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Preface

These are my personal notes for Johns Hopkins University AS.110.201 Linear Algebra course.
I studied this course via Summer @ Hopkins in the summer of 2021.

As no prerequisite is required (only pre-calculus, basic algebra, and some simple knowl-
edge from Calculus I), this course focuses on matrices. It includes systems of linear equations,
basics of matrices, spaces and dimensions, determinants, eigenvalues, and singular value de-
composition. The textbook used for this course is Linear Algebra with Applications, 5th Edi-
tion by Otto Bretscher. Another textbook by Gilbert Strang is also recommended: Introduction
to Linear Algebra, 5th Edition.

Throughout this personal note, I use different formats to differentiate different contents,
including definitions, theorems, proofs, examples, extensions, and remarks. To be more spe-
cific:

Definition 0.0.1 (Terminology). This is a definition.

Theorem 0.0.1 (Theorem Name). This is a theorem.
Example 0.0.1. This is an example.

Solution. This is the answer part of an example. O

Remark. This is a remark of a definition, theorem, example, or proof.

Proof. This is a proof of a theorem. [

Extension. This is a extension of a theorem, proof, or example.

To better ace this course, it is recommended to do more questions than provided as exam-
ples under each section. Although each example is distinctive and representative, more ques-
tions and practice is still needed to deepen the understanding of this course. More than doing
examples, using visualization tools to visualize some problems or concepts is also helpful in
understanding the contents better. Videos made by 3Bluel Brown are also recommended as
a supplementary source of learning.

Even though I put efforts into making as few flaws as possible when encoding these learn-
ing notes, some errors may still exist in this note. If you find any, please contact me via email:
lvjiuru@hotmail.com.

I hope you will find my notes helpful when learning Linear Algebra, a fundamental course
for other Math and Computer Science courses.

Cheers,
Jiuru Lyu


lvjiuru@hotmail.com

1 SYSTEMS OF LINEAR EQUATIONS

1 Systems of Linear Equations

1.1 Solving Systems of Linear Equations

Definition 1.1.1 (Linear Equations). An equation in the unknowns z, vy, z, ... is called linear
if both sides of the equation are a sum of multiples of z, v, z, ..., plus an optional constant.

Example 1.1.1. Linear equations and nonlinear equations

. . 3r+yz=3
are linear equations, but are not.
sinx — cosy = 2

3+ 4y =2z
—r — 2z =100

Definition 1.1.2 (System of Linear Equations). A system of linear equations is a collection of

several linear equations.

Definition 1.1.3 (Solution of a System). A solution of a system of equations is a list of num-
bers z, y, z, ... that make all of the equations true simultaneously.

Definition 1.1.4 (Solution Set of a System). The solution set of a system of equations is the
collection of all solutions.

Definition 1.1.5 (Solving a System). Solving the system means finding all solutions with for-
mulas involving some number of parameters.

Definition 1.1.6 (Consistency and Inconsistency of a System). A system of equationsis called
inconsistent if it has no solutions. It is called consistent otherwise.

Example 1.1.2. An inconsistent system:

r+2y=3 . ) .
has no solutions (the solution set is empty).

r+2y=-3
Thus, the system of equations is inconsistent.
Remark. A solution of equations in n variables is a list of » numbers.
Remark. We use R to denote the set of all real numbers.

Definition 1.1.7 (R™). Let n be a positive whole number. We define
R"™ = all ordered n-tuples of real numbers (z1, =3, x3, ..., )

An n-tuple of real number is called a point of R"
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1 SYSTEMS OF LINEAR EQUATIONS 1.1 Solving Systems of Linear Equations

Example 1.1.3. Examples of R"
1. {O, ;, —77] and (1, —2, 3) are points of R?
2. When n = 1, R! = R. Geometrically, this is the number line.
3. When n = 2, R?. It becomes the zy-plane.
4. When n = 3, R3. It is the space we live in.
Definition 1.1.8 (Line). A line is a ray that is straight and infinite in both directions.

Definition 1.1.9 (Plane). A plane is a flat sheet that is infinite in all directions.

Theorem 1.1.1. Generally, a single linear equation in n variables defines an (n — 1)-plane in
n-space.

Example 1.1.4. Examples of Lines and Planes.

1. Lines. For z + y = 1 (implicit equation), the parametric form is
(x,y) =(t,1 —t)foranyt € R

We call ¢ a parameter in this case.

2. For a system of two linear equations (as implicit equations in R?)

the parametric form would be

(x,y,2) = (t,1 — 2t,1)

3. Planes. For x + y + z = 1 (implicit equation), the parametric form is

(z,y,2) = (1—t—w,t,w)foranyt,w € R

Theorem 1.1.2 (Elementary Operations). Since elementary operations are reversible, the so-
lution set doesn’t change:

1. Switch the order of the equation;
2. Scale the equation by a scale ¢ # 0; (to reverse, divide equation by ¢)

3. Add a multiple of one equation to another. (to reverse, subtract)

5



1 SYSTEMS OF LINEAR EQUATIONS 1.2 Row Reduction

1.2 Row Reduction

Theorem 1.2.1 (The Elimination Method). We can use the elimination method to combine
the equations in various ways to eliminate as many variables as possible for each equation.

1. Scaling. We can multiply both sides of an equation by a nonzero number.

2. Replacement. We can add a multiple of one equation to another, replacing the second
equation with the result.

3. Swap. We can swap two equations.

Definition 1.2.1 (Augmented Matrices and Row Operations). Augmented Matrix refers to the
vertical line, which we draw to remind ourselves where the equals sign belongs.

Definition 1.2.2 (Matrix). A matrix is a grid of numbers without the vertical line.

Example 1.2.1. Augmented Matrix and Row Operations.

1 2 316
|

2 —3 2 114 | isanaugmented matrix.
|

3 1 —-11r=2

The three ways of manipulating our equations become row operations:

1. Scaling. multiply all entries in a row by a nonzero number.

1 2 3.6 3 —6 —91—18
| _ _ |

9 -3 9114 | BERXS 0 9 3 9 1y
| |

3 1 —11-2 3 1 -1 -9

Remark. Here, the notation R; simply means "the first row."

2. Replacement. add a multiple of one row to another, replacing the second row with the

result. ‘ ‘
1 2 316 1 2 316

| Do |
9 3 9114 | BER2RL L g 7 49

| |
3 1 —11-2 3 1 —11-2

3. Swap. Interchange two rows.

1 2 3.6 3 —6 —91—18
| |

9 -3 9 .14 | BB o 3 9 1y
| |

3 1 —11-2 3 1 —11 -2



1 SYSTEMS OF LINEAR EQUATIONS 1.2 Row Reduction

Definition 1.2.3 (Row equivalent). Two matrices are called row equivalent if one can be ob-
tained from the other by doing some number of row operations.

Definition 1.2.4 (Row Echelon Form (ref) of Matrix). A matrix is in row echelon form if:
1. All zero rows are at the bottom.
2. The first nonzero entry of a row is to the right of the first nonzero entry of the row above.

3. Below the first nonzero entry of a row, all entries are zero.

Example 1.2.2. General ref of matrices.

(@]
o o o -

where b = is any number, and « = is any nonzero number.

Definition 1.2.5 (Pivot). A pivot is the first nonzero entry of a row of a matrix in row echelon

form.

Definition 1.2.6 (Reduced Row Echelon Form (rref) of a Matrix). A matrixisin reduced row
echelon form if it is in row echelon form, and in addition:

4. Each pivot is equal to 1.

5. Each pivot is the only nonzero entry in its column.

Example 1.2.3. Genderal rref of matrices

1 0b0b
01 b 0b
000 1,b]
00000

where b = is any number, 1 = pivot
;1 r=1
! ecomes
9 | 2 y=—2
|
3 z=3



1 SYSTEMS OF LINEAR EQUATIONS 1.3 Parametric Form

Theorem 1.2.2. Every matrix is row equivalent to one and only one matrix in reduced row
echelon form.

Row reduction or Gaussian elimination demonstrates that every matrix is row equivalent
to a least one matrix in reduced row echelon form.

1. Swap the 1*' row with a lower one, so a leftmost nonzero entry is in the 1st row (if neces-
sary).

2. Scale the 1% row so that its first nonzero entry equals 1.

3. Use row replacement, so all entries below this 1 are 0.

4. Swap the 2" row with a lower one so that the leftmost nonzero entry is in the 2nd row.
5. Scale the 2™ row so that its first nonzero entry equals 1.

6. Use row replacement, so all entries below this 1 are 0.

7. Swap the 3" row with a lower one so that the leftmost nonzero entry is in the 3rd row.
etc.

8. Use row replacement to clear all entries above the pivots, starting with the last pivot.

Definition 1.2.7 (Pivot Position). A pivot position of a matrix is an entry that is a pivot of a
row echelon form of that matrix.

Definition 1.2.8 (Pivot Column). A pivot column of a matrix is a column that contains a pivot
position.

Theorem 1.2.3 (The Row Echelon Form of an Inconsistent System). An augmented matrix cor-
responds to an inconsistent system of equations if and only if (iff) the last column (i.e., the
augmented column) is a pivot column.

1.3 Parametric Form

Definition 1.3.1 (Free Variable). Consider a consistent system of equations in the variables
Ty, To,..., T,. Let A be arow echelon form of the augmented matrix for this system. We say that
z; is a free variable if its corresponding column in A is not a pivot column.

Example 1.3.1. Example of free variables.

0 511
In the matrix 0 ; | ) ] , the variable = is the free variable.
| —



1 SYSTEMS OF LINEAR EQUATIONS 1.3 Parametric Form

Definition 1.3.2 (Implicit Equations). The line is defined implicitly as the simultaneous so-
lutions to those equations.

Definition 1.3.3 (Parameterized Equations). A parameterized equation is an expression that
produces all points of the line in terms of one parameter.

L : 2r+y+122=1 L
Example 1.3.2. Example of implicit equations. is an example of implicit
r+2y+92=-1
L r=1-52 : o
equations in R3. can be written as (z,y,2,) = (1 — 52,1 — 22, 2), 2 € R, whichisa
y=1-—2z
parameterized equation.

Remark. One should think of a system of equations as an implicit equation for its solution
set and of the parametric form as the parameterized equation for the same set. The paramet-
ric form is much more explicit: it gives a concrete recipe for producing all solutions.

Theorem 1.3.1 (Number of Solutions). Systems of equations can have different numbers of
solutions.

1. The last column is a pivot column. In this case, the system is inconsistent. It has zero
solutions.

2. Every column except the last column is a pivot column. The system has a unique solu-
tion.

3. The last column is not a pivot column, and some other column is not a pivot column
either. The system has many solutions corresponding to the infinite possible values of
the free variables.

Example 1.3.3. Systems with different numbers of solutions.

1010
|
1. | 0 1:0 | comesform alinear system with no solutions.
|
0 01

|
|
2. Forthematrix | 0 1 05 |,ithasaunique solution (z,y, z) = (a,b,¢)
|
I c



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS

2 Vector Equations and Linear Transformations

2.1 Vectors

Definition 2.1.1 (Vector). A vector is an array of n numbers:
T
F(orx) =
xn

Definition 2.1.2 (R"). A set of all vectors of height in n is denoted in R™.

Theorem 2.1.1 (Vector Addition).

a x a—+x
bl + |yl = |b+y
C z c+ z

Theorem 2.1.2 (Scalar multiplication).

T cC XX
cX |yl = lexy
z C Xz

Extension. The Parallelogram Law for Vector Addition.

<l

S

Extension. Vector Subtraction.

10



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.2 Vector Equations

<L

Definition 2.1.3 (Linear Combinations). Let c;, c,, ..., ¢, be scalars, and let vy, v, ..., v, be vec-
tors in R?. The vector in R?

C1V1 + CoUg + ... + CLVg

is called a linear combination of the vectors vy, vs, ..., v, with weights or coefficients ¢;, ¢y, ..., 4.

2.2 Vector Equations

Definition 2.2.1 (Vector Equation). A vector equation is an equation involving a linear com-
bination of vectors with possibly unknown coefficients.

Example 2.2.1. Asking whether or not a vector equation has a solution is the same as asking
if a given vector is a linear combination of some other given vector.
The equation

1 -1 8
z |2 +y|-2| = |16
6 —6 3
8 1 —1
is asking if the vector |16 is alinear combination of the vectors |2| and |-2].
3 6 —6
The equation can be simplified to
T—y 8 r—y=38
20 —2y| = [16] or ¢ 2x — 2y =16
6z —y 3 6r —y =3

Then, one can use augmented matrix to solve it.
Remark. Three equivalent ways of thinking about a linear system:
1. A system of equations
2. An augmented matrix

11



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

3. Avector equation

Theorem 2.2.1. A new way to consider linear systems.

Suppose the LHS of a linear system is something we can plug a vector into to produce a
list of numbers, and the RHS of a linear system shows the solution out as a vector.

Thus, The LHS of a system is a function T : R™ — R", where m is the number of variables
and n is the number of equations.

To solve the system, we want to find all vectors that will map to a particular group. We can
record the function associated with the LHS of a system as a matrix.

Example 2.2.2. Example of converting linear systems to matrix equations.

