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Preface

These are my personal notes for Johns Hopkins University AS.110.201 Linear Algebra course.

I studied this course via Summer @ Hopkins in the summer of 2021.

As no prerequisite is required (only pre-calculus, basic algebra, and some simple knowl-

edge from Calculus I), this course focuses on matrices. It includes systems of linear equations,

basics of matrices, spaces and dimensions, determinants, eigenvalues, and singular value de-

composition. The textbook used for this course is Linear Algebra with Applications, 5th Edi-

tion by Otto Bretscher. Another textbook by Gilbert Strang is also recommended: Introduction

to Linear Algebra, 5th Edition.

Throughout this personal note, I use different formats to differentiate different contents,

including definitions, theorems, proofs, examples, extensions, and remarks. To be more spe-

cific:

Definition 0.0.1 (Terminology). This is a definition.

Theorem 0.0.1 (Theorem Name). This is a theorem.

Example 0.0.1. This is an example.

Solution. This is the answer part of an example. □

Remark. This is a remark of a definition, theorem, example, or proof.

Proof. This is a proof of a theorem. ■

Extension. This is a extension of a theorem, proof, or example.

To better ace this course, it is recommended to do more questions than provided as exam-

ples under each section. Although each example is distinctive and representative, more ques-

tions and practice is still needed to deepen the understanding of this course. More than doing

examples, using visualization tools to visualize some problems or concepts is also helpful in

understanding the contents better. Videos made by 3Blue1Brown are also recommended as

a supplementary source of learning.

Even though I put efforts into making as few flaws as possible when encoding these learn-

ing notes, some errors may still exist in this note. If you find any, please contact me via email:

lvjiuru@hotmail.com.

I hope you will find my notes helpful when learning Linear Algebra, a fundamental course

for other Math and Computer Science courses.

Cheers,

Jiuru Lyu
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1 SYSTEMS OF LINEAR EQUATIONS

1 Systems of Linear Equations

1.1 Solving Systems of Linear Equations

Definition 1.1.1 (Linear Equations). An equation in the unknowns x, y, z, ... is called linear

if both sides of the equation are a sum of multiples of x, y, z, ..., plus an optional constant.

Example 1.1.1. Linear equations and nonlinear equations{
3x+ 4y = 2z

−x− z = 100
are linear equations, but

{
3x+ yz = 3

sinx− cos y = 2
are not.

Definition 1.1.2 (System of Linear Equations). A system of linear equations is a collection of

several linear equations.

Definition 1.1.3 (Solution of a System). A solution of a system of equations is a list of num-

bers x, y, z, ... that make all of the equations true simultaneously.

Definition 1.1.4 (Solution Set of a System). The solution set of a system of equations is the

collection of all solutions.

Definition 1.1.5 (Solving a System). Solving the system means finding all solutions with for-

mulas involving some number of parameters.

Definition 1.1.6 (Consistency and Inconsistency of a System). A system of equations is called

inconsistent if it has no solutions. It is called consistent otherwise.

Example 1.1.2. An inconsistent system:{
x+ 2y = 3

x+ 2y = −3
has no solutions (the solution set is empty).

Thus, the system of equations is inconsistent.

Remark. A solution of equations in n variables is a list of n numbers.

Remark. We use R to denote the set of all real numbers.

Definition 1.1.7 (Rn). Let n be a positive whole number. We define

Rn = all ordered n-tuples of real numbers (x1, x2, x3, ..., xn)

An n-tuple of real number is called a point of Rn
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1 SYSTEMS OF LINEAR EQUATIONS 1.1 Solving Systems of Linear Equations

Example 1.1.3. Examples of Rn

1.
[
0,

3

2
,−π

]
and (1,−2, 3) are points of R3

2. When n = 1, R1 = R. Geometrically, this is the number line.

3. When n = 2, R2. It becomes the xy-plane.

4. When n = 3, R3. It is the space we live in.

Definition 1.1.8 (Line). A line is a ray that is straight and infinite in both directions.

Definition 1.1.9 (Plane). A plane is a flat sheet that is infinite in all directions.

Theorem 1.1.1. Generally, a single linear equation in n variables defines an (n − 1)-plane in

n-space.

Example 1.1.4. Examples of Lines and Planes.

1. Lines. For x+ y = 1 (implicit equation), the parametric form is

(x, y) = (t, 1− t) for any t ∈ R

We call t a parameter in this case.

2. For a system of two linear equations (as implicit equations in R3){
x+ y + z = 1

x− z = 0
,

the parametric form would be

(x, y, z) = (t, 1− 2t, t)

3. Planes. For x+ y + z = 1 (implicit equation), the parametric form is

(x, y, z) = (1− t− w, t, w) for any t, w ∈ R

Theorem 1.1.2 (Elementary Operations). Since elementary operations are reversible, the so-

lution set doesn’t change:

1. Switch the order of the equation;

2. Scale the equation by a scale c ̸= 0; (to reverse, divide equation by c)

3. Add a multiple of one equation to another. (to reverse, subtract)

5



1 SYSTEMS OF LINEAR EQUATIONS 1.2 Row Reduction

1.2 Row Reduction

Theorem 1.2.1 (The Elimination Method). We can use the elimination method to combine

the equations in various ways to eliminate as many variables as possible for each equation.

1. Scaling. We can multiply both sides of an equation by a nonzero number.

2. Replacement. We can add a multiple of one equation to another, replacing the second

equation with the result.

3. Swap. We can swap two equations.

Definition 1.2.1 (Augmented Matrices and Row Operations). Augmented Matrix refers to the

vertical line, which we draw to remind ourselves where the equals sign belongs.

Definition 1.2.2 (Matrix). A matrix is a grid of numbers without the vertical line.

Example 1.2.1. Augmented Matrix and Row Operations. 1 2 3

2 −3 2

3 1 −1

6

14

−2

 is an augmented matrix.

The three ways of manipulating our equations become row operations:

1. Scaling. multiply all entries in a row by a nonzero number. 1 2 3

2 −3 2

3 1 −1

6

14

−2

 R1=R1×−3−−−−−−→

 −3 −6 −92 −3 2

3 1 −1

−18
14

−2



Remark. Here, the notation R1 simply means "the first row."

2. Replacement. add a multiple of one row to another, replacing the second row with the

result.  1 2 3

2 −3 2

3 1 −1

6

14

−2

 R2=R2−2×R1−−−−−−−−→

 1 2 3

0 −7 −4
3 1 −1

6

2

−2


3. Swap. Interchange two rows. 1 2 3

2 −3 2

3 1 −1

6

14

−2

 R1↔R3−−−−→

 −3 −6 −92 −3 2

3 1 −1

−18
14

−2
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1 SYSTEMS OF LINEAR EQUATIONS 1.2 Row Reduction

Definition 1.2.3 (Row equivalent). Two matrices are called row equivalent if one can be ob-

tained from the other by doing some number of row operations.

Definition 1.2.4 (Row Echelon Form (ref ) of Matrix). A matrix is in row echelon form if:

1. All zero rows are at the bottom.

2. The first nonzero entry of a row is to the right of the first nonzero entry of the row above.

3. Below the first nonzero entry of a row, all entries are zero.

Example 1.2.2. General ref of matrices.
a b b b

0 a b b

0 0 0 a

0 0 0 0

b

b

b

0

 ,

where b = is any number, and a = is any nonzero number.

Definition 1.2.5 (Pivot). A pivot is the first nonzero entry of a row of a matrix in row echelon

form.

Definition 1.2.6 (Reduced Row Echelon Form (rref ) of a Matrix). A matrix is in reduced row

echelon form if it is in row echelon form, and in addition:

4. Each pivot is equal to 1.

5. Each pivot is the only nonzero entry in its column.

Example 1.2.3. Genderal rref of matrices
1 0 b 0

0 1 b 0

0 0 0 1

0 0 0 0

b

b

b

0

 ,

where b = is any number, 1 = pivot

 1 0 0

0 1 0

0 0 1

1

−2
3

 becomes−−−−→


x = 1

y = −2

z = 3
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1 SYSTEMS OF LINEAR EQUATIONS 1.3 Parametric Form

Theorem 1.2.2. Every matrix is row equivalent to one and only one matrix in reduced row

echelon form.

Row reduction or Gaussian elimination demonstrates that every matrix is row equivalent

to a least one matrix in reduced row echelon form.

1. Swap the 1st row with a lower one, so a leftmost nonzero entry is in the 1st row (if neces-

sary).

2. Scale the 1st row so that its first nonzero entry equals 1.

3. Use row replacement, so all entries below this 1 are 0.

4. Swap the 2nd row with a lower one so that the leftmost nonzero entry is in the 2nd row.

5. Scale the 2nd row so that its first nonzero entry equals 1.

6. Use row replacement, so all entries below this 1 are 0.

7. Swap the 3rd row with a lower one so that the leftmost nonzero entry is in the 3rd row.

etc.

8. Use row replacement to clear all entries above the pivots, starting with the last pivot.

Definition 1.2.7 (Pivot Position). A pivot position of a matrix is an entry that is a pivot of a

row echelon form of that matrix.

Definition 1.2.8 (Pivot Column). A pivot column of a matrix is a column that contains a pivot

position.

Theorem 1.2.3 (The Row Echelon Form of an Inconsistent System). An augmented matrix cor-

responds to an inconsistent system of equations if and only if (iff ) the last column (i.e., the

augmented column) is a pivot column.

1.3 Parametric Form

Definition 1.3.1 (Free Variable). Consider a consistent system of equations in the variables

x1, x2,..., xn. Let A be a row echelon form of the augmented matrix for this system. We say that

xi is a free variable if its corresponding column in A is not a pivot column.

Example 1.3.1. Example of free variables.

In the matrix

[
1 0 5

0 1 2

1

−2

]
, the variable z is the free variable.
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1 SYSTEMS OF LINEAR EQUATIONS 1.3 Parametric Form

Definition 1.3.2 (Implicit Equations). The line is defined implicitly as the simultaneous so-

lutions to those equations.

Definition 1.3.3 (Parameterized Equations). A parameterized equation is an expression that

produces all points of the line in terms of one parameter.

Example 1.3.2. Example of implicit equations.

{
2x+ y + 12z = 1

x+ 2y + 9z = −1
is an example of implicit

equations in R3.

{
x = 1− 5z

y = 1− 2z
can be written as (x, y, z, ) = (1− 5z, 1− 2z, z), z ∈ R, which is a

parameterized equation.

Remark. One should think of a system of equations as an implicit equation for its solution

set and of the parametric form as the parameterized equation for the same set. The paramet-

ric form is much more explicit: it gives a concrete recipe for producing all solutions.

Theorem 1.3.1 (Number of Solutions). Systems of equations can have different numbers of

solutions.

1. The last column is a pivot column. In this case, the system is inconsistent. It has zero

solutions.

2. Every column except the last column is a pivot column. The system has a unique solu-

tion.

3. The last column is not a pivot column, and some other column is not a pivot column

either. The system has many solutions corresponding to the infinite possible values of

the free variables.

Example 1.3.3. Systems with different numbers of solutions.

1.

 1 0

0 1

0 0

0

0

1

 comes form a linear system with no solutions.

2. For the matrix

 1 0 0

0 1 0

0 0 1

a

b

c

, it has a unique solution (x, y, z) = (a, b, c)

9



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS

2 Vector Equations and Linear Transformations

2.1 Vectors

Definition 2.1.1 (Vector). A vector is an array of n numbers:

x⃗(or x) =


x1

x2

...

xn


Definition 2.1.2 (Rn). A set of all vectors of height in n is denoted in Rn.

Theorem 2.1.1 (Vector Addition). ab
c

+

xy
z

 =

a+ x

b+ y

c+ z


Theorem 2.1.2 (Scalar multiplication).

c×

xy
z

 =

c× x

c× y

c× z


Extension. The Parallelogram Law for Vector Addition.

v⃗

u⃗

u⃗

v⃗ + u⃗

Extension. Vector Subtraction.
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2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.2 Vector Equations

v⃗

cv⃗

Definition 2.1.3 (Linear Combinations). Let c1, c2, ..., ck be scalars, and let v1, v2, ..., vk be vec-

tors in R2. The vector in R2

c1v1 + c2v2 + ...+ ckvk

is called a linear combination of the vectors v1, v2, ..., vk with weights or coefficients c1, c2, ..., ck.

2.2 Vector Equations

Definition 2.2.1 (Vector Equation). A vector equation is an equation involving a linear com-

bination of vectors with possibly unknown coefficients.

Example 2.2.1. Asking whether or not a vector equation has a solution is the same as asking

if a given vector is a linear combination of some other given vector.

The equation

x

12
6

+ y

−1−2
−6

 =

 8

16

3



is asking if the vector

 8

16

3

 is a linear combination of the vectors

12
6

 and

−1−2
−6

.

The equation can be simplified to

 x− y

2x− 2y

6x− y

 =

 8

16

3

 or


x− y = 8

2x− 2y = 16

6x− y = 3

.

Then, one can use augmented matrix to solve it.

Remark. Three equivalent ways of thinking about a linear system:

1. A system of equations

2. An augmented matrix

11



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

3. A vector equation

Theorem 2.2.1. A new way to consider linear systems.

Suppose the LHS of a linear system is something we can plug a vector into to produce a

list of numbers, and the RHS of a linear system shows the solution out as a vector.

Thus, The LHS of a system is a function T : Rm → Rn, where m is the number of variables

and n is the number of equations.

To solve the system, we want to find all vectors that will map to a particular group. We can

record the function associated with the LHS of a system as a matrix.

Example 2.2.2. Example of converting linear systems to matrix equations.

The linear system {
7x1 + 3x2 + 4x3 = 25

2x1 + 0x2 + x3 = 5

can be recorded as [
7 3 4

2 0 1

]x1

x2

x3

 =

[
25

5

]

Theorem 2.2.2. Multiplication of a vector by a matrix.

1. For each row of the matrix, multiply the entries of that row with the corresponding en-

tries of the vector and then add.

2. The output vector is the final output.

Example 2.2.3. [
7 3 4

2 0 1

]11
1

 =

[
7× 1 + 3× 1 + 4× 1

2× 1 + 0× 1 + 1× 1

]
=

[
14

3

]

2.3 Linear Transformation

Definition 2.3.1 (Linear Transformation). A linear transformation is a function T : Rm →
Rn so that:

1. T(x⃗+ y⃗) = T(x⃗) +T(y⃗)

2. T(c× x⃗) = c×T(x⃗)

∀x⃗, y⃗ ∈ Rm, and c ∈ R

12



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

Definition 2.3.2 (Standard Basis Vectors). The vectors e⃗1, e⃗2, ..., e⃗n ∈ Rm defined by

e⃗i =



0
...

1
...

0


→ the i-th entry

are called the standard basis vectors.

Theorem 2.3.1. Let T : Rm → Rn be a linear transformation, and

A =


...

... · · · ...

Te⃗1 Te⃗2 · · · Te⃗n
...

... · · · ...


Then, Tx⃗ = Ax⃗ for all vectors x⃗

Proof. Assume x⃗ =


x1

...

xn

, then x⃗ = x1e⃗1 + x2e⃗2 + ...+ xne⃗n.

Thus,

Tx⃗ = x1T e⃗1 + x2Te⃗2 + ...+ xnTe⃗n =


...

... · · · ...

Te⃗1 Te⃗2 · · · Te⃗n
...

... · · · ...



x1

...

xn

 = Ax⃗

■

Theorem 2.3.2. Given any sequence of elementary raw operations s1, s2, ..., sk involving n-

rows, there exists a matrix B such that for all v⃗ ∈ Rn, Bv⃗ equals that vector obtained by apply-

ing s1, s2, ..., sk to v⃗.

Example 2.3.1. [
x

y

]
II−I−−→

[
x

y − x

]
I−II−−→

[
2x− y

y − x

][
x

y

]
=

[
2 −1
1 −1

][
x

y

]
,

where

[
2 −1
1 −1

]
is the matrix B

Definition 2.3.3 (Geometric Definition of Linear Transformation). We can also think of lin-

ear transformation from a geometric perspective.

13



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

1. T : Rm → Rn implies that the original parallelograms map to the transformed parallelo-

grams

2. T(c × x⃗) = c × T(x⃗) means that the original lines through the origin map to the trans-

formed lines through the origin, and the original maps the ruling defined with funda-

mental unit x⃗ to ruling with unit Tx⃗

3. Rotation around the origin is a linear transformation.

4. Reflection through a line through the origin is a linear transformation.

5. Translation is not a linear transformation.

Example 2.3.2. Fix θ ∈ [0, 2π). Consider the map Rotθ : R2 → R2, which rotates a vector by

angle θ around the origin counterclockwise. Rotθ is a linear transformation. Find the matrix

associated with this transformation.

Solution. Let e⃗1 =

[
1

0

]
, e⃗2 =

[
0

1

]
.

The matrix of Rotθ is  | |
Rotθe⃗1 Rotθe⃗2
| |


1. If θ =

π

2
, i.e. we rotate by 90° counterclockwise. The matrix for rotation is

 | |
Rotθe⃗1 Rotθe⃗2
| |

 =

 | |
e⃗2 −e⃗2
| |

 =

[
0 −1
1 0

]

2. General case: e1 =

[
1

0

]
; e2 =

[
0

1

]
. Thus,

Rotθe⃗1 =

[
cos θ

sin θ

]
;Rotθe⃗2 =

[
0 −1
1 0

][
cos θ

sin θ

]
=

[
− sin θ

cos θ

]
.

