}\right) \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3}\right)$$
$$= \frac{45}{8} \left(-\frac{4}{\pi^2}\right) \left(x^2 - \frac{1}{3}\right)$$
$$= -\frac{45}{2\pi^2} \left(x^2 - \frac{1}{3}\right).$$
5.3 Orthogonal Complements and Minimization Problems

Definition 5.3.1 (Orthogonal Complement, U^{\perp} **).** If *U* is a subset of *V*, then the *orthogonal complement* of *U*, denoted U^{\perp} , is the set of all vectors in *V* that are orthogonal to every vector in *U*:

$$U^{\perp} = \{ v \in v \mid \langle v, u \rangle = 0 \quad \forall u \in U \}.$$

Theorem 5.3.2 Basic Properties of Orthogonal Complements

- 1. If U is a subset of V, then U^{\perp} is a subspace of V.
- 2. $\{0\}^{\perp} = V$.
- 3. $V^{\perp} = \{0\}.$
- 4. If *U* is a subset of *V*, then $U \cap U^{\perp} \subseteq \{0\}$.
- 5. If U and W are subsets of V and $U \subseteq W$, then $W^{\perp} \subseteq U^{\perp}$.

Proof 1.

- 1. Let $v, w \in U^{\perp}$. Then $\langle v + w, u \rangle = \langle v, w \rangle + \langle w, u \rangle = 0 + 0 = 0$. So, $v + w \in U^{\perp}$. Further, suppose $\lambda \in \mathbb{F}$. Then $\langle \lambda v, u \rangle = \lambda \langle v, u \rangle = \lambda \cdot 0 = 0$. So, $\lambda v \in U^{\perp}$. Finally since $\langle 0, u \rangle = 0$, we know $0 \in U^{\perp}$. Then, U^{\perp} is a subspace of V. \Box
- 2. Since $\langle v, 0 \rangle = 0 \quad \forall v \in V$, we know $\{0\}^{\perp} = V$. \Box
- 3. Suppose $v \in V^{\perp}$. Then, $\langle v, v \rangle = 0$. By property of an inner product, it must be that v = 0. So, $V^{\perp} = \{0\}$. \Box
- 4. Suppose U is a subset of V. Let $v \in U \cap U^{\perp}$. Then, $v \in U$ and $v \in U^{\perp}$. So, $\langle v, v \rangle = 0$. Then, it must be that v = 0. So, $U \cap U^{\perp} \subseteq \{0\}$. \Box
- 5. Suppose U and W are subsets of V with $U \subseteq W$. Suppose $v \in W^{\perp}$. Then, $\langle v, u \rangle = 0 \quad \forall u \in W$. Since $U \subseteq W$, we have $\langle v, w \rangle = 0 \quad \forall u \in U$. That is, $v \in U^{\perp}$. Then, we have $W^{\perp} \subseteq U^{\perp}$.

Theorem 5.3.3

Suppose *U* is a *f*-*d* subspace of *V*. Then, $V = U \oplus U^{\perp}$.

Proof 2. Suppose $u \in U$ and $w \in U^{\perp}$. Then, $\forall v \in V$, we have v = cu + w for some $c \in \mathbb{F}$ and $\langle u, w \rangle = 0$. Then, we have $V = U + U^{\perp}$. Further, by Theorem 5.3.2(4), $U \cap U^{\perp} = \{0\}$ since U and U^{\perp} are all subspaces of V. Hence, $V = U \oplus U^{\perp}$.

Corollary 5.3.4 Suppose *V* is *f*-*d* and *U* is a subspace of *V*. Then, dim $U^{\perp} = \dim V - \dim U$.

Theorem 5.3.5 Suppose U is a *f*-d subspace of V. Then, $U = (U^{\perp})^{\perp}$.

Proof 3.

 $(\subseteq). \text{ Suppose } u \in U. \text{ Then, } \langle u, v \rangle = 0 \quad \forall v \in U^{\perp}. \text{ Then, } u \in (U^{\perp})^{\perp}. \text{ That is, } U \subseteq (U^{\perp})^{\perp}. \qquad \Box$

(⊇). Suppose $v \in (U^{\perp})^{\perp}$. Then, v = u + w for some $u \in U$ and $w \in U^{\perp}$. Then, $w = v - u \in (U^{\perp})^{\perp}$. Since $U \subseteq (U^{\perp})^{\perp}$, we know $u \in U^{\perp}$. Then, $v - u \in (U^{\perp})^{\perp}$. Hence, $v - u \in U^{\perp} \cap (U^{\perp})^{\perp}$. That is, v - u is orthogonal to itself. So, it must be that v - u = 0 or v = u. Since $u \in U$ and $v \in U$, we have shown that $(U^{\perp})^{\perp} \subseteq U$. ■

Definition 5.3.6 (Orthogonal Projection, P_U **).** Suppose U is a f-d subspace of V. Then orthogonal projection of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then, $P_U v = u$.

Remark. By Theorem 5.3.3, $V = U \oplus U^{\perp}$, which ensures each $v \in V$ can be uniquely represented in the form of u + w with $u \in U$ and $w \in U^{\perp}$, and thus P_U is well-defined.

Example 5.3.7 Suppose $x \in V$ with $x \neq 0$ and U = span(x). Show that

$$P_U v = \frac{\langle v, x \rangle}{\|x^2\|} x \qquad \forall v \in V$$

Proof 4. Suppose $v \in V$. Then,

$$v = \frac{\langle v, x \rangle}{\|x^2\|} x + \left(v - \frac{\langle v, x \rangle}{\|x^2\|} x\right),$$

where $\frac{\langle v, x \rangle}{\|x^2\|} x \in \operatorname{span}(x)$ and $v - \frac{\langle v, x \rangle}{\|x^2\|} x \in U^{\perp}$. Thus, $P_U v = \frac{\langle v, x \rangle}{\|x^2\|} x$.

Theorem 5.3.8 Properties of Orthogonal Projections

Suppose *U* is a *f*-*d* subspace of *V* and $v \in V$. Then,

- 1. $P_U \in \mathcal{L}(V)$.
- 2. $P_U u = u \quad \forall u \in U$.
- 3. $P_U w = 0 \quad \forall w \in U^{\perp}$.
- 4. range $P_U = U$.
- 5. null $P_U = U^{\perp}$.
- 6. $v P_U v \in U^{\perp}$.
- 7. $P_U^2 = P_U$.
- 8. $||P_U v|| \le ||v||$.
- 9. for every orthonormal basis e_1, \cdots, e_m of U,

 $P_U v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m.$

Proof 5.

1. Suppose $v_1 = u_1 + w_1$ and $v_2 = u_2 + w_2$, where $v_1, v_2 \in V$, $u_1, u_2 \in U$, and $w_1, w_2 \in U^{\perp}$. Then, $v_1 + v_2 = (u_1 + u_2) + (w_1 + w_2)$, where $u_1 + u_2 \in U$ and $w_1 + w_2 \in U^{\perp}$. So,

$$P_U(v_1 + v_2) = u_1 + u_2 = P_U v_1 + P_U v_2.$$

Additionally, suppose $\lambda \in \mathbb{F}$. Then, $\lambda v_1 = \lambda u_1 + \lambda w_1$, where $\lambda u_1 \in U$ and $\lambda w_1 \in U^{\perp}$. Then,

$$P_U(\lambda v_1) = \lambda u_1 = \lambda P_U(v_1). \qquad \Box$$

- 2. Suppose $u \in U$. Then, u = u + 0, where $u \in U$ and $0 \in U^{\perp}$. So, $P_U u = u$. \Box
- 3. Suppose $w \in U^{\perp}$. Then, w = 0 + w, where $0 \in U$ and $w \in U^{\perp}$. So, $P_U w = 0$.
- 4. By definition of P_U , we have range $P_U \subseteq U$. By Theorem 5.3.8(2), we know $U \subseteq \text{range } P_U$. So, range $P_U = U$. \Box
- 5. By Theorem 5.3.8(3), we have $U^{\perp} \subseteq \text{null } P_U$. Further note if $v \in \text{null } P_U$, then v = 0 + v with 0 + u and $v \in U^{\perp}$. So, null $P_U \subseteq U^{\perp}$. That is, null $P_U = U$. \Box
- 6. If v = u + w with $u \in U$ and $w \in U^{\perp}$, then

$$v - P_U v = v - u = w \in U^{\perp}.$$

7. If v = u + w with $u \in U$ and $w \in U^{\perp}$, then

$$(P_U^2)v = P_U(P_Uv) = P_Uu = u = P_Uv$$

So, $P_U^2 = P_U$. \Box

8. If v = u + w with $u \in U$ and $w \in U^{\perp}$, then we have

$$||P_U v||^2 = ||u||^2 \le ||u||^2 + ||w||^2 = ||v||^2$$

by the Pythagorean Theorem. \Box

9. If v = u + w with $u \in U$ and $w \in U^{\perp}$, then

$$v = u + w = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m + (v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m).$$

Since e_1, \dots, e_m is an orthonormal basis of U, we have $\langle ve_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m \in U$. Now, consider

$$\begin{split} \langle \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m, v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m \rangle &= \langle \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m, v \rangle - \|u\|^2 \\ &= \langle v, e_1 \rangle \langle e_1, v \rangle + \dots + \langle v, e_m \rangle \langle e_m, v \rangle - \|u\|^2 \\ &= \langle v, e_1 \rangle \overline{\langle v, e_1 \rangle} + \dots + \langle v, e_m \rangle \overline{\langle v, e_m \rangle} - \|u\|^2 \\ &= |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2 - \|u\|^2 \\ &= \|u\|^2 - \|u\|^2 = 0 \quad (By \ Theorem \ 5.2.2) \end{split}$$

Then, $v - \langle v, e_1 \rangle e_1 - \cdots - \langle v, e_m \rangle e_m \in U^{\perp}$. So, we have $P_U v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m$.

Theorem 5.3.9 Minimizing the Distance to a Subspace

Suppose U is a *f*-*d* subspace of V, $v \in V$, and $u \in U$. Then, $||v - P_U v|| \le ||v - u||$. The inequality is an equality if and only if $u = P_U v$.

Proof 6. Note that $||v - P_U v||^2 \le ||v - P_U v||^2 + ||P_U v - u||^2$ since $||P_U v - u||^2 \ge 0$. Further, since $v - P_U v \in U^{\perp}$ by Theorem 5.3.8(6) and $P_U v - u \in U$ by the Pythagorean Theorem, we have

$$||v - P_U v||^2 + ||P_U v - u||^2 = ||v = P_U v + P_U v - u||^2 = ||v - u||^2.$$

Then, $||u - P_U v||^2 \le ||v = P_U v||^2 + ||P_U v - u||^2 = ||v - u||^2$. Since $||v - P_U v||^2 \ge 0$ and $||v - u||^2 \ge 0$, we have $||v - P_U v|| \le ||v - u||$. The equality holds if and only if $||P_U v - u||^2 = 0$. That is, $||P_U v - u|| = 0$, $P_U v - u = 0$, or $P_U v = u$.

Example 5.3.10 In \mathbb{R}^4 , set U = span((1, 1, 0, 0), (1, 1, 1, 2)). Find $u \in U$ s.t. ||u - (1, 2, 3, 4)|| is as small as possible.

Solution 7.

By Theorem 5.3.9, we need to find $P_U v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2$. Thus, we need to use Gram-Schmidt Procedure to find e_1 and e_2 :

$$e_1 = \frac{1}{\sqrt{2}}(1, 1, 0, 0)$$
 and $e_2 = \frac{1}{\sqrt{5}}(0, 0, 1, 2).$

Set v = (1, 2, 3, 4), we have

$$P_U v = \langle (1, 2, 3, 4), \frac{1}{\sqrt{2}} (1, 1, 0, 0) \rangle \frac{1}{\sqrt{2}} (1, 1, 0, 0) + \langle (1, 2, 3, 4), \frac{1}{\sqrt{5}} (0, 0, 1, 2) \rangle \frac{1}{\sqrt{5}} (0, 0, 1, 2) \rangle$$
$$= \left(\frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5}\right).$$

76

6 Operators on Inner Product Spaces

6.1 Self-Adjoint and Normal Operators

Definition 6.1.1 (Adjoint, T^*). Suppose $T \in \mathcal{L}(V, W)$. The *adjoint* of T is the function $T^* : W \to V$ *s.t.*

 $\langle Tv, w \rangle = \langle v, T^*w \rangle$

for every $v \in V$ and every $w \in W$.

Theorem 6.1.2 If $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{L}(W, V)$.

Proof 1.

1. The definition of adjoint makes sense.

Suppose $T \in \mathcal{L}(V, W)$. Fix $w \in W$. Let $f : V \to \mathbb{F}$ be defined as $v \mapsto \langle Tv, w \rangle$. Then, f is a linear functional on V. Note that

$$f(au + bv) = \langle T(au + bv), w \rangle = \langle aTu + bTv, w \rangle$$
$$= a \langle Tu, w \rangle + b \langle Tv, w \rangle$$
$$= af(u) + b(fv).$$

By Riesz Representation Theorem, we know $f(v) = \langle v, \Delta \rangle$ for some $\Delta \in V$. We call this unique Δ as T^*w . That is, for each $w \in W$, \exists unique $T^*w \in V$. So, T^* is well-defined as a function from W to V. \Box

2. Adjoint is a linear map.

Suppose $w_1, w_2 \in W$. If $v \in V$, then

$$\langle v, T^*(w_1 + w_2) \rangle = \langle Tv, w_1 + w_2 \rangle = \langle Tv, w_1 \rangle + \langle Tv, w_2 \rangle$$

= $\langle v, T^*w_1 \rangle + \langle v, T^*w_2 \rangle$
= $\langle v, T^*w_1 + T^*w_2 \rangle.$

So, $T^*(w_1 + w_2) = T^*w_1 + T^*w_2$. \Box Now fix $w \in W$ and $\lambda \in \mathbb{F}$. If $v \in V$, then

$$\langle v, T^*(\lambda w) \rangle = \langle Tv, \lambda w \rangle = \overline{\lambda} \langle Tv, w \rangle$$

= $\overline{\lambda} \langle v, T^* w \rangle$
= $\langle v, \lambda T^* w \rangle.$

So, we know $T^*(\lambda w) = \lambda T^* w$. \Box

Thus, we've shown T^* is a linear map as desired.

Example 6.1.3 Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$. Find a formula for T^* . Solution 2. Define $T^* : \mathbb{R}^2 \to \mathbb{R}^3$. Let $y = (y_1, y_2) \in \mathbb{R}^2$. Then, $\langle x, T^*y \rangle = \langle Tx, y \rangle = y_1x_2 + 3y_1x_3 + 2x_1y_2$ $= \langle (x_1, x_2, x_3), (2y_2, y_1, 3y_1) \rangle.$

Thus, $T^* : \mathbb{R}^2 \to \mathbb{R}^3$ is defined as $T^*(y_1, y_2) = (2y_2, y_1, 3y_1)$.

Example 6.1.4 Fix $u \in V$ and $x \in W$. Define $T \in \mathcal{L}(V, W)$ by $Tv = \langle v, u \rangle x$ for every $v \in V$. Find a formula for T^* .

Solution 3.

Define $T^* \in \mathcal{L}(W, V)$. Consider

$$\begin{aligned} \langle v, T^*w \rangle &= \langle Tv, w \rangle = \left\langle \langle v, u \rangle x, w \right\rangle \\ &= \langle v, u \rangle \langle x, w \rangle \\ &= \left\langle v, \langle w, x \rangle u \right\rangle. \end{aligned}$$

So, we have $T^*w = \langle w, x \rangle u$.

Theorem 6.1.5 Properties of the Adjoint

1. $(S+T)^* = S^* + T^* \quad \forall S, T \in \mathcal{L}(V, W).$

2. $(\lambda T)^* = \overline{\lambda}T^* \quad \forall \lambda \in \mathbb{F} \text{ and } T \in \mathcal{L}(V, W).$

3. $(T^*)^* = T \quad \forall T \in \mathcal{L}(V, W).$

4. $I^* = I$, where *I* is the identity operator on *V*.

5. $(ST)^* = T^*S^* \quad \forall T \in \mathcal{L}(V, W) \text{ and } S \in \mathcal{L}(W, U).$

Proof 4.

1. Consider

$$\langle v, (S+T)^*w \rangle = \langle (S+T)v, w \rangle = \langle Sv, w \rangle + \langle Tv, w \rangle$$

= $\langle v, S^*w \rangle + \langle v, T^*w \rangle$
= $\langle v, S^*w + T^*w \rangle$
= $\langle v, (S^* + T^*)w \rangle.$

So, we have $(S+T)^*w = (S^*+T^*)w \quad \forall w \in W.$

2. Note that

$$\langle v, (\lambda T)^* w \rangle = \langle (\lambda T) v, w \rangle = \lambda \langle T v, w \rangle$$

= $\lambda \langle v, T^* w \rangle$
= $\langle v, \overline{\lambda} T^* w \rangle.$

So, we get $(\lambda T)^* w = \overline{\lambda} T^* w \quad \forall w \in W.$

3. Consider

$$\langle v, (T^*)^* w \rangle = \langle T^* v, w \rangle = \overline{\langle w, T^* v \rangle}$$

= $\overline{\langle Tw, v \rangle}$
= $\langle v, Tw \rangle.$

So, it is $(T^*)^*w = Tw \quad \forall w \in W.$

4. Note we have

$$\langle v, I^*w \rangle = \langle Iv, w \rangle = \langle v, w \rangle.$$

So, $I^*w = w \quad \forall w \in W$. That is, $I^* = I$. \Box

5. We have

$$\begin{aligned} \langle v, (ST)^*w \rangle &= \langle (ST)v, w \rangle = \langle S(Tv), w \rangle \\ &= \langle Tv, S^*w \rangle \\ &= \langle v, T^*(S^*w) \rangle \end{aligned}$$

So,
$$(ST)^*w = T^*(S^*w) = (T^*S^*)w \quad \forall w \in W.$$

Theorem 6.1.6 Null Space and Range of T^* Suppose $T \in \mathcal{L}(V, W)$. Then,

- 1. null $T^* = (\operatorname{range} T)^{\perp}$.
- 2. range $T = (T^*)^{\perp}$.
- 3. null $T = (\operatorname{range} T^*)^{\perp}$.
- 4. range $T^* = (\operatorname{null} T)^{\perp}$.

Proof 5.