The linear system
{hﬁ+&@+4m:25

201+ 02+ 23 =5

xy
7T 3 4 25
To| =
2 01 5

x3

can be recorded as

Theorem 2.2.2. Multiplication of a vector by a matrix.

1. For each row of the matrix, multiply the entries of that row with the corresponding en-
tries of the vector and then add.

2. The output vector is the final output.

Example 2.2.3.
1
7 3 4 . Tx1+3x1+4x1| |14
2 0 1 X o l2x1+0x1+1x1| |3
2.3 Linear Transformation

Definition 2.3.1 (Linear Transformation). A linear transformation is a function T : R™ —
R" so that:

2. T(cx 7) = ¢ x T(7)

VZ, e R™ andce R

12



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

Definition 2.3.2 (Standard Basis Vectors). The vectors €}, €,, ..., €, € R™ defined by

0

€ = |1| — thei-thentry

are called the standard basis vectors.

Theorem 2.3.1. Let T : R™ — R” be a linear transformation, and

A= Tél Tég cee Tén
Then, TX = AX for all vectors X
x
Proof. AssumeZ = | : |,thenZ = 1€ + 1265 + ... + 1,,€,,.
T,
Thus,
: : : A

Theorem 2.3.2. Given any sequence of elementary raw operations sy, $s, ..., S involving n-
rows, there exists a matrix B such that for all ¥ € R”, B¢’ equals that vector obtained by apply-

lng S1, S92, ..., S tO .

Example 2.3.1.

is the matrix B

2
where [1

Definition 2.3.3 (Geometric Definition of Linear Transformation). We can also think of lin-
ear transformation from a geometric perspective.

13



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

1. T:R™ — R™implies that the original parallelograms map to the transformed parallelo-

grams

2. T(c x ) = ¢ x T(7) means that the original lines through the origin map to the trans-
formed lines through the origin, and the original maps the ruling defined with funda-
mental unit 7 to ruling with unit TZ

3. Rotation around the origin is a linear transformation.
4. Reflection through a line through the origin is a linear transformation.

5. Translation is not a linear transformation.

Example 2.3.2. Fix 0 € [0,27). Consider the map Rot, : R? — R?, which rotates a vector by
angle 0 around the origin counterclockwise. Roty is a linear transformation. Find the matrix
associated with this transformation.

1 0
Solution. Lete, = [0] , € = L]

The matrix of Roty is

ROtgél ROtgéQ

1. Ifo = g, i.e. we rotate by 90° counterclockwise. The matrix for rotation is

| ) | ) J L 0 1
ROtgel ROtgeg = |€ey —eqof| =
| | .

1 0
2. General case: ¢; = [O] jey = L . Thus,

. cos 6] . 0 —1| [cos6 —sinf
Rotye; = ; Rotye, = . = .
sin 0_ 1 0 sin @ cos

| . | . cosf) —sind
= | Rotye; Rotye, | = .
| | sinff cosf

14



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

€2

€1

O

Example 2.3.3. The map Ref;, : R? — R? is a linear transformation that reflects a vector over
the line L : y = 2z. Find the matrix for Ref;,.

Solution. Key idea: express &; = & + &, and Ref(&;) = Ref(&|) + Ref(&}).

7

Choose

1 . 1
2] € L, then every parallel vector is ¢ [2] .

1
Rotate ) by 90°:

. . -2
then are perpendicular vector is d [ ) ] .

1 0
Take €, = [O] and &, = 1] , then we get

¢ [ ] T ( ( 7] B T

1 1 —2 c=1% 1 —2
=y 5 a=il |-
0 2 1 d=—2 2 1
= = - e , ) — L L = ;
0 L1 =2 c =2 1 -2
=< | | +d ] =% | +}
1 2 1 d =1 2 1
\ L \ \ L L .

_l_
(SN
I

(S

1
RefL 2 1 4/5
—_—
1
2

Thus, the matrix is



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

O

16



3 MATRICES

3 Matrices

3.1 Matrix Multiplication

Theorem 3.1.1 (Procedure of Matrix Multiplication). Matrix multiplication is very different

from other formats of multiplication.

 Input: a pair of matrices A and B.

*The number of rows of A equals the number of columns of B.

e Output: The product BA
* Procedure:

1. View A as a list of its column vectors:

A= |y Up
| |
2. Multiply each column by B:
| |
BA = By, Bu,
| |
Example 3.1.1. Examples of matrix multiplication.
. 9 1 2
1. Let A = [ 1] andB= |0 1|.Find BA.
3 5
Solution.
(] Ix142x%x(=1) 2x14+2x1 ~1 4
BA= |0 1 [1 1]: 1x04+1x(=1) 0x2+1x1|=|-1 1
35 3x14+5x(=1) 3x1+5x1 —2 11
O
1 2 1 9
2. Let A=1|0 1| andB = ) 1].FindBA.
35 N

Solution. Because 2 columns is not equal to three rows, the product does not exist. [

17



3 MATRICES 3.1 Matrix Multiplication

1
3. Let A = [

Solution.

1 2/ [1 03] [1x1+2x2 0x14+2x1  3x1+2x5 | [5 2 13
“Ix1+2x1 0x(=1)+1x1 3x(=1)+5x1| |1 1 2

O

Remark (Conceptualizing Matrix Multiplication). There are many ways to understand
matrix multiplication:

1. A matrix encodes a linear transformation:
A R™ — R"is am x n matrix.

B:R"” — R*isan x k matrix.

We can compass these maps:

The product BA encodes the composition of those transformations.

Example 3.1.2. Rotation by 90° counterclockwise:
—1
B=A-= 0
1 0

0 -1 (0 -1 -1 0 .
= encodes a rotation by 180°
1 0 1 0 0 -1

Thus,
BA =

2. The composition BA is linear:

* BA(X+y)=B(AX+ Ay) = BAX + BAy
* BA(cX) = B(cAX) = cBAX

18



3 MATRICES 3.1 Matrix Multiplication

3. The matrix for the composition is:

] | . |
BA = Bv; By, --- Bwo, ,WhereA: UVp Vg +++ Up

Proof. Suppose

Then,

BA = |BAe; -+ BAe,| = |Bv; --- By,

Example 3.1.3 (Application: Double Angle Formulae). Find an expression for sin 26 and cos 20
in terms of sin # and cos 6.

Solution. For angle 0, we have rotation by ¢ is a linear transformation, and the matrix is:

A— [cos@ —sin&]

sinf cos@

Geometrically, AA is rotation by 26:

A A— cos 20 —sin260
sin20  cos 20

Algebraically, we have

A A— [cos@ —sinQ] [COSQ —sinQ] B [00820—51n29 —2sin 0 cos

sinf cos@ sinf cos@ 2sinfcosf  cos?h —sin6

Since these are equal:

cos 20 = cos? 6 — sin? 6

sin 20 = 2sin 6 cos 0

19



3 MATRICES 3.2 Invertible Matrices

O

Remark. Generalization: A®: triple angle formulae; A™: multiple angle formulae

Theorem 3.1.2. Algebraic properties of matrix multiplication:

1. Matrix multiplication is associated:

(AB)C = A(BC), assuming the products AB, BC, AB)C exists.

2. Matrix multiplication is generally NOT communitive:

(a) If A and B are matrices n rows and n columns, AB # BA in general. *View matrix
multiplication as a type of function composition.

(b) In other words, the order matters.

Example3.1.4. + Exception: [3] [o] = [15] = [6] = [3]

e Consider
13| (5 7| |5+18 7+24| |23 31
2 4| |6 8| |10+24 14+32| |34 46
5 7| (1 3] [5+14 15+28] [19 43
6 8| |2 4 6+16 18+ 32 22 50
Thus,

bl

— b
Example 3.2.1 (Guiding Question). Let b = [bl

5 7
7I,é[68

:

€ R? be a fixed, arbitrary vector. Let A =

3.2 Invertible Matrices

2

[1 1] . Find all solutions X € R? to the matrix equation AX = b (as a function of b, and b,.)

. . T . 2r +
Solution. Observe: X = ,AX = 4 . Then we want to solve
Y x4y
2r + Yy = bl
x4y =by

20



3 MATRICES 3.2 Invertible Matrices

2 1. by | 1o |11 ‘ by | r1—2r |1 1 ‘ by
= I —_— I Ea— I
1 1‘b2 2 1‘b1 0 —1‘61—2b2

/-y |11 by [ 10 —by+ by
R | E— |
0 1‘2b2—b1 0 1‘2b2—b1
. x
S.X = =
Y

1l

Definition 3.2.1 (Inverse of a Matrix). Let A be a square (n x n matrix). Assume AX = b has

—by + by
2by — by

O

unique solution for each b € R". Then the map b — %, the unique solution to AX = b, is
a linear transformation and the matrix of this map is called the inverse of A. We denote it as
AL

1 2 1
Remark. The matrix [ 5 ] in the guiding question is the inverse of [1 1] :

Theorem 3.2.1. Computing the inverse for a matrix.
e A~! does not always exist.
e There are square matrices such that AX = b has infinite solutions.

* Process: ‘
by ‘
' Linear expressions
rref(A) 1 P
' in terms of b;

Row reduce
—_—

|

|
A
|
|

bn

Check pivot over each row of rref(A), and the coefficient matrix is A1,

Definition 3.2.2 (Identity matrix). For an n x n matrix, if it is

we call it the identity matrix.

Remark. I, encodes the linear transformationI,, : R* — R” (X — X)
Theorem 3.2.2. Procedure for finding A~!:

21



3 MATRICES 3.2 Invertible Matrices

1. Form augmented matrices:

[A}In}: A

2. Row reduce:

if rref(A)=I,, B=A"!

Example 3.2.2.
211 0] oy 1101 4 [1 10 1
| % | —) |
1101 2 111 0 0 —1:1 -2

ey 1100 1] o [1 001 -1
B — | E— |
0 11-1 2 0 11-1 2

Theorem 3.2.3 (Function theoretic definition of A~'). When A ! exists, matriz A~ is the ma-
trix encoding the inverse function of A. Hence, A and A~! always commute:

A7 A=I,=A A"

Example 3.2.3. Let

22



3 MATRICES 3.2 Invertible Matrices

Theorem 3.2.4 (A new way to find A~'). Solving AA~! =1,

T
| |
N | | |
AAT = | Ay Av,| = |e e, | =1,
[ | | | |
Avi =e1, Avg =ey,--- | Av, = ¢,
[Avlfel},[szfez},m,[Avnfen}

s, )], [ i) ] [ o)

. Tofind A1

[A}I”}%[I}A—l]

1 1 1
Example 3.2.4 (Problems concerning inverting matrices). LetA = |1 2 3|.Compute A™!
1 4 9
1
and use it to find all solutionsto AX = | —1
1
Solution
1 111 1111 00 101 2 —10
I _ I _ I
2 310 TELbg 1 29-1 1 o | 228 211 1 0
| I1-I | I—-II |
! 0 3 8 =1 01 292 =31
10112 =1 0 10013 =5/, 1,
| _ |
MEN gy 9021 1 o | M2 10 -3 4 -1
I I+I1T1
0 0 111 —3/2 1/2 111 3/2 1/2
3 _5/2 1/2
SJATT =123 4 1
1 _3/2 1/2
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3 MATRICES 3.3 Kernel of a Matrix

To solve AX = b, apply A~! on both sides:

A'(AX)=A"'b
X=A"'b

3 =5 sl |1 342 /2+ /2 6

X=|-3 4 1| |-1|=]| 3-4—1]=]|-8

1 =/ 1/ 1 L+2 [o 4" /o 3

3.3 Kernel of a Matrix

As A% = b encodes a system of linear equation, one key question of linear algebra is to find
how would the solution to AX = b change as b varies.

Theorem 3.3.1. Let f : R™ — R"™ be a function, then:

1. If 61, by € R", and b, =+ 62, then the sets {)E f(X) = 61} and {)E f(X) = 62} do not
intersect.

2. Every X in the domain is an element of the solution set {)‘c’ f(X) = B} for some b.

Example 3.3.1. Let A = [2 1} . Then solving AX = b gives 2z + y = b, which encodes a line
of slope= —2 that has a y—intercept of b.

Definition 3.3.1 (Zero Vector). The zero vector 0 € R” (sometimes denoted as 0, if the con-
text is unclear) is the vector all of whose entries are 0.

Example 3.3.2.

Theorem 3.3.2. Let A be ann x m matrix (i.e., encoding a linear transformation A : R™ — R")
and b € R" such that (s.£.) AX = b has a solution. Suppose X, to be any fixed solution. Then,
the solution set to AX = bis {X, + X' | AX' = 0}

Interpretation: The solution set to AX = b is the translation of the solution set to AX = 0
by Xj.

Proof. We need to prove two parts: 1. Any solution to AX = b is of the form %, + X', where
A% =0, and 2. X, + % are solutions to AX = b.
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3 MATRICES 3.3

Kernel of a Matrix

1. Any solution to AX = b is of the form %, + X', where A%’ = (.
Let X be such a solution, then X' .= X — X, then

AR = AR — X))
-b

I
(=l u]

So, X =Xy +X.

2. %, + % are solutions to A% = b.

Definition 3.3.2 (Kernel of a Matrix). The kernel of a linear transformation or a matrix is the

solution set to A% = 0.
i.e., ker(A) = {}_c’ e R"; AX = 6} :

Theorem 3.3.3.
ker(A) = ker(rref(A)).