=⇒

 | |
Rotθe⃗1 Rotθe⃗2
| |

 =

[
cos θ − sin θ

sin θ cos θ

]

14



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

e1

e2

Rot_e1Rot_e2

□

Example 2.3.3. The map RefL : R2 → R2 is a linear transformation that reflects a vector over

the line L : y = 2x. Find the matrix for RefL.

Solution. Key idea: express e⃗i = e⃗
∥
i + e⃗⊥i , and Ref(⃗ei) = Ref(⃗e∥i ) + Ref(⃗e⊥i ).

Choose

[
1

2

]
∈ L, then every parallel vector is c

[
1

2

]
.

Rotate

[
1

2

]
by 90°: [

0 −1
1 0

][
1

2

]
=

[
−2
1

]
,

then are perpendicular vector is d

[
−2
1

]
.

Take e⃗1 =

[
1

0

]
and e⃗2 =

[
0

1

]
, then we get



1
0

 = c

1
2

+ d

−2
1

0
1

 = c
′

1
2

+ d
′

−2
1

 =⇒



c = 1
5

d = −2
5

c
′
= 2

5

d
′
= 1

5

=⇒


e1 =

1
5

1
2

− 2
5

−2
1


e2 =

2
5

1
2

+ 1
5

−2
1

 ;

RefL−−−−−−−−−→


RefL(⃗e1) = 1

5

1
2

+ 2
5

−2
1

 =

−3/5

4/5


RefL(⃗e2) = 2

5

1
2

− 1
5

−2
1

 =

4/5

3/5

 .

Thus, the matrix is [
−3/5

4/5
4/5

3/5

]
.

15



2 VECTOR EQUATIONS AND LINEAR TRANSFORMATIONS 2.3 Linear Transformation

□

16



3 MATRICES

3 Matrices

3.1 Matrix Multiplication

Theorem 3.1.1 (Procedure of Matrix Multiplication). Matrix multiplication is very different

from other formats of multiplication.

• Input: a pair of matrices A and B.

*The number of rows of A equals the number of columns of B.

• Output: The product BA

• Procedure:

1. View A as a list of its column vectors:

A =

 | |
v1 · · · vn

| |


2. Multiply each column by B:

BA =

 | |
Bv1 · · · Bvn

| |


Example 3.1.1. Examples of matrix multiplication.

1. Let A =

[
1 2

−1 1

]
and B =

1 2

0 1

3 5

. Find BA.

Solution.

BA =

1 2

0 1

3 5

[ 1 2

−1 1

]
=

1× 1 + 2× (−1) 2× 1 + 2× 1

1× 0 + 1× (−1) 0× 2 + 1× 1

3× 1 + 5× (−1) 3× 1 + 5× 1

 =

−1 4

−1 1

−2 11


□

2. Let A =

1 2

0 1

3 5

 and B =

[
1 2

−1 1

]
. Find BA.

Solution. Because 2 columns is not equal to three rows, the product does not exist. □
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3. Let A =

[
1 2

−1 1

]
and B =

[
1 0 3

2 1 5

]
. Find AB.

Solution.

AB =

[
1 2

−1 1

][
1 0 3

2 1 5

]
=

[
1× 1 + 2× 2 0× 1 + 2× 1 3× 1 + 2× 5

−1× 1 + 2× 1 0× (−1) + 1× 1 3× (−1) + 5× 1

]
=

[
5 2 13

1 1 2

]

□

Remark (Conceptualizing Matrix Multiplication). There are many ways to understand

matrix multiplication:

1. A matrix encodes a linear transformation:

A : Rm −→ Rn is a m× n matrix.

B : Rn −→ Rk is a n× k matrix.

We can compass these maps:

Rm Rn Rk
A B

BA

The product BA encodes the composition of those transformations.

Example 3.1.2. Rotation by 90◦ counterclockwise:

B = A =

[
0 −1
1 0

]

Thus,

BA =

[
0 −1
1 0

][
0 −1
1 0

]
=

[
−1 0

0 −1

]
encodes a rotation by 180◦

2. The composition BA is linear:

• BA(x⃗+ y⃗) = B(Ax⃗+Ay⃗) = BAx⃗+BAy⃗

• BA(cx⃗) = B(cAx⃗) = cBAx⃗

18



3 MATRICES 3.1 Matrix Multiplication

3. The matrix for the composition is:

BA =

 | | |
Bv1 Bv2 · · · Bvn

| | |

 , where A =

 | | |
v1 v2 · · · vn

| | |


Proof. Suppose

A =

 | |
v1 · · · vn

| |

 =

 | |
Ae1 · · · Aen

| |


Then,

BA =

 | |
BAe1 · · · BAen

| |

 =

 | |
Bv1 · · · Bvn

| |


■

Example 3.1.3 (Application: Double Angle Formulae). Find an expression for sin 2θ and cos 2θ

in terms of sin θ and cos θ.

Solution. For angle θ, we have rotation by θ is a linear transformation, and the matrix is:

A =

[
cos θ − sin θ

sin θ cos θ

]

Geometrically, AȦ is rotation by 2θ:

A ·A =

[
cos 2θ − sin 2θ

sin 2θ cos 2θ

]

Algebraically, we have

A ·A =

[
cos θ − sin θ

sin θ cos θ

][
cos θ − sin θ

sin θ cos θ

]
=

[
cos2 θ − sin2 θ −2 sin θ cos θ
2 sin θ cos θ cos2 θ − sin2 θ

]

Since these are equal:

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2 sin θ cos θ

19



3 MATRICES 3.2 Invertible Matrices

□

Remark. Generalization: A3: triple angle formulae; An: multiple angle formulae

Theorem 3.1.2. Algebraic properties of matrix multiplication:

1. Matrix multiplication is associated:

(AB)C = A(BC), assuming the products AB, BC , AB)C exists.

2. Matrix multiplication is generally NOT communitive:

(a) If A and B are matrices n rows and n columns, AB ̸= BA in general. *View matrix

multiplication as a type of function composition.

(b) In other words, the order matters.

Example 3.1.4. • Exception:
[
3
] [

6
]
=
[
18
]
=
[
6
]
=
[
3
]

• Consider [
1 3

2 4

][
5 7

6 8

]
=

[
5 + 18 7 + 24

10 + 24 14 + 32

]
=

[
23 31

34 46

]
[
5 7

6 8

][
1 3

2 4

]
=

[
5 + 14 15 + 28

6 + 16 18 + 32

]
=

[
19 43

22 50

]
Thus, [

1 3

2 4

][
5 7

6 8

]
̸=

[
5 7

6 8

][
1 3

2 4

]

3.2 Invertible Matrices

Example 3.2.1 (Guiding Question). Let b⃗ =

[
b1

b2

]
∈ R2 be a fixed, arbitrary vector. Let A =[

2 1

1 1

]
. Find all solutions x⃗ ∈ R2 to the matrix equation Ax⃗ = b⃗ (as a function of b1 and b2.)

Solution. Observe: x⃗ =

[
x

y

]
, Ax⃗ =

[
2x+ y

x+ y

]
. Then we want to solve

2x+ y = b1

x+ y = b2

20



3 MATRICES 3.2 Invertible Matrices

⇒

[
2 1

1 1

b1

b2

]
I↔II−−−→

[
1 1

2 1

b2

b1

]
II−2I−−−→

[
1 1

0 −1
b2

b1 − 2b2

]
II/(−1)−−−−→

[
1 1

0 1

b2

2b2 − b1

]
I−II−−−→

[
1 0

0 1

−b2 + b1

2b2 − b1

]

∴ x⃗ =

[
x

y

]
=

[
−b2 + b1

2b2 − b1

]
=

[
1 −1
−1 2

][
b1

b2

]
□

Definition 3.2.1 (Inverse of a Matrix). Let A be a square (n × n matrix). Assume Ax⃗ = b⃗ has

unique solution for each b⃗ ∈ Rn. Then the map b⃗ 7−→ x⃗, the unique solution to Ax⃗ = b⃗, is

a linear transformation and the matrix of this map is called the inverse of A. We denote it as

A−1.

Remark. The matrix

[
1 −1
−1 2

]
in the guiding question is the inverse of

[
2 1

1 1

]
.

Theorem 3.2.1. Computing the inverse for a matrix.

• A−1 does not always exist.

• There are square matrices such that Ax⃗ = b⃗ has infinite solutions.

• Process:  A

b1
...

bn

 Row reduce−−−−−−→

[
rref(A)

Linear expressions

in terms of bi

]

Check pivot over each row of rref(A), and the coefficient matrix is A−1.

Definition 3.2.2 (Identity matrix). For an n× n matrix, if it is

In =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


,

we call it the identity matrix.

Remark. In encodes the linear transformation In : Rn → Rn (x⃗ 7−→ x⃗)

Theorem 3.2.2. Procedure for finding A−1:
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3 MATRICES 3.2 Invertible Matrices

1. Form augmented matrices:

[
A In

]
=


A

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


2. Row reduce: [

rref(A) B
]
,

if rref(A)=In, B = A−1

Example 3.2.2.[
2 1

1 1

1 0

0 1

]
I↔II−−−→

[
1 1

2 1

0 1

1 0

]
II−2I−−−→

[
1 1

0 −1
0 1

1 −2

]
II/(−1)−−−−→

[
1 1

0 1

0 1

−1 2

]
I−II−−−→

[
1 0

0 1

1 −1
−1 2

]

∴ A−1 =

[
1 −1
−1 2

]

Theorem 3.2.3 (Function theoretic definition of A−1). WhenA−1 exists, matrixA−1 is the ma-

trix encoding the inverse function of A. Hence, A and A−1 always commute:

A−1 ·A = In = A ·A−1

Example 3.2.3. Let

A =

[
2 1

1 1

]
, A−1 =

[
1 −1
−1 2

]
.

A ·A−1 =

[
2 1

1 1

][
1 −1
−1 2

]
=

[
2− 1 −2 + 2

1− 1 −1 + 2

]
=

[
1 0

0 1

]
= I2.
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3 MATRICES 3.2 Invertible Matrices

Theorem 3.2.4 (A new way to find A−1). Solving AA−1 = In

A−1 =

 | |
v1 · · · vn

| |



AA−1 =

 | |
Av1 · · · Avn

| |

 =

 | |
e1 · · · en

| |

 = In

Av1 = e1, Av2 = e2, · · · ,Avn = en[
Av1 e1

]
,
[
Av2 e2

]
, · · · ,

[
Avn en

]
Row reduce−−−−−−→

[
rref(A) v1

]
,
[

rref(A) v2

]
, · · · ,

[
rref(A) vn

]
∴ To find A−1:

[
A In

]
Row reduce
======⇒

[
I A−1

]

Example 3.2.4 (Problems concerning inverting matrices). LetA =

1 1 1

1 2 3

1 4 9

 .ComputeA−1

and use it to find all solutions to Ax⃗ =

 1

−1
1

 .

Solution. 1 1 1

1 2 3

1 4 9

1 0 0

0 1 0

0 0 1

 III−I−−−→
II−I

 1 1 1

0 1 2

0 3 8

1 0 0

−1 1 0

−1 0 1

 III−3II−−−−−→
I−II

 1 0 1

0 1 2

0 0 2

2 −1 0

−1 1 0

2 −3 1


III/2−−−→

 1 0 1

0 1 2

0 0 1

2 −1 0

−1 1 0

1 −3/2
1/2

 II−2III−−−−−→
I+III

 1 0 0

0 1 0

0 0 1

3 −5/2
1/2

−3 4 −1
1 −3/2

1/2



∴ A−1 =

 3 −5/2
1/2

−3 4 −1
1 −3/2

1/2
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3 MATRICES 3.3 Kernel of a Matrix

To solve Ax⃗ = b⃗, apply A−1 on both sides:

A−1(Ax⃗) = A−1b⃗

x⃗ = A−1b⃗

∴ x⃗ =

 3 −5/2
1/2

−3 4 −1
1 −3/2

1/2


 1

−1
1

 =

3 +
5 /2 +

1 /2

−3− 4− 1

1 +3 /2 +
1 /2

 =

 6

−8
3


□

3.3 Kernel of a Matrix

As Ax⃗ = b⃗ encodes a system of linear equation, one key question of linear algebra is to find

how would the solution to Ax⃗ = b⃗ change as b⃗ varies.

Theorem 3.3.1. Let f : Rm → Rn be a function, then:

1. If b⃗1, b⃗2 ∈ Rn, and b⃗1 ̸= b⃗2, then the sets
{
x⃗ : f(x⃗) = b⃗1

}
and

{
x⃗ : f(x⃗) = b⃗2

}
do not

intersect.

2. Every x⃗ in the domain is an element of the solution set
{
x⃗ : f(x⃗) = b⃗

}
for some b⃗.

Example 3.3.1. Let A =
[
2 1

]
. Then solving Ax⃗ = b⃗ gives 2x + y = b⃗, which encodes a line

of slope= −2 that has a y−intercept of b⃗.

Definition 3.3.1 (Zero Vector). The zero vector 0⃗ ∈ Rn (sometimes denoted as 0⃗n if the con-

text is unclear) is the vector all of whose entries are 0.

Example 3.3.2.

0⃗2 =

[
0

0

]
, 0⃗3 =

00
0


Theorem 3.3.2. Let A be an n×m matrix (i.e., encoding a linear transformation A : Rm → Rn)

and b⃗ ∈ Rn such that (s.t.) Ax⃗ = b⃗ has a solution. Suppose x⃗0 to be any fixed solution. Then,

the solution set to Ax⃗ = b⃗ is {x⃗0 + x⃗′ |Ax⃗′ = 0}
Interpretation: The solution set to Ax⃗ = b⃗ is the translation of the solution set to Ax⃗ = 0⃗

by x⃗0.

Proof. We need to prove two parts: 1. Any solution to Ax⃗ = b⃗ is of the form x⃗0 + x⃗′, where

Ax⃗′ = 0⃗, and 2. x⃗0 + x⃗ are solutions to Ax⃗ = b⃗.
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3 MATRICES 3.3 Kernel of a Matrix

1. Any solution to Ax⃗ = b⃗ is of the form x⃗0 + x⃗′, where Ax⃗′ = 0⃗.

Let x⃗ be such a solution, then x⃗′ := x⃗− x⃗0, then

Ax⃗′ = A(x⃗− x⃗0)

= Ax⃗−Ax⃗0

= b⃗− b⃗

= 0⃗.

So, x⃗ = x⃗0 + x⃗′.

2. x⃗0 + x⃗ are solutions to Ax⃗ = b⃗.

A(x⃗0 + x⃗′) = Ax⃗0 +Ax⃗′

= b⃗+ (⃗0) = b⃗.

■

Definition 3.3.2 (Kernel of a Matrix). The kernel of a linear transformation or a matrix is the

solution set to Ax⃗ = 0⃗.

i.e., ker(A) =
{
x⃗ ∈ Rm; Ax⃗ = 0⃗

}
.

Theorem 3.3.3.

ker(A) = ker(rref(A)).

Theorem 3.3.4. Procedure of computing the kernel of a matrix:

1. Row reduce A to rref(A), compute ker(rref(A)).

2. Unpack the equations encoded by matrix equation rref(A) = 0, solve for pivot variables

in terms of free variables.

3. Parameterize the solution set for rref(A)x⃗ = 0 as {t1v⃗1 + t2v⃗2 + · · ·+ tdv⃗d : ti ∈ R} and

v⃗i tracks the coefficient of the i-th free variable.

Example 3.3.3. Let A =

1 2 3 4

5 6 7 8

9 10 11 12

 . Compute ker(A).
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3 MATRICES 3.3 Kernel of a Matrix

Solution. ker(A) is the solution set to Ax⃗ = 0⃗: 1 2 3 4

5 6 7 8

9 10 11 12

0

0

0

 III−9I−−−−→
II−5I

 1 2 3 4

0 −4 −8 −12
0 −8 −16 −24

0

0

0

 II/−4−−−→

 1 2 3 4

0 1 2 3

0 −8 −16 −24

0

0

0


III+8II−−−−−→
I−2II

 1 0 −1 −2
0 1 2 3

0 0 0 0

0

0

0



∴

x1 − x3 − 2x4 = 0

x2 + 2x3 + 3x4 = 0

∴ Solution set:


x1

x2

x3

x4

 =


x3 + 2x4

−2x3 − 3x4

x3

x4

 .

Thus,

ker(A) =




x3 + 2x4

−2x3 − 3x4

x3

x4

 : x3, x4 ∈ R

 =

x3


1

−2
1

0

+ x4


2

−3
0

1




□

Definition 3.3.3 (Span). Let v⃗1, v⃗2, · · · , v⃗d ∈ R, the span of v⃗1, v⃗2, · · · , v⃗d is the set:

Span(v⃗1, v⃗2, · · · , v⃗d) = {t1v⃗1 + t2v⃗2 + · · ·+ tdv⃗d; ti ∈ R}

Example 3.3.4. Our procedure of finding kernels finds vectors v⃗1, v⃗2, · · · , v⃗d which spans the

kernel of the matrix.

Definition 3.3.4 (Image of a Matrix). Let A be an n ×m matrix (i.e., encoding a linear trans-

formation A : Rm → Rn), the image of A is the set:

Im(A) = {Ax⃗ | x⃗ ∈ Rm} .

Interpretation: Im(A) is the set of b⃗ s.t. Ax⃗ = b⃗ has a solution.