- 1. Suppose $w \in \text{null } T^*$. Then, $T^*w = 0$. So, $\langle v, T^*w \rangle = 0$. That is, $\langle Tv, w \rangle = 0$ $\forall v \in 0$. Then, w is orthogonal to any Tv. That is, $w \in (\text{range } T)^{\perp}$. Conversely, if $w \in (\text{range } T)^{\perp}$, we have $\langle Tv, w \rangle = 0$, and thus $\langle v, T^*w \rangle = 0$, or $T^*w = 0$. That is, $w \in \text{null } T^*$. Hence, $\text{null } T^* = (\text{range } T)^{\perp}$. \Box
- 2. Note that $(\operatorname{null} T^*)^{\perp} = ((\operatorname{range} T)^{\perp})^{\perp} = \operatorname{range} T.$
- 3. Suppose $v \in \text{null } T$. Then, Tv = 0, and $\langle Tv, w \rangle = 0$. So, $\langle v, T^*w \rangle = 0 \quad \forall w \in W$. Then, v is orthogonal to every vectors in T^*w . So, $v \in (\text{range } T^*)^{\perp}$. In the other way around, if we assume $v \in (\text{range } T^*)^{\perp}$, then $\langle v, T^*w \rangle = \langle Tv, w \rangle = 0$. So, Tv = 0, and thus $v \in \text{null } T$. Hence, we have $\text{null } T = (\text{range } T^*)^{\perp}$. \Box

4. Consider
$$(\operatorname{null} T)^{\perp} = ((\operatorname{range} T^*)^{\perp})^{\perp} = \operatorname{range} T^*.$$

Definition 6.1.7 (Conjugate Transpose). The *conjugate transpose* of an $m \times n$ matrix is the $n \times m$ matrix obtained by interchanging the rows and columns and then taking the conjugate of each entry.

Theorem 6.1.8

Let $T \in \mathcal{L}(V, W)$. Suppose e_1, \dots, e_n is an orthonormal basis of V and f_1, \dots, f_m is an orthonormal basis of W. Then, $\mathcal{M}(T^*, (f_1, \dots, f_m), (e_1, \dots, e_m))$ is the conjugate transpose of $\mathcal{M}(T, (e_1, \dots, e_n), (f_1, \dots, f_m))$.

Proof 6. Suppose $\mathcal{M}(T)$ denote the matrix $\mathcal{M}(T, (e_1, \dots, e_n), (f_1, \dots, f_m))$ and let $\mathcal{M}(T^*)$ denote the matrix $\mathcal{M}(T^*, (f_1, \dots, f_m), (e_1, \dots, e_m))$. Then, note that $Te_k = \langle Te_k, f_1 \rangle f_1 + \dots + \langle Te_k, f_m \rangle f_m$. So,

$$(\mathcal{M}(T))_{j,k} = \langle Te_k, f_j \rangle.$$

Further, consider $T^*f_k = \langle T^*f_k, e_1 \rangle e_1 + \cdots + \langle T^*f_k, e_n \rangle e_n$. That is,

$$(\mathcal{M}(T^*))_{j,k} = \langle T^* f_k, e_j \rangle = \overline{\langle e_j, T^* f_k \rangle} \\ = \overline{\langle Te_j, f_k \rangle} \\ = \overline{(\mathcal{M}(T))_{k,j}}$$

So, we've shown that $\mathcal{M}(T^*)$ is the conjugate transpose of $\mathcal{M}(T)$. **Definition 6.1.9 (Self-Adjoint).** An operator $T \in \mathcal{L}(V)$ is called *self-adjoint* if $T = T^*$. In other words, $T \in \mathcal{L}(V)$ is self-adjoint if and only if $\langle Tv, w \rangle = \langle v, Tw \rangle \quad \forall v, w \in V$.

Theorem 6.1.10

The sum of two self-adjoint operators is self-adjoint, and the product of a real scalar and a selfadjoint operator is self-adjoint.

Proof 7.

1. Suppose $T, S \in \mathcal{L}(V)$ are self-adjoint. Then,

$$(S+T)^* = S^* + T^* = S + T.$$

So, S + T is self-adjoint. \Box

2. Let $\lambda \in \mathbb{R}$. Then,

$$(\lambda T)^* = \lambda T^* = \lambda T.$$

So, λT is self-adjoint.

Theorem 6.1.11

Every eigenvalue of a self-adjoint operator is real.

Proof 8. Suppose *T* is a self-adjoint operator on *V*. Let λ be an eigenvalue of *T*, and let *v* be a non-zero vector in *V* s.t. $Tv = \lambda v$. Then,

$$\lambda \|v\|^2 = \langle \lambda v, v \rangle = \langle Tv, v \rangle = \langle v, Tv \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \|v\|^2.$$

So, it must be $\lambda = \overline{\lambda}$, which means λ is real.

Theorem 6.1.12

Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$. Suppose $\langle Tv, v \rangle = 0 \quad \forall v \in V$. Then, T = 0.

Proof 9. Note that

$$\langle Tu, w \rangle = \frac{1}{4} \Big[\langle T(u+w), u+w \rangle - \langle T(u-w), u-w \rangle \Big]$$

$$+ \frac{\mathrm{i}}{4} \Big[\langle T(u+\mathrm{i}w), u+\mathrm{i}w \rangle - \langle T(u-\mathrm{i}w), (u-\mathrm{i}w) \rangle \Big]$$

$$= 0 \quad \forall u, w \in V.$$

Let $w = Tu \in V$. Then, $\langle Tu, Tu \rangle = 0$. That is, $Tu = 0 \quad \forall u \in V$. So, T = 0.

Theorem 6.1.13

Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$. Then, T is self-adjoint if and only if $\langle Tv, v \rangle \in \mathbb{R} \quad \forall v \in V$.

Proof 10.

 (\Rightarrow) Let $v \in V$. Then,

$$\langle Tv, v \rangle - \overline{\langle Tv, v \rangle} = \langle Tv, v \rangle - \langle v, Tv \rangle = \langle Tv, v \rangle - \langle T^*v, v \rangle = \langle (T - T^*)v, v \rangle$$
(16)

If $\langle Tv, v \rangle \in \mathbb{R}$ $\forall v \in V$, then Equation (16)= 0. That is, $\langle (T - T^*)v, v \rangle = 0$ $\forall v \in V$. So, $T - T^* = 0$, or $T = T^*$. That is, T is self-adjoint. \Box

(\Leftarrow) Conversely, if *T* is self-adjoint, then Equation (16)= 0. That is, $\langle Tv, v \rangle = \overline{\langle Tv, v \rangle} = 0$, or we have $\langle Tv, v \rangle = \overline{\langle Tv, v \rangle}$. This is equivalent to the conclusion $\langle Tv, v \rangle \in \mathbb{R}$.

Theorem 6.1.14

Suppose *T* is a self-adjoint operator on *V* s.t. $\langle Tv, v \rangle = 0$ $\forall v = V$. Then, T = 0.

Proof 11. We've already shown this to be true under a complex inner product space. Thus, we can assume V is a real inner product space. If $u, w \in V$, then

$$\langle Tu, w \rangle = \frac{1}{4} \langle T(u+w), u+w \rangle - \langle T(u-w), u-w \rangle$$
$$= 0 \quad \forall u, w \in V.$$

Let w = Tu. Then, $\langle Tu, Tu \rangle = 0$, or $Tu = 0 \quad \forall u \in V$. So, T = 0. **Definition 6.1.15 (Normal Operator).** An operator on an inner product space is called *normal* if it commutes with its adjoint. In other words, $T \in \mathcal{L}(V)$ is normal if $TT^* = T^*T$.

Example 6.1.16 Let T be the operator on \mathbb{F}^2 whose matrix with respect to the standard basis is

 $\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}.$

Show that *T* is not self-adjoint but is still normal. **Proof 12.** Since $\mathcal{M}(T) = \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}$ and $\mathcal{M}(T^*) = \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix}$, then $\mathcal{M}(T) \neq \mathcal{M}(T^*)$, and thus it is not self-adjoint. However, note that $\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 13 & 0 \\ 0 & 13 \end{pmatrix}$ and $\begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 13 & 0 \\ 0 & 13 \end{pmatrix}.$

So, by definition, *T* is normal.

Theorem 6.1.17

An operator $T \in \mathcal{L}(V)$ is normal if and only if $||Tv|| = ||T^*v|| \quad \forall v \in V$.

Proof 13. Note that

$$T \text{ is normal} \iff T^*T - TT^* = 0$$

$$\iff \langle (T^*T - TT^*)v, v \rangle = 0 \quad \forall v \in V$$

$$\iff \langle T^*Tv, v \rangle = \langle TT^*v, v \rangle \quad \forall v \in V$$

$$\iff \langle Tv, Tv \rangle = \langle T^*v, T^*v \rangle \quad \forall v \in V$$

$$\iff ||Tv||^2 = ||T^*v||^2 \quad \forall v \in V.$$

Since $||Tv|| \ge 0$ and $||T^*v|| \ge 0$, it is equivalent to

 $||Tv|| = ||T^*v|| \quad \forall v \in V.$

Theorem 6.1.18

Suppose $T \in \mathcal{L}(V)$ is normal and $v \in V$ is an eigenvector of T with eigenvalue λ . Then, v is also an eigenvector of T^* with eigenvalue $\overline{\lambda}$.

Proof 14. Note that $(T - \lambda I)^* = T^* - \overline{\lambda}I$. Consider $(T - \lambda I)(T - \lambda I)^* = TT^* - \overline{\lambda}T - \lambda T^* + \lambda \overline{\lambda}$ and $(T - \lambda I)^*(T - \lambda I) = T^*T - \overline{\lambda}T - \lambda T^* + \lambda \overline{\lambda}$. Since, T is normal, $TT^* = T^*T$. So.

$$(T - \lambda I)(T - \lambda I)^* = (T - \lambda I)^*(T - \lambda I).$$

That is, $T - \lambda I$ is also normal. So, by Theorem 6.1.17, we have

$$\|(T - \lambda I)v\| = \|(T^* - \overline{\lambda}I)v\| = 0.$$

That is, $T^*v = \overline{\lambda}v$, or v is an eigenvector of T^* with eigenvalue $\overline{\lambda}$.

Theorem 6.1.19

Suppose $T \in \mathcal{L}(V)$ is normal. Then, eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

Proof 15. Suppose α, β are distinct eigenvalues of T, with corresponding eigenvectors u, v. Then, $Tu = \alpha u$ and $Tv = \beta v$. By Theorem 6.1.18, we have $T^*v = \overline{\beta}v$. So, we have

$$\begin{aligned} (\alpha - \beta)\langle u, v \rangle &= \langle \alpha u, v \rangle - \langle u, \overline{\beta}v \rangle \\ &= \langle Tu, v \rangle - \langle U, T^*v \rangle \\ &= \langle Tu, v \rangle - \langle Tu, v \rangle \\ &= 0. \end{aligned}$$

Since $\alpha \neq \beta$, it must be $\langle u, v \rangle = 0$. So, u and v are orthogonal.

6.2 The Spectral Theorem

Theorem 6.2.1 Complex Spectral Theorem

Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then, the following are equivalent:

1. T is normal.

- 2. *V* has an orthonormal basis consisting of eigenvectors of *T*.
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*.

Proof 1. Note that (2) \iff (3) is obvious by Theorem 4.3.5. No we need to show (3) \iff (1) to complete the proof. \Box

Suppose (3). Then, $\mathcal{M}(T)$ is diagonal. That is, $\mathcal{M}(T^*)$ is also diagonal. Then, $\mathcal{M}(T)\mathcal{M}(T^*) = \mathcal{M}(T^*)\mathcal{M}(T)$. That is $\mathcal{M}(TT^*) = \mathcal{M}(T^*T)$, or $TT^* = T^*T$. So, T is normal. \Box

Suppose (1). That is, *T* is normal. Then, by Schur's Theorem, \exists an orthonormal basis e_1, \dots, e_n of *V* s.t. $\mathcal{M}(T, (e_1, e_n))$ is an upper triangular matrix. Suppose

$$\mathcal{M}(T, (e_1, \cdots, e_n)) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}.$$

Then,

$$\mathcal{M}(T^*, (e_1, \cdots, e_n)) = \begin{pmatrix} \overline{a_{1,1}} & 0\\ \vdots & \ddots & \\ \overline{a_{1,n}} & \cdots & \overline{a_{n,n}} \end{pmatrix}.$$

Then, $Te_1 = a_{1,1}e_1$ and $T^*e_1 = \overline{a_{1,1}}e_1 + \dots + \overline{a_{1,n}}e_n$. Further, note that $||Te_1||^2 = |a_{1,1}|^2$ and $||T^*e_1||^2 = |a_{1,1}|^2 + \dots + |a_{1,n}|^2$. Since $||Te_1||^2 = ||T^*e_1||^2$, we have $|a_{1,1}|^2 = |a_{1,1}|^2 + \dots + |a_{1,n}|^2$. Then, it must be that $|a_{1,2}|^2 + \dots + |a_{1,n}|^2 = 0$. Applying this procedure to $||Te_2||^2 = ||T^*e_2||^2, \dots, ||Te_n||^2 = ||T^*e_n||^2$, we have $|a_{j,k}| = 0$ when $j \neq k$. So, $\mathcal{M}(T)$ is a diagonal matrix.

Lemma 6.2.2 Invertible Quadratic Expressions Suppose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ are *s.t.* $b^2 < 4c$. Then, $T^2 + bT + cI$ is invertible.

Proof 2. Let $v \in V$ s.t. $v \neq 0$. Note that

$$\begin{split} \langle (T^2 + bT + cI)v, v \rangle &= \langle T^2v, v \rangle + b \langle Tv, v \rangle + c \langle v, v \rangle \\ &= \langle Tv, Tv \rangle + b \langle Tv, v \rangle + c \|v\|^2 & T \text{ is self - adjoint} \\ &\geq \|Tv\|^2 - |b| \|Tv\| \|v\| + c \|v\|^2 & Cauchy - Schwarz \\ &= \left(\|Tv\| - \frac{|b| \|v\|}{2} \right)^2 + \left(c - \frac{b^2}{4} \right) \|v\|^2 \\ &> 0 & b^2 < 4c \end{split}$$

Then, $\forall v \neq 0$, $\langle (T^2 + bT + cI)v, v \rangle > 0$. So, it must be that $(T^2 + bT + cI)v = 0$ if and only if v = 0. Then, null $(T^2 + bT + cI) = \{0\}$. Thus, $T^2 + bT + cI$ is injective, and thus it is invertible.

Lemma 6.2.3 Suppose $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ is a self-adjoint operator. Then, T has an eigenvalue. **Proof 3.** Let $m = \dim V$ and choose $v \in V$. Then, $v, Tv, \dots, T^n v$ cannot be L.I. because we have $n + 1 > \dim V$ vectors in the list. So, $\exists a_0, \dots, a_n \in \mathbb{R}$ *s.t.* $a_0v + a_1Tv + \dots + a_nT^nv = 0$. Make the *a*'s the coefficient of a polynomial then

$$a_0 + a_1 x + \dots + a_n x^n = c(x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M)(x - \lambda_1) \cdots (x - \lambda_m),$$

where *c* is a non-zero real number, each $b_i, c_i, \lambda_i \in \mathbb{R}$, each $b_i < 4c_i$, and $m + M \ge 1$. Then, we have

$$0 = a_0 v + a_1 T v + \dots + a_n T^n v$$

= $(a_0 I + a_1 T + \dots + a_n T^n) v$
= $c(T^2 + b_1 T + c_1 I) \cdots (T^2 + b_M T + c_M I)(T - \lambda_1 I) \cdots (T - \lambda_m I)$

By Lemma 6.2.2, $T^2 + b_j T + c_j I$ is invertible. Since $c \neq 0$, it must be that $0 = (T - \lambda_1 I) \cdots (T - \lambda_m I)$. Hence, $T - \lambda_j I$ is not injective for at least one j. So, T has at least one eigenvalue.

Definition 6.2.4 (Restriction Operator, $T|_U$). Suppose $T \in \mathcal{L}(V)$ and U is an invariant subspace of V under T. Then, the *restriction operator*, $T|_U \in \mathcal{L}(V)$, is defined as $T|_U(u) = Tu$ for $u \in U$.

Theorem 6.2.5

Suppose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then,

- 1. U^{\perp} is invariant under *T*;
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint;
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint.

Proof 4.

- 1. Suppose $v \in U^{\perp}$ and $u \in U$. Then, $\langle v, Tu \rangle = \langle Tv, u \rangle = 0$ since U is invariant under T (and hence $Tu \in U$) and $v \in U^{\perp}$. Then, we have $Tv \in U^{\perp} \quad \forall v \in U^{\perp}$, proving U^{\perp} is an invariant subspace under T. \Box
- 2. Note that if $u, v \in U$, then

$$\langle (T|_U)u, v \rangle = \langle Tu, v \rangle = \langle u, Tv \rangle = \langle u, (T|_U)v \rangle.$$

Therefore, $T|_U$ is self-adjoint. \Box

3. Replace *U* with U^{\perp} in (2) and apply the conclusion from (1), and we complete the proof.

Theorem 6.2.6 Real Spectral Theorem

Suppose $\mathbb{F} = \mathbb{R}$ and $T \in \mathcal{L}(V)$. Then, the following are equivalent:

- 1. *T* is self-adjoint;
- 2. V has an orthonormal basis consisting of eigenvectors of T.
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*.

Proof 5. Similar to the complex case, (2) \iff (3) is obvious. So, we will show (3) \implies (1) and (1) \implies (2) to complete the proof. \Box

Suppose (3) holds. Then, $\mathcal{M}(T)$ is diagonal. So, we have $\mathcal{M}(T)^t = \mathcal{M}(T)$. That is, $T = T^*$, and thus T is self-adjoint. \Box

Suppose (1) holds. We will use mathematical induction on dim V. Base Case When dim V = 1. Clearly, (1) \Longrightarrow (2). Inductive Steps Assume dim V > 1 and (1) \Longrightarrow (2) holds for all cases with dimension dim V - 1. Let u be an eigenvector of T with ||u|| = 1. Let $U = \operatorname{span}(u)$. Then, dim U = 1. Since $V = U \oplus U^{\perp}$, we know dim $U^{\perp} = \dim V - \dim U = \dim V - 1$. So, (1) \Longrightarrow (2) holds on U^{\perp} . That is, \exists an orthonormal basis of U^{\perp} consisting of eigenvectors of $T|_{U^{\perp}}$. Now, add u to this orthonormal basis, we get a basis of V. Further since $u \in U$, this basis is an orthonormal basis of V consisting of eigenvectors of T.

6.3 **Positive Operators and Isometries**

Definition 6.3.1 (Positive Operator). An operator $T \in \mathcal{L}(V)$ is called *positive* if T is self-adjoint and $\langle Tv, v \rangle \geq 0 \quad \forall v \in V$.

Definition 6.3.2 (Square Root). An operator *R* is called a *square root* of an operator *T* if $R^2 = T$.