Theorem 3.3.4. Procedure of computing the kernel of a matrix:

1. Row reduce A to rref(A), compute ker(rref(A)).

2. Unpack the equations encoded by matrix equation rref(A) = 0, solve for pivot variables

in terms of free variables.

3. Parameterize the solution set for rref(A)X = 0 as {t;V] +taVo + -+ +t4vq: t; € R} and

v, tracks the coefficient of the i-th free variable.

1 2 3 4
Example3.3.3. Let A= |5 6 7 8 |.Computeker(A).
9 10 11 12
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3 MATRICES 3.3 Kernel of a Matrix

Solution. ker(A) is the solution set to AX = 0:

1 2 3 410 1 2 3 410 1 2 3 410
‘ 111-91 ! I1/—4 !
5 6 7 80| —1]0 -4 -8 —-12/0| —— |0 1 2 310
| - | |
9 10 11 1210 0 -8 —-16 —2410 0 -8 —-16 —2410
10 -1 —210
|
IIT+8IT O 1 9 3 ‘O
I1-2IT1 I
00 O 010
Ty — I3 — 2.%4 =0
{L‘2+2{L‘3+3£L‘4:O
T T3 + 21’4
—2r3—3
.. Solution set: 2 R
T3 Z3
Ty Ty
Thus,
T3 + 2I4 1 2
215 — 3 —2 -3
ker(A) = v i s x3, 1 €ER p =< a3 + x4
T3 1 0
Ty 0 1
O
Definition 3.3.3 (Span). Let v, v, -+ ,V; € R, the span of v, vy, - - - |V, is the set:
Span(\71, Vg, s ,Vd) = {fil\_”l + tg\_;2 + -+ td\7d; t; € R}
Example 3.3.4. Our procedure of finding kernels finds vectors v, v, - - - , v, which spans the

kernel of the matrix.

Definition 3.3.4 (Image of a Matrix). Let A be an n x m matrix (i.e., encoding a linear trans-
formation A : R™ — R"), the image of A is the set:

Im(A) = {AX|X € R"}.
Interpretation: Im(A) is the set of b s.z. AX = b has a solution.

Theorem 3.3.5. Let A be an n x m matrix, and let wy,--- ,w,, be the columns of A: A =
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3 MATRICES 3.3 Kernel of a Matrix

— —

w; --- Wy |. Theimage of A isthe span of wy, -, W,,:

Im(A) = Span(Wy, -+, Wy,) = {t;W1 + - - - + t + mW,,; t,,, € R}

Remark.
ker(A) CR™ (domain)

Span(A) C R" (range)

Proof. We know that the columns of a matrix form Ax, namely the i-th column of the
-

matrix A is A¢;, where€; = [1| — thei-th entry.

T
Hence, X = |vdots| = 161 + 12€5 + - - - + 2.,
Tm

AX = £E1A61 + ZL‘QAéQ —+ -4 ImAém
= xl\ﬁl + xQV_‘}Q + -+ xmv_&?m

—

€ Span(wy, -+ , Wy, ).
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4 SPACES AND DIMENSIONS

4 Spaces and Dimensions

4.1 Subspaces and Bases

Theorem 4.1.1. Spans of Sets of Vectors:
1. In general, for v € R, if v # 0, then Span(V) is the line through the origin containing v.
2. If v = 0, then Span(¥) is also the zero vector.

3. For vectors vy, v, € R, if | # v, and vy, v, # 0, then Span(v, V,) is a plane through
the origin containing v, and v,.

4. If v, and v, are co-linear with each other, then Span(v, v,) is a line through the contain-
ing origin of v; and V.

Definition 4.1.1 (Redundancy). A vector v} is called redundantin alist of vectors v, - -- , v}, €
R™ if

Vi € Span(vy, - -+, V1)

Definition 4.1.2 (Span of an Empty Set). The span of the empty set of vectors is {0}.

Definition 4.1.3 (Linear Independence). Let v,,--- v, € R". Then vectors vy, -,V are
called linearly independent if v; is not redundant in the list of vy, - - - | V; Vi € [1,k].
Example 4.1.1. €, - - - , €, are linearly independent (L.I.) in R* Vn > k. (€;,---,€ are the

standard basis vectors.

Theorem 4.1.2. Span and Linear Independency.
1. The span of the empty set is a point {0}.
2. The span of a single linear independent vector is a line through the origin.

3. The span of two linear independent vectors is a plane through the origin.

Definition 4.1.4 (Subspace). Let V be a subset of R”. V' is called a subspace if:

1.0cV
Interpretation: Originisin V.

2. IfveV,thencveV VceR.
Interpretation: If v € V, then the line through the origin containing v is in V.
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4 SPACES AND DIMENSIONS 4.1 Subspaces and Bases

3.

If\71, \_/‘2 eV, then \?1 + \72 eV.
Interpretation: If v; and v, are not co-linear and contained in V, then the plane through
Vi, v2and Oisin V.

Example 4.1.2. Examples of subspaces.

1. {0} is a subspace.
2. R™is a subspace.
3. Ifv4,--- , Vi € R", then Span(Vvy, - - - , V) is a subspace.
Proof.
@ 0=0V, + 0¥+ -+ ¥
(b) V=tV +taVy+ -+t Vy
— ¢V = ct1 V] + Ctg\?g + -4 Ctk\_;k € Span(\_f’l, s ,\7k)
() V =t\Vi+thvo+ -+ 1,V
= V+V = (tl + t11>‘_;1 + (tg + tl2>\_/"2 + -+ (tk + t%)\_f»k € Span(\_f'l, s ,Vk)
|
4. Aline through origin is a subspace.
5. A plane through the origin is a subspace.
In two and three dimensions, examples 1, 2, 4, and 5 are the only examples of sub-
spaces.
For examples 6 and 7, consider an n x m matrix A, which maps a linear transformation
from R™ to R™ (i.e., A : R™ — R"). Let ker(A) and Im(A) be the kernel and image of A,
respectively.
6. ker(A) is a subspace.

Proof.
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4 SPACES AND DIMENSIONS 4.1 Subspaces and Bases

—

(a) A0, =0,
— 0, isin ker(A).

(b) AV =0, then A(c¥) = cAV=c0=0
= If v € ker(A), then ¢V € ker(A).
(c) If AV, = 0 and AV, = 0, then A(V, + V») = AV, + AV, =0

- val, Vg c ker(A), then \_”1 + Vg c ker(A)

7. Im(A) is a subspace.

Proof.

(a) 0, € Im(A)
(b) If b € Im(A), then b = A%

— ¢b = A(cX) € Im(A)
(c) If by, b, € Im(A), then b, = AX; and by = A%,

— 61 + 62 = A)El + A)EQ = A()El + )E@) S Im(A)

Remark. The same subspace can be spanned by many sets of vectors.

Definition 4.1.5. Let V be a subspace of R". A basis for V' is a set of vectors vy, - - -

which:
1. Span V, and
2. Are linearly independent.

Example 4.1.3. The vectors €1, - - - , €, are a basis for R”

Proof.

30
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4 SPACES AND DIMENSIONS 4.1 Subspaces and Bases

T
1. :$161+$252+"'+$n6n

Tn
2. €; ¢ Span(él, s éi—l) — L.I.
|

Theorem 4.1.3 (Computing a basis for Im(A)). Let A be an nxm matrix with columns vy, - - - , v,

The columns of A which contain a pivot upone row reduction to rref(A) are a basis for Im(A).

12 3 0 -1
Example 4.1.4. Let A = |4 5 | ~ieduwction, | 2
789 0 0 0
1 2
—> |4| and |5| are the basis of Im(A).
7 8

Remark. The coefficients —1 and 2 on the third column of A indicates that

3 1 2
6 =—-114|+2|5
9 7 8

Proof. We know: Im(A) = Span(Vy, - - - V,,,). To produce basis, remove redundant columns.
Hence, we want to show: the i-th column does not contain a pivot on row reduction (iff) v; is
redundant:

| | b
Vi=tVi+ -+ Vi = Span(Vy, -+ Vi) = [V - Vi Dl = AL

| | ti—1

= We want to show: when v, = A,_;x has solutions. To solve v; = A;_X:

" _ 7 RowReduce | Comnsistent = Redundant = Do not contain pivot in i-th column
[ A1 } E—
‘ Inconsistent = Not redundant = Contain a pivot
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4 SPACES AND DIMENSIONS 4.1 Subspaces and Bases

Example 4.1.5.
(1 2 3 0 -1
A=1|4 5 6| =ref(A)= |0 2
7 8 9 0 0 0
9 1109
4:5 =10 : —3 | = Inconsistent = Not redundant
| Lol
213 1 01-1
5 | 61 =10 1: 2 = Consistent = Redundant
7819 0010

Theorem 4.1.4 (Computing a basis for ker(A)). Recall Theorem 3.3.4 Procedure to find ker(A).
1. The spanning set produced by “computing the kernel of A” is a basis for ker(A).
2. Procedure:

(a) Row reduce A to rref(A), and then compute ker(rref(A)).

(b) Unpack the equations encoded by matrix equation rref(A) = 0. Solve for pivot
variables in terms of free variables.

(c) Parametrize the solution set for rref(A)x = 0 as {t; V) + taVo + - - - + t4Vy; t; € R} and
v, tracks the coefficient of the i-th free variable.

Proof. Look at the free variables v;,, z;,,--- ,z;,. Then ¥, is 0if j # k; v, is 1if j = k. Thus,

01\71 + 02\_’)2 + -+ Ckfl\_;kfl 75 Vk

-2 -3
Example 4.1.6. Let v; = and v, = .k Then, cv3; # v4 since the 4-th position of v is

0, whereas that of v, is 1.
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4 SPACES AND DIMENSIONS 4.2 The Rank-Nullity Theorem

4.2 The Rank-Nullity Theorem

Theorem 4.2.1. If V is a subspace of R, then V" has a basis, and all bases have the same size.

Definition 4.2.1 (The Dimension of a Subspace). Let I/ be a subspace, the dimension of V' is
the size of any bases. We denote it as dim(V).

Definition 4.2.2 (Rank of A). Let A be an n x m matrix (i.e., A : R™ — R"). The rank of A is
the dimension of the image of A. We denote it as rank(A).

rank(A) = dim(Im(A))

Definition 4.2.3 (Nullity of A). Let A be an n x m matrix (i.e., A : R™ — R"). The nullity of A
is the dimension of the kernel of A. We denote it as nullity (A).

nullity (A) = dim(ker(A))

Theorem 4.2.2 (The Rank-Nullity Theorem). Suppose A to be an n x m matrix:

rank(A) + nullity(A) = dim(domain of A) = m|.

Example 4.2.1. Let A = . To find basis for Im(A) and ker(A):

RS-
co Ot DN
© o w

0 -1
A2 1 2

Reduce
0 0 0

1. To find a basis for Im(A), we take the columns of A which contain a pivot upon row

reduction:
2

1D
8

Im(A) = Span

~N b~ =

codim(Im(A)) = 2.

2. To find a basis for ker(A), unpack the equation:

$1—$3:O 1 — T3
y =
Ty + 223 =0 Ty = —213
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T3 1
cker(A) =< | —2x3|; 23 € R ) =Span | | -2
XT3 1

. dim(ker(A)) = 1.
3. rank(A) = dim(Im(A)) = 2; nullity(A) = dim(ker(A)) = 1; dim(domain) = 3

. rank(A) + nullity(A) = 3 = dim(domain).

Proof.

1. rank(A) = dim(Im(A)) = number of rectors in a basis of Im(A) = number of pivots in
rref(A).

2. nullity(A) = dim(ker(A)) =number of rectors in a basis of ker(A) = number of free vari-
ables = number of non-pivot columns in rref(A).

3. .. rank(A)+nullity(A) = number of columns of rref(A) or, simply, A = dim(domain of A).

1 3
Example 4.2.2 (Geometric Perspective of Rank-Nullity Theorem). Let M = [2 6] .

corref(M) = [1 3] :

0 0
. Im(M) = Span [; ) (Line of slope 2 through the origin) = dim(Im(M)) = 1;
3]\ . 1 . .
ker(M) = Span ( . > (Line of slope — 3 through origin) = dim(ker(M)) = 1.

If we consider the domain of M to be the inputs for the transformation, and range of M
(Im(M)) to be the outputs of the linear transformation, then the rank-nullity theorem denotes
that

dim(Inputs) = dim(Outputs) + Information Loss.

The “information loss” is given by dim(ker(M)). In this specific example, dim(inputs) = 2 and
dim(outputs) = 1, so the information loss of the linear transformation M is 2 — 1 = 1.
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4 SPACES AND DIMENSIONS 4.3 Coordinates

N

Im(

Input/Domain Output/Range

Theorem 4.2.3 (Invertibility Criteria). Let A be an n x m matrix:

1. A isinvertible iff AX = b has a unique solution Vb € R".
<~ Im(A)=R" and ker(A) = {0}.
<= rank(A) =n and nullity(A)=0.

2. If A is an n x m matrix, then the following are equivalent:

(a) AX = b has a unique solution for all b in R".
(b) rank(A) =n
(c) nullity(A) =0
(d) Im(A) =R"
(e) ker(A) = {0}
() mref(A) =1,
(g) The columns of A form a basis for R
(h) The columns of A span R”
(i) The columns of A are L.I.