Theorem 3.3.5. Let A be an n × m matrix, and let w⃗1, · · · , w⃗m be the columns of A: A =
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 | |
w⃗1 · · · w⃗m

| |

. The image of A is the span of w⃗1, · · · , w⃗m:

Im(A) = Span(w⃗1, · · · , w⃗m) = {t1w⃗1 + · · ·+ t+mw⃗m; tm ∈ R}

Remark.
ker(A) ⊆ Rm (domain)

Span(A) ⊆ Rn (range)

Proof. We know that the columns of a matrix form Ax⃗, namely the i-th column of the

matrix A is Ae⃗i, where e⃗i =



0
...

1
...

0


→ the i-th entry.

Hence, x⃗ =

 x1

vdots

xm

 = x1e⃗1 + x2e⃗2 + · · ·+ xme⃗m.

Ax⃗ = x1Ae⃗1 + x2Ae⃗2 + · · ·+ xmAe⃗m

= x1w⃗1 + x2w⃗2 + · · ·+ xmw⃗m

∈ Span(w⃗1, · · · , w⃗m).

■
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4 SPACES AND DIMENSIONS

4 Spaces and Dimensions

4.1 Subspaces and Bases

Theorem 4.1.1. Spans of Sets of Vectors:

1. In general, for v⃗ ∈ Rn, if v⃗ ̸= 0, then Span(v⃗) is the line through the origin containing v⃗.

2. If v⃗ = 0⃗, then Span(v⃗) is also the zero vector.

3. For vectors v⃗1, v⃗2 ∈ Rn, if v⃗1 ̸= v⃗2 and v⃗1, v⃗2 ̸= 0, then Span(v⃗1, v⃗2) is a plane through

the origin containing v⃗1 and v⃗2.

4. If v⃗1 and v⃗2 are co-linear with each other, then Span(v⃗1, v⃗2) is a line through the contain-

ing origin of v⃗1 and v⃗2.

Definition 4.1.1 (Redundancy). A vector v⃗k is called redundant in a list of vectors v⃗1, · · · , v⃗k ∈
Rn if

v⃗k ∈ Span(v⃗1, · · · , v⃗k−1)

Definition 4.1.2 (Span of an Empty Set). The span of the empty set of vectors is {⃗0}.

Definition 4.1.3 (Linear Independence). Let v⃗1, · · · , v⃗k ∈ Rn. Then vectors v⃗1, · · · , v⃗k are

called linearly independent if v⃗i is not redundant in the list of v⃗1, · · · , v⃗i ∀i ∈ [1, k].

Example 4.1.1. e⃗1, · · · , e⃗k are linearly independent (L.I.) in Rn ∀n ≥ k. (⃗e1, · · · , e⃗k are the

standard basis vectors.

Theorem 4.1.2. Span and Linear Independency.

1. The span of the empty set is a point {⃗0}.

2. The span of a single linear independent vector is a line through the origin.

3. The span of two linear independent vectors is a plane through the origin.

Definition 4.1.4 (Subspace). Let V be a subset of Rn. V is called a subspace if:

1. 0⃗ ∈ V

Interpretation: Origin is in V .

2. If v⃗ ∈ V , then cv⃗ ∈ V ∀c ∈ R.

Interpretation: If v⃗ ∈ V , then the line through the origin containing v⃗ is in V .
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3. If v⃗1, v⃗2 ∈ V , then v⃗1 + v⃗2 ∈ V .

Interpretation: If v⃗1 and v⃗2 are not co-linear and contained in V , then the plane through

v⃗1, v⃗2 and 0⃗ is in V .

Example 4.1.2. Examples of subspaces.

1. {⃗0} is a subspace.

2. Rn is a subspace.

3. If v⃗1, · · · , v⃗k ∈ Rn, then Span(v⃗1, · · · , v⃗k) is a subspace.

Proof.

(a) 0⃗ = 0v⃗1 + 0v⃗2 + · · ·+ v⃗k

(b) v⃗ = t1v⃗1 + t2v⃗2 + · · ·+ tkv⃗k

=⇒ cv⃗ = ct1v⃗1 + ct2v⃗2 + · · ·+ ctkv⃗k ∈ Span(v⃗1, · · · , v⃗k)

(c) v⃗′ = t′1v⃗1 + t′2v⃗2 + · · ·+ t′kv⃗k

=⇒ v⃗ + v⃗′ = (t1 + t′1)v⃗1 + (t2 + t′2)v⃗2 + · · ·+ (tk + t′k)v⃗k ∈ Span(v⃗1, · · · , v⃗k)

■

4. A line through origin is a subspace.

5. A plane through the origin is a subspace.

In two and three dimensions, examples 1, 2, 4, and 5 are the only examples of sub-

spaces.

For examples 6 and 7, consider an n×m matrix A, which maps a linear transformation

from Rm to Rn (i.e., A : Rm → Rn). Let ker(A) and Im(A) be the kernel and image of A,

respectively.

6. ker(A) is a subspace.

Proof.

29



4 SPACES AND DIMENSIONS 4.1 Subspaces and Bases

(a) A0⃗n = 0⃗n

=⇒ 0⃗n is in ker(A).

(b) Av⃗ = 0⃗, then A(cv⃗) = cAv⃗ = c⃗0 = 0⃗

=⇒ If v⃗ ∈ ker(A), then cv⃗ ∈ ker(A).

(c) If Av⃗1 = 0⃗ and Av⃗2 = 0⃗, then A(v⃗1 + v⃗2) = Av⃗1 +Av⃗2 = 0⃗

=⇒ If v⃗1, v⃗2 ∈ ker(A), then v⃗1 + v⃗2 ∈ ker(A).

■

7. Im(A) is a subspace.

Proof.

(a) 0⃗n ∈ Im(A)

(b) If b⃗ ∈ Im(A), then b⃗ = Ax⃗

=⇒ cb⃗ = A(cx⃗) ∈ Im(A)

(c) If b⃗1, b⃗2 ∈ Im(A), then b⃗1 = Ax⃗1 and b⃗2 = Ax⃗2

=⇒ b⃗1 + b⃗2 = Ax⃗1 +Ax⃗2 = A(x⃗1 + x⃗@) ∈ Im(A).

■

Remark. The same subspace can be spanned by many sets of vectors.

Definition 4.1.5. Let V be a subspace of Rn. A basis for V is a set of vectors v⃗1, · · · , v⃗k ∈ V ,

which:

1. Span V , and

2. Are linearly independent.

Example 4.1.3. The vectors e⃗1, · · · , e⃗n are a basis for Rn

Proof.

30
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1.


x1

...

xn

 = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n

2. ei /∈ Span(⃗e1, · · · e⃗i−1)→ L.I.

■

Theorem 4.1.3 (Computing a basis for Im(A)). LetAbe ann×mmatrix with columns v⃗1, · · · , v⃗m:

A =

 | |
v⃗1 · · · v⃗m

| |


The columns of A which contain a pivot upone row reduction to rref(A) are a basis for Im(A).

Example 4.1.4. Let A =

1 2 3

4 5 6

7 8 9

 Row Reduction−−−−−−−−→

 1 0 −1
0 1 2

0 0 0



=⇒

14
7

 and

25
8

 are the basis of Im(A).

Remark. The coefficients−1 and 2 on the third column of A indicates that36
9

 = −1

14
7

+ 2

25
8

 .

Proof. We know: Im(A) = Span(v⃗1, · · · v⃗m). To produce basis, remove redundant columns.

Hence, we want to show: the i-th column does not contain a pivot on row reduction ( iff ) v⃗i is

redundant:

v⃗i = t1v⃗1 + · · ·+ tiv⃗i−1 = Span(v⃗1, · · · , v⃗i−1) =

 | |
v⃗1 · · · v⃗i−1

| |




t1
...

ti−1

 = Ai−1x⃗

⇒We want to show: when v⃗i = Ai−1x⃗ has solutions. To solve v⃗i = Ai−1x⃗:

[
Ai−1 v⃗i

]
Row Reduce−−−−−−→

Consistent⇒ Redundant⇒ Do not contain pivot in i-th column

Inconsistent⇒ Not redundant⇒ Contain a pivot
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4 SPACES AND DIMENSIONS 4.1 Subspaces and Bases

Example 4.1.5.

A =

1 2 3

4 5 6

7 8 9

⇒ rref(A) =

 1 0 −1
0 1 2

0 0 0


 1

4

7

2

5

8

⇒
 1

0

0

2

−3
−6

⇒ Inconsistent⇒ Not redundant

 1 2

4 5

7 8

3

6

9

⇒
 1 0

0 1

0 0

−1
2

0

⇒ Consistent⇒ Redundant

■

Theorem 4.1.4 (Computing a basis for ker(A)). Recall Theorem 3.3.4 Procedure to find ker(A).

1. The spanning set produced by “computing the kernel of A” is a basis for ker(A).

2. Procedure:

(a) Row reduce A to rref(A), and then compute ker(rref(A)).

(b) Unpack the equations encoded by matrix equation rref(A) = 0. Solve for pivot

variables in terms of free variables.

(c) Parametrize the solution set for rref(A)x⃗ = 0 as {t1v⃗1+ t2v⃗2+ · · ·+ tdv⃗d; ti ∈ R} and

v⃗i tracks the coefficient of the i-th free variable.

Proof. Look at the free variables xi1 , xi2 , · · · , xid . Then v⃗ij is 0 if j ̸= k; v⃗ij is 1 if j = k. Thus,

c1v⃗1 + c2v⃗2 + · · ·+ ck−1v⃗k−1 ̸= v⃗k.

■

Example 4.1.6. Let v⃗3 =


1

−2
1

0

 and v⃗4 =


2

−3
0

1

. Then, cv⃗3 ̸= v⃗4 since the 4-th position of v⃗3 is

0, whereas that of v⃗4 is 1.
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4.2 The Rank-Nullity Theorem

Theorem 4.2.1. If V is a subspace of Rn, then V has a basis, and all bases have the same size.

Definition 4.2.1 (The Dimension of a Subspace). Let V be a subspace, the dimension of V is

the size of any bases. We denote it as dim(V ).

Definition 4.2.2 (Rank of A). Let A be an n ×m matrix (i.e., A : Rm → Rn). The rank of A is

the dimension of the image of A. We denote it as rank(A).

rank(A) = dim(Im(A))

Definition 4.2.3 (Nullity of A). Let A be an n×m matrix (i.e., A : Rm → Rn). The nullity of A

is the dimension of the kernel of A. We denote it as nullity(A).

nullity(A) = dim(ker(A))

Theorem 4.2.2 (The Rank-Nullity Theorem). Suppose A to be an n×m matrix:

rank(A) + nullity(A) = dim(domain of A) = m .

Example 4.2.1. Let A =

1 2 3

4 5 6

7 8 9

. To find basis for Im(A) and ker(A):

A
Row

====⇒
Reduce

 1 0 −1
0 1 2

0 0 0


1. To find a basis for Im(A), we take the columns of A which contain a pivot upon row

reduction:

Im(A) = Span


14
7

 ,

25
8


 .

∴ dim(Im(A)) = 2.

2. To find a basis for ker(A), unpack the equation:x1 − x3 = 0

x2 + 2x3 = 0
, =⇒

x1 = x3

x2 = −2x3

.
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4 SPACES AND DIMENSIONS 4.2 The Rank-Nullity Theorem

∴ ker(A) =


 x3

−2x3

x3

 ; x3 ∈ R

 = Span


 1

−2
1


 .

∴ dim(ker(A)) = 1.

3. rank(A) = dim(Im(A)) = 2; nullity(A) = dim(ker(A)) = 1; dim(domain) = 3

∴ rank(A) + nullity(A) = 3 = dim(domain).

Proof.

1. rank(A) = dim(Im(A)) = number of rectors in a basis of Im(A) = number of pivots in

rref(A).

2. nullity(A) = dim(ker(A)) =number of rectors in a basis of ker(A) = number of free vari-

ables = number of non-pivot columns in rref(A).

3. ∴ rank(A)+nullity(A) =number of columns of rref(A)or, simply, A = dim(domain of A).

■

Example 4.2.2 (Geometric Perspective of Rank-Nullity Theorem). Let M =

[
1 3

2 6

]
.

∴ rref(M) =

[
1 3

0 0

]
.

∴ Im(M) = Span

([
1

2

])
(Line of slope 2 through the origin) =⇒ dim(Im(M)) = 1;

ker(M) = Span

([
−3
1

])
(Line of slope − 1

3
through origin) =⇒ dim(ker(M)) = 1.

If we consider the domain of M to be the inputs for the transformation, and range of M

(Im(M)) to be the outputs of the linear transformation, then the rank-nullity theorem denotes

that

dim(Inputs) = dim(Outputs) + Information Loss.

The “information loss” is given by dim(ker(M)). In this specific example, dim(inputs) = 2 and

dim(outputs) = 1, so the information loss of the linear transformation M is 2− 1 = 1.
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4 SPACES AND DIMENSIONS 4.3 Coordinates

Input/Domain Output/Range

Im(M)

M

Theorem 4.2.3 (Invertibility Criteria). Let A be an n×m matrix:

1. A is invertible iff Ax⃗ = b⃗ has a unique solution ∀b⃗ ∈ Rn.

⇐⇒ Im(A) = Rn and ker(A) = {⃗0}.

⇐⇒ rank(A) = n and nullity(A) = 0.

2. If A is an n×m matrix, then the following are equivalent:

(a) Ax⃗ = b⃗ has a unique solution for all b⃗ in Rn.

(b) rank(A) = n

(c) nullity(A) = 0

(d) Im(A) = Rn

(e) ker(A) = {⃗0}

(f) rref(A) = In

(g) The columns of A form a basis for Rn

(h) The columns of A span Rn

(i) The columns of A are L.I.

(j) There is a matrix B s.t.

BA = I = AB (B := A−1)

4.3 Coordinates

Remark (Goal of Coordinates). To describe the location of a vector within a subspace.
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4 SPACES AND DIMENSIONS 4.3 Coordinates

Definition 4.3.1 (Standard coordinates on Rn). We can write x⃗ as a linear combination of the

standard basis vectors.

i.e., x⃗ = a1 + e⃗1 + a2e⃗2 + · · ·+ ane⃗n; ai ∈ R.

Example 4.3.1. Suppose x⃗ =

[
1

2

]
∈ R2. Then x⃗ = e⃗1 + 2e⃗2.

e⃗1

2e⃗2

x⃗ = e⃗1 + 2e⃗2

Theorem 4.3.1. Let V ⊆ Rn be a subspace and β = (x⃗1, · · · , x⃗m) be a basis. Then every x⃗ ∈ V

may be written as x⃗ = a1x⃗1 + a2x⃗2 + · · ·+ amx⃗m for some unique scalars a1, · · · , am ∈ R.

Example 4.3.2. Suppose V is a subspace and β = (x⃗1, x⃗2):

V

x⃗1

x⃗2

x⃗ = a1x⃗1 + a2x⃗2

Definition 4.3.2 (β coordinates). Let V ⊆ Rn be a subspace and β be a basis for V . Let x⃗ ∈ V .

The β-coordinates for x⃗ in V is the following vector:

[x⃗]β =


a1
...

am


s.t. x⃗ = a1x⃗1 + · · ·+ amx⃗m.

Example 4.3.3. Suppose V = Span


11
0

 ,

01
1


 and β =


11
0

 ,

01
1


.

Let x⃗ = 2

11
0

+ 1

01
1

 =

23
1

. Then, [x⃗]β =

[
2

1

]
.
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4 SPACES AND DIMENSIONS 4.3 Coordinates

Remark. V in general has many basis. The β-coordinates depend on the basis. Also, in

general, coordinate axes are not perpendicular.

Example 4.3.4. Let V ⊆ R3 be the subspace spanned by v⃗1 =

12
1

 , v⃗2 =

−32
3

 . Let β =

(v⃗1, v⃗2) and x⃗ =

−12
2

. Find [x⃗]β.

Solution. Find [x⃗]β =

[
c1

c2

]
s.t. x⃗ = c1v⃗1 + c2v⃗2. (Find an expression for x⃗ in the span of

v⃗1 and v⃗2, which is the image of S =

 | |
v⃗1 v⃗2

| |

. Hence, we need to find x⃗ = S

[
c1

c2

]
(i.e., solve

Sc⃗ = x⃗).

Form augmented matrix
[
S x⃗

]
:

[
S x⃗

]
=

 | |
v⃗1 v⃗2

| |
x⃗

 =

 1 −3
2 2

1 3

−1
2

2


Row

====⇒
reduce

 1 0

0 1

0 0

1/2
1/2

0



∴ [x⃗]β =

[
1/2
1/2

]
.

□

Remark. If (v⃗1, · · · , v⃗m) = β is a basis for a subspace V , and S :=

 | |
v⃗1 · · · v⃗m

| |

, then S

converts β-coordinates to standard coordinates.

i.e., S[x⃗]β = x⃗.

Example 4.3.5 (β-coordinates Under Linear Transformation). Consider T : R2 → R2 de-

fined by matrix

[
1 3

2 2

]
. Let x⃗ ∈ R2 be the vector whose β-coordinates are [x⃗]β =

[
1

3

]
, where
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4 SPACES AND DIMENSIONS 4.3 Coordinates

β =

([
1

1

]
,

[
1

−1

])
. Find [Tx⃗]β.

Solution. First, unpack the question:

v⃗1

3v⃗2

[x⃗]β =

[
1

3

]
v⃗1

v⃗2

[Tx⃗]β =?