Example 6.3.3 Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ and $R \in \mathcal{L}(\mathbb{R}^3)$ be defined as $T(z_1, z_2, z_3) = (z_3, 0, 0)$ and $R(z_1, z_2, z_3) = (z_2, z_3, 0)$. Then, *R* is a square root of *T*. **Proof 1.** Since $R^2(z_1, z_2, z_3) = R(z_2, z_3, 0) = (z_3, 0, 0) = T(z_1, z_2, z_3)$, *R* is a square root of *T*.

 $1 (v_1, v_2, v_3) = 1 (v_2, v_3, v_3) = 1 (v_2, v_3, v_3) = 1 (v_1, v_2, v_3), 1 (v_1, v_2, v_3), 1 (v_1, v_2, v_3) = 1 (v_1$

Theorem 6.3.4 Characterization of Positive Operators

Let $T \in \mathcal{L}(V)$. Then, the following are equivalent:

- 1. *T* is positive;
- 2. T is self-adjoint and all the eigenvalues of T are non-negative;
- 3. *T* has a positive square root;
- 4. *T* has a self-adjoint square root;
- 5. \exists an operator $R \in \mathcal{L}(V)$ *s.t.* $T = R^*R$.

Proof 2.

(1) \implies (2): Since *T* is positive, then *T* is self-adjoint. Let λ be an eigenvalue of *T*. Then, $Tv = \lambda v$ for some $v \in V$. Then, $\langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2$. Since *T* is positive, $\langle Tv, v \rangle \ge 0$. Further since $||v||^2 \ge 0$, it must also be $\lambda \ge 0$. So, we complete the proof. \Box

(2) \implies (3): Suppose *T* is self-adjoint and all the eigenvalues of *T* are non-negative. By the Spectrum Theorem, \exists an orthonormal basis e_1, \dots, e_n , where e_1, \dots, e_n are eigenvectors of *T*. Let $\lambda_1, \dots, \lambda_n$ be the corresponding eigenvalues, where $\lambda_i \ge 0$. Let $R \in \mathcal{L}(V)$ s.t. $Re_i = \sqrt{\lambda_i}e_i$. Then

$$\langle Rv, v \rangle = \left\langle a_1 \sqrt{\lambda_1} e_1 + \dots + a_n \sqrt{\lambda_n} e_n, a_1 e_1 + \dots + a_n e_n \right\rangle$$
$$= |a_1|^2 \sqrt{\lambda_1} + \dots + |a_n|^2 \sqrt{\lambda_n} \ge 0.$$

Further, we can verity R is self-adjoint (proof omitted). So, R is positive by definition. Note that

$$R^{2}e_{j} = R\left(\sqrt{\lambda_{j}}e_{j}\right) = \sqrt{\lambda_{j}}\sqrt{\lambda_{j}}e_{j} = \lambda_{j}e_{j} = Te_{j}.$$

So, *R* is a square root of *T*. \Box

(3) \implies (4): Suppose *T* has a positive square root. By definition, positive operators are self-adjoint.

(4) \implies (5): Suppose *T* has a self-adjoint square root. Then, we have $R \in \mathcal{L}(V)$ s.t. $R^* = R$ and $R^2 = T$. That is, $T = R^2 = RR = R^*R$. \Box

(5) \implies (1): Suppose \exists an operator $R \in \mathcal{L}(V)$ *s.t.* $T = T^*T$. Then,

$$T^* = (R^*R)^* = R^*(R^*)^* = R^*R = T.$$

So, T is self-adjoint. Now, since

$$\langle Tv, v \rangle = \langle R^* Rv, v \rangle = \langle Rv, Rv \rangle = ||Rv||^2 \ge 0,$$

we have *T* is a positive operator.

Theorem 6.3.5

Each positive operator on V has a unique positive square root.

Proof 3. Let *T* be a positive operator on *V*. Select *v* to be an eigenvector of *T* with corresponding eigenvalue of λ . Then, we have $Tv = \lambda v$. Let *R* be a positive square root of *T*. Apply Spectrum Theorem to *R*, then \exists an orthonormal basis e_1, \dots, e_n , where e_1, \dots, e_n are eigenvectors of *R*. Then, $\exists \lambda_1, \dots, \lambda_n \geq 0$ s.t. $Re_j = \sqrt{\lambda_j}e_j$. Suppose $v \in V$ and $v = a_1e_1 + \dots + a_ne_n$. Then,

$$Rv = a_1\sqrt{\lambda_1}e_1 + \dots + a_n\sqrt{\lambda_n}e_n$$
 and $R^2v = a_1\lambda_1e_1 + \dots + a_n\lambda_ne_n$.

Further, $Tv = \lambda v = \lambda a_1 e_1 + \dots + \lambda a_n e_n$. Since $R^2 v = Tv$, we know

$$a_1(\lambda_1 - \lambda)e_1 + \dots + a_n(\lambda_n - \lambda)e_n = 0$$

Since e_1, \dots, e_n is an orthonormal basis, for each $j = 1, \dots, n$, we have $a_j(\lambda_j - \lambda) = 0$. So, it must be $a_j = 0$ or $\lambda_j = \lambda$. If $a_j = 0$, then we can delet it from the representation of v. So,

$$v = \sum_{\{j|\lambda_j = \lambda\}} a_j e_j$$

Hence,

$$Rv = \sum_{\{j|\lambda_j = \lambda\}} a_j \sqrt{\lambda} e_j = \sqrt{\lambda}v.$$

Definition 6.3.6 (Isometry). An operator $S \in \mathcal{L}(V)$ is called an *isometry* if $||Sv|| = ||v|| \quad \forall v \in V$. In other words, an operator is an isometry if ti preserves norms.

Example 6.3.7 Let $\lambda_1, \dots, \lambda_n \in \mathbb{F}$ with $|\lambda_j|$ and $S \in \mathcal{L}(V)$ *s.t.* $Se_j = \lambda_j e_j$ for some orthonormal bases e_1, \dots, e_n of V. Then, S is an isometry.

Proof 4. Let $v \in V$. Then, $v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$. So, $||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_n \rangle|^2$. Further, $Sv = \lambda_1 \langle v, e_1 \rangle e_1 + \dots + \lambda_n \langle v, e_n \rangle e_n$, and thus $||Sv||^2 = |\lambda_1|^2 |\langle v, e_1 \rangle|^2 + \dots + |\lambda_n|^2 |\langle v, e_n \rangle|^2$. Since $|\lambda_j| = 1$, we know

$$||Sv||^{2} = |\langle v, e_{1} \rangle|^{2} + \dots + |\langle v, e_{n} \rangle|^{2} = ||v||^{2}.$$

So, ||Sv|| = ||v|| since $||Sv|| \ge 0$ and $||v|| \ge 0$. That is, by definition, S is an isometry.

Theorem 6.3.8 Characterization of Isometries

Suppose $S \in \mathcal{L}(V)$. Then, the following are equivalent:

- 1. *S* is an isometry.
- 2. $\langle Su, Sv \rangle = \langle u, v \rangle \quad \forall u, v \in V;$
- 3. Se_1, \dots, Se_n is orthonormal for every orthonormal list of vectors e_1, \dots, e_n in V;
- 4. \exists an orthonormal basis e_1, \dots, e_n of *V* s.t. Se_1, \dots, Se_n is orthonormal;
- 5. $S^*S = I$;
- 6. $SS^* = I;$
- 7. S^* is an isometry;
- 8. *S* is invertible and $S^{-1} = S^*$.

Proof 5.

(1) \implies (2): Note that

$$\begin{split} \langle Su, Sv \rangle &= \frac{\|Su + Sv\|^2 - \|Su - Sv\|^2}{4} = \frac{\|S(u + v)\|^2 - \|S(u - v)\|^2}{4} \\ &= \frac{\|u + v\|^2 - \|u - v\|^2}{4} \\ &= \langle u, v \rangle \quad \Box \end{split}$$

(2) \implies (3): We have

$$\langle Se_i, Se_j \rangle = \langle e_i, e_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

So, Se_1, \cdots, Se_n are orthonormal. \Box

(3) \implies (4): Suppose e_1, \dots, e_m is orthonormal. We can extend it to a basis of $V: e_1, \dots, e_m, v_{m+1}, \dots, v_n$. Then, apply the Gram-Schmidt Procedure, we get an orthonormal basis, $e_1, \dots, e_m, e_{m+1}, \dots, e_n$ of V.

(4) \implies (5): Suppose e_1, \dots, e_n is an orthonormal basis of V. Then,

$$\langle S^*Se_j, e_k \rangle = \langle Se_j, Se_k \rangle = \langle e_j, e_j \rangle.$$

Suppose $u, v \in V$ s.t. $u = a_1e_1 + \cdots + a_ne_n$ and $v = b_1e_1 + \cdots + b_ne_n$. Then,

$$\begin{split} \langle S^*Su, v \rangle &= \langle Su, Sv \rangle = \langle S(a_1e_1 + \dots + a_ne_n), S(b_1e_1 + \dots + b_ne_n) \rangle \\ &= \langle a_1Se_1 + \dots + a_nSe_n, b_1Se_1 + \dots + b_nSe_n \rangle \\ &= \langle a_1Se_1, b_1Se_1 \rangle + \dots + \langle a_nSe_n, b_nSe_n \rangle \\ &= a_1\overline{b_1} \|Se_1\|^2 + \dots + a_n\overline{b_n} \|Se_n\|^2 \\ &= a_1\overline{b_1} + \dots + a_n\overline{b_n} \\ &= \langle u, v \rangle. \end{split}$$

So, $S^*Su = u$, or $S^*S = I$. \Box

(5) \implies (6): Suppose $S^*S = I$. Then, $S = S^*$. So, $SS^* = I$.

(6) \implies (7): Suppose $S^*S = I$. Then,

$$||S^*v||^2 = \langle S^*v, S^*v \rangle = \langle SS^*v, v \rangle = \langle v, v \rangle = ||v||^2. \qquad \Box$$

(7) \implies (8): Suppose S^* is an isometry. Then, we know $S^*S = I$ and $SS^* = I$ by the proofs done above. So, S is invertible, and $S^{-1} = S^*$. \Box

(8) \implies (1): Finally, suppose S is invertible and $S^{-1} = S^*$. Then, $S^*S = I$. Note that

$$||Sv||^2 = \langle Sv, Sv \rangle = \langle S^*Sv, v \rangle = \langle v, v \rangle = ||v||^2.$$

Theorem 6.3.9

Suppose V is a complex inner product space and $S \in \mathcal{L}(V)$. Then, S is an isometry if and only if \exists an orthonormal basis of V consisting of eigenvectors of S whose corresponding eigenvalues all have absolute value of 1.

Proof 6.

 (\Rightarrow) : By the Spectrum Theorem, \exists an orthonormal basis e_1, \dots, e_n , where e_1, \dots, e_n are eigenvectors of *S*. Suppose $\lambda_1, \dots, \lambda_n$ are the corresponding eigenvalues. Then, we have

$$\|Se_j\| = \|\lambda_j e_j\| = |\lambda_j|.$$

Since *S* is an isometry, $||Se_j|| = ||e_j|| = 1$. So, $|\lambda_j| = ||Se_j|| = 1$. \Box

(\Leftarrow): This direction is proven in Example 6.3.7.

6.4 Polar Decomposition and SVD

Notation 6.4.1. If *T* is a positive operator, then \sqrt{T} denotes the unique positive square root of *T*.

Remark. We want to verify that the definition of $\sqrt{T^*T}$ is reasonable: $\langle T^*Tv, v \rangle = \langle Tv, Tv \rangle \ge 0$. Also, $(T^*T)^* = T^*T$. So, T^*T is a positive operator, and thus $\sqrt{T^*T}$ is well-defined.

Theorem 6.4.2 Polar Decomposition

Suppose $T \in \mathcal{L}(V)$. Then, \exists an isometry $S \in \mathcal{L}(V)$ s.t. $T = S\sqrt{T^*T}$.

Proof 1.

Step 1 Characteristics of range $\sqrt{T^*T}$: Note that

$$\begin{split} |Tv||^2 &= \langle Tv, Tv \rangle = \langle T^*Tv, v \rangle \\ &= \langle \sqrt{T^*T}\sqrt{T^*T}v, v \rangle \\ &= \langle \sqrt{T^*T}v, \sqrt{T^*T}v \rangle \\ &= \|\sqrt{T^*T}v\|^2. \end{split}$$

So, $\forall v \in V$, we have $||Tv|| = ||\sqrt{T^*T}v||$. Define S_1 : range $\sqrt{T^*T} \to \text{range } T$ as $S_1(\sqrt{T^*T}v) = Tv$. Then, we have $||S_1\sqrt{T^*T}v|| = ||Tv||$.

1. Now, we want to verify that S_1 is well-defined. Suppose $v_1, v_2 \in V$ s.t. $\sqrt{T^*T}v_1 = \sqrt{T^*T}v_2$. Then,

$$||Tv_1 - Tv_2|| = ||T(v_1 - v_2)|| = ||\sqrt{T^*T}(v_1 - v_2)||$$

= $||\sqrt{T^*T}v_1 - \sqrt{T^*T}v_2||$
= 0.

So, S_1 is well-defined.

- 2. Further, we want to show S_1 is linear. By using the linearity of T, we can easily prove that S_1 is also linear.
- 3. Additionally, S_1 is surjective by definition of S_1 .
- 4. Also, S_1 is isometry. Note that $\forall u \in \text{range } \sqrt{T^*T}$, we have $||S_1u|| = ||u||$ since $||\sqrt{T^*T}v|| = ||Tv||$.
- 5. Hence, S_1 is injective: Note that $||S_1v|| = 0$ if and only if ||v|| = 0, which is equivalent to v = 0. So, null $S_1 = \{0\}$. \Box

Step 2 Extend S_1 to an isometry on V. Note that we have dim range $\sqrt{T^*T} = \dim \operatorname{range} T$. So, we know dim $\left(\operatorname{range} \sqrt{T^*T}\right)^{\perp} = \dim (\operatorname{range} T)^{\perp}$. Select an orthonormal basis e_1, \dots, e_m of $\left(\operatorname{range} \sqrt{T^*T}\right)^{\perp}$ and an orthonormal basis f_1, \dots, f_m of $(\operatorname{range} T)^{\perp}$. Now, let's define $S_2 : \left(\operatorname{range} \sqrt{T^*T}\right)^{\perp} \to (\operatorname{range} T)^{\perp}$ as $S_1(a_1e_1 + \dots + a_me_m) = a_1f_1 + \dots + a_mf_m$. We can then not only show S_2 is well-defined but also S_2

is linear. Moreover, $\forall w \in \left(\operatorname{range} \sqrt{T^*T} \right)^{\perp}$, if $w = a_1 e_1 + \cdots + a_m e_m$, we have

$$|S_2w||^2 = ||S_2(a_1e_1 + \dots + a_me_m)||^2 = ||a_1f_1 + \dots + a_mf_m||^2$$

= $|a_1|^2 + \dots + |a_m|^2$
= $||a_1e_1 + \dots + a_me_m||^2$
= $||w||^2$.

So, $||S_2w|| = ||w||$. Now, we define

$$Sv = \begin{cases} S_1v, & v \in \text{range } \sqrt{T^*T} \\ S_2v, & v \in \left(\text{range } \sqrt{T^*T}\right)^{\perp} \end{cases}$$

Note that since $V = \operatorname{range} \sqrt{T^*T} \oplus \left(\operatorname{range} \sqrt{T^*T}\right)^{\perp}$, we can uniquely represent $v \in V$ as v = u + wfor some $u \in \operatorname{range} \sqrt{T^*T}$ and $w \in \left(\operatorname{range} \sqrt{T^*T}\right)^{\perp}$. Hence, we can also write the definition of S as $Sv = S_1u + S_2w$. If we select $\sqrt{T^*T}v \in \operatorname{range} \sqrt{T^*T}$, then we have $S\left(\sqrt{T^*T}v\right) = S_1\left(\sqrt{T^*T}v\right) = Tv$. Therefore, $T = S\sqrt{T^*T} \quad \forall v \in V$. \Box

Finally, we will show S is an isometry. Note that v = u + w. So, by Pythagorean Theorem,

$$||Sv||^{2} = ||S_{1}u + S_{2}w||^{2} ||S_{1}u||^{2} + ||S_{2}w||^{2}$$
$$= ||u||^{2} + ||w||^{2}$$
$$= ||v||^{2}.$$

Definition 6.4.3 (Singular Values). Suppose $T \in \mathcal{L}(V)$. The *singular values* of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ repeated dim $E(\lambda, \sqrt{T^*T})$ times.

Example 6.4.4 Define $T \in \mathcal{L}(\mathbb{F}^4)$ by

$$T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$$

Find the singular values of T.

Solution 2.

Suppose $v = (z_1, z_2, z_3, z_4) \in \mathbb{F}^4$ and $w = (y_1, y_2, y_3, y_4) \in \mathbb{F}^4$. Consider

$$\begin{aligned} \langle v, T^*w \rangle &= \langle Tv, w \rangle \\ &= \langle (0, 3z_1, 2z_2, -3z_4), (y_1, y_2, y_3, y_4) \rangle \\ &= 3z_1 \overline{y_2} + 2z_2 \overline{y_3} - 3z_4 \overline{y_4} \\ &= \langle (z_1, z_2, z_3, z_3), (3y_2, 2y_3, 0, -3y_4) \rangle. \end{aligned}$$

So, $T^*w = T^*(y_1, y_2, y_3, y_4) = (3y_2, 2y_3, 0, -3y_4)$. Then, $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4)$. Then, $\sqrt{T^*T}(z_2, z_2, z_3, z_4) = (3z_1, 2z_2, 0, 3z_4)$. So, the eigenvalues of $\sqrt{T^*T}$ are 3, 2, and 0. Also,

$$\dim E\left(3,\sqrt{T^*T}\right) = 2, \quad \dim E\left(2,\sqrt{T^*T}\right) = \dim E\left(0,\sqrt{T^*T}\right) = 1.$$

So, the singular values are 3, 3, 2, 0.

Theorem 6.4.5 Singular Value Decomposition (SVD) Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \dots, s_n . Then, \exists orthonormal bases e_1, \dots, e_n and f_1, \dots, f_n of V s.t. $Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$ for every $v \in V$.

Remark. Relevant Theorem used in proving SVD: Spectrum Theorem, Characterization and Properties of Isometry, and Polar Decomposition.