(j) There is a matrix B s.z.

BA=I=AB (B=A")

4.3 Coordinates

Remark (Goal of Coordinates). To describe the location of a vector within a subspace.
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4 SPACES AND DIMENSIONS 4.3 Coordinates

Definition 4.3.1 (Standard coordinates on R™). We can write X as a linear combination of the
standard basis vectors.

i.e.,i:a1+§1+a2§2+---+anén; CLZ'GR.

Example 4.3.1. Suppose X = € R% Then X = &; + 26,.

26, k- ®

|

|

|

|

|

|

€;
Theorem 4.3.1. Let V C R™ be a subspace and § = (Xi,- - - ,X,,) be abasis. Then everyx € V'
may be written as X = a;1X; + aXs + - - - + a,,X,,, for some unique scalars a4, - - - ,a,, € R.

Example 4.3.2. Suppose V is a subspace and g = (X;,X5):

X = alil ol Ggig

%

Definition 4.3.2 (3 coordinates). Let V C R” be a subspace and 5 be a basis for V. LetxX € V.
The -coordinates for X in V' is the following vector:

ax
[)E]ﬂ =
A,
SEX=aaX1 4+ + apXn.
1] [o] 1] o
Example 4.3.3. SupposeV =Span | |1, |1| |[andp =] |1}, |1
0] [1] 0] [1
1 0 2 e
Letx=2 1| +1|1| = |3]|.Then, [X]3 = 2.
0 1 1 -1-




4 SPACES AND DIMENSIONS 4.3 Coordinates

Remark. V in general has many basis. The -coordinates depend on the basis. Also, in
general, coordinate axes are not perpendicular.

1 -3
Example 4.3.4. Let V' C R? be the subspace spanned by v, = [2|, Vo = | 2 | . Let 8 =
1
-1
(Vi,v2)and X = | 2 |. Find [X]s.
2
Solution. Find [X]s = [01] s.t. X = V] + cVs. (Find an expression for X in the span of
Co
| )
v, and v,, which is the image of S = |V, +V,|. Hence, we need to find X = S [ 1] (i.e., solve
Co
|
S¢ = X).
Form augmented matrix [ S % ]:
] 1 -3 -1
| |
(siz|= |V x| =|2 22
| |
] 1 312
1 0 1/2
|
% 0 1. 1/2
reduce [
0 00
1/2
Xls =
1/2
O
| |
Remark. If (vy,---,V,,) = [ is a basis for a subspace V,and S .= |v, --- V,,|,thenS

converts 3-coordinates to standard coordinates.
i.e, S[X|z =x.

Example 4.3.5 (3-coordinates Under Linear Transformation). Consider T : R? — R? de-

13 1
fined by matrix [2 2] . Let X € R? be the vector whose 3-coordinates are [X]; = [3] , where
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4 SPACES AND DIMENSIONS 4.3 Coordinates

N

Solution. First, unpack the question:

1
1

)

To solve this question:

1. Find standard coordinates for X:

2. Multiply [%]; by T:

3. Compute [Tx]s.

O

—

Theorem 4.3.2. Let T : R" — R™ be a linear transformation and g = (v, -- ,V,,) be a basis

for R™. Let X € R":

[Ti]g = SilTS[)_(»]g, where S = \71 s \7n
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4 SPACES AND DIMENSIONS 4.3 Coordinates

Theorem 4.3.3. The matrix for T with respect to the basis 3 is

[T]3 = S™'TS.

? and § = 1] ,[1]>.Then
2_ _1 —1

CoP R 13] [1 1]_[4 _1]'
s <) |2 2] 1 -1 o -

Example 4.3.6. Let T =
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5 APPROX. SOLUTION OF AX =b

—

5 Approx. Solutionof AX =Db

5.1 Lengths and Angles in R"

T n
Definition 5.1.1 (Dot Product). Letx= | : | andy = | : | € R". The dot product of X and
T Yn
y is the following number:
T Y1 Y
X y= =x1y1+$2y2+---+xnyn:[x1 xn] :
Tn Un Un
Example 5.1.1.

=1x7+2x5+3x2=23.

\)
(NSRS |

Theorem 5.1.1. Algebraic property of dot products:

. X y=y-X
2.X-(1+Y2)=X-y1 +X ¥
(X1 +X2) y=X1 Y+ X2y

Definition 5.1.2 (Length). Let X € R". The length of X is the following number:

X1

%] = Vi'£Z\/$%+x§+-~-+x%, where X =

Example 5.1.2.

-

Remark. In R?, the definition of length is the Pythagorean theorem.
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5 APPROX. SOLUTION OF AX =b 5.1 Lengths and Angles in R”

Theorem 5.1.2 (Angle Between Vectors). Let 6 be the angle between X and y. We then have

IXI* + 191 = 11¥ = X]*
2[x[ivl

cosf =

Proof. Assume vectors X and y are drawn as below.

T

By the cosine rule, we have:

L = |IZ[* + 191" — 2II%[[[¥]| cos 0

So,
IZIP + I¥017 = > 1IXIP + [I¥)° = I¥ — X|I?

20=llyl 2[1[[[[¥l

cosf =

Theorem 5.1.3. Relationship of angle and dot products:
1. X-y > 0if0 < 90°
2. X-y=0ifg =90°
3. X-y<0ifg > 90°

Proof.

= [¥II* — 2% - ¥ + |%]*

Think of Pythagonean theorem:
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5 APPROX. SOLUTION OF AX =b 5.1 Lengths and Angles in R”

16 <90° |y —x|* <[I¥] + I’ =x-¥ > 0.

o If6 = 90°, [[y = X[I* = [I¥]| + [I* = x-¥ = 0.

« If6 > 90°, [[y = X[I* > [I¥]| + [[[I* = % - ¥ <0.
|

Definition 5.1.3 (Perpendicular). Letx,y € R". Then, X and ¥ are perpendicular iff X-y = 0.
(Equivalently: orthogonal)

Theorem 5.1.4. Suppose A is an 1 x n matrix s.f. A = [al an} .Then, AT = | : | = V.

Thus, AX =V - X.

Theorem 5.1.5.
X=0<= AX=0= X € ker(A).

e Letv # 0. The set {X | X L v} is a subspace of dimension m — 1.

e Let A : R™ — R" be alinear transformation. Then, the kernel of A is the set of all vectors
X € R™, which are perpendicular to the row of the matrix for A.

Theorem 5.1.6.

—

XV = [X]|[|V]lcos ¢
Proof.

1. v-Xis constant along translates of the subspace perpendicular to the line spanned by v:
V-X=AX=b
2. Project X into the line spanned by v:
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5 APPROX. SOLUTION OF AX =b 5.1 Lengths and Angles in R”

4]

ker(A) T+ ker(A)

3. Use trigonometry to calculate the projection:
¥ = (||%| cos ) (H"—H)

V- X=V-cV

||X|| cos 0

= —=—VI* = IX]l - [¥] cos 6
Inal
= ) = arccos (%)
X[Vl

Theorem 5.1.7. Projection of X into line spanned by Vv is given by the following formula:

Projection = ¢v =

Definition 5.1.4 (Orthogonal Complement). Let IV C R" be a subspace. The orthogonal
complement of V' is the set of vectors perpendicular to all vectors in V:

VE={XcR" v-X=0 VYveR"}.

Example 5.1.3. The orthogonal complement of a line with a slope m through the origin is a

line through the origin with a slop of —i.
m
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5 APPROX. SOLUTION OF AX =b 5.1 Lengths and Angles in R”

Theorem 5.1.8. LetV be asubspace. Ifv;,--- , Vv, € Visaspanningset, (i.e.,V = Span(vy, - , V),

thenX € VL iff ¥, - =0, %5 - =0, , ¥, - X = 0.

Proof. “Perpendicular to everything” implies v, - X =0 Vv € V,thenv = ¢;v| + -+ +

Theorem 5.1.9. LetV C R" be asubspace, V- is a subspace. Specifically, if V = Span(vy, - - - , V),
then

¥
V+ = ker .2
— Y -
Proof.
- Vi - I
. | XV 0
. :)_(‘ p— : P
. | X - Vi 0
|
1] [1
0| |1 .
Example 5.1.4. Let V' = Span Aol o . Compute V.
1 i 1
Solution.
1 0 1 1] gw [1 0 1 1 1011
1 — rref ==
1 —1 0 1| reduce |0 —1 —1 O 0110
Unpack, we have
Tl = —T3 — X4
T9 = —XT3
—X3 — Ty -1 —1
- —1
. V1t =Kernel = w ; x34 € R 3 = Span ,
T3 1
T4 0
O
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5.2 Orthogonal Projection

Theorem 5.2.1. Let V C R" be a subspace and X € R". Then, X can be written uniquely as

whenxl € Vandx+ e V.

Definition 5.2.1 (Orthogonal Projection). Let I C R" be a subspace. The orthogonal pro-
jection of X into V is the vector xI. The map % + %I is denoted as Proj, : R* — R".

Theorem 5.2.2. Computing Proj, (%) := %I
1. Letvy, -,V be abasis for V:
v | |
AT = : and A = |V, cdots Vy

- Vi - | ’

ATzl = ATR]

Rk

8y

AT
R" R*
2. Slove ATA¢= ATxforc.
3. %l = A
1 0 1
Example 5.2.1. LetV = Span | [1], |1 and X = |2|. Compute the projection of X onto
0 1 3
V.
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Solution.

1.

and AT:F 1 0]

>

Il
O =
— = O

2. Compute ATA and ATx:
1 10 Lo 2 1
ATA = [ ] 1 1| = [ ]
011 1 2
01
1 10 ! 3
011 5)
3
3. Solve ATAZ= ATX for &

2 1 . 3 2 1;3 Row 1 0;1/3
c= — [ — [
1 2 5 1 215 | reduce [ O 117/3

“

4. Compute A¢ = x|

1 0] /s
)_(’”_ 1 1 /3 — |8
7/3 = |%/s
0 1 /s
1 1/3 2/3
.')—(»L:)—(*_)—(’H: 21 — 8/3 — _2/3
3 7/3 2/3

O

Definition 5.2.2 (Transpose of a Matrix). Let A be an n x m matrix. The transpose of A is the

m x n matrix AT whose rows are the columns of A:

| | - Vi -
A=|v, - v |; AT =

| ’ = Vi —
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5 APPROX. SOLUTION OF AX =b 5.2 Orthogonal Projection

Equivalently, the ij-entry of A is the ji-entry of AT.
Equivalently, whose columns are rows of A.

Theorem 5.2.3.
ker(AT) = Im(A)*

Remark. In general, if rank(A) is less than the dimension of range, small perturbations of
any b € Im(A) lie outside the image of A. In such cases, rather than try to find % s.t. AX = b,
try to find % x.t. A% is as close as to b as possible.

Problem: Find X s.t. | AX — b|| is as small as possible (minimized).
« The solution agrees with solving AX = b when there are solutions.

* This question always has solutions.

Solution.

1. Find b* € Im(A) which are as close as to b as possible.

Theorem 5.2.4. Let A be an n x m matrix and b € R™. The closest vector to b in Im(A)

2. Solve A% = bx

U
Solution. (Advanced approach).
1. Approximate solutions to AX = b
< Solutions AX = bll where b/l € Im(A)
—+ AX — b = bt equivalently AX — b is perpendicular to Im(A)
— AT(AX—Db) =0
ie, ATAX = ATb
2. The approximate solutions to AX = b are exactly the solutions to ATAX = ATb.
U
11 1
Example 5.2.2. Let A = |1 2| andb = |0|. Find all approximate solutions to AX = b.
11 0
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5.3 Graph Fitting

Solution.
11 1
111 o1
1 2| x= 0
[1 2 1] [1 2 1]

11 0

3 4. |1

X =
4 6 1
1 _
Solve the equation, we have X = | 1| as the unique approximate solution to AX = b. O
2

5.3 Graph Fitting

Example 5.3.1. Consider the following data set:

Nv—lo‘&
HOO‘@

Find a quadratic polynomial f(z) = Az? + Bx + C (i.e., find A, B,C € R) s.t. f(z) =y Vzin
the data set.

Solution. Plug-in data pointsto f(x) = Az*+ Bx+C to obtain algebraic relations between
A, B,and C.

0A+0B+C = f(0)=0
IA+1B+C=f(1)=0
4A+2B+C=f(2)=1
We can form a system of linear equations:
‘ 1
00 1| A 0 00 1:0 1005
| W |
111 |Bl=]ol=1]1110] 2 mef={01 0 _1
[ reduce L9
4 2 1| |C 1 4 2 111 0 0 1: 0
1 1
'.A:—’B:——’O:
2 2
1 1
.f(x)=§x2—§xz—x(x—l)
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Theorem 5.3.1 (Fundamental Problem of Graph fitting). Given some dataset (x1,y1), -, (Tm, Ym) €
R? and functions f,---, f, : R — R. Find a function f : R — R s.t.. 1. f(z;) = yu;, and 2.
f=AhH+ -+ A fn

To solve this, plug-in data points and get a matrix equation as following:

filzr) -0 falm) Ay n

Example 5.3.2. Consider the following data set:

ool\bv—*o‘H
)—‘OOO‘@

Find a quadratic polynomial f(x) = Az* + Bx + C (i.e., find A, B,C € R) s.t. f(z) =y Va,y
in the data set.