[
1 3

2 2

]
T

a1e⃗1

a2e⃗2
Te⃗1

Te⃗2

To solve this question:

1. Find standard coordinates for x⃗:

S =

[
1 1

1 −1

]
=⇒ [x⃗]st = S[x⃗]β =

[
1 1

1 −1

][
1

3

]
=

[
4

−2

]

2. Multiply [x⃗]st by T:

T[x⃗]st =

[
1 3

2 2

][
4

−2

]
=

[
−2
−4

]

3. Compute [Tx⃗]β.

T[x⃗]st = S[Tx⃗]β =⇒

[
−2
−4

]
=

[
1 1

1 −1

]
[Tx⃗]β =⇒ [Tx⃗]β =

[
1

3

]
.

□

Theorem 4.3.2. Let T : Rn → Rm be a linear transformation and β = (v⃗1, · · · , v⃗n) be a basis

for Rn. Let x⃗ ∈ Rn:

[Tx⃗]β = S−1TS[x⃗]β, where S =

 | |
v⃗1 · · · v⃗n

| |

 .

[Tx⃗]β = [T]β[x⃗]β.
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4 SPACES AND DIMENSIONS 4.3 Coordinates

Theorem 4.3.3. The matrix for T with respect to the basis β is

[T]β = S−1TS.

Example 4.3.6. Let T =

[
1 3

2 2

]
and β =

([
1

1

]
,

[
1

−1

])
. Then

[T]β =

[
1/2

1/2
1/2 −1/2

][
1 3

2 2

][
1 1

1 −1

]
=

[
4 −1
0 −1

]
.
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5 APPROX. SOLUTION OF Ax⃗ = b⃗

5 Approx. Solution of Ax⃗ = b⃗

5.1 Lengths and Angles in Rn

Definition 5.1.1 (Dot Product). Let x⃗ =


x1

...

xn

 and y⃗ =


y1
...

yn

 ∈ Rn. The dot product of x⃗ and

y⃗ is the following number:

x⃗ · y⃗ =


x1

...

xn

 ·

y1
...

yn

 = x1y1 + x2y2 + · · ·+ xnyn =
[
x1 · · · xn

]
y1
...

yn



Example 5.1.1. 12
3

 ·
75
2

 = 1× 7 + 2× 5 + 3× 2 = 23.

Theorem 5.1.1. Algebraic property of dot products:

1. x⃗ · y⃗ = y⃗ · x⃗

2. x⃗ · (y⃗1 + y⃗2) = x⃗ · y⃗1 + x⃗ · y⃗2

(x⃗1 + x⃗2) · y⃗ = x⃗1 · y⃗ + x⃗2 · y⃗

3. x⃗ · (cy⃗) = c(x⃗ · y⃗) = (cx⃗) · y⃗

Definition 5.1.2 (Length). Let x⃗ ∈ Rn. The length of x⃗ is the following number:

∥x⃗∥ :=
√
x⃗ · x⃗ =

√
x2
1 + x2

2 + · · ·+ x2
n, where x⃗ =


x1

...

xn



Example 5.1.2. ∥∥∥∥∥
[
4

3

]∥∥∥∥∥ =
√
42 + 32 = 5

Remark. In R2, the definition of length is the Pythagorean theorem.
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5 APPROX. SOLUTION OF Ax⃗ = b⃗ 5.1 Lengths and Angles in Rn

Theorem 5.1.2 (Angle Between Vectors). Let θ be the angle between x⃗ and y⃗. We then have

cos θ =
∥x⃗∥2 + ∥y⃗∥2 − ∥y⃗ − x⃗∥2

2∥x⃗∥∥y⃗∥

Proof. Assume vectors x⃗ and y⃗ are drawn as below.

θ

∥x⃗∥

∥y⃗∥

x⃗

y⃗

L = ∥y⃗ − x⃗∥

By the cosine rule, we have:

L2 = ∥x⃗∥2 + ∥y⃗∥2 − 2∥x⃗∥∥y⃗∥ cos θ

So,

cos θ =
∥x⃗∥2 + ∥y⃗∥2 − L2

2∥x⃗∥∥y⃗∥
=
∥x⃗∥2 + ∥y⃗∥2 − ∥y⃗ − x⃗∥2

2∥x⃗∥∥y⃗∥
.

■

Theorem 5.1.3. Relationship of angle and dot products:

1. x⃗ · y⃗ > 0 if θ < 90◦

2. x⃗ · y⃗ = 0 if θ = 90◦

3. x⃗ · y⃗ < 0 if θ > 90◦

Proof.
∥y⃗ − x⃗∥2 = (y⃗ − x⃗) · (y⃗ − x⃗)

= (y⃗ − x⃗) · y⃗ − (y⃗ − x⃗) · x⃗

= y⃗ · y⃗ − x⃗ · y⃗ − y⃗ · x⃗+ x⃗ · x⃗

= y⃗ · y⃗ − 2x⃗ · y⃗ + x⃗ · x⃗

= ∥y⃗∥2 − 2x⃗ · y⃗ + ∥x⃗∥2

Think of Pythagonean theorem:
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θ

∥y⃗∥

∥x⃗∥

L = ∥y⃗ − x⃗∥

• If θ < 90◦, ∥y⃗ − x⃗∥2 < ∥y⃗∥+ ∥∥⃗2 =⇒ x⃗ · y⃗ > 0.

• If θ = 90◦, ∥y⃗ − x⃗∥2 = ∥y⃗∥+ ∥∥⃗2 =⇒ x⃗ · y⃗ = 0.

• If θ > 90◦, ∥y⃗ − x⃗∥2 > ∥y⃗∥+ ∥∥⃗2 =⇒ x⃗ · y⃗ < 0.

■

Definition 5.1.3 (Perpendicular). Let x⃗, y⃗ ∈ Rn. Then, x⃗ and y⃗ are perpendicular iff x⃗·y⃗ = 0.

(Equivalently: orthogonal)

Theorem 5.1.4. Suppose A is an 1 × n matrix s.t. A =
[
a1 · · · an

]
. Then, AT =


a1
...

an

 = v⃗.

Thus, Ax⃗ = v⃗ · x⃗.

Theorem 5.1.5.

v⃗ ⊥ x⃗⇐⇒ v⃗ · x⃗ = 0⇐⇒ Ax⃗ = 0 =⇒ x⃗ ∈ ker(A).

• Let v⃗ ̸= 0⃗. The set {x⃗ | x⃗ ⊥ v⃗} is a subspace of dimension m− 1.

• Let A : Rm → Rn be a linear transformation. Then, the kernel of A is the set of all vectors

x⃗ ∈ Rm, which are perpendicular to the row of the matrix for A.

Theorem 5.1.6.

x⃗ · v⃗ = ∥x⃗∥∥v⃗∥ cos θ

Proof.

1. v⃗ · x⃗ is constant along translates of the subspace perpendicular to the line spanned by v⃗:

v⃗ · x⃗ = Ax⃗ = b⃗

2. Project x⃗ into the line spanned by v⃗:
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∥x⃗∥

∥v⃗∥

x⃗

v⃗

ker(A) x⃗+ ker(A)

θ

cv⃗

3. Use trigonometry to calculate the projection:

cv⃗ = (∥x⃗∥ cos θ)
(

v⃗

∥v⃗∥

)

v⃗ · x⃗ = v⃗ · cv⃗

=
∥x⃗∥ cos θ
∥v⃗∥

∥v⃗∥2 = ∥x⃗∥ · ∥v⃗∥ cos θ

⇒ θ = arccos

(
x⃗v⃗

∥x⃗∥∥v⃗∥

)
■

Theorem 5.1.7. Projection of x⃗ into line spanned by v⃗ is given by the following formula:

Projection = cv⃗ =
∥x⃗∥ cos θ
∥v⃗∥

v⃗

=
x⃗ · v⃗
∥v⃗∥2

v⃗

=
x⃗ · v⃗
v⃗ · v⃗

v⃗.

Definition 5.1.4 (Orthogonal Complement). Let V ⊆ Rn be a subspace. The orthogonal

complement of V is the set of vectors perpendicular to all vectors in V :

V ⊥ = {x⃗ ∈ Rn; v⃗ · x⃗ = 0 ∀v⃗ ∈ Rn} .

Example 5.1.3. The orthogonal complement of a line with a slope m through the origin is a

line through the origin with a slop of− 1

m
.
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Theorem 5.1.8. LetV be a subspace. If v⃗1, · · · , v⃗k ∈ V is a spanning set, (i.e., V = Span(v⃗1, · · · , v⃗k)),

then x⃗ ∈ V ⊥ iff v⃗1 · x⃗ = 0, v⃗2 · x⃗ = 0, · · · , v⃗k · x⃗ = 0.

Proof. “Perpendicular to everything” implies v⃗i · x⃗ = 0 ∀v⃗ ∈ V , then v⃗ = c1v⃗1 + · · · +
ckv⃗k =⇒ x⃗ · v⃗ = c1(x⃗ · v⃗1) + · · ·+ ck(x⃗ · v⃗k) = 0 =⇒∴ x⃗ ⊥ v⃗. ■

Theorem 5.1.9. LetV ⊆ Rn be a subspace, V ⊥ is a subspace. Specifically, ifV = Span(v⃗1, · · · , v⃗k),

then

V ⊥ = ker



− v⃗1 −
− v⃗2 −

...

− v⃗k −




Proof. 
− v⃗1 −
− v⃗2 −

...

− v⃗k −


 |x⃗
|

 =


x⃗ · v⃗1

...

x⃗ · v⃗k

 =


0
...

0


■

Example 5.1.4. Let V = Span



1

0

1

1

 ,


1

−1
0

1


. Compute V ⊥.

Solution. [
1 0 1 1

1 −1 0 1

]
Row

====⇒
reduce

[
1 0 1 1

0 −1 −1 0

]
=⇒ rref =

[
1 0 1 1

0 1 1 0

]

Unpack, we have x1 = −x3 − x4

x2 = −x3

∴ V ⊥ = Kernel =




−x3 − x4

−x3

x3

x4

 ; x3,4 ∈ R

 = Span



−1
−1
1

0

 ,


−1
0

0

1




□
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5.2 Orthogonal Projection

Theorem 5.2.1. Let V ⊆ Rn be a subspace and x⃗ ∈ Rn. Then, x⃗ can be written uniquely as

x⃗ = x⃗∥ + x⃗⊥,

when x⃗∥ ∈ V and x⃗⊥ ∈ V .

Definition 5.2.1 (Orthogonal Projection). Let V ⊆ Rn be a subspace. The orthogonal pro-

jection of x⃗ into V is the vector x⃗∥. The map x⃗ 7→ x⃗∥ is denoted as ProjV : Rn → Rn.

Theorem 5.2.2. Computing ProjV (x⃗) := x⃗∥:

1. Let v⃗1, · · · , v⃗k be a basis for V :

AT =


− v⃗1 −

...

− v⃗k −

 and A =

 | |
v⃗1 cdots v⃗k

| |


ATx⃗∥ = ATx⃗

V = Im(A)

A
ATx⃗

ATx⃗

V ⊥

x⃗

x⃗∥

Rn

Rk

Rk

x⃗⊥

AT

ker
(
AT
)
= V ⊥

2. Slove ATAc⃗ = ATx⃗ for c⃗.

3. x⃗∥ = Ac⃗

Example 5.2.1. Let V = Span


11
0

 ,

01
1


 and x⃗ =

12
3

. Compute the projection of x⃗ onto

V .
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5 APPROX. SOLUTION OF Ax⃗ = b⃗ 5.2 Orthogonal Projection

Solution.

1.

A =

1 0

1 1

0 1

 and AT =

[
1 1 0

0 1 1

]

2. Compute ATA and ATx⃗:

ATA =

[
1 1 0

0 1 1

]1 0

1 1

0 1

 =

[
2 1

1 2

]

ATx⃗ =

[
1 1 0

0 1 1

]12
3

 =

[
3

5

]

3. Solve ATAc⃗ = ATx⃗ for c⃗:[
2 1

1 2

]
c⃗ =

[
3

5

]
=⇒

[
2 1

1 2

3

5

]
Row−−−→

reduce

[
1 0

0 1

1/3
7/3

]

∴ c⃗ =

[
1/3
7/3

]

4. Compute Ac⃗ = x⃗∥

x⃗∥ =

1 0

1 1

0 1

[1/3
7/3

]
=


1/3
8/3
7/3



∴ x⃗⊥ = x⃗− x⃗∥ =

12
3

−


1/3
8/3
7/3

 =


2/3

−2/3
2/3


□

Definition 5.2.2 (Transpose of a Matrix). Let A be an n×m matrix. The transpose of A is the

m× n matrix AT whose rows are the columns of A:

A =

 | |
v⃗1 · · · v⃗k

| |

 ; AT =


− v⃗1 −

...

= v⃗k −
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Equivalently, the ij-entry of A is the ji-entry of AT.

Equivalently, whose columns are rows of A.

Theorem 5.2.3.

ker(AT) = Im(A)⊥

Remark. In general, if rank(A) is less than the dimension of range, small perturbations of

any b⃗ ∈ Im(A) lie outside the image of A. In such cases, rather than try to find x⃗ s.t. Ax⃗ = b⃗,

try to find x⃗ x.t. Ax⃗ is as close as to b⃗ as possible.

Problem: Find x⃗ s.t. ∥Ax⃗− b⃗∥ is as small as possible (minimized).

• The solution agrees with solving Ax⃗ = b⃗ when there are solutions.

• This question always has solutions.

Solution.

1. Find b⃗∗ ∈ Im(A) which are as close as to b⃗ as possible.

Theorem 5.2.4. Let A be an n ×m matrix and b⃗ ∈ Rm. The closest vector to b⃗ in Im(A)

is b⃗∗ = ProjIm(A)(b⃗) = b⃗∥

2. Solve Ax⃗ = b⃗∗

□

Solution. (Advanced approach).

1. Approximate solutions to Ax⃗ = b⃗

⇐⇒ Solutions Ax⃗ = b⃗∥ where b⃗∥ ∈ Im(A)

−→ Ax⃗− b⃗ = b⃗⊥ equivalently Ax⃗− b⃗ is perpendicular to Im(A)

−→ AT(Ax⃗− b⃗) = 0

i.e., ATAx⃗ = AT b⃗

2. The approximate solutions to Ax⃗ = b⃗ are exactly the solutions to ATAx⃗ = ATb⃗.

□

Example 5.2.2. Let A =

1 1

1 2

1 1

 and b⃗ =

10
0

. Find all approximate solutions to Ax⃗ = b⃗.
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Solution. [
1 1 1

1 2 1

]1 1

1 2

1 1

 x⃗ =

[
1 1 1

1 2 1

]10
0


[
3 4

4 6

]
x⃗ =

[
1

1

]

Solve the equation, we have x⃗ =

 1

−1

2

 as the unique approximate solution to Ax⃗ = b⃗. □

5.3 Graph Fitting

Example 5.3.1. Consider the following data set:

x y

0 0

1 0

2 1

Find a quadratic polynomial f(x) = Ax2 + Bx + C (i.e., find A,B,C ∈ R) s.t. f(x) = y ∀x in

the data set.

Solution. Plug-in data points to f(x) = Ax2+Bx+C to obtain algebraic relations between

A, B, and C. 
0A+ 0B + C = f(0) = 0

1A+ 1B + C = f(1) = 0

4A+ 2B + C = f(2) = 1

We can form a system of linear equations:

0 0 1

1 1 1

4 2 1


AB
C

 =

00
1

 =⇒

 0 0 1

1 1 1

4 2 1

0

0

1

 Row−−−→
reduce

rref =


1 0 0

0 1 0

0 0 1

1

2

−1

2
0


∴ A =

1

2
, B = −1

2
, C = 0

∴ f(x) =
1

2
x2 − 1

2
x =

1

2
x(x− 1)

□
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5 APPROX. SOLUTION OF Ax⃗ = b⃗ 5.3 Graph Fitting

Theorem 5.3.1 (Fundamental Problem of Graph fitting). Given some data set (x1, y1), · · · , (xm, ym) ∈
R2 and functions f1, · · · , fn : R → R. Find a function f : R → R s.t.: 1. f(xi) = yi, and 2.

f = A1f1 + · · ·+ Anfn.

To solve this, plug-in data points and get a matrix equation as following:
f1(x1) · · · fn(x1)

...
. . .

...

f1(xm) · · · fn(xm)



A1

...

An

 =


y1
...

ym


Example 5.3.2. Consider the following data set:

x y

0 0

1 0

2 0

3 1

Find a quadratic polynomial f(x) = Ax2 + Bx + C (i.e., find A,B,C ∈ R) s.t. f(x) = y ∀x, y
in the data set.

Solution. Plug-in data points:

0A+ 0B + C = f(0) = 0

1A+ 1B + C = f(1) = 0

4A+ 2B + C = f(2) = 0

9A+ 3B + C = f(3) = 1

Form a matrix equation:
0 0 1

1 1 1

4 2 1

9 3 1


AB
C

 =


0

0

0

1

⇒


0 0 1

1 1 1

4 2 1

9 3 1

0

0

0

1

 Row−−−→
reduce


1 0 0

0 1 0

0 0 1

0 0 0

0

0

0

1


∴ There’s no solution. □

Example 5.3.3. Using the same data set from Example 5.3.2, find a quadratic polynomial s.t.

the distance between


0

0

0

1

 and


f(0)

f(1)

f(2)

f(3)

 is minimized.
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Solution. This problem is equivalent to the least squares problems (finding the best ap-

proximate solution to Ax⃗ = b⃗). Solve ATAx⃗ = ATb⃗.