Proof 3. Apply the Spectrum Theorem to $\sqrt{T^*T}$, we know \exists an orthonormal basis e_1, \dots, e_n of V s.t.

$$\sqrt{T^*T}e_j = s_j e_j \quad \forall j = 1, \cdots, n.$$

Note that $\forall v \in V$, we have

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n \tag{17}$$

Apply $\sqrt{T^*T}$ to Equation (17) we have

$$\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \dots + s_n \langle v, e_n \rangle e_n.$$
(18)

By Polar Decomposition, \exists an isometry $S \in \mathcal{L}(V)$ s.t. $T = S\sqrt{T^*T}$. Apply S to Equation (18), we get

$$S\left(\sqrt{T^*T}v\right) = s_1 \langle v, e_1 \rangle Se_1 + \dots + s_n \langle v, e_n \rangle Se_n.$$

By the characteristics of isometry, since e_1, \dots, e_n is an orthonormal basis, Se_1, \dots, Se_n is also an orthonormal basis. Let $f_j = Se_j$. Then,

$$Tv = S\sqrt{T^*Tv} = s_1\langle v, e_e \rangle f_1 + \dots + s_n\langle v, e_n \rangle f_n.$$

Theorem 6.4.6

Suppose $T \in \mathcal{L}(V)$. Then, the singular values of T are the non-negative square roots of the eigenvalues of T^*T , with each eigenvalue λ repeated dim $E(\lambda, T^*T)$ times.

Proof 4. By the Spectrum Theorem, \exists an orthonormal basis e_1, \dots, e_n and non-negative number $\lambda_1, \dots, \lambda_n$ *s.t.* $T^*Te_j = \lambda_j e_j \quad \forall j = 1, \dots, n$. Then, we have $\sqrt{T^*Te_j} = \sqrt{\lambda_j}e_j \quad \forall j = 1, \dots, n$, which completes the proof.

7 Operators on Complex Vector Spaces

7.1 Generalized Eigenvectors, Nilpotent Operators

Theorem 7.1.1 Suppose $T \in \mathcal{L}(V)$. Then,

 $\{0\} \subseteq \operatorname{null} T^0 \subseteq \operatorname{null} T^1 \subseteq \cdots \subseteq \operatorname{null} T^k \subseteq \operatorname{null} T^{k+1} \subseteq \cdots$

Proof 1. Let $k \in \mathbb{N}^+$. Let $v \in \text{null } T^k$. Then, $T^k v = 0$. Then, we know $T(T^k v) = T^{k+1}v = 0$. So, $v \in \text{null } T^{k+1}$. That is, null $T^k \subseteq \text{null } T^{k+1}$ as desired.

Theorem 7.1.2

Suppose $T \in \mathcal{L}(V)$. Suppose m is a non-negative integer s.t. null T^m = null T^{m+1} . Then,

null T^m = null T^{m+1} = null T^{m+2} = null T^{m+3} = ...

Proof 2. Let $k \in \mathbb{N}$. We've already shown null $T^{m+k} \subseteq$ null T^{m+k+1} in Theorem 7.1.1. Now, let $v \in$ null T^{m+k+1} . So, $T^{m+k+1}(v) = 0$. That is, $T^{m+1}(T^k v) = 0$. So, $T^k v \in$ null $T^{m+1} =$ null T^m . In other words, $T^m(T^k v) = T^{m+k}(v) = 0$. So, $v \in$ null T^{m+k} . Then, null $T^{m+k+1} \subseteq$ null T^{m+k} . Hence,

null T^{m+k} = null T^{m+k+1} .

Theorem 7.1.3 Suppose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then,

null T^n = null T^{n+1} = null T^{n+2} = · · ·

Proof 3. Suppose for the sake of contradiction that null $T^n \neq$ null T^{n+1} . Then,

null $T^0 \not\subseteq$ null $T \not\subseteq T^2 \not\subseteq \cdots \not\subseteq$ null $T^n \not\subseteq T^{n+1}$.

As the symbol \nsubseteq means "contained in but not equal to," at each of the strict inclusions in the chain above, the dimension increases by at least 1. That is, dim null $T^{n+1} \ge n + 1$. * This is a contradiction because a subspace of V (null T^{n+1}) cannot be a dimension larger than dim V = n. So, it must be that our assumption is wrong, and null $T^n = \text{null } T^{n+1}$.

Theorem 7.1.4 Suppose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then,

 $V = \operatorname{null} T^n \oplus \operatorname{range} T^n.$

Proof 4. Note that dim $V = \text{dim null } T^n + \text{dim range } T^n$ by the Fundamental Theorem of Linear Maps. So, we only need to prove $(\text{null } T^n) \cap (\text{range } T^n) = \{0\}$. Let $v \in (\text{null } T^n) \cap (\text{range } T^n)$. Then, $\exists u \in V \text{ s.t. } v = T^n u$. Since $v \in \text{null } T^n$, $T^N v = T^n(T^n u) = 0$. That is, $T^{2n}u = T^n v = 0$. Therefore, $u \in V$.

null T^{2n} = null T^n . So, we now have $T^n u = 0$. Hence, $v = T^n u = 0$. Then, i (null T^n) \cap (range T^n) = {0}, and thus V = null $T^n \oplus$ range T^n .

Definition 7.1.5 (Generalized Eigenvector). Suppose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is called a *generalized eigenvector* of T corresponding to λ if $v \neq 0$ and $(T - \lambda I)^j v = 0$ for some positive integer j.

Definition 7.1.6 (Generalized Eigenspace, $G(\lambda, T)$). Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The *generalized eigenspace* of T corresponding to λ , denoted $G(\lambda, T)$, is defined to be the set of all generalized eigenvectors of T corresponding to λ , along with the 0 vector.

Theorem 7.1.7 Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then,

 $G(\lambda, T) = \operatorname{null} (T - \lambda I)^{\dim V}.$

Proof 5.

(\subseteq): Let $v \in G(\lambda, T)$. Then, $\exists j \in \mathbb{N}^+$ *s.t.*

 $v \in \operatorname{null} (T - \lambda I)^j$.

Since null $(T - \lambda I)^j \subseteq$ null $(T - \lambda)^{j+1} \subseteq \cdots \subseteq$ null $(T - \lambda I)^{\dim V}$, we have $v \in$ null $(T - \lambda I)^{\dim V}$. So, $G(\lambda, T) \subseteq$ null $(T - \lambda I)^{\dim V}$.

(\supseteq): Conversely, suppose $v \in \text{null } (T - \lambda I)^{\dim V}$. Then,

$$(T - \lambda I)^{\dim V} v = 0.$$

By definition, *v* is a generalized eigenvector, and so $v \in G(\lambda, T)$. Then, null $(T - \lambda I)^{\dim V} \subseteq G(\lambda, T)$.

Theorem 7.1.8

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding generalized eigenvectors. Then, v_1, \ldots, v_m is L.I..

Proof 6. Let $a_1, \ldots, a_m \in \mathbb{C}$ s.t.

 $0 = a_1 v_1 + \dots + a_m v_m. \tag{19}$

Let k be the largest non-negative integer such that $(T - \lambda_1 I)^k v_1 \neq 0$. Let $w = (T - \lambda_1)^k v_1$, then

$$(T - \lambda_1 I)w = (T = \lambda_1 I)(T - \lambda_1 I)^k v = 0$$
$$= (T - \lambda_1 I)^{k+1} v = 0$$

So, w is an eigenvector, and

$$Tw = \lambda_1 w. \tag{20}$$

Minus λw from both sides of Equation (20), we have

$$(T - \lambda I)w = (\lambda_1 - \lambda)w \quad \forall v \in \mathbb{F}$$

Then, $(T-\lambda I)^n w = (\lambda_1 - \lambda)^n w, \lambda \in \mathbb{F}, n = \dim V$. Apply the operator $(T-\lambda_1 I)^k (T-\lambda_2 I)^n \cdots (T-\lambda_m I)^m$

to both sides of Equation (19), we have

$$0 = (T - \lambda_1 I)^k (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n (a_1 v_1 + \dots + a_m v_m)$$

$$= (T - \lambda_1 I)^k (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n (a_m v_m) + \dots + (T - \lambda_1 I)^k (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n (a_1 v_1)$$

$$= (T - \lambda_1 I)^k (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n (a_1 v_1)$$

$$= a_1 (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n w_{\neq 0}$$

So, it must be $a_1 = 0$. Apply the same rationale, we can show $a_1 = \cdots = a_m = 0$. Therefore, v_1, \ldots, v_m is L.I. by definition.

Definition 7.1.9 (Nilpotent). An operator is called *nilpotent* if some power of it equals 0.

Theorem 7.1.10 Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then, $N^{\dim V} = 0$.

Proof 7. Note that null $(N - 0I)^{\dim V} = G(0, N) = V$. So, we have proven $N^{\dim V} = 0$. **Lemma 7.1.11** Suppose $N \in \mathcal{L}(V)$ has a basis such that $\mathcal{M}(N)$ is an upper-triangular matrix with its diagonal all 0. Then, N is nilpotent.

Proof 8. Suppose the basis is v_1, \ldots, v_n and

$$A = \mathcal{M}(N) = \begin{pmatrix} 0 & * \\ & \ddots & \\ & & 0 \end{pmatrix}.$$

Then,

$$Nv_{1} = 0$$

$$Nv_{2} = A_{1,2}v_{1} + 0, \quad N^{2}v_{2} = A_{1,2}Nv_{1} = 0$$

$$\vdots$$

$$Nv_{n} = A_{1,n}v_{1} + \dots + A_{n-1,n}v_{n-1} + 0.$$

So, $N^n v_n = A_{1,n} N^{n-1} v_1 + A_{2,n} N^{n-1} v_2 + \dots + A_{n-1,n} N^{n-1} v_{n-1} = 0$. That is, $N^n = 0$. So, we've shown that *N* is nilpotent.

Theorem 7.1.12 Matrix of a Nilpotent Operator

Suppose *N* is a nilpotent operator on *V*. Then, \exists a basis of *V* with respect to which the matrix of *N* has the form

$$\begin{pmatrix} 0 & & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix};$$

where all entries on and below the diagonal are 0's.

Proof 9. Let $k \in \mathbb{N} \cup \{0\}$ be the smallest such that $N^k = 0$. So, we have null $N^k = V$ and $k \leq n$. So,

 $N^j \neq 0 \quad \forall j < k$. So, we have

$$\{0\} = \operatorname{null} N^0 \subsetneq \operatorname{null} N^1 \subsetneq \operatorname{null} N^2 \subsetneq \cdots \subsetneq \operatorname{null} N^k.$$

Select $v_1^1, \ldots, v_n^1, v_1^2, \ldots, v_{n_2}^2, \ldots, v_1^k, \ldots, v_{n_k}^k$ as a basis of N. It can be also written as v_1, \ldots, v_n .

1. Let *j* be an index such that $v_j \in \text{null } N$. Then, $Nv_j = 0$.

2. Let j be an index such that $v_i \in \text{null } N^2$. Then, $N^2(v_i) = N(Nv_i) = 0$. So, $Nv_i \in \text{null } N$.

So, $Nv_j = \sum_{\{i | v_i \in \text{null } N\}} A_{i,j}v_j, \quad i < j.$

Theorem 7.1.13

Let $T \in \mathcal{L}(V)$ s.t. T is no nilpotent. Suppose dim V = n. Then, $V = \text{null } T^{n-1} \oplus \text{range } T^{n-1}$.

Proof 10. Since T is not nilpotent, $N^n \neq 0$. So, null $N^n \subsetneq V$. That is,

 $0 \subseteq \operatorname{null} T \subseteq \operatorname{null} T^2 \subseteq \cdots \subseteq \operatorname{null} T^{n-1} \subseteq \operatorname{null} T^n \subsetneq V.$

So, it must be the case that null $T^{n-1} = \text{null } T^n$.

Suppose $v \in (\text{null } T^{n-1}) \cap (\text{range } T^{n-1})$. Then, $\exists u \in V$ s.t. $T^{n-1}u = v$. Note that

 $T^{n-1}v = T^{n-1}(T^{n-1}u) = T^{2n-2}u = T^n u = 0.$

So, $u \in \text{null } T^n = \text{null } T^{n-1}$. That is, $T^{n-1}u = 0$. So, v = 0. Then, $(\text{null } T^{n-1}) \cap (\text{range } T^{n-1}) = \{0\}$, and thus $V = \text{null } T^{n-1} \oplus \text{range } T^{n-1}$.

Theorem 7.1.14

Suppose $T \in \mathcal{L}(V)$, $\alpha, \beta \in \mathbb{F}$ with $\alpha \neq \beta$. Then,

 $G(\alpha, T) \cap G(\beta, T) = \{0\}.$

Proof 11. Let $v \in G(\alpha, T) \cap G(\beta, T)$ with $v \neq 0$. Then, we know v is a generalized eigenvector of α and β at the same time. However, given $\alpha \neq \beta$, their corresponding generalized eigenvectors should be L.I.. * This contradicts with the fact that v cannot be L.I. with v. Then, our assumption is wrong, and $G(\alpha, T) \cap G(\beta, T) = \{0\}$.

7.2 Decomposition of an Operator

Theorem 7.2.1

Suppose $T \in \mathcal{L}(V)$ and $p = \mathcal{P}(\mathbb{F})$. Then, null p(T) and range p(T) are invariant under T.

Proof 1. Let $v \in \text{null } p(T)$. Then, p(T)(Tv) = T(p(T)v) = T(0) = 0. So, null p(T) is invariant under T. Suppose $v \in \text{range } p(T)$, then $\exists u \in V$ *s.t.* p(T)u = v. Then, $Tv = T(p(T)u) = p(T)(Tu) \in \text{range } p(T)$. So, range p(T) is also invariant under T.

Theorem 7.2.2

Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. Then,

- 1. $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T).$
- 2. each $G(\lambda_j, T)$ is invariant under T.
- 3. each $(T \lambda_j I) \mid_{G(\lambda_i, T)}$ is nilpotent.

Proof 2.

1. We will prove it by induction. Obviously, the conclusion follows when n = 1. Now, consider n > 1. Suppose the conclusion holds for all spaces with dimension $\le n - 1$.

WTS: the conclusion is true for $\dim V = n$.

Consider $V = \text{null } (T - \lambda_1 I)^n \oplus \text{range } (T - \lambda_1 I)^n = G(\lambda_1, T) \oplus U$ if we fix $U = \text{range } (T - \lambda_1 I)^n$. Obviously, $G(\lambda_1, T) \neq \{0\}$. So, dim U < n, and so our inductive hypothesis is applicable to U. Note that $G(\lambda_i, T) \cap G(\lambda_j, T) = \{0\}$ if $i \neq j$. Then, $\lambda_2, \ldots, \lambda_m$ are eigenvalues of $T \mid_U$. So, $U = G(\lambda_2, T \mid_U) \oplus \cdots \oplus G(\lambda_m, T \mid_U)$.

WTS: $G(\lambda_j, T \mid_U) = G(\lambda_j, T)$

Note that $G(\lambda_j, T \mid_U) \subseteq G(\lambda_j, T)$ is evident. Conversely, suppose $v \in G(\lambda_k, T) \subseteq V$. Then, $v = v_1 + u$ for some $v_1 \in G(\lambda_1, T)$ and $u \in U$. Further, by our inductive hypothesis, we have

 $u = v_2 + \cdots + v_m$ for some $v_i \in G(\lambda_i, T \mid_U) \subseteq G(\lambda_i, T)$.

Then, $v = v_1 + u = v_1 + v_2 + \dots + v_m \in G(\lambda_k, T)$. That is, $v_1 + \dots + (v_k - v) + \dots + v_m = 0$. Then, $v_1 \in G(\lambda_1, T), \dots, v_k - v \in G(\lambda_k, T), \dots, v_m \in G(\lambda_m, T)$. Therefore, $v_1, \dots, v_k - v, \dots, v_m$ are L.I.. So, it must be that $v_1 = \dots = v_k - 2 = \dots = v_m = 0$. So, $v = v_1 + u = 0 + u = u$. Then, $v \in U$. So, $v \in G(\lambda_k, T) \cap U = G(\lambda_k, T \mid U)$. As k was arbitrary, we've shown $G(\lambda_k, U) \subseteq G(\lambda_k, T \mid U)$. So, $G(\lambda_j, T \mid U) = G(\lambda_j, T)$. We complete our proof.

- 2. Note that $G(\lambda_j, T) = \text{null } (T \lambda_j I)^n = \text{null } p(T)$ if $p(z) = (z \lambda_j)^n$. By Theorem 7.2.1, null p(T) is invariant under *T*. So, it follows that $G(\lambda_j, T)$ is also invariant under *T*. \Box
- 3. By definition, we have $G(\lambda_j, T) = \text{null } (T \lambda_j I)^n$. Then, $\left[(T \lambda_j I) |_{G(\lambda_j, T)} \right]^n = 0$. So, by definition, $(T \lambda_j I) |_{G(\lambda_j, T)}$ is nilpotent.

Corollary 7.2.3 Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Then, \exists a basis of *V* consisting of generalized eigenvectors of *T*.

Definition 7.2.4 (Multiplicity). Suppose $T \in \mathcal{L}(V)$. The *(algebraic) multiplicity* of an eigenvalue λ of T is defined to be the dimension of the corresponding generalized eigenspace $G(\lambda, T)$. In other words, the multiplicity of an eigenvalue λ of T equals $\dim \operatorname{null} (T - \lambda I)^{\dim V}$. The *geometric multiplicity* of an eigenvalue λ of T is $\dim E(\lambda, T)$.

Theorem 7.2.5

Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Then, the sum of the multiplicities of all eigenvalues of *T* equals dim *V*.

Proof 3. By Theorem 7.2.2 (1), we know $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T)$. So, we have

 $\dim V = \dim G(\lambda_1, T) + \dots + \dim G(\lambda_m, T).$

Definition 7.2.6 (Block Diagonal Matrix). A block diagonal matrix is a square matrix of the form

$$\begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix},$$

where A_1, \ldots, A_m are square matrices lying along the diagonal and all the other entries of the matrix equal 0.

Theorem 7.2.7

Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*, with multiplicities d_1, \ldots, d_m . Then, \exists a basis of *V* with respect to which *T* has a black diagonal matrix of the form

$$\begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix},$$

where each a_i is d_j -by- d_j upper-triangular matrix of the form

$$\mathbf{A}_j = \begin{pmatrix} \lambda_j & & * \\ & \ddots & \\ 0 & & \lambda_j \end{pmatrix}$$

Proof 4. Note that $Tv_k = A_{1,k}v_1 + \cdots + A_{k,k}v_k + \cdots + A_{n,k}v_n$. Also, $(T - \lambda_j I) \mid_{G(\lambda_j,T)}$ is nilpotent. For each $G(\lambda_j, T)$, choose a basis of $G(\lambda_j, T)$ and dim $G(\lambda_j, T) = d_j$. Then,

$$\mathcal{M}\Big((T-\lambda_j I)\mid_{G(\lambda_j,T)}\Big) = \begin{pmatrix} 0 & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix}.$$

Since $\mathcal{M}\Big((T - \lambda_j I) \mid_{G(\lambda_j, T)}\Big) = \mathcal{M}\Big(T \mid_{G(\lambda_j, T)}\Big) - \mathcal{M}(\lambda_j I)$, we have

$$\mathcal{M}\Big(T\mid_{G(\lambda_j,T)}\Big) = \begin{pmatrix} 0 & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix} + \mathcal{M}(\lambda_j I)$$
$$= \begin{pmatrix} 0 & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix} + \begin{pmatrix} \lambda_j & * \\ & \ddots & \\ 0 & & \lambda_j \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_j & * \\ & \ddots & \\ 0 & & \lambda_j \end{pmatrix}.$$

Put all the bases of $G(\lambda_j,T)$ together, we have completed the proof.