Solution. Plug-in data points:

(
0A+0B+C = f(0

0)=0
1A+1B+C = f(1)=0
4A4+2B+C = f(2)=0
(9A+3B+C=/f(3) =1
Form a matrix equation:
00 1], 0 0010 1000
111 0 11 1'0| gw [0 100
Bl = = ‘ — ‘
4 2 1 o 0 4 2 1,0 reduce 00 1,0
9 3 1 1 9 3 111 0001
.. There’s no solution. O

Example 5.3.3. Using the same data set from Example 5.3.2, find a quadratic polynomial s.z.

0 f(0)
. 0 fy. L.
the distance between and is minimized.
0 f(2)
1 f(3)
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Solution. This problem is equivalent to the least squares problems (finding the best ap-
proximate solution to AX = b). Solve ATAX = ATb.

00 1
L 01409
A= AT=101 2 3
4 2 1
1111
9 3 1
00 1
0 1 - 98 36 14
ATA =10 1 2 =136 24 6
4 2 1
11 14 6 4
9 3 1

Remark. ATA is symmetric across diagonal, meaning a;j entry is equal to a;i entry.

0 0
0 0149 0 9
B:O=>AT6=01230=3
1 1 11 1
1 1
Form a matrix equation:
98 36 1419 100 1
| W |
36 24 613 | — -2
[ reduce [
14 6 411 00 11 55
1, 9 1
fla) = o ~ 0%t 3
£(0) 0.05
f)|  |-0.15
f(2) 0.15
f(3) 0.95

The distance between these vectors is minimized:

d= /(0= 0.05)2+ (0+0.15)2 + (0 — 0.15)2 + (1 — 0.95)% ~ 0.2236

That is, error~ 0.2236. O

Theorem 5.3.2 (General Problem of Graph Fitting). Given a data set (x1,41), -+, (Tm,Ym) €
R? and functions f;,---, f, : R - R. Findafunction f : R - Rs.t: 1. f = A fi +--- + Apfo,

50



—
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f(z1) Y1
and 2. : and | : | are as close as possible.
f(@m) Ym
To solve this problem, form a matrix equation and solve for its best approximate solutions:
filz) - fulz) | | A Y1
: . : = |wvdots
N - S N~ v
A % b

Solve for the normal equation
ATAX = ATb

5.4 Orthogonal Linear Transformation

Definition 5.4.1 (Orthogonal Transformation). Let T : R” — R" be a linear transformation.
T is called an orthogonal transformation if

T(®) T() =%-§ VXyeR"
Equivalently, T is orthogonal iff T preserves lengths and angles.

Example 5.4.1. Rotations and reflections in R? are orthogonal. Reflections through a sub-
space V' C R™ is also orthogonal.

Definition 5.4.2. Let V C R" be a subspace and Proj,, : R* — R" and Proj,,. : R”R" be the
orthogonal projections into V and V+, respectively. We define 22V : R" — R" by

22V (X) = Projy (X) — Projy . (X)
Theorem 5.4.1 (Property of 22V). 22V is an orthogonal linear transformation.
Proof.
1. It’s linear because the projections are linear:

2V (X +y) = Proj, (X +y) — Proj,.(X+¥)
= Projy (X) + Projy (¥) — Proj, . (X) — Proj, . (y) = 22V (X) + 22V (¥)

22V (cX) = Projy (eX) — Projy . (eX) = cProjy (X) — cProj, . (X) = 22V (X)
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2. It’s orthogonal «+— preserve lengths and angles

Xy =& +x) )+
T

Definition 5.4.3 (Orthogonal Matrices). Orthogonal Matrices are matrices encoding orthog-
onal linear transformations.

Theorem 5.4.2. If T : R” — R”" is orthogonal, the matrix for T is | T(é,) --- T(&,)|. The
| |
lengths and angles of these vectors are the same as €5, - - - , €, if T is orthogonal.
Theorem 5.4.3.
. L 1=
e; - ej =
0, ©#]

Equivalently, €; L €;ifi # jand ||€;|| = V€, - €; = 1.

Extension. Let vy, .-,V be vectors in R", we say vy, -- -, V,, are orthogonal if v, - V; =
1, 1=y
0, i#j

Theorem 5.4.4. A matrix A is orthogonal iff its columns are an orthogonal set of vectors.

Proof. Suppose A = |u; --- d,|,inwhichu,--- , u, are orthogonal.
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DARX)CAY) =A@+ -+ 1,6,) - A(11€1+ -+ Yn€n)
= (2t + -+ 2pUy) - (Y1l + - 4 Yptn)

= Z (z:;) - (y;4;)

1<i,5<n
1<i,j<n
i - 17 1= ]
= Z LiYj u; - u; = ‘ ‘
1<i,j<n 0, i#]
= i . y)'
|
2 _2 1
3 "3 3
Example 5.4.2. Consider A= |1 2 2 |.Is A orthogonal?
2 L2
3 3 3
Solution. , , ,
S 2 1 2
e () (5) + (5) -
2 2 1 2 1 2
Vi €CU2 = 3 ~3 + 3 3 + 3 3 =0
2 1 1 2 2 2
Vi1 ECU3 = g g + g g + g —g =0
92 2 92 2 1 2
‘7}2"7’2:(—5) +(§) +(§ =1
2 1 2 2 1 2
Vg y ECU3 = _g g + § § + § —g =0
1 2 9 2 9 2
e () (2 (2)
.. A is orthogonal.
0
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Theorem 5.4.5. To compute lots of dot products, we can encode them as a matrix product:

— ﬁl — | | ﬁl'ﬁl ﬁnﬁl
E u ﬁn = :

Extension. An n x n matrix A is orthogonal iff ATA = I. Consequently, all orthogonal

matrices are invertible, and A—! = AT.

Theorem 5.4.6.
(AB)T =BT - AT,

1

Example 5.4.3. Consider A = [1 1 1} and B = |2

3
T
1 T 1
(AB)T = [1 1 1] of | = [6] = [6} , BTAT = [1 2 3] 1| = [6}
1
- (AB)T =BTAT.
- a - | |
Proof. Suppose A = : and B = |b, [
—a —|[] | b - & by, - &
an _| | l31 5n Bm é’n
— b T | & by a, - by
BTAT = : 51 E_l'n - :
(AB)T =BT . AT

Theorem 5.4.7. Properties of orthogonal matrices:
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1. Theinverse A~! = AT of an orthogonal matrix A is orthogonal.
2. The product AB of orthogonal matrices is orthogonal.
Consequences:
* A is orthogonal <= columns of A are an orthogonal basis.
e AT is orthogonal <= rows of A are an orthogonal basis.
Proof. We know if A is orthogonal, then ATA =1.

1. To show AT is orthogonal, we need to show (AT)TAT =1

(AT T = A = (AT)TAT = AAT = AA ' =T

2. To show AB is orthogonal, we need to show (AB)T(AB) =1

(AB)T =BTAT = (AB)T(AB) = BTAT(AB) =BT (ATA)B=BT"IB=B"B =1

5.5 Gram-Schmidt Process, QR Factorization

Remark (Orthogonal Coordinate System). In general, a vector cannot be represented by
summation of its projects, but when we have orthogonal ones, we can.

Theorem 5.5.1. LetV = Span(uy,--- ,u;) and X € V, then there exists unique scalars ¢, - - - , ¢
such that X = c¢;u; + cotiy + - - - + ¢ ug. The constants ¢y, - - - , ¢, equal:
;=X U

Proof. Since X € V, X = ciu, + - - - + ¢, Uy, for some constants.

ﬁzi:ﬁl(01ﬁ1++ckﬁk)

— —

= cl(ui . U1> + -+ Ck(ﬁl . ﬁk)

Since uj, - - - , Uy are orthogonal,

Wity = .
1, 1=
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5 APPROX. SOLUTIONOF AX =b 5.5 Gram-Schmidt Process, QR Factorization

Theorem 5.5.2. Let u,,- - - , U, be orthogonal vectors and V' = Span(us, - - ,ux.) The projec-

tion of X € R™ to V' is given by

— —

Projv(i) = (ﬁl . )E)lll +---+ (ﬁk : X)ﬁk
In particular, projections into a line spanned by u is given by

Proj, (X) = (d - X)u.

Proof. Write X = %!l + %+ such thatxl ¢ Vandx* € V* and %Il = ¢ ;i) + - - + ¢y

Sinced, € V, Xt e V! andd, - X+ =0,

The Gram-Schmidt Process:

1. Input: V C R" is a subspace with basis vy, - - - , V.
2. Output: uy, - - - , Uy, are orthogonal and span V.

3. Procedure:

<

1
¥4

(@ u; =

(b) Vi = v — \7’2 relative to V,_; = Span(vy, -+, V¢_1)
A7
(C) ﬁk — TS
gl
(d) Compute the last v;-:

Vi

— v — vl
=V;—V;
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1 1
. 1 0 .
Example 5.5.1. Consider V' = Span 1ol . Apply the Gram-Schmidt process to
1 1 —1
these vectors to find a set of vectors that are orthogonal and span V.
Solution.
1. ﬁl == ‘_,,1
V4]
1/2
; Sl — /12 211212 —9 1, — e
Since ||[Vi|| = VI2+ 12+ 12412 =2, 1) = y
2
1/2

2. Find V5 and u,

L 1 1
u1~V2§+2:1
1 1/2 1/2
T Yol |/
. 2 - -
0 1/2 _1/2
1 1/2 1/2
1/2
s Vo —'/2
2 —
Vol =1/
1/2
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9.5

Gram-Schmidt Process, QR Factorization

3. Find v3 and d;

1/2 1/2
1 1
Therefore, 1/ 2 oy , 1/ 2
[o| |=/2| |/
l/2 _1/2

—

B

Theorem 5.5.3 (QR-Decomposition). Let A =

linearly independent columns. Then,

where

58

- (111 V3)111 - (112 V3)112
11 1 170
2 2 2| |9 [ 1]
1 1 1 1| |! —2
2 2 2 21 |-1
0 /o e
2 1 1
1. 1/2 —(=2)- 1/2
1 /2 —'/s
-_1 1/2 I 1/2 |
o ', . 'y, -
2 /o L |1
1 /o I
SR CA RN SR
1/2
W |
Vil =1/
—1/,
are orthogonal and span V. O
| |
Vi v, | be a matrix and assume A has
| |
A =QR,
|
= iy
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has orthogonal columns and

0 0 -V

is upper triangular. In particular, if A is a square, invertible matrix, A = QR, where Q is
orthogonal and R is upper triangular.
Proof. Run G.S. process in V' = Im(A) with basis vy, - - - , v, and we get uy, - - - , u, that are

orthogonal and span V.

Find G.S. Process and QR factorization via row reduction.

1. General Idea:
Input: A matrix A with linearly independent columns
Output: a factorization A = QR, where Q has orthogonal columns and R is upper
triangular.

2. General Procedure:

(a) Compute AT A and form the augmented matrix [ ATA : AT] .

(b) Row reduce the left hand side until an upper triangular only by subtracting mul-
tiples of rows from rows below them. At the conclusion of this step, left hand

side is upper triangular.
(c) Divide each row by the square root of the leading diagonal entry.

(d) The final output is [R : QT}.
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1 11
Example 5.5.2. Find the QR factorizationof A = [0 1 2
10
Solution.
1. Compute ATA.
1 0 1{]1 1 1 21 4
ATA=|1 1 0[]0 1 2| =11 2 3
1 2 3[|1 1 3 4 3 14

2. Rowreduce [ATA @ AT|.

2143101 V2 1/v2 4/\/’3 1/v2 0 1/v2

1231110 28 0 32 VB nEB VB a2

43 1411 2 3 0 0 2/V31="/2v3/3 1/5v/3/3 1/5V/3/3
3. So,

NCIRYNG VNG
R=|0 32 23

0 0 2/V3
1/v2 0 1/v2

Q= |1/2v2/3 2/3 —'/2/2/3
—1/5V3/3 1/2v/3/3  1/2V/3/3
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6 DETERMINANT

6 Determinant

6.1 The Definition of the Determinant

Remark. Dot products encode lengths and angles of vectors. Determinant encodes vol-

ume and orientations of subspaces.

b
] be a 2 x 2 matrix, the determinant of A is

Definition 6.1.1 (Determinant). Let A = [a
C

the quantity
det(A) = ad — be.

Theorem 6.1.1. The image of the unit square under A is |det(A)|.
Theorem 6.1.2. A matrix A is invertible <= det(A) # 0.

Proof. A isinvertible — rank(A) = 2, i.e., ¥, and Vv, (columns of A) are not co-linear.

—> The area of the parallelogram spanned by v, and v, does not have an area of 0. |

b
Theorem 6.1.3. Let A = | be a 2 x 2 matrix. The sign of the determinant of A satisfies

c

(
0 if v, and v, are colinear

—C
+ if vy is a positive multiple of vi°' =
a

sign(det(A)) =

—C
crot

— if v is a negative multiple of v}
a

\

Proof. Consider the projection of v, into the line spanned by vi°' = [_C] :
a

—c b
=] ‘_;EOt ’ ‘_’:2 —rot [ a ] [d] .