A =


0 0 1

1 1 1

4 2 1

9 3 1

 ; AT =

0 1 4 9

0 1 2 3

1 1 1 1



ATA =

0 1 4 9

0 1 2 3

1 1 1 1



0 0 1

1 1 1

4 2 1

9 3 1

 =

98 36 14

36 24 6

14 6 4



Remark. ATA is symmetric across diagonal, meaning aij entry is equal to aji entry.

b⃗ =


0

0

0

1

 =⇒ ATb⃗ =

0 1 4 9

0 1 2 3

1 1 1 1



0

0

0

1

 =

93
1


Form a matrix equation:  98 36 14

36 24 6

14 6 4

9

3

1

 Row−−−→
reduce

 1 0 0

0 1 0

0 0 1

1
4

− 9
20
1
20


∴ f(x) =

1

4
x2 − 9

20
x+

1

20

∴


f(0)

f(1)

f(2)

f(3)

 =


0.05

−0.15
0.15

0.95


The distance between these vectors is minimized:

d =
√
(0− 0.05)2 + (0 + 0.15)2 + (0− 0.15)2 + (1− 0.95)2 ≈ 0.2236

That is, error≈ 0.2236. □

Theorem 5.3.2 (General Problem of Graph Fitting). Given a data set (x1, y1), · · · , (xm, ym) ∈
R2 and functions f1, · · · , fn : R → R. Find a function f : R → R s.t.: 1. f = A1f1 + · · · + Anfn,
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and 2.


f(x1)

...

f(xm)

 and


y1
...

ym

 are as close as possible.

To solve this problem, form a matrix equation and solve for its best approximate solutions:
f1(x1) · · · fn(x1)

...
. . .

...

f1(xm) · · · fn(xm)


︸ ︷︷ ︸

A


A1

...

An


︸ ︷︷ ︸

x⃗

=

 y1

vdots

ym


︸ ︷︷ ︸

b⃗

Solve for the normal equation

ATAx⃗ = ATb⃗

5.4 Orthogonal Linear Transformation

Definition 5.4.1 (Orthogonal Transformation). Let T : Rn → Rn be a linear transformation.

T is called an orthogonal transformation if

T(x⃗) ·T(y⃗) = x⃗ · y⃗ ∀x⃗, y⃗ ∈ Rn.

Equivalently, T is orthogonal iff T preserves lengths and angles.

Example 5.4.1. Rotations and reflections in R2 are orthogonal. Reflections through a sub-

space V ⊆ Rn is also orthogonal.

Definition 5.4.2. Let V ⊆ Rn be a subspace and ProjV : Rn → Rn and ProjV ⊥ : R→Rn be the

orthogonal projections into V and V ⊥, respectively. We define ??V : Rn → Rn by

??V (x⃗) = ProjV (x⃗)− ProjV ⊥(x⃗)

Theorem 5.4.1 (Property of ??V ). ??V is an orthogonal linear transformation.

Proof.

1. It’s linear because the projections are linear:

??V (x⃗+ y⃗) = ProjV (x⃗+ y⃗)− ProjV ⊥(x⃗+ y⃗)

= ProjV (x⃗) + ProjV (y⃗)− ProjV ⊥(x⃗)− ProjV ⊥(y⃗) = ??V (x⃗) + ??V (y⃗)

??V (cx⃗) = ProjV (cx⃗)− ProjV ⊥(cx⃗) = cProjV (x⃗)− cProjV ⊥(x⃗) = c??V (x⃗)
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2. It’s orthogonal←→ preserve lengths and angles

x⃗ · y⃗ = (x⃗∥ + x⃗⊥) · (y⃗∥) + y⃗⊥)

= x⃗∥ · y⃗∥ + x⃗⊥ · y⃗∥︸ ︷︷ ︸
0

+ x⃗∥ · y⃗⊥︸ ︷︷ ︸
0

+x⃗⊥ · y⃗⊥ = x⃗∥ · y⃗∥ + x⃗⊥ · y⃗⊥

??V (x⃗) · ??V (y⃗) = (x⃗∥)− x⃗⊥) · (y⃗∥ − y⃗⊥)

= x⃗∥ · y⃗∥ − x⃗∥ · y⃗⊥︸ ︷︷ ︸
0

− x⃗⊥ · y⃗∥︸ ︷︷ ︸
0

+x⃗⊥ · y⃗⊥ = x⃗∥ · y⃗∥ + x⃗⊥ · y⃗⊥

∴ ??V (x⃗) · ??V (y⃗) = x⃗ · y⃗.

■

Definition 5.4.3 (Orthogonal Matrices). Orthogonal Matrices are matrices encoding orthog-

onal linear transformations.

Theorem 5.4.2. If T : Rn → Rn is orthogonal, the matrix for T is

 | |
T(⃗e1) · · · T(⃗en)

| |

. The

lengths and angles of these vectors are the same as e⃗1, · · · , e⃗n if T is orthogonal.

Theorem 5.4.3.

e⃗i · e⃗j =

1, i = j

0, i ̸= j
.

Equivalently, e⃗i ⊥ e⃗j if i ̸= j and ∥e⃗i∥ =
√
e⃗i · e⃗i = 1.

Extension. Let v⃗1, · · · , v⃗k be vectors in Rn, we say v⃗1, · · · , v⃗k are orthogonal if v⃗i · v⃗j =1, i = j

0, i ̸= j
.

Theorem 5.4.4. A matrix A is orthogonal iff its columns are an orthogonal set of vectors.

Proof. Suppose A =

 | |
u⃗1 · · · u⃗n

| |

 , in which u⃗1, · · · , u⃗n are orthogonal.
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Let x⃗ =


x1

...

xn

 and y⃗ =


y1
...

yn

.

∴ A(x⃗) ·A(y⃗) = A(x1e⃗1 + · · ·+ xne⃗n) ·A(y1e⃗1 + · · ·+ yne⃗n)

= (x1u⃗1 + · · ·+ xnu⃗n) · (y1u⃗1 + · · ·+ ynu⃗n)

=
∑

1≤i,j≤n

(xiu⃗i) · (yju⃗j)

=
∑

1≤i,j≤n

xiyj(u⃗i · u⃗j)

=
∑

1≤i,j≤n

xiyj

u⃗i · u⃗j =

1, i = j

0, i ̸= j


= x⃗ · y⃗.

■

Example 5.4.2. Consider A =


2
3
−2

3
1
3

1
3

2
3

2
3

2
3

1
3
−2

3

. Is A orthogonal?

Solution.

v⃗1 · v⃗1 =

(
2

3

)2

+

(
1

3

)2

+

(
2

3

)2

= 1

v⃗1 ·v ecv2 =
(
2

3

)(
−2

3

)
+

(
1

3

)(
2

3

)
+

(
1

3

)(
2

3

)
= 0

v⃗1 ·v ecv3 =
(
2

3

)(
1

3

)
+

(
1

3

)(
2

3

)
+

(
2

3

)(
−2

3

)
= 0

v⃗2 · v⃗2 =

(
−2

3

)2

+

(
2

3

)2

+

(
1

3

)2

= 1

v⃗2 ·v ecv3 =
(
−2

3

)(
1

3

)
+

(
2

3

)(
2

3

)
+

(
1

3

)(
−2

3

)
= 0

v⃗3 · v⃗3 =

(
1

3

)2

+

(
2

3

)2

+

(
−2

3

)2

= 1

∴ A is orthogonal.

□
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Theorem 5.4.5. To compute lots of dot products, we can encode them as a matrix product:
− u⃗1 −

...

− u⃗n −


 | |
u⃗1 · · · u⃗n

| |

 =


u⃗1 · u⃗1 · · · u⃗n · u⃗1

...
. . .

...

u⃗1 · u⃗n · · · u⃗n · u⃗n



Extension. An n × n matrix A is orthogonal iff ATA = I. Consequently, all orthogonal

matrices are invertible, and A−1 = AT.

Theorem 5.4.6.

(AB)T = BT ·AT.

Example 5.4.3. Consider A =
[
1 1 1

]
and B =

12
3

 .

(AB)T =

[1 1 1
]12

3




T

=
[
6
]T

=
[
6
]
, BTAT =

[
1 2 3

]11
1

 =
[
6
]
.

∴ (AB)T = BTAT.

Proof. Suppose A =


− a⃗1 −

...

− a⃗n −

 and B =

 | |
b⃗1 · · · b⃗m

| |



AB =


− a⃗1 −

...

− a⃗n −


 | |
b⃗1 · · · b⃗m

| |

 =


b⃗1 · a⃗1 · · · b⃗m · a⃗1

...
. . .

...

b⃗1 · a⃗n · · · b⃗m · a⃗n



BTAT =


− b⃗1 −

...

− b⃗m −


 | |
a⃗1 · · · a⃗n

| |

 =


a⃗1 · b⃗1 · · · a⃗n · b⃗1

...
. . .

...

a⃗1 · b⃗m · · · a⃗n · b⃗m


∴ (AB)T = BT ·AT.

■

Theorem 5.4.7. Properties of orthogonal matrices:
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1. The inverse A−1 = AT of an orthogonal matrix A is orthogonal.

2. The product AB of orthogonal matrices is orthogonal.

Consequences:

• A is orthogonal⇐⇒ columns of A are an orthogonal basis.

• AT is orthogonal⇐⇒ rows of A are an orthogonal basis.

Proof. We know if A is orthogonal, then ATA = I.

1. To show AT is orthogonal, we need to show (AT)TAT = I.

(AT)T = A⇒ (AT)TAT = AAT = AA−1 = I.

2. To show AB is orthogonal, we need to show (AB)T(AB) = I

(AB)T = BTAT ⇒ (AB)T(AB) = BTAT(AB) = BT(ATA)B = BTIB = BTB = I.

■

5.5 Gram-Schmidt Process, QR Factorization

Remark (Orthogonal Coordinate System). In general, a vector cannot be represented by

summation of its projects, but when we have orthogonal ones, we can.

Theorem 5.5.1. Let V = Span(u⃗1, · · · , u⃗k) and x⃗ ∈ V, then there exists unique scalars c1, · · · , ck
such that x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k. The constants c1, · · · , ck equal:

ci = x⃗ · u⃗i.

Proof. Since x⃗ ∈ V, x⃗ = c1u⃗! + · · ·+ cku⃗k for some constants.

∴ u⃗i · x⃗ = u⃗i · (c1u⃗1 + · · ·+ cku⃗k)

= c1(u⃗i · u⃗1) + · · ·+ ck(u⃗i · u⃗k)

Since u⃗1, · · · , u⃗k are orthogonal,

u⃗i · u⃗j =

0, i ̸= j

1, i = j
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∴ u⃗i · x⃗ = ci(u⃗i · u⃗i) = ci.

■

Theorem 5.5.2. Let u1, · · · , u⃗k be orthogonal vectors and V = Span(u1, · · · , u⃗k.) The projec-

tion of x⃗ ∈ Rn to V is given by

ProjV (x⃗) = (u⃗1 · x⃗)u⃗1 + · · ·+ (u⃗k · x⃗)u⃗k

In particular, projections into a line spanned by u⃗ is given by

ProjL(x⃗) = (u⃗ · x⃗)u⃗.

Proof. Write x⃗ = x⃗∥ + x⃗⊥ such that x⃗∥ ∈ V and x⃗⊥ ∈ V ⊥, and x⃗∥ = c1u⃗1 + · · ·+ cku⃗k.

Note that u⃗i · x⃗ = u⃗i · x⃗∥ + u⃗i · x⃗⊥.

Since u⃗i ∈ V, x⃗⊥ ∈ V ⊥, and u⃗i · x⃗⊥ = 0,

u⃗i · x⃗ = u⃗i · x⃗∥

= u⃗i(c1u⃗1 + · · ·+ cku⃗k)

= c1(u⃗i · u⃗1) + · · ·+ ck(u⃗i · u⃗k)

= ci(u⃗i · u⃗i)

= ci.

■

The Gram-Schmidt Process:

1. Input: V ⊆ Rn is a subspace with basis v⃗1, · · · , v⃗k.

2. Output: u⃗1, · · · , u⃗k are orthogonal and span V.

3. Procedure:

(a) u⃗1 =
v⃗1

∥v⃗1∥
(b) v⃗⊥

k = v⃗k − v⃗
∥
k relative to Vk−1 = Span(v⃗1, · · · , v⃗k−1)

(c) u⃗⊥
k =

v⃗⊥
k

∥v⃗⊥
k ∥

(d) Compute the last v⃗⊥
i :

v⃗⊥
i = v⃗i − v⃗

∥
i

= v⃗i − (u⃗1 · v⃗i)u⃗1 − · · · − (u⃗i−1 · v⃗i)u⃗i−1

= v⃗i −
i−1∑
j=1

(u⃗j · v⃗i)u⃗j

56



5 APPROX. SOLUTION OF Ax⃗ = b⃗ 5.5 Gram-Schmidt Process, QR Factorization

Example 5.5.1. Consider V = Span



1

1

1

1

 ,


1

0

0

1

 ,


0

2

1

−1


. Apply the Gram-Schmidt process to

these vectors to find a set of vectors that are orthogonal and span V .

Solution.

1. u⃗1 =
v⃗1

∥v⃗1∥

Since ∥v⃗1∥ =
√
12 + 12 + 12 + 12 = 2, u⃗1 =


1/2
1/2
1/2
1/2


2. Find v⃗⊥

2 and u⃗2

v⃗⊥
2 = v⃗2 − v⃗

∥
2

= v⃗2 − (u⃗1 · v⃗2)u⃗1

u⃗1 · v⃗2
1

2
+

1

2
= 1

∴ v⃗⊥
2 =


1

0

0

1

−


1/2
1/2
1/2
1/2

 =


1/2

−1/2

−1/2
1/2



u⃗2 =
v⃗⊥
2

∥v⃗⊥
2 ∥

=


1/2

−1/2

−1/2
1/2
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3. Find v⃗⊥
3 and u⃗⊥

3

v⃗⊥
3 = v⃗3 − v⃗

∥
3

= v⃗3 − (u⃗1 · v⃗3)u⃗1 − (u⃗2 · v⃗3)u⃗2

[
u⃗1 · v⃗3

u⃗2 · v⃗3

]
=


1

2

1

2

1

2

1

2

1

2
−1

2
−1

2

1

2




0

2

1

−1

 =

[
1

−2

]

∴ v⃗⊥
3 =


0

2

1

−1

− 1 ·


1/2
1/2
1/2
1/2

− (−2) ·


1/2

−1/2

−1/2
1/2



=


0

2

1

−1

−


1/2
1/2
1/2
1/2

−

−1
1

1

−1

 =


1/2
1/2

−1/2

−1/2



∴ u⃗3 =
v⃗⊥
3

∥v⃗⊥
3 ∥

=


1/2
1/2

−1/2

−1/2



Therefore,


1/2
1/2
1/2
1/2

 ,


1/2

−1/2

−1/2
1/2

 ,


1/2
1/2

−1/2

−1/2

 are orthogonal and span V . □

Theorem 5.5.3 (QR-Decomposition). Let A =

 | |
v⃗1 · · · v⃗k

| |

 be a matrix and assume A has

linearly independent columns. Then,

A = QR,

where

Q =

 | |
u⃗1 · · · u⃗k

| |
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has orthogonal columns and

R =


u⃗1 · v⃗1 u⃗1 · v⃗2 · · · u⃗1 · v⃗k

0 0
...

...
. . . . . .

...

0 · · · 0 u⃗k · v⃗k


is upper triangular. In particular, if A is a square, invertible matrix, A = QR, where Q is

orthogonal and R is upper triangular.

Proof. Run G.S. process in V = Im(A) with basis v⃗1, · · · , v⃗k, and we get u⃗1, · · · , u⃗k that are

orthogonal and span V .

v⃗i =
i∑

j=1

(v⃗i · u⃗j)u⃗j.

∴

 | |
u⃗1 · · · u⃗k

| |



u⃗1 · v⃗1 u⃗1 · v⃗2 · · · u⃗1 · v⃗k

0 u⃗2 · v⃗2 · · ·
...

...
...

. . .
...

0 0 · · · u⃗k · v⃗k

 =

 | |
v⃗1 · · · v⃗k

| |

.
■

Find G.S. Process and QR factorization via row reduction.

1. General Idea:

Input: A matrix A with linearly independent columns

Output: a factorization A = QR, where Q has orthogonal columns and R is upper

triangular.

2. General Procedure:

(a) Compute ATA and form the augmented matrix
[
ATA

... AT

]
.

(b) Row reduce the left hand side until an upper triangular only by subtracting mul-

tiples of rows from rows below them. At the conclusion of this step, left hand

side is upper triangular.

(c) Divide each row by the square root of the leading diagonal entry.

(d) The final output is
[
R

... QT

]
.
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5 APPROX. SOLUTION OF Ax⃗ = b⃗ 5.5 Gram-Schmidt Process, QR Factorization

Example 5.5.2. Find the QR factorization of A =

1 1 1

0 1 2

1 0 3

.
Solution.

1. Compute ATA.

ATA =

1 0 1

1 1 0

1 2 3


1 1 1

0 1 2

1 1 3

 =

2 1 4

1 2 3

4 3 14

.
2. Row reduce

[
ATA

... AT

]
.