7.3 Characteristic and Minimal Polynomials

Definition 7.3.1 (Characteristic Polynomial). Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of *T*, with multiplicities d_1, \ldots, d_m . The polynomial

$$(z-\lambda_1)^{d_1}\cdots(z-\lambda_m)^{d_m}$$

is called the *characteristic polynomial* of T.

Theorem 7.3.2

Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Then,

- 1. the characteristic polynomial of *T* has degree $\dim V$;
- 2. the zeros of the characteristic polynomial of T are eigenvalues of T.

Proof 1.

- 1. Note that $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T)$. So, dim $V = d_1 + \cdots + d_m$. That is, the characteristic polynomial of *T* has degree dim *V*. \Box
- 2. By the definition of characteristic polynomial, it is evidently true.

Theorem 7.3.3 Cayley-Hamilton Theorem

Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Let *q* denote the characteristic polynomial of *T*. Then, q(T) = 0.

Proof 2. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and d_1, \ldots, d_m are their corresponding multiplicities. For each $j = 1, \ldots, m$, we have $(T - \lambda_j I) |_{G(\lambda_j, T)}$ is nilpotent. Then, $(T - \lambda_j I)^{d_j} |_{G(\lambda_j, T)} = 0$. Since $q(z) = (z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}$, we know $q(T) = (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_m I)^{d_m}$. Consider $v \in V$. Since $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T)$, then $v = a_1v_1 + \cdots + a_mv_m$, where $v_j \in G(\lambda_j, T)$. Then,

$$q(T)v = q(T)(a_1v_1 + \dots + a_mv_m)$$
$$= a_1q(T)v_1 + \dots + a_mq(T)v_m.$$

For simplicity, consider

$$q(T)v_j = (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_m I)^{d_m} v_j$$
$$= (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_m I)^{d_m} (T - \lambda_j I)^{d_j} v_j.$$

Since $v_j \in G(\lambda_j, T)$, we know $(T - \lambda_j I)^{d_j} v_j = 0$. Then, $q(T)v_j = 0$ for each j = 1, ..., m. So, q(T)v = 0. That is, q(T) = 0.

Definition 7.3.4 (Monic Polynomial). A *monic polynomial* is a polynomial whose highest-degree coefficient equals 1.

Theorem 7.3.5

Suppose $T \in \mathcal{L}(V)$. Then, \exists a unique monic polynomial p of smallest degree such that p(T) = 0.

Proof 3. Let dim V = n. Then, the list $I, T, T^2, \ldots, T^{n^2}$ is not L.I. in $\mathcal{L}(V)$ because $\mathcal{L}(V)$ has dimension n^2 and we have a list of length $n^2 + 1$. Let m be the smallest positive integer such that the list I, T, T^2, \ldots, T^m is linearly dependent. Then, by the Linear Dependence Lemma, T^m is a linear combination of I, T, \ldots, T^{m-1} . So, we have

$$a_0I + a_1T + a_2T^2 + \dots + a_{m-1}T^{m-1} + T^m = 0$$
(21)

Define a monic $p \in \mathcal{P}(\mathbb{F})$ as $p(z) = a_0 + z_1 z + a_2 z^2 + \cdots + a_{m-1} z^{m-1} + z^m$. Then, Equation (21) implies p(T) = 0. Now, we will prove the uniqueness. Suppose \exists a monic $q \in \mathcal{P}(\mathbb{F})$ with deg q = m s.t. q(T) = 0. Then, (p - q)(T) = p(T) - q(T) = 0 and deg(p - q) < m. Hence, p = q.

Definition 7.3.6 (Minimal Polynomial). Suppose $T \in \mathcal{L}(V)$. Then, the *minimal polynomial* of T is the unique monic polynomial p of smallest degree such that p(T) = 0.

Corollary 7.3.7 By the Cayley-Hamilton Theorem, the minimal polynomial of each $T \in \mathcal{L}(V)$ has degree $\leq \dim V$.

Theorem 7.3.8 Division Algorithm of Polynomials

Suppose $p, s \in \mathcal{P}(\mathbb{F})$ with $s \neq 0$. Then, \exists unique $q, r \in \mathcal{P}(\mathbb{F})$ s.t. p = sq + r and $\deg r < \deg s$.

Proof 4. Let deg p = n and deg s = m. If n < m, then q = 0 and r = p. Now, we assume $n \ge m$. Define $T : \mathcal{P}_{n-m}(\mathbb{F}) \times \mathcal{P}_{m-1}(\mathbb{F}) \to \mathcal{P}_n(\mathbb{F})$ as T(q,r) = sq + r. It is easy to verify that T is a linear map. If $(q,r) \in \text{null } T$, then sq + r = 0. So, q = r = 0. That is, dim null T = 0 and T is injective. Further, note that $\dim(\mathcal{P}_{n-m}(\mathbb{F}) \times \mathcal{P}_{m-1}(\mathbb{F})) = (n-m+1) + (m-1+1) = n+1$ and dim range $T = n+1 = \dim \mathcal{P}_n(\mathbb{F})$. Since range $T \subseteq \mathcal{P}_n(\mathbb{F})$ and dim range $T = \dim \mathcal{P}_n(\mathbb{F})$, we have range $T = \mathcal{P}_n(\mathbb{F})$. Therefore, T is surjective.

Theorem 7.3.9

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then, q(T) = 0 if and only if q is a polynomial multiple of the minimal polynomial of T.

Proof 5. Let p be the minimal polynomial of T.

(\Leftarrow): Suppose q = sp. Then, q(T) = s(T)p(T) = 0.

(⇒): Suppose q(T) = 0. By division algorithm of polynomials, q = sp + r with deg $r < \deg p$. Then, q(T) = s(T)p(T) + r(T) = 0. Note that p(T) = 0, so r(T) = 0. Then, r = 0. It must be q = sp.

Theorem 7.3.10 Characteristic Polynomial and Minimal Polynomial

Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then, the characteristic polynomial of T is a polynomial multiple of the minimal polynomial of T.

Proof 6. Suppose *q* is a characteristic polynomial of *T*. Then, by Cayley-Hamilton Theorem, q(T) = 0. Further by Theorem 7.3.9, *q* is a polynomial multiple of the minimal polynomial of *T*.

Theorem 7.3.11

Let $T \in \mathcal{L}(V)$. Then, the zeros of the minimal polynomial of T are precisely the eigenvalues of T.

Remark. "Precisely" means "is and only is." So, we need to prove the theorem from two directions.

Proof 7. Suppose $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{m-1} z^{m-1} + z^m$ is the minimal polynomial of T. (\Rightarrow): Suppose $p(\lambda) = 0$. WTS: λ is the eigenvalue. Since $p(\lambda) = 0$, we have $p(z) = (z - \lambda)q(z)$. Then, $p(T) = (T - \lambda I)q(T) = 0$. Then, $\deg q < \deg p$ and $p(T)v = (T - \lambda I)q(T)v = 0 \quad \forall v \in V$. So, $\exists v \in V \text{ s.t. } q(T)v \neq 0$. So, it must be that $T - \lambda I$ is not injective, and thus λ is an eigenvalue of T.

(\Leftarrow): Suppose $\lambda \in \mathbb{F}$ is an eigenvalue of T. Then, $\exists v \in V$ s.t. $Tv = \lambda v$ with $v \neq 0$. Consider $T^{j}v = \lambda^{j}v$. Then,

$$p(T)V = (a_0I + a_1T + \dots + a_{m-1}T^{m-1} + T^m)v$$

= $(a_0 + a_1\lambda + \dots + a_{m-1}\lambda^{m-1} + \lambda^m)v$
= $p(\lambda)v = 0$

Since $v \neq 0$, it must be $p(\lambda) = 0$.

Example 7.3.12 Suppose $T \in \mathcal{L}(\mathbb{C}^3)$ be defined as

$$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3).$$

Then,

$$\mathcal{M}(T) = \begin{pmatrix} 6 & 3 & 4 \\ 0 & 6 & 2 \\ 0 & 0 & 7 \end{pmatrix}$$

Find the minimal polynomial of *T*.

Solution 8.

Since $\mathcal{M}(T) = \begin{pmatrix} 6 & 3 & 4 \\ 0 & 6 & 2 \\ 0 & 0 & 7 \end{pmatrix}$, the eigenvalues of T are 6, 6, 7. The multiplicity of 6 is 2 and that of 7

is 1. So, the characteristic polynomial of *T* is $q(z) = (z - 6)^2(z - 7)$. Then, the minimal polynomial is polynomial multiple of (z - 6)(z - 7). So, the minimal polynomial of *T* should be (z - 6)(z - 7) or $(z - 6)^2(z - 7)$. Note that

$$\mathcal{M}[(T-6I)^2(T-7I)] = (\mathcal{M}(T-6I))^2 \mathcal{M}(T-7I)$$
$$= \begin{pmatrix} 0 & 0 & 10 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 & 4 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
$$=$$

and

$$\mathcal{M}[(T-6I)(T-7I)] = \begin{pmatrix} 0 & 3 & 4 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 & 4 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \neq 0.$$

So, $(z-6)^2(z-7)$ is the minimal polynomial of T.

Example 7.3.13 Find the minimal polynomial of operator $T \in \mathcal{L}(\mathbb{C}^3)$ defined by $T(z_1, z_2, z_3) = (6z_1, 6z_2, 7z_3)$.

Solution 9.

Note that

 $\mathcal{M}(T) = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7 \end{pmatrix}.$

Then, the characteristic polynomial is $q(z) = (z-6)^2(z-7)$. The minimal polynomial could be $(z-6)^2(z-7)$ or (z-6)(z-7). Since

$$\mathcal{M}[(T-6I)(T-7I)] = \mathcal{M}(T-6I)\mathcal{M}(T-7I)$$
$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0.$$

the minimal polynomial of *T* is (z - 6)(z - 7).

Theorem 7.3.14

Suppose $T \in \mathcal{L}(V)$. *T* is invertible if and only if the constant term in the minimal polynomial of *T* is non-zero.

Proof 10. Let $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m$ be the minimal polynomial of *T*. (\Rightarrow) We will prove the contrapositive: "If $a_0 = 0$, then *T* is not invertible." Suppose $a_0 = 0$. Then,

$$p(z) = a_1 z + \dots + a_{m-1} z^{m-1} + z^m.$$

Then, p(0) = 0. So, 0 is an eigenvalue of *T*. That is, Tv = 0 for some $v \neq 0$. Then, *T* is not injective, and thus is not invertible. \Box

(\Leftarrow) We will prove the contrapositive: "If *T* is not invertible, then $a_0 = 0$." Suppose *T* is not invertible. Then, *T* is not injective. So, $\exists v \neq 0$ *s.t.* Tv = 0. That is, $Tv = 0 \cdot v$ or 0 is an eigenvalue of *T*. So, p(z) = zq(z), and thus $a_0 = 0$.

Theorem 7.3.15

Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. *V* has a basis consisting of eigenvectors of *T* if and only if the minimal polynomial of *T* has no repeated roots.

7.4 Jordan Form

Example 7.4.1 Let $N \in \mathcal{L}(\mathbb{F}^4)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4) = (0, z_1, z_2, z_3)$. Let v = (1, 0, 0, 0). Then, Nv = (0, 1, 0, 0), $N^2v = (0, 0, 1, 0)$, and $N^3v = (0, 0, 0, 1)$. Note that v, Nv, N^2v, N^3v is a basis of \mathbb{F}^4 , and the matrix of N with respect to this basis is

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Example 7.4.2 Let $N \in \mathcal{L}(\mathbb{F}^6)$ be the nilpotent operator defined by

$$N(z_1, z_2, z_3, z_4, z_5, z_6) = (0, z_1, z_2, 0, z_4, 0).$$

Let $v_1 = (1, 0, 0, 0, 0, 0)$, $v_2 = (0, 0, 0, 1, 0, 0)$, and $v_3 = (0, 0, 0, 0, 0, 1)$. Then, we have N^2v_1 , Nv_1 , Nv_2 , v_2 , v_3 to be a basis of \mathbb{F}^6 . The matrix of N with respect to this basis is

0	1	0)	0	0	0 `
0	0	1	0	0	0
$\left(0 \right)$	0	0/	0	0	0
0	0	Ó	$\int 0$	1	0
0	0	0	$\left(0 \right)$	0)	0
0	0	0	0	0	(0)
					() /

Theorem 7.4.3

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then, $\exists v_1, \ldots, v_n \in V$ and $m_1, \ldots, m_n \in \mathbb{N}^+$ such that

1. $N^{m_1}v_1, ..., Nv_1, v_1, ..., N^{m_n}v_n, ..., Nv_n, v_n$ is a basis of *V*;

2.
$$N^{m_1+1}v_1 = \cdots = N^{m_n+1}v_n = 0.$$

Proof 1. We will prove by induction on $\dim V$.

Base Case When $\dim V = 1$, the conclusions obviously hold.

Inductive Steps Assume dim V > 1 and the conclusions hold for all spaces with dimension smaller than dim V. Since N is nilpotent, it is not injective and thus is not surjective. So, range $N \subsetneq V$. That is, dim range $N < \dim V$. Since N is nilpotent, it is not injective and thus is not surjective. So, range $N \subsetneq V$. V. that is, dim range $N < \dim V$. Apply the inductive hypothesis on range N. Consider $N \mid_{\text{range } N \in \mathcal{L}}$ (range N), then $\exists v_1, \ldots, v_n \in \text{range } N$ and $m_1, \ldots, m_n \in \mathbb{N}^+$ such that

$$N^{m_1}v_1, \dots, Nv_1, v_1, \dots, N^{m_n}v_n, \dots, Nv_n, v_n.$$
 (22)

is a basis of range N, and $N^{m_1+1}v_1 = \cdots = N^{m_n+1}v_n = 0$. For each j, $v_j \in \text{range } N$. Then, $\exists u_j \in$

V s.t. $v_i = Nu_i$. So, $N^{k+1}u_i = N^k v_i$ $\forall k \in \mathbb{N}^+$. We now claim the following list of vectors is L.I.:

$$N^{m_1+1}u_1, \dots, Nu_1, u_1, \dots, N^{m_n+1}u_n, \dots, Nu_n, u_n$$
 (23)

Let
$$a_1^{m_1+1}N^{m_1+1}u_1 + \dots + a_1^1Nu_1 + a_1^0u_1 + \dots + a_n^{m_n+1}N^{m_n+1}u_n + \dots + a_n^1Nu_n + a_n^0u_n = 0$$
. Then,
 $a_1^{m_1+1}N^{m_1}v_1 + \dots + a_1^1v_1 + a_1^0u_1 + \dots + a_n^{m_n+1}N^{m_n}v_n + \dots + a_n^1v_n + a_n^0u_n = 0.$ (24)

Apply N to both sides of the Equation (24),

$$\underbrace{a_1^{m_1+1}N^{m_1+1}v_1}_{0} + \dots + a_1^1Nv_1 + a_1^0\underbrace{Nu_1}_{v_1} + \dots + \underbrace{a_n^{m_n+1}N^{m_n+1}v_n}_{0} + \dots + a_n^1Nv_n + a_n^0\underbrace{Nu_n}_{v_n} = 0$$

So,

$$a_1^{m_1}N^{m_1}v_1 + \dots + a_1^1Nv_1 + a_1^0v_1 + \dots + a_n^{m_n}N^{m_n}v_n + \dots + a_n^1Nv_n + a_n^0v_n = 0.$$

Since Equation (22) is a basis, it must be all the coefficients equal to 0. Meanwhile, reconsider Equation (24). It becomes

$$a_1^{m_1+1}N^{m_1}v_1 + \dots + a_n^{m_n+1}N^{m_n}v_n = 0.$$

As N^{m_1}, \ldots, N^{m_n} is included in the list of vector stated in Equation (22), they must also be L.I.. Thus, we have $a_1^{m_1+1} = \cdots = a_n^{m_n+1} = 0$. So, we have proven the claim by showing Equation (23) is indeed a list of L.I. vectors. Now, extend Equation (23) into a bassi of *V*:

$$N^{m_1+1}u_1, \dots, Nu_1, u_1, \dots, N^{m_n+1}u_n, \dots, Nu_n, u_n, w_1, \dots, w_p$$
(25)

Then, each $Nw_j \in \text{range } N = \text{span}(\text{Equation (22)})$ s.t. $Nw_j = Nx_j$. Now, suppose $u_{n+j} = w_j - x_j$, and we have $Nu_{n+j} = 0$. Hence,

$$N^{m_1+1}u_1, \dots, Nu_1, u_1, \dots, N^{m_n+1}u_n, \dots, Nu_n, u_n, u_{n+1}, \dots, u_{n+p}$$
(26)

spans *V* because it contains each x_j and u_{n+j} and thus w_j . Since Equation (25) and Equation (26) have the same length, Equation (26) is a basis of *V* satisfying the desired condition.

Definition 7.4.4 (Jordan Basis). Suppose $T \in \mathcal{L}(V)$. A basis of V is called a *Jordan basis* of T if $\mathcal{M}(T)$ with respect to this basis has a block diagonal matrix

$$\begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_p \end{pmatrix},$$

where each A_j is an upper-triangular matrix of the form

$$\begin{pmatrix} \lambda_j & 1 & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_j \end{pmatrix}.$$

Theorem 7.4.5 Jordan Form

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then \exists a basis of V that is a Jordan basis for T.

