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1 SIMPLE ITERATIONS

1 Simple Iterations

1.1 Introduction

Suppose we want to solve the linear system Ax = b, where A ∈ Rn×n is nonsingular, and x,b ∈ Rn.

• We can use LU factorization. But if A is large, LU factorization takes a long time.

• In such cases, we should consider using an iterative method.

• When A is large and sparse, doing matrix vector multiplication is much cheaper than directly

factorize A.

• So, in iterative method, we should aim to only do matrix vector multiplications.

1.1.1 Simple Iteration Algorithm

Suppose M ∈ Rn×n is a nonsingular matrix. Let x0 be an initial approximation of x. Suppose M−1A ≈
I. That is, M ≈ A in some sense. Then,

x− x0 = A−1b− x0

= A−1(b−Ax0) ≈ M−1(b−Ax0).

Hence, a better approximation is given by

x1 = x0 +M−1(b−Ax0).

In general, we can iterate:

xk+1 = xk +M−1(b−Axk), for k = 0, 1, 2, . . . .

Algorithm 1: Simple Iteration for Ax = b

Input: Initial guess, x0

1 begin

2 for k = 0, 1, 2, . . . do

3 rk = b−Axk;

4 Solve Mdk = rk;

5 xk+1 = xk + dk;

Remark. We should assume:

• Inverting M , or solving Md = r (Line 4), is easier than it would be for A.

• Computing matrix vector multiplications Axk are relativelly cheap.
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1 SIMPLE ITERATIONS 1.1 Introduction

1.1.2 Stopping Criterion

For now, we stop the iteration when

1.
󰀂rk󰀂
󰀂bk󰀂

≤ tol.

For example, tol = 10−8.

We might need to worry about conditioning number, but let’s ignore it for now.

2. k > max # of iteration.

Otherwise, if we set tol to small, the algorithm might never stop.

1.1.3 Convergence

Definition 1.1.1 (Spectral Radius). Suppose A ∈ Rn×n. Then, the spectral radius of A, denoted

as ρ(A) is defined as

ρ(A) = max {|λ1|, |λ2|, . . . , |λn|},

where λi ∈ C is the eigenvalue of A.

Theorem 1.1.2 Convergence of Simple Iteration

Suppose A ∈ Rn×n and M ∈ Rn×n are nonsingular, and

ρ(I −M−1A) < 1.

Then, the simple iteration converges linearly to x = A−1b.

Proof 1. Let ek+1 = x − xk+1 be the error at iteration k. [If converging, ek+1 → 0.] Note that

xk+1 = xk +M−1(b−Axk) is the iteration, we have

ek+1 = x− xk+1 = x−
󰀃
xk +M−1(b−Axk)

󰀄

= x− xk −M−1(Ax−Axk) [Ax = b]

= x− xk −M−1A(x− xk)

= ek −M−1Aek

= (I −M−1A)ek.

Therefore,

ek+1 = (I −M−1A)ek = (I −M−1A)(I −M−1A)ek−1

= (I −M−1A)k+1e0.

[This error will go to zero, i.e., the iteration converges, if (I −M1A)k+1 → 0.]
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1 SIMPLE ITERATIONS 1.1 Introduction

Now, assume I −M−1A is diagonalizable, i.e.,

I −M−1A = V ΛV −1,

where V =
󰁫
v1,v2, . . . ,vn

󰁬
is consists of eigenvectors of I − M−1A and Λ = diag(λ1,λ2, . . . ,λn) is

formed by the eigenvalues of I −M−1A. Then,

(I −M−1A)k+1 = (V ΛV −1)k+1

= (V ΛV −1)(V ΛV −1) · · · (V ΛV −1)

= V Λk+1V −1.

Since Λ is a diagonal matrix, to have (I − M−1A)k+1 = V Λk+1V −1 → 0, we want each λk+1
i → 0. To

achieve so, we require |λi| < 1 ∀ i = 1, . . . , n. That is,

ρ(I −M−1A) = max
i=1,...,n

{|λi|} < 1.

Q.E.D. 󰃈

Remark.

• We can relax the assumption that I −M−1A is diagonalizable. Just take the Jordan form.