Vy = ———— -V, =
2 2rot | rot 1
viot. ¥t [ c

a

_ det(A)
a2+ 2

codet(A) >0 = vy >0
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6 DETERMINANT 6.1 The Definition of the Determinant

det(A) <0 = v <0.

Remark. The sign of the determinant describes the orientation of v; and v,.

Definition 6.1.2 (Parallelogram). A parallelogram is defined by the set {c;v; + covy | 0 < ¢y < 1}

—

U1

c1h

02172 172

Extension (K-Parallelepiped). Let+vy,--- ,V; € R". The k-parallelepiped spanned by v,, - -- , v
is the set
{Cl\_f)l -+ 02\72 + -+ Ck\_f)k ‘ C; € [O, 1]}

Extension (Unit Cube/n-parallelepiped). The unit cubeis R" is the n-parallelepiped spanned
byeé, - v,
{0161 + -4 Cnén | c € [O, 1]}

Theorem 6.1.4. Let A be alinear transformation, then A maps parallelepipeds to parallelepipeds.
The image of the unit cube under A is the parallelepipeds spanned by the columns of A.

Theorem 6.1.5 (Volume). The volume of a k-parallelepiped spanned by vy, - - - .V is

vol(Vy, -+, Vi) = vol(¥y, - -+, Vieu1) | Vir |,

ol

where the v is the perpendicular part of v, in the decomposition v, = v, + v, where \72 €
Span(vy, -+, Vy_1), and v{- is perpendicular.

Theorem 6.1.6. The volume of the k-parallelepiped spanned by v, - - - , v, equals

vol(Vy, -+, ) = [Vl - 93 - 9l 19 I,
where Vi is the perpendicular part of v; with respect to V = Span(vy, - -+ , V;_1).
7 1 2
Example6.1.1. Letv, = |0|,V, = [1|,V3 = |1]|. Find the volume of the k-parallelepiped
0 1 1
spanned by vy, V5, Vs.
Solution.
vol(Vy, Va, V) = V| - [V || - V5]
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6 DETERMINANT 6.1 The Definition of the Determinant

1. Since [|vy|| =7,

. 7
= Vi 1 =
ul = = _— — 0 g el

INall
0
2.
Vs = Vo — Vi
= Vo — (Vo - U)W,
= Vo — (& - ¥2)&
1 1 0
= |1 =10 = |1
1 0 1
¥l = V2
0
. 1 ]
U = —
NG
1
3.

2 2 0 0

— (1] = |o] = |1] = |0

1 0 1 0

H\_’»é_H =0— \_;3 € Span(\_/’l,\_l’Q)

VO]-(‘717‘727‘_;3) - 0

O

Theorem 6.1.7. Let A be an n x n matrix, then A is invertible <= the volume of the paral-
lelepiped spanned by the columns of A is not 0.

Proof.
A isinvertible <= rank(A)=n
= ‘71 ﬁé Span(\_/’l, s \_;1;1)
= ||V #0
= vol(Vy, -+, V) # 0,
Vi, -+ ,Vy are columns of A. [ ]
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6 DETERMINANT 6.2 Computing the Determinant

Definition 6.1.3 (Formal Definition of Determinant). There is a unique function from the
set of n x n matrices to real numbers called the determinant and denoted as

det : {n x n matrices} — R

satisfying the following conditions:
1. |det(A)| =volume of the parallelepiped spanned by the columns of A.

2. (a) det(I) = 1.

1
Example 6.1.2. det ([0 2]) =1-0=1.

(b) The determinant is a linear function in each column of A:

det \_;1 e \_”nfl \7n + ]{?\_’ZL = det \_;1 e \_;n +k det \_;1 R \_/ﬂ

Example 6.1.3.

det < [; ccl] > = 7d — 3cis alinear function.

6.2 Computing the Determinant

Theorem 6.2.1 (Computing the Determinant via Row Reduction). Elementary row operations
change the determinant in prescribed ways.

1. Switch rows of a matrix, the determinant changes the sign.

Proof. Wantstoshow:det | [--- v, -+ v, | | =—det| [--+ ¥, -+ V,
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6 DETERMINANT

6.2 Computing the Determinant

Consider: det | |--- v, +V; Vi+V, - = 0 because it has repeated columns:
| |
| |
det VZ+V] VZ+V]
| |
[ | | | |
= det V, \71—1—% + det \_;1 \_/')14—\_’»]
I | | | |
[ | | | |
= det ‘_;z \?Z + det \71 Vj .
I | | | |
0

+det | [--- V¥

cdet| |-

cdet| |

| | |
CoV e Rdet | e v -0
| | |

+det | |-+ V

:—det “ e V] oo V7,

. -
[

2. Adding a multiple of j® row to i row with i # j, the determinant stays constant.

Proof.
|
det tet \_’)l + k\_;]
|
|
Note thatdet | |--- ¥

=det | [--- v --- tkedet| |- ¥,

= 0 because it has v; at both the i and j" column, and
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6 DETERMINANT 6.2 Computing the Determinant

thus the columns are not linearly independent.

3. Scale arow by & # 0, the determinant scales by k.

Proof. Note that determinant is a linear function in each column of A.

2 11

Example 6.2.1. Compute the determinantof A = |1 2 1
1 1 2
Solution. Row reduce A, keeping track of how the determinant changes.

Note that det(I) = 1.

1

Row
1| —
2

Reduction

— =N
— N
o O =
oS = O
_ o O

D
In this process of row reduction, we know 1= det(I) =1,s0 D = 4.

aiq * *

0 a92

Theorem 6.2.2. Let A = | be an upper triangular matrix. The determi-

0 o oo ap,
nant of A iS ay;, ag, - - - , ann, the product of the diagonal entries.

Proof. [Case 1|All a;; # 0.

Row reduce A to compute det(A) by dividing each row by a;; to get the identity matrix I.

1
So, ————— D =det(I) =1,amdwe get D = aj; -+ - anp
aiy : - Qpp

Some a;; = 0. = Show det(A) = ay; - - - a,, = 0 = Show A is not invertible.

Look at the first a;; = 0, we know the i column in row reduction does not contain a pivot.

= A is not invertible.

Computing the Determinant
1. Input: n X n matrix A

2. Output: det(A)
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6 DETERMINANT 6.2 Computing the Determinant

3. Procedure: Row reduce A, keeping track of the elementary row operations until an
upper triangular matrix is obtained.

Let ayy,--- ,an, be the diagonal entires of this matrix, &y, --- , k,, be the constants multi-
plied by in row reduction, and s be the number of switches:

(=1)%(ky -+ - k) det(A) = agq -+ apy,

det(A) = —(“];1 : Z:S (—1)°

Theorem 6.2.3.
det(A) = det(AT)

Theorem 6.2.4 (Computing Determinant via the Laplace Expansion). To find the formula for
an n x n matrix determinant in terms of an (n — 1) x (n — 1) determinants:

Proof. To row reduce the n x n matrix, we row reduce the (n — 1) x (n — 1) matrix.

= det(A,,_1) = det(A,). [
Example 6.2.2.
2 11 11 0 11 011
det 1 21 =2 2 1|+|1 2 1]+|0 2 1
11 2

—_

11
2l |1 2
—6-1—1=4.

11
2 1

=2

1
0
012 J012 |1 12
2

+ (—1)?
) (=1)

Remark. Note that the vertical bars denote determinant.

Definition 6.2.1 (ij-Cofactor). Let A be an n x n matrix. The ij—cofactor of A is the (n—1) x
(n — 1) obtained by deleting the i row and j® column. We denote this matrix as A;.
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6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

Theorem 6.2.5 (Laplace Formula). Consider the ™" column of a matrix A (wasp i row), then,

det(A) = i(—l)iﬂ ~aj; - det(Aj;)

j=1

6.3 The Multiplicativity of the Determinant and Other Properties

Theorem 6.3.1 (Multiplicativity of the Determinant). Let A and B be n x n matrices,
det(AB) = det(A) x det(B).

Corollary 6.1.
det(A") = det(A)*

Corollary 6.2. If A is invertible,
det(A™!) = det(A) ",
Proof. Note that AA~! =1.

- det(A - A1) = det(T)

I
—

Corollary 6.3. If A is invertible, det(A) =## 0.
Theorem 6.3.2. If Q is an orthogonal transformation, then, det(Q) = £1, or |det(Q)| = 1.

Proof. |det(Q)| is the volume of the unit cube under Q.

The unit cube has a shape of volume 1, which means it reserves volumes.

Also that since Q is orthogonal, meaning this transformation preserves lengths and angles.
Wants to show that preserving lengths and angles means preserving volumes.

vol(Vy, -+, V) = Vi lIVa W5 Il -+ 19, Vi € Span(¥y, - -+, ¥ y)
| |
SinceQ = |d; --- u,|,
| |
|det(Q)| = vol(ty, - -+ , 1) = [[dy|[[[d || - - - || |
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6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

Since Q is orthogonal, 1, - - - , U, are perpendicular to each other and have lengths of 1,

|det(Q)| = [y [[[[tiz]| - - - [[un]| = 1 x - x T =1.

Lemma 6.1. When A is invertible, det(A) = det(A™T)
Proof. Use QR decomposition, we know that
= (QR)" = RTQ"

det(A) = det(Q) - det(R)
det(AT) = det(RT) - det(QT)
det(Q") - det(R").

Wants to show: det(Q) = det(QT) and det(R) = det(RT).

1. Since Q is orthogonal, det(Q) = +1.

Also note that since Q is orthogonal, QT = Q~!.
det(QT) = det(Q_l) =det(Q)™' = det(Q).

2. Note that R is an upper triangular matrix, and thus its determinant is the product of the
entries on diagonal: det(R) = a1 - as - - - app.-

Also note that the transpose of R, R is a lower triangular matrix, and thus we know that
det (RT) = 11 - A22 " Apnp-
. det(R) = det(RT).

det(A) = det(Q) - det(R)
= det(QT) - det(R™) = det(AT).

[
Lemma 6.2. If A is not invertible, then AT is also not invertible.
Proof. A isinvertible exactly when rref(A) =1,
That is, rank(A) = n = rank(A™T) = n and thus, AT is also invertible,
If A is not invertible, rank(A) < n.
Thus, rank(AT) = rank(A) < n, indicating A" is also not invertible. |

Lemma 6.3. For an n x n matrix A, rank(A) = rank(AT).
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6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

Proof.

Proposition 6.1. When A is not invertible, then det(A) = det(AT).

Theorem 6.3.3.
det(A) = det(AT)

Theorem 6.3.4 (Cramer’s Rule). Let A be an invertible n x n matrix and b € R". The unique
solution to the system AxX = b is the following vector

det(A, 5)

det(A, 5)

where A ;- is the n x n matrix obtained from A by replacing the i" column with b.

Proof. Since

| HRES
‘71 \_f‘n :xlvl—i_—i_xn‘_;n:g?
\ | ] |z
so we have
| | | | |
det(ALE): B Fy oo V| = |m V2T Ve e .
|

By the linearity of determinant, then

—|—(L‘2\_f’2 \_;2 Vn++xn‘_;n \_;2 Vi

—
V)
3

det <A1,6> =1

=z det(A).

:1’1

—_
[\

- < <
3

<4 — <4
Q. <4

70



6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

det(A, 5)
ST T et (A)
Similarly, we can extend this proof to an arbitrary z;,

det (Ai75> = x; det(A)
det (A, 5)
det(A
1 2 - 1
Example 6.3.1. Suppose A = [3 4] ,thendet(A) = —2.Letb = L] :

1 2 11
Therefore, A, 5 = [1 4] , and det <A1,B> =2 A, 5= 5 1] , S0 det <A2’5> = —2.
Then, _

<3f-[

b - 1
Remark. For an arbitrary 2 x 2 matrix A = [a nE a,b,c,d € R. Suppose b = [O] , then
&

applying Cramer’s Rule, we know ]

B 1 [d]
X = )
ad —bc | —¢

Theorem 6.3.5 (Application of Cramer’s Rule). Cramer’s Rule can give formulas for A~! in
general: We saw Ax; = €; and AX, = €,, then

To be more specific, for a 2 x 2 matrix A = [a , we have
C
1 [d -b
Al = :
det(A) —C a ]

Theorem 6.3.6. Give a matrix A with integer entries and det(A) = +1, the matrix A—1 has
integer entries.

71



7 EIGENVALUES AND EIGENVECTORS

7 Eigenvalues and Eigenvectors

7.1 Computing A*%

Definition 7.1.1 (Eigenvector and Eigenvalue). Let A be an n x n matrix, and eigenvector for
A is any non-zero vector X, such that AX = M\X, for some A € R. The number ) is called the
eigenvalue for X. For an eigenvector X, A*¥X = \FX.

Definition 7.1.2 (Eigenbasis). Let A be an nt x n matrix, an eigenbasis for A is a basis for R”
consisting of eigenvectors for A.

Theorem 7.1.1. Let A be an n x n matrix with an eigenbasis of vy, - - - v,,. The eigenvalues for
V1, -,V are Ay, -+, \,, respectively. To compute A*X, we could write X = ¢,V + - - - + ¢, V,,,
and then use linearity, we have

Ak)_(' = A(Cl\_f)l + s —f- Cn\_f)n)
= AR + - 4 e, ARV,

= O AVL+ -+ AV
Theorem 7.1.2. Consider f5 : R — R defined by

fa(t) = det(A —tI).
The zeros of fa(t) are exactly the eigenvalues of A. Thatis, fa(\) = 0.