Proof 2. First consider a nilpotent operator $N \in \mathcal{L}(V)$. Suppose $v_1, \ldots, v_n \in \mathcal{L}(V)$ satisfy the condition in Theorem 7.4.3. For each j, note that the list of vectors $N^{m_j}v_j, N^{m_{j-1}}v_j, \ldots, Nv_j, v_j$ correspond to a matrix of N as

$$\begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0. \end{pmatrix}$$

Hence, the conclusion holds for a nilpotent operator. Assume $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be distinct eigenvalues of T. Then, we have the generalized eigenspace decomposition:

$$V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T),$$

where each $(T - \lambda_j I) \mid_{G(\lambda_j,T)}$ is nilpotent. Thus, some basis of each $G(\lambda_j,T)$ is a Jordan basis of $T - \lambda_j I$. So,

$$\mathcal{M}\Big((T-\lambda_j I)\mid_{G(\lambda_j,T)}\Big) = \begin{pmatrix} 0 & 1 & 0 \\ \ddots & \ddots & \\ & \ddots & 1 \\ 0 & & 0 \end{pmatrix}$$

and

$$\mathcal{M}\Big(T\mid_{G(\lambda_j,T)}\Big) = \begin{pmatrix} \lambda_j & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ 0 & & & \lambda_j \end{pmatrix}.$$

Also, the dimension of the matrix is dim $G(\lambda_j, T)$.

8 Operators on Real Vectors Spaces

8.1 Complexification

Definition 8.1.1 (Complexification of $V/V_{\mathbb{C}}$). Suppose *V* is a real vector space. The *complexification* of *V*, denoted $V_{\mathbb{C}}$, equals $V \times V$. An element of $V_{\mathbb{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we will write this as u + iv.

Definition 8.1.2 (Addition & Multiplication on $V_{\mathbb{C}}$).

1. *Addition* on $V_{\mathbb{C}}$ is defined by

 $(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2).$

for $u_1, u_2, v_1, v_2 \in V$.

2. Complex Scalar Multiplication on $V_{\mathbb{C}}$ is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu)$$

for $a, b \in \mathbb{R}$ and $u, v \in V$.

Theorem 8.1.3

Suppose *V* is a real vector space. Then, with the definition of addition and scalar multiplication as above, $V_{\mathbb{C}}$ is a complex vector space.

Proof 1.

- 1. Addition. Let $u_j + iv_j \in \mathbb{C}$.
 - (a) commutativity:

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$
$$= (u_2 + u_1) + i(v_2 + v_1)$$
$$= (u_2 + iv_2) + (u_1 + iv_1). \qquad \Box$$

(b) associativity:

$$((u_1, v_1) + (u_2, v_2)) + (u_3, v_3) = (u_1 + u_2, v_1 + v_2) + (u_3, v_3)$$

= $(u_1 + u_2 + u_3, v_1 + v_2 + v_3)$
= $(u_1 + (u_2 + u_3), v_1 + (v_2 + v_3))$
= $(u_1, v_1) + ((u_2, v_2) + (u_3, v_3)).$

(c) identity:

$$(0,0) + (u,v) = (0+u,0+v) = (u+0,v+0)$$
$$= (u,v) + (0,0)$$
$$= (u,v). \square$$

(d) inverse:

$$(-u, -v) + (u, v) = (-u + u, -v + v) = (0, 0).$$
- 2. Scalar Multiplication: Let $(u, v) \in V_{\mathbb{C}}$, a + bi and $c + di \in \mathbb{C}$.
 - (a) identity:

$$(1 + 0i)(u + iv) = u + iv + 0iu - 0v = u + iv.$$

- (b) associativity: can be easily verified. omitted.
- (c) distributivity: can be easily verified. omitted.

Theorem 8.1.4

Suppose *V* is a real vector space.

- 1. If $v_1 \ldots, v_n$ is a basis of V (as a real vector space), then v_1, \ldots, v_n is a basis of $V_{\mathbb{C}}$ (as a complex vector space).
- 2. The dimension of $V_{\mathbb{C}}$ (as a complex vector space) equals the dimension of V (as a real vector space).

Proof 2.

1. Suppose v_1, \ldots, v_n is a basis of V. Then, $V = \operatorname{span}(v_1, \ldots, v_n)$. Then, $\operatorname{span}(v_1, \ldots, v_n)$ in $V_{\mathbb{C}}$ contains $v_1, \ldots, v_n, \operatorname{i} v_1, \ldots, \operatorname{i} v_n$. For any $u + \operatorname{i} v \in V_{\mathbb{C}}$, we have

$$u + iv = (a_1v_1 + \dots + a_nv_n) + i(b_1v_1 + \dots + b_nv_n)$$

= $a_1v_1 + \dots + a_nv_n + b_1iv_1 + \dots + b_niv_n.$

So, $v_1, \ldots, v_n, iv_1, \ldots, iv_n$ spans $V_{\mathbb{C}}$. Note that

$$\operatorname{span}(v_1,\ldots,v_n,\operatorname{i} v_1,\ldots,\operatorname{i} v_n) = \operatorname{span}(v_1,\ldots,v_n).$$

Then, we get $V_{\mathbb{C}} = \operatorname{span}(v_1, \ldots, v_n)$. Now, let $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ for $\lambda_j \in \mathbb{C}$. Then,

 $\operatorname{Re}(\lambda_1 v_1) + \dots + \operatorname{Re}(\lambda_n v_n) = 0$ and $\operatorname{Im}(\lambda_1 v_1) + \dots + \operatorname{Im}(\lambda_n v_n) = 0.$

Since $\operatorname{Re}(\lambda_i)$, $\operatorname{Im}(\lambda_i) \in \mathbb{R}$, it must be that

$$\operatorname{Re}(\lambda_1) = \cdots = \operatorname{Re}(\lambda_n) = 0$$
 and $\operatorname{Im}(\lambda_1) = \cdots = \operatorname{Im}(\lambda_n) = 0$.

Then, we have

$$\lambda_1 = \dots = \lambda_n = 0.$$

That is, v_1, \ldots, v_n is L.I.. Hence, v_1, \ldots, v_n is a basis of $V_{\mathbb{C}}$. \Box

2. We know immediately that (1) implies (2). The proof is complete.

Definition 8.1.5 (Complexification of $T/T_{\mathbb{C}}$). Suppose V is a real vector space and $T \in \mathcal{L}(V)$. The *complexification* of T, denoted $T_{\mathbb{C}}$, is the operator $T_{\mathbb{C}} \in \mathcal{L}(V_{\mathbb{C}})$ defined by $T_{\mathbb{C}}(u + iv) = Tu + iTv$ for $u, v \in V$.

Remark. It can be easily verified that this definition indeed gives an operator $T_{\mathbb{C}} \in \mathcal{L}(V_{\mathbb{C}})$.

Example 8.1.6 Suppose *A* is an $n \times n$ matrix of real numbers. Define $T \in \mathcal{L}(\mathbb{R}^n)$ by Tx = Ax. Identifying the complexification of \mathbb{R}^n with \mathbb{C}^n , we then have $T_{\mathbb{C}}z = Az$ for each $z \in \mathbb{C}^n$.

Theorem 8.1.7

Suppose V is a real vector space with basis v_1, \ldots, v_n and $T \in \mathcal{L}(V)$. Then, $\mathcal{M}(T) = \mathcal{M}(T_{\mathbb{C}})$, where both matrices are with respect to the basis v_1, \ldots, v_n .

Proof 3. Note that

$$T_{\mathbb{C}}(v_k) = T_{\mathbb{C}}(v_k + \mathbf{i} \cdot \mathbf{0}) = Tv_k + \mathbf{i}T\mathbf{0} = Tv_k.$$

So, $\mathcal{M}(T) = \mathcal{M}(T_{\mathbb{C}})$.

Theorem 8.1.8

Every operator on a non-zero *f*-*d* vector space has an invariant subspace of dimension 1 or 2.

Proof 4. We only need to consider the real case. Let $T \in \mathcal{L}(V)$, then $T_{\mathbb{C}} \in \mathcal{L}(V_{\mathbb{C}})$. Then, $T_{\mathbb{C}}$ has an eigenvalue a + bi, and a corresponding eigenvector $u + iv \in V_{\mathbb{C}}$ s.t.

$$T_{\mathbb{C}}(u+iv) = (a+bi)(u+iv) \implies Tu+iTv = (au-bv) + (av+bu)i$$

So, Tu = au - bv and Tv = av + bu. Let U = span(u, v) in V. Then, au - bv, $av + bu \in U$. Therefore, U is an invariant subspace of V under T. If u, v is L.I., then $\dim U = 2$; if u, v is linearly dependent, then $\dim U = 1$.

Theorem 8.1.9

Suppose *V* is a real vector space and $T \in \mathcal{L}(V)$. Then, the minimal polynomial of $T_{\mathbb{C}}$ equals the minimal polynomial of *T*.

Proof 5. Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Then,

$$(T_{\mathbb{C}})^n (u + \mathrm{i}v) = T^n u + \mathrm{i}T^n v.$$

Let $p \in \mathcal{P}(\mathbb{R})$ be the minimal polynomial of T. Then, $p(T_{\mathbb{C}}) = (p(T))_{\mathbb{C}}$. In fact, let $p(x) = a_0 + a_1 x + \dots + a_n x^n$, then $p(T_{\mathbb{C}}) = a_0 I + a_i T_{\mathbb{C}} + \dots + a_n T_{\mathbb{C}}^n$. So,

$$p(T_{\mathbb{C}})(u + iv) = a_0(u + iv) + a_1 T_{\mathbb{C}}(u + iv) + \dots + a_n T_{\mathbb{C}}^n(u + iv)$$

= $(a_0u + a_1 T u + \dots + a_n T^n u) + i(a_0v + a_1 T v + \dots + a_n T^n v)$
= $p(T)(u) + ip(T)(v)$
= $(p(T))_{\mathbb{C}}(u + iv).$

So, $p(T_{\mathbb{C}}) = (p(T))_{\mathbb{C}}$.

Since p(T) = 0, $(p(T))_{\mathbb{C}} = 0$, and thus $p(T_{\mathbb{C}}) = 0$. Suppose $q \in \mathcal{P}(\mathbb{C})$ is a monic polynomial and $q(T_{\mathbb{C}})(u) = 0 \quad \forall u \in V$. Let $q(z) = b_0 + b_1 z + \dots + b_m z^m$, where $b_m = 1$, and $r(z) = \operatorname{Re}(b_0) + \operatorname{Re}(b_1 z) + \cdots + \operatorname{Re}(b_m z^m)$. So, $q(T_{\mathbb{C}}) = b_0 I + b_1 T_{\mathbb{C}} + \cdots + b_m T_{\mathbb{C}}^m = 0$. That is, $(q(T))_{\mathbb{C}} = 0$. So, $(q(T))_{\mathbb{C}}(u + iv) = q(T)(u) + iq(T)(v) = 0$. Then, it must be $q(T)(u) = 0 \quad \forall u \in V$. So, $b_0 u + b_1 T u + \cdots + b_m T^m u = 0$, which is equivalent to $\operatorname{Re}(b_0)u + \operatorname{Re}(b_1)Tu + \cdots + \operatorname{Re}(b_m)T^m u = 0$. By definition of r(T), we have r(T) = 0.

Also, we have $\deg q = \deg r$. Further given p is the minimal polynomial of T, $\deg r \ge \deg p$. Hence, $\deg q = \deg r \ge \deg p$. Thus, p is also a minimal polynomial of $T_{\mathbb{C}}$.

Theorem 8.1.10

Suppose *V* is a real vector space, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{R}$. Then, λ is an eigenvalue of $T_{\mathbb{C}}$ if and only if λ is an eigenvalue of *T*.

Proof 6. Since the minimals of T and $T_{\mathbb{C}}$ are the same, the zeros of the minimal polynomials will also be the same. Given zeros of the minimal polynomial of T are precisely the eigenvalues of T, the proof is therefore complete.

Proof 7.

(⇒) Firstly, suppose λ is an eigenvalue of T. Then, $\exists v \neq 0$ *s.t.* $Tv = \lambda v$. So, $T_{\mathbb{C}}(v) = \lambda v$, and thus λ is an eigenvalue of T_C . \Box

(\Leftarrow) Conversely, suppose λ is an eigenvalue of $T_{\mathbb{C}}$. Then, $\exists u, v \in V$ with $u + iv \neq 0$ s.t.

$$T_{\mathbb{C}}(u + \mathrm{i}v) = \lambda(u + \mathrm{i}v).$$

So, $Tu = \lambda u$ and $Tv = \lambda v$. Then, λ must be an eigenvalue of T.

Theorem 8.1.11

Suppose V is a real vector space, $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{C}$, j is an non-negative integer, and $u, v \in V$. Then, $(T_{\mathbb{C}} - \lambda I)^j (u + iv) = 0$ if and only if $(T_{\mathbb{C}} - \overline{\lambda} I)^j (u - iv) = 0$.

Proof 8. To prove this theorem, we only have to prove the forward direction. We will prove by induction on *j*.

Base Case If j = 0, then $(T_{\mathbb{C}} - \lambda I)^0 = I$. So, we have u + iv = 0. Then, u = 0, and v = 0. Therefore, u - iv = 0. \Box

Inductive Steps Assume $j \ge 1$ and the desired results holds for j - 1. That is,

$$(T_{\mathbb{C}} - \lambda I)^{j-1}(u + \mathrm{i}v) \implies (T_{\mathbb{C}} - \bar{\lambda}I)^{j-1}(u - \mathrm{i}v) = 0.$$

Consider

$$(T_{\mathbb{C}} - \lambda I)^{j-1} (T_{\mathbb{C}} - \lambda I) (u + iv) = 0.$$
⁽²⁷⁾

Writing $\lambda = a + bi$, we have

$$(T_{\mathbb{C}} - \lambda I)(u + iv) = T_{\mathbb{C}}(u + iv) - (a + bi)(u + iv)$$
$$= (Tu - au + bv) + i(Tv - bu - av)$$

and

$$(T_{\mathbb{C}} - \overline{\lambda}I)(u + \mathrm{i}v) = T_{\mathbb{C}}(u + \mathrm{i}v) - (a - b\mathrm{i})(u + \mathrm{i}v)$$
$$= (Tu - au + bv) - \mathrm{i}(Tv - bu + av).$$

So, Eq. (27) becomes

$$T_{\mathbb{C}} - \lambda I)^{j-1} (Tu - au + bv) + i(Tv - bu - av) = 0.$$
(28)

Apply our inductive hypothesis to Eq. (28), we have

(

$$(T_{\mathbb{C}} - \bar{\lambda}I)^{j-1}((Tu - au + bv) - i(Tv - bu + av)) = 0$$

That is, $(T_{\mathbb{C}} - \overline{\lambda}I)^{j-1}((T_{\mathbb{C}} - \overline{\lambda}I)(u+iv)) = 0$, or $(T_{\mathbb{C}} - \overline{\lambda}I)^{j}(u+iv) = 0$.

Corollary 8.1.12 Suppose *V* is a real vector space, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{C}$. Then, λ is an eigenvalue of $T_{\mathbb{C}}$ if and only if $\overline{\lambda}$ is an eigenvalue of $T_{\mathbb{C}}$.

Proof 9. Take j = 1 in Theorem 8.1.11. The proof is completed.

Theorem 8.1.13

Suppose *V* is a real vector space, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{C}$ is an eigenvalue of $T_{\mathbb{C}}$. Then, the multiplicity of λ as an eigenvalue of $T_{\mathbb{C}}$ equals the multiplicity of $\overline{\lambda}$ as an eigenvalue of $T_{\mathbb{C}}$.

Proof 10. We only need to show dim $G(\lambda, T_{\mathbb{C}}) = \dim G(\overline{\lambda}, T_{\mathbb{C}})$. Select $u_1 + iv_1, \ldots, u_m + iv_m$ as a basis of $G(\lambda, T_{\mathbb{C}})$. Then,

$$(T_{\mathbb{C}} - \lambda I)^{\dim V} (u_j + iv_j) = 0$$
 for each j.

Then, $(T_{\mathbb{C}} - \overline{\lambda}I)^{\dim V}(u_j - iv_j) = 0$ by Theorem 8.1.11. Now, consider $u_1 - iv_1, \ldots, u_m - iv_m$. Suppose

$$(a_1 + b_1 i)(u_1 - iv_1) + \dots + (a_m + b_m i)(u_m - iv_m) = 0$$

Then,

$$\sum_{j=1}^{m} a_j u_j + b_j v_j + \mathbf{i}(b_j u_j - a_j v_j) = 0.$$
(29)

Note that $(a_j - b_j i)(u_j + iv_j) = a_j u_j + b_j v_j + i(b_j u_j - a_j v_j)$. Then, Eq. (29) becomes

$$\sum_{j=1}^{m} \overline{a_j + b_j \mathbf{i}}(u_j + \mathbf{i}v_j) = 0.$$

Since $u_1 + iv_1, \ldots, u_m + iv_m$ is a basis, it must be $\overline{a_1 + b_1 i} = \cdots = \overline{a_m + b_m i} = 0$. So, $a_1 + b_1 i = \cdots = a_m + b_m i = 0$. Therefore, we have $u_1 - iv_1, \ldots, u_m - iv_m$ is L.I.. Now, let $u - iv \in G(\overline{\lambda}, T_{\mathbb{C}})$. Then,

$$u + iv = (a_1 - b_1i)(u_1 + iv_1) + \dots + (a_m - b_mi)(u_m + iv_m).$$

So, $u - iv = (a_1 + b_1 i)(u_1 - iv_1) + \dots + (a_m + b_m i)(u_m - iv_m)$. Hence, $G(\bar{\lambda}, T_{\mathbb{C}}) = \text{span}(u_1 - iv_1, \dots, u_m - iv_m)$. Since

$$\dim \operatorname{span}(u_1 + \operatorname{i} v_1, \dots, u_m + \operatorname{i} v_m) = \dim \operatorname{span}(u_1 - \operatorname{i} v_1, \dots, u_m - \operatorname{i} v_m),$$

multiplicity of λ equals multiplicity of $\overline{\lambda}$.

Theorem 8.1.14

Every operator on an odd-dimensional real vector space has an eigenvalue.

Proof 11. Suppose V is a real vector space with odd dimension. Let $T \in \mathcal{L}(V)$. Then, by Corol-

lary 8.1.12, we know non-real eigenvalues of $T_{\mathbb{C}}$ come in pairs and their multiplicities are the same by Theorem 8.1.13. So,

 $\sum (multiplicity \ of \ non-real \ eigenvalues) = an \ even \ number.$

Since $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T)$, we have

 \sum (multiplicity of all eigenvalues) = dim $V_{\mathbb{C}}$ = dim V = an odd number.

So, there must be at least one real eigenvalues left.

Theorem 8.1.15

Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Then, the coefficients of the characteristic polynomial of $T_{\mathbb{C}}$ are all real.