• If
󰀐󰀐I −M−1A

󰀐󰀐 < 1, the error decays monotonically:

󰀂ek+1󰀂 =
󰀐󰀐(I −M−1A)ek

󰀐󰀐

≤
󰀐󰀐I −M−1A

󰀐󰀐 · 󰀂ek󰀂.

This is the ideal situation.

• However, ρ(I −M−1A) < 1 does not imply
󰀐󰀐I −M−1A

󰀐󰀐 < 1.

Example 1.1.3

Let A =

󰀵

󰀹󰀹󰀷

0 2 0

0 0 2

0 0 0

󰀶

󰀺󰀺󰀸. This is not a normal matrix.

[A matrix A is a normal matrix if AA⊤ = A⊤A, or A is orthogonally diagonalizable. ]

Note that ρ(A) = 0 (with λ1 = λ2 = λ3 = 0). But 󰀂A󰀂1 = 󰀂A󰀂∞ = 󰀂A󰀂2 = 2 > 1.

So, it could happen that the error increases in early iterations before decreasing.

• If we have the ideal situation,
󰀐󰀐I −M−1A

󰀐󰀐 < 1, then

󰀂ek+1󰀂 ≤
󰀐󰀐I −M−1A

󰀐󰀐k+1󰀂ek󰀂

6



1 SIMPLE ITERATIONS 1.2 Stationary Methods

This gives us an representation of relative error:

󰀂ek+1󰀂
󰀂e0󰀂

≤
󰀐󰀐I −M−1A

󰀐󰀐k+1
.

Example 1.1.4 Number of Iterations

Suppose we want
󰀂ek+1󰀂
󰀂e0󰀂

< δ. How many iterations do we need?

That is, we want
󰀐󰀐I −M−1A

󰀐󰀐k+1 ≤ δ. So,

󰀐󰀐I −M−1A
󰀐󰀐k+1 ≤ δ

(k + 1) log
󰀐󰀐I −M−1A

󰀐󰀐 ≤ log δ

k + 1 ≥ log δ

log 󰀂I −M−1A󰀂

k ≥ log δ

log 󰀂I −M−1A󰀂 − 1.

[Under the ideal situation,
󰀐󰀐I −M−1A

󰀐󰀐 < 1 =⇒ log
󰀐󰀐I −M−1A

󰀐󰀐 < 0.]

1.2 Stationary Methods

Stationary iterative methods are based on “splitting” A as

A = M −N, where M is nonsingular.

So, from the system Ax = b, we get

Ax = b =⇒ (M −N)x = b

Mx−Nx = b

x = M−1Nx+M−1b (Fixed Point Iteration)

Hence, the natural iteration to use is the Fixed Point Iteration:

xk+1 = M−1Nxk +M−1b.

7



1 SIMPLE ITERATIONS 1.2 Stationary Methods

1.2.1 Well-Known Splitting Methods

Let’s partition A as:

A =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
= D + L+ U,

where D is the diagonal entries of A, L is the strictly lower triangular part of A, and U is the strictly

upper triangular part of A.

• Jacobi: Take M = D (diagonal) amd N = −(L+ U)

• Gauss-Seidel: Take M = D + L (lower triangular) and N = −U.

• SOR (Successive OverRelaxation): Let ω be the relaxation parameter. Then,

M =
1

ω
D + L and N =

1− ω

ω
D − U.

1. If ω = 1, we are back to Gauss-Seidel.

2. If ω > 1, we have over relaxation.

3. If ω < 1, we have under relaxation.

Remark. Stationary iterations are simple iterations. Here’s a simple proof.

Proof 1.

xk+1 = M−1Nxk +M−1b

= M−1(M −M +N)xk +M−1b [Add and subtract M ]

= xk −M−1Axk +M−1b [A = M −N ]

= xk +M−1(b−Axk) [Exactly simple iteration]

Q.E.D. 󰃈

1.2.2 Convergence

Recall that the convergence of simple iteration depends on I−M−1A. For stationary iteration methods,

it means

I −M−1A = I −M−1(M −N) = M−1N.