Definition 7.1.3 (Characteristic Polynomial). The characteristic polynomial of A is the func-
tion
Fa(t) = det(A — tI).

Definition 7.1.4 (Modified Definition of Eigenvectors). Let A be an n x n matrix, and \ be
an eigenvalue for A, i.e., a root of the characteristic polynomial of A defined by fa(t) =
det(A — tI). An eigenvector with eigenvalue )\ for A is any non-zero solution to AX = AX.
i.e., non solution to

(A — DX =0.

Theorem 7.1.3. The non-zero elements for ker(A —\I) are exactly the eigenvectors with eigen-
value \.

Definition 7.1.5 (\-Eigenspace). Let \ be an eigenvalue for A, the \-eigenspace is
EA)\ = ker(A — /\I)
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7 EIGENVALUES AND EIGENVECTORS 7.1 Computing A*X

2 2
Example 7.1.1. Compute all eigenvectors for A = L 3] .

Solution.
fa=@t—4)(t—-1) = XA=1 and 4.

S () B (R R ().

Computing A*x:

1. Compute fa(t) = det(A — tI)

2. Find the roots of f(¢); those are eigenvalues.
3. Compute eigenspaces

4. Ask: Is there an eigenbasis?

5. Write X in form of ¢, V| + - - - + ¢, V,,

6. Find the formula

1
Example 7.1.2. Let A = [(1) 6 ] . Find a formula for A* L] forall k.

. . . - 1 . .
Solution. Find eigenvectors v, and v, for A and express ) = V] + coVs. Then,

1
Ak [1] — clAk\_;I -+ CQA.k‘_;Q = 01)\116\_"1 + CQ)\S\_;Q.

1. Compute fa(t):

—1 6

falt) =det(A—m=| " "

':t(1+t)—6:t2:t—6.

2. Find roots to the polynomial:

fat) =t +3)t—2)=0 = A\ =t =2 =ty =—3.
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7 EIGENVALUES AND EIGENVECTORS 7.1 Computing A*X

3. Compute eigenspaces:

I 5 )
e ) Rt )|

4. Ask: IS there an eigenbasis for A?
YES!

6. Find the formula:

0 -1
Remark. The matrix A = [1 0 ] has no eigenvectors.

Proof. |Algebraic

-t -1
1 —t

=t>+1>0VteR.

So, fa(t) has no zeros = no eigenvalues = no eigenvectors.

A encodes rotation counterclockwise by 90°.

The condition Ax = AX implies that AX and X have to be on the same line.
Yet, rotation by 90° preserves no lines. [
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7 EIGENVALUES AND EIGENVECTORS

7.2 Diagonalization

7.2 Diagonalization

ayp -0 QAip

Definition 7.2.1 (Diagonal Matrix). Let D =

ifa;; = Oforalli # j.

, we say D is a diagonal matrix

Theorem 7.2.1. D is diagonal if and only if D€; = \;€;, \; € R.i.e., ey, - , ¢, are eigenvec-
A1 0
tors for D. That is, eigenvalues are the diagonal entries: | : :
0 An
Theorem 7.2.2. Properties of Diagonal Matrices
e Computing D¥
[ | | | | | |
D = |D*&;, D*&, --- D!E,| = [\ke! Me& ... \eer
|| | | | | |
A0 0
o
0
0 0 M
e Computing D! i ]
A0 0
D—l — 0 )\2_1
: 0
o --- 0 )\;1
e Rank of D
rank(D) = number of non-zero diagonal entries.
e Nullity of D

nullity(D) = number of zeros along the diagonal.

Determinant of D
det(D) = )\1>\2 cee )\n
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7 EIGENVALUES AND EIGENVECTORS 7.2 Diagonalization

Definition 7.2.2 (Diagonalizable). Let A be an n x n matrix. A is said to be diagonalizable
if there is an eigenbasis for A. i.e., there is a basis vy,--- , Vv, of R” such that v,--- , Vv, are
eigenvectors of A.

Theorem 7.2.3. A is diagonalizable if and only if
A =SDS !,

where D is diagonal with diagonal entries the eigenvalues of A (\; --- \,), and S is invertible
with column vectors the eigenvectors of A (v, - - - , V,,). Diagonalizing a matrix means to find
an invertible matrix S and a diagonal matrix D such that A = SDS™.

1 11
Example 7.2.1. Let A = |1 1 1|.Diagonalize A.

1 1 1
Solution. By definition, we know

fa(t) = det 11—t 1 =3t -7 = t, =t, =0, t3=3.

Therefore, we know

1 11 1
Eapg=ker(A)=ker | {1 1 1 =Span| |—-1|,] 0 ;
1 11 0 —1
-2 1 1 1
Ea s = ker(A — 3I) = ker 1 -2 1 = Span| |1
1 1 =2 1
1 1 1
Note that since v, = |—1|,vo= | 0 |,V3 = |1| span R?, they are eigenbasis of A.
0 —1 1
— - - 4 -1
1 1110 0 0O 1 1 1
SA=8DS'=|-1 0 1[]|0 0 Of|-1 0 1
0O -1 1{[0 0 3]0 -1 1

1 1 1|fo o o] [1/3 —2/3 1/3
=|-1 0 1||0 0 0| |1/3 1/3 —2/3
0 -1 1J(0o 0o 3|[1/3 1/3 1/3
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7 EIGENVALUES AND EIGENVECTORS

7.3 Procedure of Finding an Eigenbasis

Corollary 7.1. Linear Algebra Becomes Easy for Diagonalized Matrices

1.

7.3

A¥ = SDFS!
Proof.
A¥=8DS !'SDS™!-.-SDS"! = SD*S™!
kti‘rgles
A'=SD'S!

Proof. Since
A(SD'S™')=SDS!'SD!S™!' =SDD'S7' =SS! =1,

so we know that A~' = SD~!S— L.

det(A) =det(D) =\ -+ A\,
Proof.

det(A) = det(SDS™') = det(S) det(D) det(S™") = det(S) det(D) det(S)~
fa(t) = det(A — tI) = det(D — ¢I) =[x -1
=1
Proof. Let’s fixt € R. then

S(D —tI)S™' =SDS™' — (SIS~ = A — (L.

rank(A) = rank(D) = number of non-zero \;.

. nullity(A) = nullity(D) = number of zero \;.

If fa(t) is not a polynomial with all real roots, then A is not diagonalizable.

Procedure of Finding an Eigenbasis

' = det(D).

O

Definition 7.3.1 (Revisit Definition of Characteristic Polynomials). For an n x n matrix A,

its characteristic polynomial is a function f5 : R — R defined by fa ()
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7 EIGENVALUES AND EIGENVECTORS 7.3 Procedure of Finding an Eigenbasis

Theorem 7.3.1. fa()\) = 0if and only if X is an eigenvalue of A.

Theorem 7.3.2. f4(t) is a polynomial. i.e., fa(t) = agt? + ad — 1t~ + - .- + ao, where ag # 0
and a; € R. We say d is the degree of fa(?).

Remark. Determinant can be calculated without division: Laplace Expansion

Proof. Note that A — tIis an n x n matrix with polynomial entries.
By Laplace expansion, det(A — tI) is the sums and products of those polynomial entries,
and thus it is a polynomial. [

Proposition 7.1. If £ € R and B is an n x n matrix, then
det(kB) = k™ det(B).

Proof.

|
-
il

|

|
i
=

|

det : = k" - det

|
7
:l
|
|
g
zl
|

Theorem 7.3.3. If A is an n x n matrix, then the degree of f, is n.

Proof. Since fa(t) is a polynomial, f4(t) = a4t? + ad — 1t4"! + -+ + ay, where ay # 0 and

a; € R.
Ifwe can prove fa (t) and det(—tI) has the same growth rate, and since det(—tI) = (—t)" det(I) =
t
(—t)™, we can say fa(t) has a degree of n. Therefore, we want to show tlim f‘?—() is finite and
—00 n
non-zero.
A—tI A
lim Jalt) = lim det(A — ) = lim det (— - I) = limdet(tA —I) = det(—I) = (—1)"
t—oo N t—o00 tn t—00 t t—0
c.ag = (—1)", and fa(t) has a degree of n. |

Remark. If A\, -- )\, are roots of f4(¢), them
Fa(t) = (t = M)"(t = A)™ - (= M) g (@),
where g(x) has no real roots. Then,
n= My + My + ---+ M, + degree(g(z)).

Counted with multiplicity (this power M;), A has at most n eigenvalues.
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Theorem 7.3.4. A has exactly n roots (counted with multiplicity) when A is diagonalizable.

Definition 7.3.2 (Algebraic Multiplicity). The algebraic multiplicity of a matrix A is the mul-
tiplicity of an eigenvalue ) in the characteristic polynomial of A.

Theorem 7.3.5. If we write fa (t) as fa(t) = agt®+ad — 1t4" 1 +- .. +ay, where aq # 0 and a; € R,
then ag = det(A)

Proof.
fa(0) =ag =det(A —0-I) =det(A).

Example 7.3.1. Prove that matrix B =

1
O] is not diagonalizable.

Proof. Note that fg(t) = |

1
' =12 = )\; =0, multiplicity = 2.

Method 1 |Assume for the sake of contradiction that B is diagonalizable.
o

A0
Therefore, B = SDS~!, where S = |V, Vv,| andD = [ ! \ ] for eigenvectors v; and v,
2

with eigenvalues \; and \,, respectively.

Then,
D= 00 =0-1I
00

B=SDS'=8(0-1)S*'=0-S-I-S'=0-8-S"'=0

01
x This is a contradiction that B = 00 =0

Therefore, B cannot be diagonalizable.
Method 2 | From Method 1, we know that

0 1 1
Ego=ker(B—0-1I)=ker <[O O]) = Span([()])

Since ker(B) is 1-dimensional, it doesn’t contain a basis for R?.

So, B doesn’t have an eigenbasis. [
T -
. 0 A N I ) . . .
Theorem 7.3.6. A matrixC = | is diagonalizable if and only if C is diago-
. ‘. *
0 A
nal. i i
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7 EIGENVALUES AND EIGENVECTORS 7.3 Procedure of Finding an Eigenbasis

Proof. Since fc(t) = | . g (A — t)", we know C has A as the only

0 A—t
eigenvalue with algebraic multiplicity of n.

A

0 A
-0
0 A

. C=S8DS ! =SS = ASIS™! = AL

Theorem 7.3.7. For matrix C = | : , A is the only eigenvalue. Also, Ec ), =

ker(C — M) contains a basis if and only if ker(C — M) is the entire space. i.e., C — \I = 0, or
C =)L

Theorem 7.3.8. Let A be an n x n matrix, and vy, - -- , vV, be eigenvectors of A. The vectors
vy, -+, Vi are linearly independent if for every eigenvalue X of A, the set of these vectors with
eigenvalue \. i.e., {V; | Av; = \V,} is linearly independent.

Finding an eigenbasis/diagonalizing A as an n x n matrix.
1. Find eigenvalues of A

(a) Compute fa(t)

(b) Find the roots of fa(¢) and the multiplicity M, - -- , M}

Remark. If M, + My + -+ - + M, # n, then STOP. A is not diagonalizable.
(c) Form matrix D.

2. Find basis for eigenspaces:

(@ FormS = |v, --- ¥,|,wherevy,--- v, arelinearly independent.
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7 EIGENVALUES AND EIGENVECTORS 7.4 Multiplicity

(b) For each );, compute a basis for ker(A — \;I).

Remark. Ifdim(ker(A —\,I)) < M;, then STOP. There is no enough eigenvectors
and A is not diagonalizable.

3. By theorem, the concatenation of the lists of bases is an eigenbasis.

Definition 7.3.3 (Geometric Multiplicity). Let A\ be an eigenvalue of A.. The geometric mul-
tiplicity of ) is dim(ker(A — AI)), the number of linearly independent vector in an eigenspace.

Theorem 7.3.9. For a matrix to be diagonalizable,

geometric multiplicity = algebraic multiplicity.

7.4 Multiplicity
Definition 7.4.1 (Multiplicity). Let A be an n x n matrix and A be an eigenvalue of A :

1. The algebraic multiplicity of ) is the largest k such that fa () = (t — \)*g(t), where g(¢)
is a polynomial. We denote the algebraic multiplicity of A as almu(\) = k. almu()) is the
multiplicity of A as aroot of fa(?).

2. The geometric multiplicity of )\ is gemu(\) = dim(ker(A — AI)). gemu(\) is the maximum
number of linearly independent eigenvectors with eigenvalue \.

Theorem 7.4.1. gemu(\) < almu(\).

Remark. Note thatin A — I, every non-zero diagonal entry contributes a pivot to rref(A —
AlI). Then, rank(A — AI) > the number of diagonal entries that is not \.

Therefore, nullity(A — A\I) < the number of diagonal entries that equals ).

Hence, gemu(\) < almu(\).