Proof 12. Suppose λ is a non-real eigenvalue of $T_{\mathbb{C}}$ with multiplicity m. Then, $\overline{\lambda}$ is also an eigenvalue of $T_{\mathbb{C}}$ with multiplicity m. Then, characteristic polynomial of $T_{\mathbb{C}}$ must be in the form

$$(z - \lambda)^m (z - \bar{\lambda})^m f(z) = \left(z^2 - (\lambda + \bar{\lambda})z + |\lambda|^2\right)^m f(z)$$
$$= \left(z^2 - 2(\operatorname{Re}(\lambda))z + |\lambda|^2\right)^m f(z)$$

Suppose $f(z) = (z - t_1)^{d_1} \cdots (z - t_r)^{d_r}$ with each $t_j \in \mathbb{R}$. Then, the characteristic polynomial of $T_{\mathbb{C}}$ becomes

$$\left(z^2 - 2(\operatorname{Re}(\lambda))z + |\lambda|^2\right)^m (z - t_1)^{d_1} \cdots (z - t_r)^{d_r},$$

with all real coefficients.

Definition 8.1.16 (Characteristic Polynomial). Suppose *V* is a real vector space and $T \in \mathcal{L}(V)$. Then, the *characteristic polynomial* of *T* is defined to be the characteristic polynomial of $T_{\mathbb{C}}$.

Corollary 8.1.17 Degree and Zeros of Characteristic Polynomial Suppose *V* is a real vector space and $T \in \mathcal{L}(V)$. Then,

- 1. the coefficients of the characteristic polynomial of *T* are all real;
- 2. the characteristic polynomial of T has degree dim V;
- 3. the eigenvalues of T are precisely the real zeros of the characteristic polynomial of T.

Theorem 8.1.18 Cayley-Hamilton Theorem

Suppose $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then, q(T) = 0.

Proof 13. We've shown Cayley-Hamilton holds on complex vector spaces. Assume V is a real vector space. Then, we know $q(T_{\mathbb{C}}) = 0$, which implies q(T) = 0. **Corollary 8.1.19** Suppose $T \in \mathcal{L}(V)$. Then,

- 1. the degree of the minimal polynomial of T is at most dim V;
- 2. the characteristic polynomial of *T* is a polynomial multiple of the minimal polynomial of *T*.

8.2 Operators on Real Inner Product Spaces

Theorem 8.2.1 Normal but Not Self-Adjoint Operators

Suppose V is a 2-dimensional real inner product space and $T \in \mathcal{L}(V)$. Then, the following are equivalent:

- 1. *T* is normal but not self-adjoint;
- 2. The matrix of *T* with respect to every orthonormal basis of *V* has the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, with $b \neq 0$.

3. The matrix of *T* with respect to some orthonormal basis of *V* has the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, with b > 0.

Proof 1.

(1) \implies (2): Suppose $TT^* = T^*T$ but $T \neq T^*$. Let e_1, e_2 be an orthonormal basis of V. Suppose

$$\mathcal{M}(T, (e_1, e_2)) = \begin{pmatrix} a & c \\ b & d \end{pmatrix}.$$

Then, $Te_1 = ae_1 + be_2$. So, $||Te_1||^2 = ||ae_1 + be_2||^2 = a^2 + b^2$. Since *T* is normal $\iff ||Tv|| = ||T^*v|| \quad \forall v \in V$. So, $||T^*e_1||^2 = ||Te_1||^2 = a^2 + b^2$. Note that

$$\mathcal{M}(T, (e_1, e_2)) = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

the conjugate transpose of $\mathcal{M}(T, (e_1, e_2))$. So, $||T^*e_1||^2 = ||ae_1 + ce_2||^2 = a^2 + c^2$. Therefore, $a^2 + b^2 = a^2 + c^2$, or $b^2 = c^2$. Then, b = c or b = -c.

1. If c = b, then

$$\mathcal{M}(T) = \begin{pmatrix} a & c \\ c & d \end{pmatrix} = \mathcal{M}(T^*).$$

That implies $T = T^*$, which contradicts with our assumption that $T \neq T^*$. So, this situation is omitted.

2. So, c = -b, and then $\mathcal{M}(T) = \begin{pmatrix} a & -b \\ b & d \end{pmatrix}$. Note if b = 0, then $\mathcal{M}(T) = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = \mathcal{M}(T^*)$, contradicting with our assumption that $T \neq T^*$. So, $b \neq 0$.

Finally, since T is normal, we have $\mathcal{M}(T)\mathcal{M}(T^*) = \mathcal{M}(T^*)\mathcal{M}(T)$. That is,

$$\begin{pmatrix} a & -b \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ -b & d \end{pmatrix} = \begin{pmatrix} a & b \\ -b & d \end{pmatrix} \begin{pmatrix} a & -b \\ b & d \end{pmatrix} \implies ab - bd = -ab + bd \implies ab = bd.$$

Since $b \neq 0$, we have a = d. So,

$$\mathcal{M}(T) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, \quad b \neq 0. \qquad \Box$$

(2) \implies (3): Choose an orthonormal basis e_1, e_2 . Then,

$$\mathcal{M}(T, (e_1, e_2)) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
 with $b \neq 0$.

If b > 0, then (3) holds. If b < 0, then

$$\mathcal{M}(T, (e_1, -e_2)) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Then, -b > 0, which implies (3) holds. \Box

(3) \implies (1): Suppose \exists an orthonormal basis e_1, e_2 s.t.

$$\mathcal{M}(T, (e_1, e_2)) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
 with $b > 0$.

Then, $\mathcal{M}(T, (e_1, e_2))^t = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Since b > 0, $\mathcal{M}(T) \neq \mathcal{M}(T)^t$. So, T is not self-adjoint. Since $\mathcal{M}(T)\mathcal{M}(T^*) = \mathcal{M}(T^*)\mathcal{M}(T)$ is clear, we have shown T is normal.

Theorem 8.2.2

Suppose V is an inner product space, $T \in \mathcal{L}(V)$ is normal, and U is a subspace of V that is invariant under T. Then,

- 1. U^{\perp} is invariant under *T*;
- 2. *U* is invariant under T^* ;

3.
$$(T|_U)^* = (T^*)|_U$$

4. $T|_U \in \mathcal{L}(U)$ and $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ are normal operators.

Proof 2.

1. Let e_1, \ldots, e_m be an orthonormal basis of U. Then, extend it to an orthonormal basis $e_1, \ldots, e_m, f_1, \ldots, f_n$ of V. Since U is invariant under $T, Tu \in U$. Then, each $Te_j \in U$. That is, Te_j is a linear combination of e_1, \ldots, e_m . Thus, $\mathcal{M}(T, (e_1, \ldots, e_m, f_1, \ldots, f_n))$ is of the form

$$\mathcal{M}(T) = \begin{array}{c|c} e_1 \cdots e_m & f_1 \cdots f_n \\ \vdots & A & B \\ \vdots & & & \\ f_1 & & \\ \vdots & & \\ f_n & & & \\ \end{array} \begin{array}{c} e_1 \cdots f_n \\ B \\ & & \\ &$$

For each $j \in \{1, ..., m\}$, let $Te_j = a_{1,j}e_1 + \cdots + a_{m,j}e_m$. Then, $||Te_j||^2 = a_{1,j}^2 + \cdots + a_{m,j}^2$. Then,

$$\sum_{j=1}^{m} \|Te_j\|^2 = \sum_{j=1}^{m} \left(a_{1,j}^2 + \dots + a_{m,j}^2\right).$$

Note that

$$\mathcal{M}(T^*) = \left(\begin{array}{c|c} A^t & 0\\ \hline \\ B^t & C^t \end{array}\right).$$

Then,

$$\sum_{j=1}^{m} \|T^*e_j\|^2 = \sum_{j=1}^{m} \left(a_{1,j}^2 + \dots + a_{m,j}^2 + b_{j,1}^2 + \dots + b_{j,n}^2\right).$$

Since $\sum_{j=1}^{m} \|Te_j\|^2 = \sum_{j=1}^{m} \|T^*e_j\|^2$, we have

$$\sum_{j=1}^{m} \left(a_{1,j}^2 + \dots + a_{m,j}^2 \right) = \sum_{j=1}^{m} \left(a_{1,j}^2 + \dots + a_{m,j}^2 + b_{j,1}^2 + \dots + b_{j,n}^2 \right).$$

Then, each $b_{i,j} = 0$. So, $B = 0_{m \times n}$. That is,

$$\mathcal{M}(T) = \begin{array}{c|c} e_1 \cdots e_m & f_1 \cdots f_n \\ \vdots & A & 0 \\ \vdots & & & \\ f_1 & & & \\ \vdots & & 0 & C \end{array}$$

Then, for each $k \in \{1, ..., n\}$, $Tf_k = 0e_1 + \dots + 0e_m + c_{1,k}f_1 + \dots + c_{n,k}f_n$. That is,

$$Tf_k \in \operatorname{span}(f_1, \ldots, f_n) = U^{\perp}.$$

Therefore, $Tv \in U^{\perp}$ whenever $v \in U^{\perp}$. Hence, U^{\perp} is invariant under T. \Box

2. Note that

$$\mathcal{M}(T^*) = \left(\begin{array}{cc} A^t & 0\\ 0 & C^t \end{array}\right).$$

Then, $T^*e_j \in \operatorname{span}(e_1, \ldots, e_m) = U$. So, U is invariant under T^* . \Box

3. Let $S = T|_U \in \mathcal{L}(U)$. Fix $v \in U$. Then, $\forall u \in U$,

$$\langle Su, v \rangle = \langle Tu, v \rangle = \langle u, T^*v \rangle.$$

From (2), we know $T^*v \in U$. Then, we have

$$\langle u, S^*v \rangle = \langle Su, v \rangle = \langle u, T^*v \rangle.$$

So, $S^*v = T^*v$. That is, $(T|_U)^* = (T^*)|_U$. \Box

4. Since T is normal, T commutes with T^* . By (3): $(T|_U)^* = (T^*)|_U$. So, we have $(T|_U)(T|_U)^* = (T|_U)^*(T|_U)$. That is, $T|_U$ is normal. Similarly, interchanging the roles of U and U^{\perp} ,

$$(T|_{U^{\perp}})(T|_{U^{\perp}})^* = (T|_{U^{\perp}})^*(T|_{U^{\perp}}).$$

Then, $T_{U^{\perp}}$ is also normal.

Lemma 8.2.3 Suppose $A = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & A_m \end{pmatrix}$ and $B = \begin{pmatrix} B_1 & 0 \\ & \ddots & \\ 0 & B_m \end{pmatrix}$, where A_j and B_j are matrices of the same size, then $AB = \begin{pmatrix} A_1B_1 & 0 \\ & \ddots & \\ 0 & A_mB_m \end{pmatrix}.$

Theorem 8.2.4

Suppose *V* is a real inner product space and $T \in \mathcal{L}(V)$. Then, the following are equivalent:

- 1. T is normal;
- 2. \exists an orthonormal basis of *V* with respect to which *T* has a block diagonal matrix *s.t.* each block is an 1×1 matrix or a 2×2 matrix of the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ with b > 0.

Proof 3.

 $(2) \implies (1)$: With respect to the basis given by (2),

$$\mathcal{M}(t)\mathcal{M}(t^*) = \mathcal{M}(T^*)\mathcal{M}(T).$$

Note that

$$\mathcal{M}(T) = \begin{pmatrix} \ddots & & & \\ & \begin{pmatrix} a & -b \\ b & a \end{pmatrix} & \\ & & \ddots \end{pmatrix} \text{ and } \mathcal{M}(T^*) = \begin{pmatrix} \ddots & & & \\ & \begin{pmatrix} a & b \\ -b & a \end{pmatrix} & \\ & & \ddots \end{pmatrix}.$$

Since

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix},$$

we have $TT^* = T^*T$. So, T is normal.

(1) \implies (2): We will use induction on dim V. When dim V = 1, the desired results hold. When dim V = 2, if T is self-adjoint, then use the Real Spectrum Theorem, the desired results hold. If dim V = 2 and T is not self-adjoint, by Theorem 8.2.1, the desired results also hold.

Now, assume that $\dim V > 2$ and the desired result holds on vector spaces of dimension smaller than $\dim V$. Let U be a subspace of V with $\dim U = 1$, and U is invariant under T. If such a subspace exists, (i.e., if T has an eigenvector v, then let $U = \operatorname{span}(v)$). If no such subspace exists, let U be a subspace of V of dimension 2 that is invariant under T.

If dim U = 1, choose a vector u with ||u|| = 1. Then, u is an orthonormal basis of U, and $\mathcal{M}(T|_U)$ is 1×1 . If dim U = 2, then $T|_U \in \mathcal{L}(U)$ is normal by Theorem 8.2.2, but $T|_U$ is not self-adjoint (otherwise $T|_U$ would have an eigenvector). Thus, we can choose an orthonormal basis of U, say, e_1, e_2 , *s.t.*

$$\mathcal{M}(T|_U, (e_1, e_2)) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Now, U^{\perp} is invariant under T and $T|_{U^{\perp}}$ is normal by Theorem 8.2.2. Then, $\dim U^{\perp} < \dim V$. By our inductive hypothesis, \exists an orthonormal basis f_1, \ldots, f_n of U^{\perp} *s.t.*

Since $V = U \oplus U^{\perp}$, we finally have

$$\mathcal{M}(T) = \begin{array}{c|c} e_1 \cdots e_m & f_1 \cdots f_n \\ e_1 & a & -b & 0 \\ \vdots & b & a & \\ f_1 & & \\ \vdots & & 0 & \\ f_n & & \\ f_n & & \\ \end{array}$$

which is in the desired form.

Example 8.2.5 Let $\theta \in \mathbb{R}$. Then, the operator on \mathbb{R}^2 of counter-clockwise rotation centered at the origin by θ is an isometry. The matrix of this operator with respect to the standard basis is

$$egin{pmatrix} \cos heta & -\sin heta\ \sin heta & \cos heta \end{pmatrix}.$$

Remark. If θ is not an integer multiple of π , then no non-zero vector of \mathbb{R}^2 gets mapped to a scalar multiple of itself, and have the operator has no eigenvalues.

Theorem 8.2.6

Suppose *V* is a real inner product space and $S \in \mathcal{L}(V)$. Then, the following are equivalent:

- 1. *S* is an isometry;
- 2. \exists an orthonormal basis of *V* with respect to which *S* has a block diagonal matrix *s.t.* each block on the diagonal is an 1×1 matrix containing 1 or -1 or is a 2×2 matrix of the form

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix},$$

with $\theta \in (0, \pi)$.

Proof 4.

(1) \implies (2): Suppose S is an isometry. Then, S is normal. So, \exists an orthonormal basis e_1, \ldots, e_n s.t.

$$\mathcal{M}(S, (e_1, \dots, e_n)) = \begin{pmatrix} \ddots & & & & \\ & \lambda & & & \\ & & \ddots & & \\ & & & \begin{pmatrix} a & -b \\ b & a \end{pmatrix} & \\ & & & \ddots \end{pmatrix}$$

with b > 0. If λ is an entry in a 1×1 matrix along the diagonal, then \exists a basis vector e_j *s.t.* $Se_j = \lambda e_j$. So, $||Se_j|| = ||\lambda e_j|| = |\lambda|||e_j|| = ||e_j||$. So, $|\lambda| = 1$, or $\lambda = \pm 1$.

Now, consider a 2×2 matrix of the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ with b > 0 along the diagonal. Then, \exists a basis e_i, e_{i+1} *s.t.* $Se_i = ae_i + be_{i+1}$. So,

$$1 = ||e_i||^2 = ||Se_i||^2 = ||ae_i + be_{i+1}||^2$$
$$= ||ae_i||^2 + ||be_{i+1}||^2$$
$$= a^2 + b^2.$$

So, $\exists \theta \in (0, \pi)$ *s.t.* $a = \cos \theta$ and $b = \sin \theta$, given b > 0. Therefore, this direction holds. \Box

(2) \implies (1): Suppose \exists an orthonormal basis of V with respect to which the matrix of S has the desired form. Thus, we have a direct sum decomposition: $V = U_1 \oplus \cdots \oplus U_m$, where each U_j is a subspace of V of dimension 1 or 2. Furthermore, any two vectors belonging to distinct U's are orthogonal, and each $S|_{U_j}$ is an isometry mapping U_j into U_j . If $v \in V$, we can write $v = u_1 + \cdots + u_m$,

where each $u_j \in U_j$. Applying S to the equation:

$$||Sv||^{2} = ||Su_{1} + \dots + Su_{m}||^{2}$$

= $||Su_{1}||^{2} + \dots + ||Su_{m}||^{2}$
= $||u_{1}||^{2} + \dots + ||u_{m}||^{2} = ||v||^{2}$.

Thus, \boldsymbol{S} is an isometry.

9 Trace and Determinant

9.1 Trace

Remark. With respect to every basis of V, the matrix of the identity operator $I \in \mathcal{L}(V)$ is the diagonal matrix with 1's on the diagonal and 0's elsewhere.

Definition 9.1.1 (Identity Matrix/*I*). Suppose *n* is a positive integer. The $n \times n$ diagonal matrix

$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

is called the *identity matrix* and is denoted *I*.

Definition 9.1.2 (Invertible/Inverse/ A^{-1}). A square matrix *A* is called *invertible* if there is a square matrix *B* of the same size such that AB = BA = I; we call *B* the *inverse* of *A* and denote it by A^{-1} .

Theorem 9.1.3 If *A* is an invertible square matrix, then \exists a unique matrix *B s.t.* AB = BA = I.

Proof 1. Suppose \exists two matrices B, B' s.t.

$$AB = BA = I$$
 and $AB' = B'A = I$.

Then, we have AB = AB'. So, BAB = BAB'. Therefore, IB = IB', or B = B'.

Theorem 9.1.4

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. Then, $\mathcal{M}(T, (v_1, \ldots, v_n))$ is invertible if and only if T is invertible.

Proof 2.

 (\Rightarrow) Suppose T is invertible, so $\exists S \in \mathcal{L}(V)$, ST = TS = I. Then, $\mathcal{M}(ST) = \mathcal{M}(TS) = \mathcal{M}(I)$. That is,

 $\mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(T)\mathcal{M}(S) = I.$

So, $\mathcal{M}(T)$ is invertible.

(⇐) Let $A = \mathcal{M}(T)$ is invertible. Then, \exists a matrix B s.t. AB = BA = I. Let $S \in \mathcal{L}(V)$ s.t. $B = \mathcal{M}(S)$. So,

$$\mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(I).$$

That is, $\mathcal{M}(TS) = \mathcal{M}(ST) = I$, or TS = ST = I. Then, by definition, T is invertible.

Theorem 9.1.5

Suppose u_1, \ldots, u_n and v_1, \ldots, v_n and w_1, \ldots, w_m are all bases of V. Suppose $S, T \in \mathcal{L}(V)$. Then,

 $\mathcal{M}(ST, (u_1, \ldots, u_n), (w_1, \ldots, w_n)) = \mathcal{M}(S, (v_1, \ldots, v_n), (w_1, \ldots, w_n))\mathcal{M}(T, (u_1, \ldots, u_n), (v_1, \ldots, v_n)).$

Theorem 9.1.6

Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V. Then, the matrices $\mathcal{M}(I, (u_1, \ldots, u_n), (v_1, \ldots, v_n))$ and $\mathcal{M}(I, (u_1, \ldots, u_n), (v_1, \ldots, v_n))$ are invertible, and each is the inverse of the other.