 2 1 4

1 2 3

4 3 14

1 0 1

1 1 0

1 2 3

 Row−−−−−→
Reduction


√
2 1/

√
2 4/

√
2

0
√
3/2

√
2/3

0 0 2/
√
3

1/
√
2 0 1/

√
2

1/2
√

2/3
√

2/3 −1/2
√
2/3

−1/2
√
3/3 1/2

√
3/3 1/2

√
3/3


3. So,

R =


√
2 1/

√
2 4/

√
2

0
√
3/2

√
2/3

0 0 2/
√
3



Q =

 1/
√
2 0 1/

√
2

1/2
√

2/3
√
2/3 −1/2

√
2/3

−1/2
√
3/3 1/2

√
3/3 1/2

√
3/3


□
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6 DETERMINANT

6 Determinant

6.1 The Definition of the Determinant

Remark. Dot products encode lengths and angles of vectors. Determinant encodes vol-

ume and orientations of subspaces.

Definition 6.1.1 (Determinant). Let A =

[
a b

c d

]
be a 2 × 2 matrix, the determinant of A is

the quantity

det(A) = ad− bc.

Theorem 6.1.1. The image of the unit square under A is |det(A)|.

Theorem 6.1.2. A matrix A is invertible ⇐⇒ det(A) ̸= 0.

Proof. A is invertible =⇒ rank(A) = 2, i.e., v⃗1 and v⃗2 (columns of A) are not co-linear.

=⇒ The area of the parallelogram spanned by v⃗1 and v⃗2 does not have an area of 0. ■

Theorem 6.1.3. Let A =

[
a b

c d

]
be a 2× 2 matrix. The sign of the determinant of A satisfies

sign(det(A)) =



0 if v⃗1 and v⃗2 are colinear

+ if v⃗⊥
2 is a positive multiple of v⃗rot

1 =

−c
a



− if v⃗⊥
2 is a negative multiple of v⃗rot

1 =

−c
a


.

Proof. Consider the projection of v⃗2 into the line spanned by v⃗rot
1 =

[
−c
a

]
.

v⃗⊥
2 =

v⃗rot
1 · v⃗2

v⃗rot
1 · v⃗rot

1

· v⃗rot
1 =

[
−c
a

]
·

[
b

d

]
[
−c
a

]
·

[
−c
a

] · [−c
a

]

=
det(A)

a2 + c2
· v⃗rot

1

∴ det(A) > 0 =⇒ v⃗⊥
2 > 0
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6 DETERMINANT 6.1 The Definition of the Determinant

det(A) < 0 =⇒ v⃗⊥
2 < 0.

■

Remark. The sign of the determinant describes the orientation of v⃗1 and v⃗2.

Definition 6.1.2 (Parallelogram). A parallelogram is defined by the set {c1v⃗1 + c2v⃗2 | 0 ≤ c2 ≤ 1}

v⃗1

v⃗2

c1v⃗1

c2v⃗2

Extension (K-Parallelepiped). Let v⃗1, · · · , v⃗k ∈ Rn.The k-parallelepiped spanned by v⃗1, · · · , v⃗k

is the set

{c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k | ci ∈ [0, 1]}.

Extension (Unit Cube/n-parallelepiped). The unit cube isRn is the n-parallelepiped spanned

by e⃗1, · · · v⃗n

{c1e⃗1 + · · ·+ cne⃗n | ci ∈ [0, 1]}.

Theorem 6.1.4. LetAbe a linear transformation, thenAmaps parallelepipeds to parallelepipeds.

The image of the unit cube under A is the parallelepipeds spanned by the columns of A.

Theorem 6.1.5 (Volume). The volume of a k-parallelepiped spanned by v⃗1, · · · .v⃗k is

vol(v⃗1, · · · , v⃗k) = vol(v⃗1, · · · , v⃗k−1)∥v⃗⊥
k ∥,

where the v⃗⊥
k is the perpendicular part of v⃗k in the decomposition v⃗k = v⃗

∥
k + v⃗⊥

k , where v⃗
∥
k ∈

Span(v⃗1, · · · , v⃗k−1), and v⃗⊥
k is perpendicular.

Theorem 6.1.6. The volume of the k-parallelepiped spanned by v⃗1, · · · , v⃗k equals

vol(v⃗1, · · · , v⃗k) = ∥v⃗1∥ · ∥v⃗⊥
2 ∥ · ∥v⃗⊥

3 ∥ · · · ∥v⃗⊥
k ∥,

where v⃗⊥
i is the perpendicular part of v⃗i with respect to V = Span(v⃗1, · · · , v⃗i−1).

Example 6.1.1. Let v⃗1 =

70
0

, v⃗2 =

11
1

, v⃗3 =

21
1

. Find the volume of the k-parallelepiped

spanned by v⃗1, v⃗2, v⃗3.

Solution.

vol(v⃗1, v⃗2, v⃗3) = ∥v⃗1∥ · ∥v⃗⊥
2 ∥ · ∥v⃗⊥

3 ∥
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6 DETERMINANT 6.1 The Definition of the Determinant

1. Since ∥v⃗1∥ = 7,

u⃗1 =
v⃗1

∥v⃗1∥
=

1

7

70
0

 = e⃗1

2.
v⃗⊥
2 = v⃗2 − v⃗

∥
2

= v⃗2 − (v⃗2 · u⃗1)u⃗1

= v⃗2 − (⃗e1 · v⃗2)⃗e1

=

11
1

−
10
0

 =

01
1


∥v⃗⊥

2 ∥ =
√
2

u⃗2 =
1√
2

01
1


3.

v⃗⊥
3 = v⃗3 − v⃗

∥
3

= v⃗3 − (v⃗3 · e⃗1)⃗e1 − (v⃗3 · u⃗2)u⃗2

=

21
1

−
20
0

−
01
1

 =

00
0


∥v⃗⊥

3 ∥ = 0 −→ v⃗3 ∈ Span(v⃗1, v⃗2)

∴ vol(v⃗1, v⃗2, v⃗3) = 0

□

Theorem 6.1.7. Let A be an n × n matrix, then A is invertible ⇐⇒ the volume of the paral-

lelepiped spanned by the columns of A is not 0.

Proof.
A is invertible ⇐⇒ rank(A) = n

⇒ v⃗i /∈ Span(v⃗1, · · · v⃗i−1)

⇒ ∥v⃗⊥
i ∥ ≠ 0

⇒ vol(v⃗1, · · · , v⃗k) ̸= 0,

v⃗1, · · · , v⃗k are columns of A. ■
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6 DETERMINANT 6.2 Computing the Determinant

Definition 6.1.3 (Formal Definition of Determinant). There is a unique function from the

set of n× n matrices to real numbers called the determinant and denoted as

det : {n× n matrices} → R

satisfying the following conditions:

1. |det(A)| =volume of the parallelepiped spanned by the columns of A.

2. (a) det(I) = 1.

Example 6.1.2. det

([
1 0

0 1

])
= 1− 0 = 1.

(b) The determinant is a linear function in each column of A:

det


 | | |
v⃗1 · · · v⃗n−1 v⃗n + kv⃗′

n

| | |


 = det


 | |
v⃗1 · · · v⃗n

| |


+k det


 | |
v⃗1 · · · v⃗′

n

| |




Example 6.1.3.

det

([
7 c

3 d

])
= 7d− 3c is a linear function.

6.2 Computing the Determinant

Theorem 6.2.1 (Computing the Determinant via Row Reduction). Elementary row operations

change the determinant in prescribed ways.

1. Switch rows of a matrix, the determinant changes the sign.

Proof. Wants to show: det


 | |
· · · v⃗i · · · v⃗j · · ·

| |


 = − det


 | |
· · · v⃗j · · · v⃗i · · ·

| |


.
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6 DETERMINANT 6.2 Computing the Determinant

Consider: det


 | |
· · · v⃗i + v⃗j · · · v⃗i + v⃗j · · ·

| |


 = 0because it has repeated columns:

det


 | |
· · · v⃗i + v⃗j · · · v⃗i + v⃗j · · ·

| |




= det


 | |
· · · v⃗i · · · v⃗i + v⃗j · · ·

| |


+ det


 | |
· · · v⃗j · · · v⃗i + v⃗j · · ·

| |




= det


 | |
· · · v⃗i · · · v⃗i · · ·

| |




︸ ︷︷ ︸
0

+det


 | |
· · · v⃗i · · · v⃗j · · ·

| |




+ det


 | |
· · · v⃗j · · · v⃗i · · ·

| |


+

0︷ ︸︸ ︷
det


 | |
· · · v⃗j · · · v⃗j · · ·

| |


 = 0

∴ det


 | |
· · · v⃗i · · · v⃗j · · ·

| |


+ det


 | |
· · · v⃗j · · · v⃗i · · ·

| |


 = 0

∴ det


 | |
· · · v⃗i · · · v⃗j · · ·

| |


 = − det


 | |
· · · v⃗j · · · v⃗i · · ·

| |


.

■

2. Adding a multiple of jth row to ith row with i ̸= j, the determinant stays constant.

Proof.

det


 |
· · · v⃗i + kv⃗j · · ·

|


 = det


 |
· · · v⃗i · · ·

|


+ k · det


 |
· · · v⃗j · · ·

|




Note that det


 |
· · · v⃗j · · ·

|


 = 0 because it has v⃗j at both the ith and jth column, and
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6 DETERMINANT 6.2 Computing the Determinant

thus the columns are not linearly independent.

∴ det


 |
· · · v⃗i + kv⃗j · · ·

|


 = det


 |
· · · v⃗i · · ·

|




■

3. Scale a row by k ̸= 0, the determinant scales by k.

Proof. Note that determinant is a linear function in each column of A. ■

Example 6.2.1. Compute the determinant of A =

2 1 1

1 2 1

1 1 2


Solution. Row reduce A, keeping track of how the determinant changes.

Note that det(I) = 1. 2 1 1

1 2 1

1 1 2

 Row−−−−−→
Reduction

1 0 0

0 1 0

0 0 1


In this process of row reduction, we know

D

4
= det(I) = 1, so D = 4. □

Theorem 6.2.2. Let A =


a11 ∗ · · · ∗

0 a22
...

...
. . .

...

0 · · · · · · ann

 be an upper triangular matrix. The determi-

nant of A is a11, a22, · · · , ann, the product of the diagonal entries.

Proof. Case 1 All aii ̸= 0.

Row reduce A to compute det(A) by dividing each row by aii to get the identity matrix I.

So,
1

a11 · · · ann
D = det(I) = 1, amd we get D = a11 · · · ann

Case 2 Some aii = 0.⇒ Show det(A) = a11 · · · ann = 0⇒ Show A is not invertible.

Look at the first aii = 0, we know the ith column in row reduction does not contain a pivot.

⇒ A is not invertible. ■

Computing the Determinant

1. Input: n× n matrix A

2. Output: det(A)
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6 DETERMINANT 6.2 Computing the Determinant

3. Procedure: Row reduce A, keeping track of the elementary row operations until an

upper triangular matrix is obtained.

Let a11, · · · , ann be the diagonal entires of this matrix, k1, · · · , km be the constants multi-

plied by in row reduction, and s be the number of switches:

(−1)s(k1 · · · km) det(A) = a11 · · · ann

det(A) =
a11 · · · ann
(k1 · · · km)

(−1)s

Theorem 6.2.3.

det(A) = det
(
AT
)

Theorem 6.2.4 (Computing Determinant via the Laplace Expansion). To find the formula for

an n× n matrix determinant in terms of an (n− 1)× (n− 1) determinants:
1 * · · · *

0
... An−1

0

 = det(An−1)

Proof. To row reduce the n× n matrix, we row reduce the (n− 1)× (n− 1) matrix.

⇒ det(An−1) = det(An). ■

Example 6.2.2.

det


2 1 1

1 2 1

1 1 2


 = 2

∣∣∣∣∣∣∣
1 1 1

0 2 1

0 1 2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
0 1 1

1 2 1

0 1 2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
0 1 1

0 2 1

1 1 2

∣∣∣∣∣∣∣
= 2

∣∣∣∣∣2 1

1 2

∣∣∣∣∣−
∣∣∣∣∣1 1

1 2

∣∣∣∣∣+ (−1)2
∣∣∣∣∣1 1

2 1

∣∣∣∣∣
= 6− 1− 1 = 4.

Remark. Note that the vertical bars denote determinant.

Definition 6.2.1 (ij-Cofactor). Let A be an n×n matrix. The ij−cofactor of A is the (n−1)×
(n− 1) obtained by deleting the ith row and jth column. We denote this matrix as Aij.
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6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

Theorem 6.2.5 (Laplace Formula). Consider the ith column of a matrixA (wasp ith row), then,

det(A) =
n∑

j=1

(−1)i+j · aij · det(Aji)

6.3 The Multiplicativity of the Determinant and Other Properties

Theorem 6.3.1 (Multiplicativity of the Determinant). Let A and B be n× n matrices,

det(AB) = det(A)× det(B).

Corollary 6.1.

det
(
Ak
)
= det(A)k

Corollary 6.2. If A is invertible,

det
(
A−1

)
= det(A)−1.

Proof. Note that AA−1 = I.

∴ det
(
A ·A−1

)
= det(I) = 1

= det(A)× det
(
A−1

)
∴ det

(
A−1

)
= det(A)−1

■

Corollary 6.3. If A is invertible, det(A) ≠= 0.

Theorem 6.3.2. If Q is an orthogonal transformation, then, det(Q) = ±1, or |det(Q)| = 1.

Proof. |det(Q)| is the volume of the unit cube under Q.

The unit cube has a shape of volume 1, which means it reserves volumes.

Also that since Q is orthogonal, meaning this transformation preserves lengths and angles.

Wants to show that preserving lengths and angles means preserving volumes.

vol(v⃗1, · · · , v⃗n) = ∥v⃗1∥∥v⃗⊥
2 ∥∥v⃗⊥

3 ∥ · · · ∥v⃗⊥
n ∥, v⃗⊥

i ∈ Span(v⃗1, · · · , v⃗i−1)

Since Q =

 | |
u⃗1 · · · u⃗n

| |

,
|det(Q)| = vol(u⃗1, · · · , u⃗n) = ∥u⃗1∥∥u⃗⊥

2 ∥ · · · ∥u⃗⊥
n ∥
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6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

Since Q is orthogonal, u⃗1, · · · , u⃗n are perpendicular to each other and have lengths of 1,

|det(Q)| = ∥u⃗1∥∥u⃗2∥ · · · ∥u⃗n∥ = 1× · · · × 1 = 1.

■

Lemma 6.1. When A is invertible, det(A) = det
(
AT
)

Proof. Use QR decomposition, we know that

AT = (QR)T = RTQT

det(A) = det(Q) · det(R)

det
(
AT
)
= det

(
RT
)
· det

(
QT
)

= det
(
QT
)
· det

(
RT
)
.

Wants to show: det(Q) = det
(
QT
)

and det(R) = det
(
RT
)
.

1. Since Q is orthogonal, det(Q) = ±1.

Also note that since Q is orthogonal, QT = Q−1.

det
(
QT
)
= det

(
Q−1

)
= det(Q)−1 = det(Q).

2. Note that R is an upper triangular matrix, and thus its determinant is the product of the

entries on diagonal: det(R) = a11 · a22 · · · ann.

Also note that the transpose of R,RT is a lower triangular matrix, and thus we know that

det
(
RT
)
= a11 · a22 · · · ann.

∴ det(R) = det
(
RT
)
.

det(A) = det(Q) · det(R)

= det
(
QT
)
· det

(
RT
)
= det

(
AT
)
.

■

Lemma 6.2. If A is not invertible, then AT is also not invertible.

Proof. A is invertible exactly when rref(A) = I,

That is, rank(A) = n =⇒ rank(AT) = n and thus, AT is also invertible,

If A is not invertible, rank(A) < n.

Thus, rank(AT) = rank(A) < n, indicating AT is also not invertible. ■

Lemma 6.3. For an n× n matrix A, rank(A) = rank(AT).
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6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

Proof.
dim(Im(A)⊥) = n− rank(A)

∴ nullity(AT) = dim(ker(AT)) = n− rank(A)

∵ rank(AT) + nullity(AT) = n

∴ rank(AT) + n− rank(A) = n

rank(AT) = rank(A)

■

Proposition 6.1. When A is not invertible, then det(A) = det
(
AT
)
.

Theorem 6.3.3.

det(A) = det
(
AT
)

Theorem 6.3.4 (Cramer’s Rule). Let A be an invertible n × n matrix and b⃗ ∈ Rn. The unique

solution to the system Ax⃗ = b⃗ is the following vector

x⃗ =
1

det(A)


det
(
A1,b⃗

)
...

det
(
An,b⃗

)
,

where Ai,b⃗ is the n× n matrix obtained from A by replacing the ith column with b⃗.

Proof. Since  | |
v⃗1 · · · v⃗n

| |



x1

...

xn

 = x1v⃗1 + · · ·+ xnv⃗n = b⃗,

so we have

det
(
A1,b⃗

)
=

∣∣∣∣∣∣∣
| | |
b⃗ v⃗2 · · · v⃗n

| | |

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

| | |
x1v⃗1 + · · ·+ xnv⃗n v⃗2 · · · v⃗n

| | |

∣∣∣∣∣∣∣.
By the linearity of determinant, then

det
(
A1,b⃗

)
= x1

∣∣∣∣∣∣∣
| | |
v⃗1 v⃗2 · · · v⃗n

| | |

∣∣∣∣∣∣∣+ x2

∣∣∣∣∣∣∣
| | |
v⃗2 v⃗2 · · · v⃗n

| | |

∣∣∣∣∣∣∣+ · · ·+ xn

∣∣∣∣∣∣∣
| | |
v⃗n v⃗2 · · · v⃗n

| | |

∣∣∣∣∣∣∣
= x1

∣∣∣∣∣∣∣
| | |
v⃗1 v⃗2 · · · v⃗n

| | |

∣∣∣∣∣∣∣ = x1 det(A).
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6 DETERMINANT 6.3 The Multiplicativity of the Determinant and Other Properties

∴ x1 =
det
(
A1,b⃗

)
det(A)

.