Proof. Assume vy, --- ,V,is abasis of E5 ,. Then, gemu(\) = g.
Choose V1, -+ ,V, suchthatv,,--- v, Vs, -, V, is abasis for R". Then,
S= |+ \Z Vi

S is invertible since v, - - - V,, is a basis.
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7 EIGENVALUES AND EIGENVECTORS 7.4 Multiplicity

Claim 7.1. B =S 'AS, where B = A\

0 C
~—

|l g—columns

fe(t) = det(SAS™! — {I) = det(SAS™' — tS7'IS) = det(S™'(A — {I)S)
= det(A —tI) = fa(?).
Since fg(t) = (A —t)9fc(t) = fa(t), we know that gemu < almu. [

Theorem 7.4.2. For a matrix to be diagonalizable, it is necessary that almu(\) = gemu(\) for
all \.

Theorem 7.4.3. Let A be an n x n matrix. If fa (¢) has n distinct real roots, then A is diagonal-
izable.

Proof. Every eigenvalue has an eigenvector: det(A — AXI) = 0 = (A — XI) is not invert-
ible.
o ker(A — M) =# 0.

Therefore, there are eigenvectors vy, - - - v,, for eigenvalues Ay, - - - , \,, respectively.
Since eigenvectors with distinct eigenvalues are linearly independent, v, - - - , V,, is an eigen-
basis. [
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8 SINGULAR VALUE DECOMPOSITION

8 Singular Value Decomposition

8.1 The Spectral Theorem

Definition 8.1.1 (Symmetry). A matrix A is called symmetric if A = AT. A symmetric matrix
is symmetric across the diagonal. That is, a;; = a;;.

Theorem 8.1.1 (Spectral Theorem). A is symmetric if and only if A has an orthogonal eigen-
basis. Equivalently, A = SDS~!, where D is diagonal and S is orthogonal (having orthogonal
columns). Thatis, A = SDST because S~! = ST if S is orthogonal.

Proof. Given A = SDST, we want to show that A = AT,
Note that since D is diagonal, we have D = DT. Then

AT = (SDS™T = (ST)T(D)TST = SD*ST = SDST = A.

Theorem 8.1.2. Orthogonal projection is symmetric.

Proof. LetV to be a subspace of R”. Define Proj; : R* — R" as X — x| € V, where
% = %Il + ¥ and ®*+ € V*. Finding eigenspaces of Proj;, we get

il
Eprojo1 =V, and Eprojo0=V".

Since eigenspaces are perpendicular, Proj; is symmetric. |

Corollary 8.1. Let

Vi
V = Span : = Span(V),
Vin
v
= . )_é : ‘7 — . 1 . — — s
then X — Vis —— - v. Thatis, —— : ([vl vn}x>.
V-V V-V
vecy,,
V11 U1U2
R 1 V1U2 V2V
o Projg(X) = =—=
V-V
UnUn
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8 SINGULAR VALUE DECOMPOSITION 8.1 The Spectral Theorem

Theorem 8.1.3 (Adjoint Property of Transpose). If A is an n x n matrix, v;,v, € R". Then,
(AVy) - Vo = V; - (ATV,). That is, bringing a matrix through a dot product, transpose it. Spe-
cially, if A is symmetric, A = AT and (Av,) - v, = V; - (AVs).

Proof.
(AVy) - Vo = (AV))Vy = (\71)T(AT\7’2) =V - (AT\_;Q).
|

Theorem 8.1.4 (Spectral Theorem - Continued 1). Ifv,, v, are eigenvectors for A with eigen-
values \; # Ao, then v; | vs.

Proof. Note that
)\1\71 . \72 = A‘_’)l . \_”2 = \_”1 . (A\?Q) = )\2\71 . \_”2,
However, by our assumption we have \; # \,. So it must be v, - v, = 0.

That is, exactly, v; L vs. [ ]

Corollary 8.2. Distinct eigenspaces are perpendicular.

Theorem 8.1.5 (Spectral Theorem — Continued 2). If A is a symmetric matrix, then A has an
orthogonal eigenbasis.
Proof.

Claim 8.1. f4(¢) has all real roots.

If\=a+1iyisarootof fa(t), showy = 0.
Let v + iw € C" be an eigenvector for A with eigenvalue . Then, v — iw € C" is also an
eigenvector for A with eigenvalue \* = = — iy.

= A1 + 1w ]1*)
—_———
greater than 0
AV —iW) - (¥ +iW) = X (V¥ — iW) - (¥ + iW)
= N (V)7 + %))
—_———
greater than 0

SN+ W) = A (917 + ([ ])
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8 SINGULAR VALUE DECOMPOSITION 8.2 Quadratic Form, Principal Axis Theorem

Since ||v||? + ||[w||* > 0, it must be A = \*. Thatis, z + iy =  — iy. So, y = 0.
Thus, all the roots are real.

Claim 8.2. A has an eigenbasis. That is, gemu(\) = almu(\)VA.

0
We can write A = S; | S;!

0

[\ J/

symmetric matrix
We can do the same thing over and over again, and eventually, we will get a diagonal ma-

trix. So we know gemu(\) = almu(\). [

Corollary 8.3. We can always diagonalize A.

Find orthogonal eigenbasis of a symmetric matrix A
1. Find an eigenbasis for A.

2. Run Gram-Schudt on eigenbasis. The result is orthogonal eigenbasis.

8.2 Quadratic Form, Principal Axis Theorem

Definition 8.2.1 (Quadratic Form). A quadratic form is a function f : R” — R of the form

flan, - m) = Y ayz,

1<i,j<n
for some constants a;; € R.

Example 8.2.1. 72° + 3zy + 4y* and 72? + 3xy + 42z + 2y* + 3yz + 722 are quadratic forms.

Definition 8.2.2 (Diagonal form). A quadratic form is called a diagonal form if

Ty, L) = MTT A+ Aads + -+ Az,
1 2 n

where )\; € R.

Example 8.2.2. 2% + ¢?, 2? — 2, and —2? — 3 are examples of quadratic forms in the diagonal
form. But zy or 2> + Tzy + 3y* are not examples of diagonal forms.
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8 SINGULAR VALUE DECOMPOSITION 8.2 Quadratic Form, Principal Axis Theorem

Definition 8.2.3 (Degenerate). A diagonal form is called degenerate if \; = 0 for some i. If
A\ # 0Vi, then the diagonal form is called non-degenerate.

Theorem 8.2.1. Let f be a non-degenerate diagonal form:

1. If all \; > 0, then f(X) > 0 and f(X) = 0if and only if X = 0. That is, 0 is a global
minimum, and f is positive definite.

2. Ifall \; < 0, then f(X) < 0 and f(X) = 0 if and only if X = 0. That is, 0 is a global
maximum, and f is negative definite.

3. If some ), are positive and some are negative, there is no local maxima or minima, and

we say f is indefinite.

Remark.
T
XX = [:cl xn] P =at et
T
(N0 0]
0o . :
Remark. LetD = | |, then we have
0 An
)\11’1
iTDi — |:I1 PR ITL:| 2 —= All‘% + .« .. + )\ng’/‘i.
AT,

Theorem 8.2.2. Let A be an n x n matrix, then f(X) = XT AX is a quadratic form. In general,

@11 - Qi x1
ERERR | R | N S S
1<i,j<n
07 Ann T
Theorem 8.2.3. Let f(xy,--- ,x,) = Z ¢;jx;x;, then there is a unique symmetric matrix such
i<j
T A . Cii 1=
that f = XTAX, where the ij—th entry of A =
Cij i F ]
) ) , 11/2
Example 8.2.3. 7x* + 11zy + y* can be written as o1
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Theorem 8.2.4 (Principal Axes Theorem). Let f : R” — R be a quadratic form, then there
exists an orthogonal matrix S and a diagonal quadratic form d : R* — R such that

f(X) =doSTx =d(S"X).
Any quadratic form looks diagonal in some coordinate A\, z? system.

Proof. f(X)=xXTAX, where A is symmetric.

Note that A = SDS!, where S is orthogonal and D is diagonal.

So, f(X) = XT(SDS )% = (ST%) "D (STX).

Since d(x) = XTDx, we know f(x) = d(ST)x. u

Corollary 8.4. f is positive definite if \; > 0 and f is negative definite if \; < 0.

8.3 Singular Value Decomposition

Definition 8.3.1 (Sigular Value Decomposition). The singular value decomposition (SVD)
is a recipe to write a general matrix A as a product of matrices which is easy to understand
geometrically.

Theorem 8.3.1. Let A to be an n x m matrix, then A = UXVT where V is an orthogonal
matrix (so VT = V1), ¥ is an n x m matrix, whose ij—elements are all zero, and whose
ii-entries satisfy a;; > age > aszz > --- > 0, and U is an orthogonal matrix.

o ,
= —
Example 8.3.1. Suppose A = |d; 1, [01 ] [ Vi ] :

| ’ 0 09 —Vz—
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Y™ ~
N N

&/ﬁ e
\j\lu

1. ou, is alongest vector on the ellipse (image of the unit circle under A).

(@) oy isitslength
(b) d, is a unit vector pointing in direction.

(c) v, isavector on unit circle such ||Av, || is maximized.
2. AV, = 0,1, is a shortest vector on the ellipse (image of unit circle under A).

(@) oy isitslength

(b) U is a vector on unit circle such that || Av,|| is minimized.

Remark. SVD of A encodes information about lengths change under A. Let X € R™ and
consider ||[AX|| = VAX - AX, then

i=1 j=1
1]

So, |[AR|| = /S 2\ and ||%| = /S 2. Therefore, | |AV;|| = /A = 03
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¢ VA
Since V is orthogonal, VIx = | : |.Since ¥ = , then
Cm o
\/)\_101
VTR = S
VA

Definition 8.3.2 (Singular Value). Let A be a matrix, the singular value of A are the square
roots of the positive eigenvalues of ATA.i.e, \; > \y > --- > )\, are eigenvalues of ATA and

o; = v/A\; whenever \; > 0.

Remark. To find U, we can consider the following:

U= | AV, AV, AV, | |
PR Xl PR Xk
01 02 Or
where X, - -+ , X}, are orthogonal and span orthogonal component to the space spanned by

first  columns. L .
Av, Av, Av

Also, note that , ,--+,—— are image of A with
01 g9 Oy

- — - T A = = —
AVi AV]' Vi A AV]' A\ )\jvi

ag; O'j O'Z'O'j 0'in
Procedure to find the SVD for an n x m matrix A.
1. Compute AT A and find orthogonal eigenbasis vy, - - - , V,, such that the eigenvalues
satisfy Ay > Ay > - > A\
V=¥ - Vi oZ=] o
| | 0 - VAm
2. Define
AV, AV, Av, .
U = ... Xl .. Xk s
01 09 O
where %}, - - - , X}, are choices of orthogonal basis of Im(A)*.
3. A=UXVT.
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Example 8.3.2. Compute the SVD of A =

—_ = O
O =

Solution.

1. Compute ATA and find orthogonal eigenbasis:

0 1
| O A R R R

Therefore, \, =3, o1 =v3, X=1, oy=1=1.

1] [1/v/2
Eara 3 = Span [ >:>\7'1: /\/_]

1] 1/V2
(1 [ 1/V2
E = Span —_— V, =
ATA 1 p (__1_> 2 __1/\&]
11 1 50
.'.VT:EL 1]; X=1(0 1
00
2. Find U = {Avl AV il}
01 09
Ao ) 0 1 .
Vl__: _ =
ity Rl L V2 12 =2
10 1
Ao 01 [
V2_ _ _*
o 11 [1/\/5 1/\/5} 510
10 1
011 ! !
ker(A™T) = ker = Span| [—1 == X3 =——|-1
110 X 3,

1/vV6 —1/vV2 1/V3
~U=12/vV/6 0 —1V3
1/vV6 1/vV2 1/V3
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3. A=UxVT

A=12/V6 0 —1V3 —
1/vV6 1/v/2 1/V3 vz

1 -1

1/vV6 —1/v2 1/v/3][3 0 L 11
01[ ]
0 0

91



	1 Systems of Linear Equations
	1.1 Solving Systems of Linear Equations
	1.2 Row Reduction
	1.3 Parametric Form

	2 Vector Equations and Linear Transformations
	2.1 Vectors
	2.2 Vector Equations
	2.3 Linear Transformation

	3 Matrices
	3.1 Matrix Multiplication
	3.2 Invertible Matrices
	3.3 Kernel of a Matrix

	4 Spaces and Dimensions
	4.1 Subspaces and Bases
	4.2 The Rank-Nullity Theorem
	4.3 Coordinates

	5 Approx. Solution of Ax=b
	5.1 Lengths and Angles in Rn
	5.2 Orthogonal Projection
	5.3 Graph Fitting
	5.4 Orthogonal Linear Transformation
	5.5 Gram-Schmidt Process, QR Factorization

	6 Determinant
	6.1 The Definition of the Determinant
	6.2 Computing the Determinant
	6.3 The Multiplicativity of the Determinant and Other Properties

	7 Eigenvalues and Eigenvectors
	7.1 Computing Akx
	7.2 Diagonalization
	7.3 Procedure of Finding an Eigenbasis
	7.4 Multiplicity

	8 Singular Value Decomposition
	8.1 The Spectral Theorem
	8.2 Quadratic Form, Principal Axis Theorem
	8.3 Singular Value Decomposition