Proof 3. By Theorem 9.1.5, replacing w_i with u_j , we have

 $I = \mathcal{M}(I, (v_1, \ldots, v_n), (u_1, \ldots, u_n)) \mathcal{M}(I, (u_1, \ldots, u_n), (v_1, \ldots, v_n)).$

Now, interchanging the roles of u's and v's, we get

$$I = \mathcal{M}(I, (u_1, \ldots, u_n), (v_1, \ldots, v_n)) \mathcal{M}(I, (v_1, \ldots, v_n), (u_1, \ldots, u_n)).$$

So, by definition, the desired result holds.

Example 9.1.7 Consider the bases (4, 2), (5, 3) and (1, 0), (0, 1) of \mathbb{F}^2 . Then, $\mathcal{M}(I, ((4, 2), (5, 3)), ((1, 0), (0, 1))) = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix}$ because I(4, 2) = 4(1, 0) + 2(0, 1) and I(5, 3) = 5(1, 0) + 3(0, 1). Find the inverse of it. Solution 4. Suppose I(1, 0) = a(4, 2) + b(5, 3) and I(0, 1) = c(4, 2) + d(5, 3). Then, solve for $\begin{cases} 4a + 5b = 1 \\ 2a + 3b = 0 \end{cases} \text{ and } \begin{cases} 4c + 5d = 0 \\ 2c + 3d = 1 \end{cases},$ we have $\begin{cases} a = 3/2 \\ b = -1 \end{cases} \text{ and } \begin{cases} c = -5/2 \\ d = 2 \end{cases}.$ So, the inverse is $\begin{pmatrix} 3/2 & -5/2 \\ -1 & 2 \end{pmatrix}.$

Theorem 9.1.8 Change of Basis Formula

Suppose $T \in \mathcal{L}(V)$. Let u_1, \ldots, u_n and v_1, \ldots, v_n be bases of V. Let

$$A = \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n)).$$

Then

$$\mathcal{M}(T, (u_1, \dots, u_n)) = A^{-1} \mathcal{M}(T, (v_1, \dots, v_n)) A.$$

Proof 5. By Theorem 9.1.5, replacing w_j with u_j and replace S with I, we have $\mathcal{M}(T, (u_1, \ldots, u_n)) = A^{-1}\mathcal{M}(T, (u_1, \ldots, u_n), (v_1, \ldots, v_n))$. Again, by Theorem 9.1.5, replacing w_j with v_j , T with I, and S with

T, we get

$$\mathcal{M}(T, (u_1, \ldots, u_n), (v_1, \ldots, v_n)) = \mathcal{M}(T, (v_1, \ldots, v_n))A.$$

Therefore, we've shown

$$\mathcal{M}(T, (u_1, \ldots, u_n)) = A^{-1} \mathcal{M}(T, (v_1, \ldots, v_n)) A.$$

Definition 9.1.9 (Trace of an Operator). Suppose $T \in \mathcal{L}(V)$

- If $\mathbb{F} = \mathbb{C}$, then the trace of *T* is the sum of the eigenvalues of *T*, with each eigenvalue repeated according to its multiplicity.
- If $\mathbb{F} = \mathbb{R}$, then the trace of *T* is the sum of the eigenvalues of $T_{\mathbb{C}}$, with each eigenvalue repeated according to its multiplicity.

The trace of T is denoted tr T.

Theorem 9.1.10

Suppose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then, tr T equals the negative of the coefficient of z^{n-1} in the characteristic polynomial of T.

Proof 6. Suppose $\lambda_1, \ldots, \lambda_n$ are eigenvalues of T with each eigenvalue repeated according to its multiplicity. Then, $(z - \lambda_1) \cdots (z - \lambda_n) = z^n - (\lambda_1 + \cdots + \lambda_n) z^{n-1} + \cdots + (-1)^n (\lambda_1 \cdots \lambda_n)$. Hence, we complete the proof.

Definition 9.1.11 (Trace of a Matrix). The *trace* of a square matrix *A*, denoted tr *A*, is defined to be the sum of the diagonal entries of *A*.

Lemma 9.1.12 If A and B are square matrices of the same size, then tr(AB) = tr(BA).

Proof 7. Suppose

$$A = \begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{pmatrix} \text{ and } B = \begin{pmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{n1} & \cdots & B_{nn} \end{pmatrix}.$$

Then, $\left(AB\right)_{jj} = \sum_{k=1}^{n} A_{jk} B_{kj}$. So,

$$\operatorname{tr}(AB) = \sum_{j=1}^{n} \left(AB\right)_{jj} = \sum_{j=1}^{n} \sum_{k=1}^{n} A_{jk} B_{kj}$$
$$= \sum_{k=1}^{n} \sum_{j=1}^{n} B_{kj} A_{jk}$$
$$= \sum_{k=1}^{n} \left(BA\right)_{kk}$$
$$= \operatorname{tr}(BA).$$

$$\operatorname{tr} \mathcal{M}(T, (u_1, \dots, u_n)) = \operatorname{tr} \mathcal{M}(T, (v_1, \dots, v_n)).$$

Proof 8. Let $A = \mathcal{M}(I, (u_1, ..., u_n), (v_1, ..., v_n))$. Then,

$$\operatorname{tr} \mathcal{M}(T, (u_1, \dots, u_n)) = \operatorname{tr} \left(A^{-1} \mathcal{M}(T, (v_1, \dots, v_n)) A \right)$$
$$= \operatorname{tr} \left((\mathcal{M}(T, (v_1, \dots, v_n)) A) A^{-1} \right)$$
$$= \operatorname{tr} \left(\mathcal{M}(T, (v_1, \dots, v_n)) (A A^{-1}) \right)$$
$$= \operatorname{tr} \mathcal{M}(T, (v_1, \dots, v_n)).$$

Theorem 9.1.14 Suppose $T \in \mathcal{L}(V)$. Then, $\operatorname{tr} T = \operatorname{tr} \mathcal{M}(T)$.

Proof 9. By Lemma 9.1.13, we know tr $\mathcal{M}(T)$ is independent of the choice of basis. Use the basis introduced by block diagonal matrix with upper-triangular blocks in previous Chapters, we have the desired result. If T is defined on a real vector space, then consider tr $\mathcal{M}(T)$ on $T_{\mathbb{C}}$.

Theorem 9.1.15 Suppose $S, T \in \mathcal{L}(V)$. Then, $\operatorname{tr}(S + T) = \operatorname{tr} S + \operatorname{tr} T$.

Proof 10. Choose a basis of *V*. Then,

$$tr(S+T) = tr \mathcal{M}(S+T)$$
$$= tr(\mathcal{M}(S) + \mathcal{M}(T))$$
$$= tr \mathcal{M}(S) + tr \mathcal{M}(T)$$
$$= tr S + tr T.$$

Theorem 9.1.16 \nexists operators $S, T \in \mathcal{L}(V)$ *s.t.* ST - TS = I.

Proof 11. Let $S, T \in \mathcal{L}(V)$. Then,

$$tr(ST - TS) = tr(ST) - tr(TS)$$

= tr $\mathcal{M}(ST) - tr \mathcal{M}(TS)$
= tr($\mathcal{M}(S)\mathcal{M}(T)$) - tr($\mathcal{M}(T)\mathcal{M}(S)$)
= 0.

Since tr $I = \dim V \neq 0$, tr $(I) \neq$ tr(ST - TS). So, it must be that $\nexists S, T \in \mathcal{L}(V)$ s.t. ST - TS = I.

9.2 Determinant

Definition 9.2.1 (Determinant of an Operator/det *T*). Suppose $T \in \mathcal{L}(V)$.

- If $\mathbb{F} = \mathbb{C}$, then the *determinant* of *T* is the product of the eigenvalues of *T*, with each eigenvalue repeated according to its multiplicity.
- If $\mathbb{F} = \mathbb{R}$, then the *determinant* of *T* is the product of the eigenvalues of $T_{\mathbb{C}}$, with each eigenvalue repeated according to its multiplicity.

The determinant of T is denoted by $\det T$.

Theorem 9.2.2

Suppose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then, $\det T$ equals $(-1)^n$ times the constant term of the characteristic polynomial of T.

Proof 1. Suppose $\lambda 1, \ldots, \lambda_n$ are eigenvalues of T with each eigenvalue repeated according to its multiplicity. Then,

$$(z - \lambda_1) \cdots (z - \lambda_n) = z^n - (\lambda_1 + \cdots + \lambda_n) z^{n-1} + \cdots + (-1)^n (\lambda_1 \cdots \lambda_n).$$

Hence, we complete the proof.

Theorem 9.2.3 Suppose $T \in \mathcal{L}(V)$. Then, the characteristic polynomial of T can be written as

 $z^{n} - (\operatorname{tr} T)z^{n-1} + \dots + (-1)^{n}(\det T).$

Proof 2. By Theorem 9.1.10 and Theorem 9.2.2, we complete the proof.

Theorem 9.2.4

An operator on V is invertible if and only if its determinant is non-zero.

Proof 3. First, suppose V is complex and $T \in \mathcal{L}(V)$. Note that

 $T \text{ is invertible} \iff T \text{ is bijective}$ $\iff T \text{ is injective}$ $\iff \text{null } T = \{0\}$ $\iff Tv \neq 0 \text{ whenever } v \neq 0$ $\iff 0 \text{ is not an eigenvalue of } T$ $\iff \det T \neq 0.$

Now, consider the case where V is real, then

$$T \text{ is invertible } \iff 0 \text{ is not an eigenvalue of } T$$
$$\iff 0 \text{ is not an eigenvalue of } T_{\mathbb{C}}$$
$$\iff \det T \neq 0.$$

Theorem 9.2.5

Suppose $T \in \mathcal{L}(V)$. Then, the characteristic polynomial of T equals det(zI - T).

Proof 4. Suppose *V* is a complex vector space. If $\lambda, z \in \mathbb{C}$, then λ is an eigenvalue of *T* if and only if $\exists v \neq 0 \text{ s.t. } Tv = \lambda v$. Then, $zIv - Tv = zv - \lambda v$. So,

$$(zI - T)v = (z - \lambda)v$$

Therefore, we have $z - \lambda$ is an eigenvalue of zI - T. Let d be the multiplicity of λ , then

$$d = \dim G(\lambda, T) = \operatorname{null} (T - \lambda I)^{\dim V}$$

Note that $(T - \lambda I) = (z - \lambda)I - (zI - T)$. Then,

$$(T - \lambda I)^{\dim V} = [(z - \lambda)I - (zI - T)]^{\dim V}$$

So, we have

null
$$(T - \lambda I)^{\dim V}$$
 = null $[(z - \lambda)I - (zI - T)]^{\dim V}$.

That is, $G(\lambda, T) = G(z - \lambda, zI - T)$. So, dim $G(\lambda, T) = G(z - \lambda, zI - T)$. Then, the multiplicity of $z - \lambda$ is also *d*.

Let $\lambda_1, \ldots, \lambda_n$ denote the eigenvalues of T. Then, $z - \lambda_1, \ldots, z - \lambda_n$ are precisely the eigenvalues of zI - T. So, $\det(zI - T) = (z - \lambda_1) \cdots (z - \lambda_n)$, the characteristic polynomial of T.

Now, consider the case if *V* is a real vector space. Then, apply the proof above to $T_{\mathbb{C}}$, and then we complete the proof.

Definition 9.2.6 (Permutation/perm *n*). A *permutation* of (1, ..., n) is a list $(m_1, ..., m_n)$ that contains each of the numbers 1, ..., n exactly once. The set of all permutations of (1, ..., n) is denoted perm *n*. **Definition 9.2.7 (Sign of a Permutation).** The *sign of a permutation* $(m_1, ..., m_n)$ is defined to be 1 if the number of pairs of integers (j, k) with $1 \le j < k \le n$ *s.t. j* appears after *k* in the list $(m_1, ..., m_n)$ is even, and -1 if the number of such pairs is odd. In other words, the sign of a permutation is 1 if the natural order has been changed an even number of times, and is -1 if the natural order has been changed an odd number of times.

Example 9.2.8 For the permutation (2, 4, 5, 3), we have the following pairs of integers: (2, 4), (2, 5), (2, 3), (4, 5), (4, 3), (5, 3), among which (4, 3) and (5, 3) are of unnatural order. So, sign(2, 4, 5, 3) = 1.

Theorem 9.2.9

Interchanging two entries in a permutation multiplies the sign of the permutation by -1.

Proof 5. Suppose we have $m_1, \ldots, m_i, \ldots, m_j, \ldots, m_n$ and we want the interchange m_i and m_j to get $m_1, \ldots, m_j, \ldots, m_i, \ldots, m_n$.

1. Adjacent Case: m_i and m_j are adjacent to each other.

Let number of pairs of reverse order from the original permutation to be N. Then

sign(original permutation) = $(-1)^N$.

(a) If $m_i < m_j$ m then after the interchange, we get one more reverse order, and so

sign(interchanged permutation) =
$$(-1)^{N+1} = (-1)(-1)^N$$
.

(b) If $m_i > m_j$, then after the interchange, we get one less reverse order. So,

sign(interchanged permutation) =
$$(-1)^{N-1} = \frac{(-1)^N}{(-1)} = (-1)(-1)^N$$
.

2. General Case: m_i and m_j are not adjacent.

Then, suppose we need k times to move m_i to the position right after m_j . We need k - 1 times to move m_j to the position m_i initially at. So,

$$\operatorname{sign}(interchanged permutation) = (-1)^{N+2k-1} = (-1)(-1)^N.$$

Definition 9.2.10 (Determinant of a Matrix, det *A*). Suppose *A* is an $n \times n$ matrix such that

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,n} \end{pmatrix}.$$

The *determinant* of A, denoted det A, is defined by

$$\det A = \sum_{(m_1,\dots,m_n)\in \operatorname{perm} n} (\operatorname{sign}(m_1,\dots,m_n)) A_{m_1,1} \cdots A_{m_n,n}.$$

Example 9.2.11 Compute determinant of an upper triangular matrix

$$A = \begin{pmatrix} A_{1,1} & * \\ & \ddots & \\ 0 & & A_{n,n} \end{pmatrix}.$$

Solution 6. By definition,

$$\det A = \sum_{(m_1,\dots,m_n)\in \operatorname{perm} n} (\operatorname{sign}(m_1,\dots,m_n)) A_{m_1,1} \cdots A_{m_n,n}.$$

Note that

$$A_{ij} \begin{cases} \neq 0 & i \le j \\ = 0 & i > j \end{cases}$$

Consider $(1, \ldots, n) \in \text{perm } n$, $\text{sign}(1, \ldots, n) = 1$, and $A_{m_1,1} \cdots A_{m_n,n}$ becomes $a_{1,1} \cdots A_{n,n}$. Now, if $(m_1, \ldots, m_n) \neq (1, \ldots, n)$, we can find some $A_{i,j} = 0$ with i > j. So,

$$\det A = (\text{sign}(1, ..., n))A_{1,1} \cdots A_{n,n} = A_{1,1} \cdots A_{n,n}.$$

Theorem 9.2.12

Suppose A is a square matrix and B is the matrix obtained from A by interchanging two columns. Then,

$$\det A = -\det B.$$

Proof 7. Suppose $A \in \mathbb{F}n \times n$ and $A = \begin{pmatrix} A_1 & \cdots & A_i & \cdots & A_j & \cdots & A_n \end{pmatrix}$. Then, by construction, we know $B = \begin{pmatrix} A_1 & \cdots & A_j & \cdots & A_i & \cdots & A_n \end{pmatrix}$. So,

$$\det A = \sum_{(m_1,\dots,m_n)\in \operatorname{perm} n} (\operatorname{sign}(m_1,\dots,m_n)) A_{m_1,1} \cdots A_{m_i,i} \cdots A_{m_j,j} \cdots A_{m_n,n}$$

and

$$\det B = \sum_{(m_1,\dots,m_n)\in \operatorname{perm} n} (\operatorname{sign}(m_1,\dots,m_n)) A_{m_1,1} \cdots A_{m_j,j} \cdots A_{m_i,i} \cdots A_{m_n,n}$$

Note that

$$\operatorname{sign}(m_1,\ldots,m_i,\ldots,m_j,\ldots,m_n) = (-1)\operatorname{sign}(m_1,\ldots,m_j,\ldots,m_i,\ldots,m_n).$$

So, by the linear properties of summation, we have

$$\det A = -\det B.$$

Theorem 9.2.13 If *A* is a square matrix that has two equal columns, then $\det A = 0$.

Proof 8. Interchanging the two equal columns, we still get the same matrix, *A*. Further, by Theorem 9.2.12, we have

$$\det A = -\det A,$$

suggesting $\det A = 0$.

Theorem 9.2.14 Suppose $A = \begin{pmatrix} A_{\cdot,1} & \cdots & A_{\cdot,n} \end{pmatrix}$ is an $n \times n$ matrix and (m_1, \dots, m_n) is a permutation. Then, $\det \begin{pmatrix} A_{\cdot,m_1} & \cdots & A_{\cdot,m_n} \end{pmatrix} = (\operatorname{sign}(m_1, \dots, m_n)) \det A.$

Theorem 9.2.15 Determinant is a Linear Function of Each Column

Suppose k, n are positive integers with $1 \le k \le n$. Fix $n \times 1$ matrices $A_{\cdot,1}, \cdots, A_{\cdot,n}$ except $A_{\cdot,k}$. Then, the function that takes an $n \times 1$ column vector $A_{\cdot,k}$ to det $\begin{pmatrix} A_{\cdot,1} & \cdots & A_{\cdot,k} & \cdots & A_{\cdot,n} \end{pmatrix}$ is a linear map.

Theorem 9.2.16 Determinant is Multiplicative

Suppose *A* and *B* are square matrices of the same size. Then,

 $\det(AB) = \det(BA) = (\det A)(\det B).$

Theorem 9.2.17 Let $T \in \mathcal{L}(V)$. Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V. Then,

 $\det \mathcal{M}(T, (u_1, \dots, u_n)) = \det \mathcal{M}(T, (v_1, \dots, v_n)).$

Theorem 9.2.18 Suppose $T \in \mathcal{L}(V)$. Then, det $T = \det \mathcal{M}(T)$.

Theorem 9.2.19 Suppose $S, T \in \mathcal{L}(V)$. Then,

 $\det(ST) = \det(TS) = (\det T)(\det S).$