Similarly, we can extend this proof to an arbitrary xi,

det
(
Ai,b⃗

)
= xi det(A)

xi =
det
(
Ai,b⃗

)
det(A)

■

Example 6.3.1. Suppose A =

[
1 2

3 4

]
, then det(A) = −2. Let b⃗ =

[
1

1

]
.

Therefore, A1,b⃗ =

[
1 2

1 4

]
, and det

(
A1,b⃗

)
= 2.A2,b⃗ =

[
1 1

3 1

]
, so det

(
A2,b⃗

)
= −2.

Then,

x⃗ =
1

−2

[
2

−2

]
=

[
−1
1

]
.

Remark. For an arbitrary 2 × 2 matrix A =

[
a b

c d

]
, a, b, c, d ∈ R. Suppose b⃗ =

[
1

0

]
, then

applying Cramer’s Rule, we know

x⃗ =
1

ad− bc

[
d

−c

]
.

Theorem 6.3.5 (Application of Cramer’s Rule). Cramer’s Rule can give formulas for A−1 in

general: We saw Ax⃗1 = e⃗1 and Ax⃗2 = e⃗2, then

A−1 =

 | |
x⃗1 x⃗2

| |

.

To be more specific, for a 2× 2 matrix A =

[
a b

c d

]
, we have

A−1 =
1

det(A)

[
d −b
−c a

]
.

Theorem 6.3.6. Give a matrix A with integer entries and det(A) = ±1, the matrix A−1 has

integer entries.
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7 EIGENVALUES AND EIGENVECTORS

7 Eigenvalues and Eigenvectors

7.1 Computing Akx⃗

Definition 7.1.1 (Eigenvector and Eigenvalue). Let A be an n×n matrix, and eigenvector for

A is any non-zero vector x⃗, such that Ax⃗ = λx⃗, for some λ ∈ R. The number λ is called the

eigenvalue for x⃗. For an eigenvector x⃗,Akx⃗ = λkx⃗.

Definition 7.1.2 (Eigenbasis). Let A be an nt× n matrix, an eigenbasis for A is a basis for Rn

consisting of eigenvectors for A.

Theorem 7.1.1. Let A be an n × n matrix with an eigenbasis of v⃗1, · · · v⃗n. The eigenvalues for

v⃗1, · · · , v⃗n are λ1, · · · , λn, respectively. To compute Akx⃗, we could write x⃗ = c1v⃗1 + · · · + cnv⃗n,

and then use linearity, we have

Akx⃗ = A(c1v⃗1 + · · ·+ cnv⃗n)

= c1A
kv⃗1 + · · ·+ cnA

kv⃗n

= c1λ
k
1v⃗1 + · · ·+ cnλ

k
nv⃗n.

Theorem 7.1.2. Consider fA : R→ R defined by

fA(t) = det(A− tI).

The zeros of fA(t) are exactly the eigenvalues of A. That is, fA(λ) = 0.

Definition 7.1.3 (Characteristic Polynomial). The characteristic polynomial ofA is the func-

tion

fA(t) = det(A− tI).

Definition 7.1.4 (Modified Definition of Eigenvectors). Let A be an n × n matrix, and λ be

an eigenvalue for A, i.e., a root of the characteristic polynomial of A defined by fA(t) =

det(A− tI). An eigenvector with eigenvalue λ for A is any non-zero solution to Ax⃗ = λx⃗.

i.e., non solution to

(A− λI)x⃗ = 0.

Theorem 7.1.3. The non-zero elements for ker(A−λI) are exactly the eigenvectors with eigen-

value λ.

Definition 7.1.5 (λ-Eigenspace). Let λ be an eigenvalue for A, the λ-eigenspace is

EA,λ = ker(A− λI).
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Example 7.1.1. Compute all eigenvectors for A =

[
2 2

1 3

]
.

Solution.

fA = (t− 4)(t− 1) =⇒ λ = 1 and 4.

EA,4 = ker(A− 4I) = ker

([
−2 2

1 −1

])
= ker

([
1 −1
0 0

])
= Span

([
1

1

])

EA,1 = ker(A− I) = ker

([
1 2

1 2

])
= ker

([
1 2

0 0

])
= Span

([
−2
1

])
□

Computing Akx⃗:

1. Compute fA(t) = det(A− tI)

2. Find the roots of fA(t); those are eigenvalues.

3. Compute eigenspaces

4. Ask: Is there an eigenbasis?

5. Write x⃗ in form of c1v⃗1 + · · ·+ cnv⃗n

6. Find the formula

Example 7.1.2. Let A =

[
0 6

1 −1

]
. Find a formula for Ak

[
1

1

]
for all k.

Solution. Find eigenvectors v⃗1 and v⃗2 for A and express

[
1

1

]
= c1v⃗1 + c2v⃗2. Then,

Ak

[
1

1

]
= c1A

kv⃗1 + c2A
kv⃗2 = c1λ

k
1v⃗1 + c2λ

k
2v⃗2.

1. Compute fA(t):

fA(t) = det(A− tI) =

∣∣∣∣∣−t 6

1 −1− t

∣∣∣∣∣ = t(1 + t)− 6 = t2 = t− 6.

2. Find roots to the polynomial:

fA(t) = (t+ 3)(t− 2) = 0 =⇒ λ1 = t1 = 2 λ2 = t2 = −3.
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7 EIGENVALUES AND EIGENVECTORS 7.1 Computing Akx⃗

3. Compute eigenspaces:

EA,2 = ker (A− 2I) = ker

([
−2 6

1 −3

])
= ker

([
1 −3
0 0

])
= Span

([
3

1

])
;

EA,−3 = ker (A+ 3I) = ker

([
3 6

1 2

])
= ker

([
1 2

0 0

])
= Span

([
−2
1

])
.

4. Ask: IS there an eigenbasis for A?

YES!

v⃗1 =

[
3

1

]
; v⃗2 =

[
−2
1

]
; λ1 = 2; λ2 = −3.

5. Solve

[
3 −2
1 1

][
c1

c2

]
=

[
1

1

]
:

S =

[
3 −2
1 1

]
=⇒ S−1 =

1

5

[
1 2

−1 3

]

∴

[
c1

c2

]
=

1

5

[
1 2

−1 3

][
1

1

]
=

1

5

[
3

2

]
=⇒

[
1

1

]
=

3

5

[
3

1

]
+

2

5

[
−2
1

]

6. Find the formula:

Ak

[
1

1

]
=

3

5
(2)k

[
3

1

]
+

2

5
(−3)k

[
−2
1

]
.

□

Remark. The matrix A =

[
0 −1
1 0

]
has no eigenvectors.

Proof. Algebraic

fA(t) =

∣∣∣∣∣−t −11 −t

∣∣∣∣∣ = t2 + 1 > 0∀t ∈ R.

So, fA(t) has no zeros =⇒ no eigenvalues =⇒ no eigenvectors.

Geometric A encodes rotation counterclockwise by 90◦.

The condition Ax⃗ = λx⃗ implies that Ax⃗ and x⃗ have to be on the same line.

Yet, rotation by 90◦ preserves no lines. ■
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7 EIGENVALUES AND EIGENVECTORS 7.2 Diagonalization

7.2 Diagonalization

Definition 7.2.1 (Diagonal Matrix). Let D =


a11 · · · a1n

...
. . .

...

an1 · · · ann

, we say D is a diagonal matrix

if aij = 0 for all i ̸= j.

Theorem 7.2.1. D is diagonal if and only if De⃗i = λie⃗i, λi ∈ R. i.e., e1, · · · , en are eigenvec-

tors for D. That is, eigenvalues are the diagonal entries:


λ1 · · · 0
...

. . .
...

0 · · · λn

.
Theorem 7.2.2. Properties of Diagonal Matrices

• Computing Dk

Dk =

 | | |
Dke⃗1 Dke⃗2 · · · Dke⃗n

| | |

 =

 | | |
λk
1e⃗

1 λk
2e⃗

2 · · · λk
ne⃗

n

| | |



=


λk
1 0 · · · 0

0 λk
2

...
...

. . . 0

0 · · · 0 λk
n


• Computing D−1

D−1 =


λ−1
1 0 · · · 0

0 λ−1
2

...
...

. . . 0

0 · · · 0 λ−1
n


• Rank of D

rank(D) = number of non-zero diagonal entries.

• Nullity of D

nullity(D) = number of zeros along the diagonal.

• Determinant of D

det(D) = λ1λ2 · · ·λn
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7 EIGENVALUES AND EIGENVECTORS 7.2 Diagonalization

Definition 7.2.2 (Diagonalizable). Let A be an n × n matrix. A is said to be diagonalizable

if there is an eigenbasis for A. i.e., there is a basis v⃗1, · · · , v⃗n of Rn such that v⃗1, · · · , v⃗n are

eigenvectors of A.

Theorem 7.2.3. A is diagonalizable if and only if

A = SDS−1,

where D is diagonal with diagonal entries the eigenvalues of A (λ1 · · ·λn), and S is invertible

with column vectors the eigenvectors of A (v⃗1, · · · , v⃗n). Diagonalizing a matrix means to find

an invertible matrix S and a diagonal matrix D such that A = SDS−1.

Example 7.2.1. Let A =

1 1 1

1 1 1

1 1 1

. Diagonalize A.

Solution. By definition, we know

fA(t) = det


1− t 1 1

1 1− t 1

1 1 1− t


 = 3t2 − t3 =⇒ t1 = t2 = 0, t3 = 3.

Therefore, we know

EA,0 = ker(A) = ker


1 1 1

1 1 1

1 1 1


 = Span


 1

−1
0

,
 1

0

−1


;

EA,3 = ker(A− 3I) = ker


−2 1 1

1 −2 1

1 1 −2


 = Span


11
1




Note that since v⃗1 =

 1

−1
0

, v⃗2 =

 1

0

−1

, v⃗3 =

11
1

 span R3, they are eigenbasis of A.

∴ A = SDS−1 =

 1 1 1

−1 0 1

0 −1 1


0 0 0

0 0 0

0 0 3


 1 1 1

−1 0 1

0 −1 1


−1

=

 1 1 1

−1 0 1

0 −1 1


0 0 0

0 0 0

0 0 3


1/3 −2/3 1/3

1/3 1/3 −2/3
1/3 1/3 1/3


−1

.
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7 EIGENVALUES AND EIGENVECTORS 7.3 Procedure of Finding an Eigenbasis

□

Corollary 7.1. Linear Algebra Becomes Easy for Diagonalized Matrices

1. Ak = SDkS−1

Proof.

Ak = SDS−1SDS−1 · · ·SDS−1︸ ︷︷ ︸
k times

= SDkS−1

■

2. A−1 = SD−1S−1

Proof. Since

A(SD−1S−1) = SDS−1SD−1S−1 = SDD−1S−1 = SS−1 = I,

so we know that A−1 = SD−1S−1. ■

3. det(A) = det(D) = λ1 · · ·λn

Proof.

det(A) = det
(
SDS−1

)
= det(S) det(D) det

(
S−1
)
= det(S) det(D) det(S)−1 = det(D).

■

4. fA(t) = det(A− tI) = det(D− tI) = fD(t) =
n∏

i=1

(λi − t)

Proof. Let’s fix t ∈ R. then

S(D− tI)S−1 = SDS−1 − tSIS−1 = A− tI.

■

5. rank(A) = rank(D) = number of non-zero λi.

6. nullity(A) = nullity(D) = number of zero λi.

7. If fA(t) is not a polynomial with all real roots, then A is not diagonalizable.

7.3 Procedure of Finding an Eigenbasis

Definition 7.3.1 (Revisit Definition of Characteristic Polynomials). For an n × n matrix A,

its characteristic polynomial is a function fA : R→ R defined by fA(t) = det(A− tI).
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Theorem 7.3.1. fA(λ) = 0 if and only if λ is an eigenvalue of A.

Theorem 7.3.2. fA(t) is a polynomial. i.e., fA(t) = adt
d + ad− 1td−1 + · · · + a0, where ad ̸= 0

and ai ∈ R. We say d is the degree of fA(t).

Remark. Determinant can be calculated without division: Laplace Expansion

Proof. Note that A− tI is an n× n matrix with polynomial entries.

By Laplace expansion, det(A− tI) is the sums and products of those polynomial entries,

and thus it is a polynomial. ■

Proposition 7.1. If k ∈ R and B is an n× n matrix, then

det(kB) = kn det(B).

Proof.

det



− kr⃗1 −

...

− kr⃗n −


 = kn · det



− r⃗1 −

...

− r⃗n −




■

Theorem 7.3.3. If A is an n× n matrix, then the degree of fA is n.

Proof. Since fA(t) is a polynomial, fA(t) = adt
d + ad− 1td−1 + · · · + a0, where ad ̸= 0 and

ai ∈ R.
If we can prove fA(t) and det(−tI)has the same growth rate, and since det(−tI) = (−t)n det(I) =

(−t)n, we can say fA(t) has a degree of n. Therefore, we want to show lim
t→∞

fA(t)

tn
is finite and

non-zero.

lim
t→∞

fA(t)

tn
= lim

t→∞

det(A− tI)

tn
= lim

t→∞
det

(
A

t
− I

)
= lim

t→0
det(tA− I) = det(−I) = (−1)n

∴ ad = (−1)n, and fA(t) has a degree of n. ■

Remark. If λ1, · · ·λk are roots of fA(t), them

fA(t) = (t− λ1)
M1(t− λ2)

M2 · · · (t− λk)
Mkg(x),

where g(x) has no real roots. Then,

n = M1 +M2 + · · ·+Mk + degree(g(x)).

Counted with multiplicity (this power Mk), A has at most n eigenvalues.
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Theorem 7.3.4. A has exactly n roots (counted with multiplicity) when A is diagonalizable.

Definition 7.3.2 (Algebraic Multiplicity). The algebraic multiplicity of a matrixA is the mul-

tiplicity of an eigenvalue λ in the characteristic polynomial of A.

Theorem 7.3.5. If we write fA(t) as fA(t) = adt
d+ad− 1td−1+ · · ·+a0, where ad ̸= 0 and ai ∈ R,

then a0 = det(A)

Proof.

fA(0) = a0 = det(A− 0 · I) = det(A).

■

Example 7.3.1. Prove that matrix B =

[
0 1

0 0

]
is not diagonalizable.

Proof. Note that fB(t) =

∣∣∣∣∣−t 1

0 −t

∣∣∣∣∣ = t2 =⇒ λ1 = 0, multiplicity = 2.

Method 1 Assume for the sake of contradiction that B is diagonalizable.

Therefore, B = SDS−1, where S =

 | |
v⃗1 v⃗2

| |

 and D =

[
λ1 0

0 λ2

]
for eigenvectors v⃗1 and v⃗2

with eigenvalues λ1 and λ2, respectively.

Then,

D =

[
0 0

0 0

]
= 0 · I

B = SDS−1 = S(0 · I)S−1 = 0 · S · I · S−1 = 0 · S · S−1 = 0

⋇ This is a contradiction that B =

[
0 1

0 0

]
≠= 0.

Therefore, B cannot be diagonalizable.

Method 2 From Method 1, we know that

EB,0 = ker(B− 0 · I) = ker

([
0 1

0 0

])
= Span

([
1

0

])

Since ker(B) is 1-dimensional, it doesn’t contain a basis for R2.

So, B doesn’t have an eigenbasis. ■

Theorem 7.3.6. A matrix C =


λ ∗ · · · · · ·

0 λ
...

...
. . . ∗

· · · · · · 0 λ

 is diagonalizable if and only if C is diago-

nal.
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7 EIGENVALUES AND EIGENVECTORS 7.3 Procedure of Finding an Eigenbasis

Proof. Since fC(t) =

∣∣∣∣∣∣∣∣∣∣∣

λ− t ∗ · · · · · ·

0 λ− t
...

...
. . . ∗

· · · · · · 0 λ− t

∣∣∣∣∣∣∣∣∣∣∣
= (λ − t)n, we know C has λ as the only

eigenvalue with algebraic multiplicity of n.

∴ D =


λ 0 · · · · · ·

0 λ
...

...
. . . 0

· · · · · · 0 λ

 = λ · I.

∴ C = SDS−1 = S(λI)S−1 = λSIS−1 = λI.

■

Theorem 7.3.7. For matrix C =


λ ∗ · · · · · ·

0 λ
...

...
. . . ∗

· · · · · · 0 λ

, λ is the only eigenvalue. Also, EC,λ =

ker(C − λI) contains a basis if and only if ker(C − λI) is the entire space. i.e., C − λI = 0, or

C = λI.

Theorem 7.3.8. Let A be an n × n matrix, and v⃗1, · · · , v⃗k be eigenvectors of A. The vectors

v⃗1, · · · , v⃗k are linearly independent if for every eigenvalue λ of A, the set of these vectors with

eigenvalue λ. i.e., {v⃗i | Av⃗i = λv⃗i} is linearly independent.

Finding an eigenbasis/diagonalizing A as an n× n matrix.

1. Find eigenvalues of A

(a) Compute fA(t)

(b) Find the roots of fA(t) and the multiplicity M1, · · · ,Mk

Remark. If M1 +M2 + · · ·+Mk ̸= n, then STOP. A is not diagonalizable.

(c) Form matrix D.

2. Find basis for eigenspaces:

(a) Form S =

 | |
v⃗1 · · · v⃗n

| |

, where v⃗1, · · · , v⃗n are linearly independent.
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7 EIGENVALUES AND EIGENVECTORS 7.4 Multiplicity

(b) For each λi, compute a basis for ker(A− λiI).

Remark. If dim(ker(A−λiI)) < Mi, then STOP. There is no enough eigenvectors

and A is not diagonalizable.

3. By theorem, the concatenation of the lists of bases is an eigenbasis.

Definition 7.3.3 (Geometric Multiplicity). Let λ be an eigenvalue of A.. The geometric mul-

tiplicity of λ is dim(ker(A− λI)), the number of linearly independent vector in an eigenspace.

Theorem 7.3.9. For a matrix to be diagonalizable,

geometric multiplicity = algebraic multiplicity.

7.4 Multiplicity

Definition 7.4.1 (Multiplicity). Let A be an n× n matrix and λ be an eigenvalue of A :

1. The algebraic multiplicity of λ is the largest k such that fA(t) = (t − λ)kg(t), where g(t)

is a polynomial. We denote the algebraic multiplicity of λ as almu(λ) = k. almu(λ) is the

multiplicity of λ as a root of fA(t).

2. The geometric multiplicity of λ is gemu(λ) = dim(ker(A−λI)). gemu(λ) is the maximum

number of linearly independent eigenvectors with eigenvalue λ.

Theorem 7.4.1. gemu(λ) ≤ almu(λ).

Remark. Note that in A−λI, every non-zero diagonal entry contributes a pivot to rref(A−
λI). Then, rank(A− λI) ≥ the number of diagonal entries that is not λ.

Therefore, nullity(A− λI) ≤ the number of diagonal entries that equals λ.

Hence, gemu(λ) ≤ almu(λ).

Proof. Assume v⃗1, · · · , v⃗g is a basis of EA,λ. Then, gemu(λ) = g.

Choose v⃗g+1, · · · , v⃗n such that v⃗1, · · · , v⃗g, v⃗g+1, · · · , v⃗n is a basis for Rn. Then,

S =

 | | |
v⃗1 · · · v⃗g · · · v⃗n

| | |


S is invertible since v⃗1, · · · v⃗n is a basis.
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Claim 7.1. B = S−1AS, where B =


λ

. . .

λ

∗

0︸︷︷︸
g−columns

C


fB(t) = det

(
SAS−1 − tI

)
= det

(
SAS−1 − tS−1IS

)
= det

(
S−1(A− tI)S

)
= det(A− tI) = fA(t).

Since fB(t) = (λ− t)gfC(t) = fA(t), we know that gemu ≤ almu. ■

Theorem 7.4.2. For a matrix to be diagonalizable, it is necessary that almu(λ) = gemu(λ) for

all λ.

Theorem 7.4.3. Let A be an n×n matrix. If fA(t) has n distinct real roots, then A is diagonal-

izable.

Proof. Every eigenvalue has an eigenvector: det(A− λI) = 0 =⇒ (A − λI) is not invert-

ible.

∴ ker(A− λI) ≠= 0.

Therefore, there are eigenvectors v⃗1, · · · v⃗n for eigenvalues λ1, · · · , λn, respectively.

Since eigenvectors with distinct eigenvalues are linearly independent, v⃗1, · · · , v⃗n is an eigen-

basis. ■
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8 Singular Value Decomposition

8.1 The Spectral Theorem

Definition 8.1.1 (Symmetry). A matrix A is called symmetric if A = AT. A symmetric matrix

is symmetric across the diagonal. That is, aij = aji.

Theorem 8.1.1 (Spectral Theorem). A is symmetric if and only if A has an orthogonal eigen-

basis. Equivalently, A = SDS−1, where D is diagonal and S is orthogonal (having orthogonal

columns). That is, A = SDST because S−1 = ST if S is orthogonal.

Proof. Given A = SDST, we want to show that A = AT.

Note that since D is diagonal, we have D = DT. Then

AT = (SDST)T = (ST)T(D)TST = SDRST = SDST = A.

■

Theorem 8.1.2. Orthogonal projection is symmetric.

Proof. Let V to be a subspace of Rn. Define Projv⃗ : Rn → Rn as x⃗ 7−→ x⃗∥ ∈ V, where

x⃗ = x⃗∥ + x⃗⊥ and x⃗⊥ ∈ V ⊥. Finding eigenspaces of Projv⃗, we get

EProjv⃗,1 = V, and EProjv⃗,0 = V ⊥.

Since eigenspaces are perpendicular, Projv⃗ is symmetric. ■

Corollary 8.1. Let

V = Span



v⃗1

...

v⃗n


 = Span(v⃗),

then x⃗ 7−→ V is
x⃗ · v⃗
v⃗ · v⃗

· v⃗. That is,
1

v⃗ · v⃗


v⃗
...

vecvn

([v⃗1 · · · v⃗n

]
x⃗
)
.

∴ Projv⃗(x⃗) =
1

v⃗ · v⃗


v1v1 v1v2 · · · · · ·

v1v2 v2v2
...

· · · . . .
...

· · · · · · · · · vnvn
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Theorem 8.1.3 (Adjoint Property of Transpose). If A is an n × n matrix, v⃗1, v⃗2 ∈ Rn. Then,

(Av⃗1) · v⃗2 = v⃗1 ·
(
ATv⃗2

)
. That is, bringing a matrix through a dot product, transpose it. Spe-

cially, if A is symmetric, A = AT, and (Av⃗1) · v⃗2 = v⃗1 · (Av⃗2).

Proof.

(Av⃗1) · v⃗2 = (Av⃗1)v⃗2 = (v⃗1)
T
(
ATv⃗2

)
= v⃗1 ·

(
ATv⃗2

)
.

■

Theorem 8.1.4 (Spectral Theorem – Continued 1). If v⃗1, v⃗2 are eigenvectors forAwith eigen-

values λ1 ̸= λ2, then v⃗1 ⊥ v⃗2.

Proof. Note that

λ1v⃗1 · v⃗2 = Av⃗1 · v⃗2 = v⃗1 · (Av⃗2) = λ2v⃗1 · v⃗2,

However, by our assumption we have λ1 ̸= λ2. So it must be v⃗1 · v⃗2 = 0.

That is, exactly, v⃗1 ⊥ v⃗2. ■

Corollary 8.2. Distinct eigenspaces are perpendicular.

Theorem 8.1.5 (Spectral Theorem – Continued 2). If A is a symmetric matrix, then A has an

orthogonal eigenbasis.

Proof.

Claim 8.1. fA(t) has all real roots.

If λ = x+ iy is a root of fA(t) , show y = 0.

Let v⃗ + iw⃗ ∈ Cn be an eigenvector for A with eigenvalue λ. Then, v⃗ − iw⃗ ∈ Cn is also an

eigenvector for A with eigenvalue λ∗ = x− iy.

∴

A(v⃗ − iw⃗) = λ∗(v⃗ − iw⃗)

A(v⃗ + iw⃗) = λ(v⃗ + iw⃗)

∴ (v⃗ − iw⃗) ·A(v⃗ + iw⃗) = λ(v⃗ − iw⃗) · (v⃗ + iw⃗)

= λ(v⃗ · v⃗ + w⃗ · w⃗)

= λ(∥v⃗∥2 + ∥w⃗∥2︸ ︷︷ ︸
greater than 0

)

A(v⃗ − iw⃗) · (v⃗ + iw⃗) = λ∗(v⃗ − iw⃗) · (v⃗ + iw⃗)

= λ∗(∥v⃗∥2 + ∥w⃗2∥︸ ︷︷ ︸
greater than 0

)

∴ λ(∥v⃗∥2 + ∥w⃗∥2) = λ∗(∥v⃗∥2 + ∥w⃗∥2)
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Since ∥v⃗∥2 + ∥w⃗∥2 > 0, it must be λ = λ∗. That is, x+ iy = x− iy. So, y = 0.

Thus, all the roots are real.

Claim 8.2. A has an eigenbasis. That is, gemu(λ) = almu(λ)∀λ.

We can write A = S1


∗ 0 · · · 0

0
...

0

An−1


︸ ︷︷ ︸

symmetric matrix

S−1
1

We can do the same thing over and over again, and eventually, we will get a diagonal ma-

trix. So we know gemu(λ) = almu(λ). ■

Corollary 8.3. We can always diagonalize A.

Find orthogonal eigenbasis of a symmetric matrix A

1. Find an eigenbasis for A.

2. Run Gram-Schudt on eigenbasis. The result is orthogonal eigenbasis.

8.2 Quadratic Form, Principal Axis Theorem

Definition 8.2.1 (Quadratic Form). A quadratic form is a function f : Rn → R of the form

f(x1, · · · , xn) =
∑

1≤i,j≤n

aijxixj

for some constants aij ∈ R.

Example 8.2.1. 7x2 + 3xy + 4y2 and 7x2 + 3xy + 4xz + 2y2 + 3yz + 7z2 are quadratic forms.

Definition 8.2.2 (Diagonal form). A quadratic form is called a diagonal form if

f(x1, · · · , xn) = λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n,

where λi ∈ R.

Example 8.2.2. x2 + y2, x2 − y2, and−x2 − y2 are examples of quadratic forms in the diagonal

form. But xy or x2 + 7xy + 3y2 are not examples of diagonal forms.
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Definition 8.2.3 (Degenerate). A diagonal form is called degenerate if λi = 0 for some i. If

λi ̸= 0∀i, then the diagonal form is called non-degenerate.

Theorem 8.2.1. Let f be a non-degenerate diagonal form:

1. If all λi > 0, then f(x⃗) ≥ 0 and f(x⃗) = 0 if and only if x⃗ = 0. That is, 0⃗ is a global

minimum, and f is positive definite.

2. If all λi < 0, then f(x⃗) ≤ 0 and f(x⃗) = 0 if and only if x⃗ = 0. That is, 0⃗ is a global

maximum, and f is negative definite.

3. If some λi are positive and some are negative, there is no local maxima or minima, and

we say f is indefinite.

Remark.

x⃗Tx⃗ =
[
x1 · · · xn

]
x1

...

xn

 = x2
1 + · · ·+ x2

n

Remark. Let D =


λ1 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · · · · λn

, then we have

x⃗TDx⃗ =
[
x1 · · · xn

]
λ1x1

...

λnxn

 = λ1x
2
1 + · · ·+ λnx

2
n.

Theorem 8.2.2. Let A be an n× n matrix, then f(x⃗) = x⃗TAx⃗ is a quadratic form. In general,

[
x1 · · · xn

]
a11 · · · a1n

...
. . .

...

an1 · · · ann



x1

...

xn

 =
∑

1≤i,j≤n

aijxixj.

Theorem 8.2.3. Let f(x1, · · · , xn) =
∑
i≤j

cijxixj, then there is a unique symmetric matrix such

that f = x⃗TAx⃗, where the ij−th entry of A =

cii, i = j

cij i ̸= j

Example 8.2.3. 7x2 + 11xy + y2 can be written as

[
7 11/2

11/2 1

]
.
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Theorem 8.2.4 (Principal Axes Theorem). Let f : Rn → R be a quadratic form, then there

exists an orthogonal matrix S and a diagonal quadratic form d : Rn → R such that

f(x⃗) = d ◦ STx⃗ = d
(
STx⃗

)
.

Any quadratic form looks diagonal in some coordinate λ1x
2
1 system.

Proof. f(x⃗) = x⃗TAx⃗, where A is symmetric.

Note that A = SDS−1, where S is orthogonal and D is diagonal.

So, f(x⃗) = x⃗T(SDS−1)x⃗ =
(
STx⃗

)T
D
(
STx⃗

)
.

Since d(x⃗) = x⃗TDx⃗, we know f(x⃗) = d
(
ST
)
x⃗. ■

Corollary 8.4. f is positive definite if λi > 0 and f is negative definite if λi < 0.

8.3 Singular Value Decomposition

Definition 8.3.1 (Sigular Value Decomposition). The singular value decomposition (SVD)

is a recipe to write a general matrix A as a product of matrices which is easy to understand

geometrically.

Theorem 8.3.1. Let A to be an n × m matrix, then A = UΣVT, where V is an orthogonal

matrix (so VT = V−1), Σ is an n × m matrix, whose ij−elements are all zero, and whose

ii-entries satisfy a11 ≥ a22 ≥ a33 ≥ · · · ≥ 0, and U is an orthogonal matrix.

Example 8.3.1. Suppose A =

 | |
u⃗1 u⃗2

| |

[σ1 0

0 σ2

][
− v⃗1 −
− v⃗2 −

]
:
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−→v1−→v2

−→e1

−→e2

σ1
−→e1

σ2
−→e2

A−→v1 = σ1
−→u1

A−→v2 = σ2
−→u2

A

VT

Σ

U

ellipse

1. σu⃗1 is a longest vector on the ellipse (image of the unit circle under A).

(a) σ1 is its length

(b) u⃗1 is a unit vector pointing in direction.

(c) v⃗1 is a vector on unit circle such ∥Av⃗1∥ is maximized.

2. Av⃗2 = σ2u⃗2 is a shortest vector on the ellipse (image of unit circle under A).

(a) σ2 is its length

(b) u⃗2 is a vector on unit circle such that ∥Av⃗2∥ is minimized.

Remark. SVD of A encodes information about lengths change under A. Let x⃗ ∈ Rm and

consider ∥Ax⃗∥ =
√
Ax⃗ ·Ax⃗, then

Ax⃗ ·Ax⃗ = x⃗ ·ATAx⃗ =
(∑

civ⃗i

)
·
(
ATA

)(∑
civ⃗i

)
=

(
m∑
i=1

cikv⃗i

)
·

(
m∑
j=1

cjλjv⃗j

)
=
∑
i,j

cicj(v⃗i · v⃗j)λj =
∑

c2iλi.

So, ∥Ax⃗∥ =
√∑

c2iλi and ∥x⃗∥ =
√∑

c2i . Therefore, ∥Av⃗i∥ =
√
λi = σi
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Since V is orthogonal, VTx⃗ =


c1
...

cm

. Since Σ =


√
λ1

. . .
√
λm

, then

ΣVTx⃗ =


√
λ1c1
...

√
λmcm

.
Definition 8.3.2 (Singular Value). Let A be a matrix, the singular value of A are the square

roots of the positive eigenvalues of ATA. i.e., λ1 ≥ λ2 ≥ · · · ≥ λm are eigenvalues of ATA, and

σi =
√
λi whenever λi > 0.

Remark. To find U, we can consider the following:

u⃗i =

 | | | | |
Av⃗1

σ1

Av⃗2

σ2

· · · Av⃗r

σr

x⃗1 · · · x⃗k

,
where x⃗1, · · · , x⃗k are orthogonal and span orthogonal component to the space spanned by

first r columns.

Also, note that
Av⃗1

σ1

,
Av⃗2

σ2

, · · · , Av⃗r

σr

are image of A with

Av⃗i

σi

· Av⃗j

σj

=
v⃗i ·ATAv⃗j

σiσj

=
v⃗i · λjv⃗i

σiσj

= 0.

Procedure to find the SVD for an n×m matrix A.

1. Compute ATA and find orthogonal eigenbasis v⃗1, · · · , v⃗m such that the eigenvalues

satisfy λ1 ≥ λ2 ≥ · · · ≥ λm.

V =

 | |
v⃗1 · · · v⃗m

| |

; Σ =


√
λ1 · · · 0
...

. . .
...

0 · · ·
√
λm

.
2. Define

U =

[
Av⃗1

σ1

Av⃗2

σ2

· · · Av⃗r

σr
x⃗1 · · · x⃗k

]
,

where x⃗1, · · · , x⃗k are choices of orthogonal basis of Im(A)⊥.

3. A = UΣVT.
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Example 8.3.2. Compute the SVD of A =

0 1

1 1

1 0

.
Solution.

1. Compute ATA, and find orthogonal eigenbasis:

ATA =

[
0 1 1

1 1 0

]0 1

1 1

1 0

 =

[
2 1

1 2

]
=⇒ fA(t) = (2− t)2 − 1 = (t− 1)(t− 3).

Therefore, λ1 = 3, σ1 =
√
3, λ2 = 1, σ2 =

√
1 = 1.

EATA,3 = Span

([
1

1

])
=⇒ v⃗1 =

[
1/
√
2

1/
√
2

]

EATA,1 = Span

([
1

−1

])
=⇒ v⃗2 =

[
1/
√
2

−1/
√
2

]

∴ VT =
1√
2

[
1 1

1 −1

]
; Σ =

3 0

0 1

0 0

.
2. Find U =

[
Av⃗1

σ1

Av⃗2

σ2

x⃗1

]

Av⃗1

σ1

=
1√
3
=

0 1

1 1

1 0

[1/√2 1/
√
2
]
=

1

6

12
1



Av⃗2

σ2

=

0 1

1 1

1 0

[1/√2 −1/√2] = 1

2

−10
1



ker(AT) = ker

([
0 1 1

1 1 0

])
= Span


 1

−1
1


 =⇒ x⃗1 =

1√
3

 1

−1
1



∴ U =

1/
√
6 −1/

√
2 1/

√
3

2/
√
6 0 −1

√
3

1/
√
6 1/

√
2 1/

√
3
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3. A = UΣVT

A =

1/
√
6 −1/

√
2 1/

√
3

2/
√
6 0 −1

√
3

1/
√
6 1/

√
2 1/

√
3


3 0

0 1

0 0

[1 1

1 −1

]
1√
2

□
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