So, we will be looking at ρ(M−1N) or
󰀐󰀐M−1N

󰀐󰀐.
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1 SIMPLE ITERATIONS 1.2 Stationary Methods

Theorem 1.2.1 Jacobi Convergence

If A is strictly diagonally dominant by rows or by columns, then the Jacobi iteration converges

for every x0.

Proof 2. For Jacobi, assume A = D + L+ U and take M = D and N = −(L+ U). Then,

M−1N = −D−1(L+ U)

= −

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1/a11

1/a22
. . .

1/ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

0 a12 · · · a1n

a21 0 · · · a2n
...

...
. . .

...

an1 an2 · · · 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

Recall that multiplying a diagonal matrix from the left is equivalent to scaling the row vectors. So,

M−1N = −

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

0 a12/a11 · · · a1n/a11

a21/a22 0 · · · a2n/a22
...

...
. . .

...

an1/ann an2/ann · · · 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

Note that if we take the ∞-norm of M−1N , we get

󰀐󰀐M−1N
󰀐󰀐
∞ = max

i

󰁛

j ∕=i

󰀏󰀏󰀏󰀏
aij
aii

󰀏󰀏󰀏󰀏 = max
i

1

|aii|
󰁛

j ∕=i

|aij |.

If |aii| >
󰁛

j ∕=i

|aij | for i = 1, . . . , n, (i.e., A is diagonally dominant by rows), then
󰀐󰀐M−1N

󰀐󰀐
∞ < 1. Hence,

Jacobi converges.

[If we want to get results for diagonally dominant by columns, we need to use 󰀂·󰀂1 instead.] Q.E.D. 󰃈

Theorem 1.2.2 Gauss-Seidel Convergence

If A is symmetric positive definite (SPD), then the Gauss-Seidel iteration will converge for any

x0.

Proof 3. For Gauss-Seidel, A = D + L+ U , and take M = D + L and N = −U . Suppose A is SPD.

Remark 4. (Properties of SPD). Here, we review some properties of SPD:

• Symmetry: U = L⊤.

• Positive-definite: x⊤Ax > 0 ∀x ∕= 0.

Then, e⊤i Aei = aii > 0. Hence, the diagonal entries of A are positive. That is, dii > 0.

We will use these properties later in the proof.
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1 SIMPLE ITERATIONS 1.2 Stationary Methods

Letλbe an eigenvalue ofM−1N andv be one of its corresponding eigenvector. Letv be normallized

so that v⊤Dv = 1.

By symmetry

M−1N = −(D + L)−1U = −(D + L)−1L⊤.

Then,

M−1Nv = −(D + L)−1L⊤v = λv

−L⊤v = λ(D + L)v = λ(Dv + Lv)

−v⊤L⊤v = λ(v⊤Dv󰁿 󰁾󰁽 󰂀
=1

+v⊤Lv)

−v⊤L⊤v = λ(1 + v⊤Lv).

Since v⊤L⊤v is a scalar,

v⊤L⊤v =
󰀓
v⊤L⊤v

󰀔⊤
= v⊤Lv.

Hence,

−v⊤Lv = λ
󰀓
1 + v⊤Lv

󰀔

λ = − v⊤Lv

1 + v⊤Lv
=⇒ λ2 =

(v⊤Lv)2

(1 + v⊤Lv)2
.

Since A is SPD, we know

0 < v⊤Av = v⊤
󰀓
D + L+ L⊤

󰀔
v

= v⊤Dv󰁿 󰁾󰁽 󰂀
=1

+v⊤Lv + v⊤L⊤v󰁿 󰁾󰁽 󰂀
=v⊤Lv

= 1 + 2v⊤Lv.

Also,

󰀓
1 + v⊤Lv

󰀔2
= 1 + 2v⊤Lv󰁿 󰁾󰁽 󰂀

>0

+
󰀓
v⊤Lv

󰀔2

>
󰀓
v⊤Lv

󰀔2
.

Hence,

λ2 =
(v⊤Lv)2

(1 + v⊤Lv)2
< 1 =⇒ |λ| < 1.

Therefore, ρ(M−1N) < 1, leading to convergence of Gauss-Seidel. Q.E.D. 󰃈

Theorem 1.2.3 SOR Convergence

If A is SPD, then SOR converges for any x0 if and only if 0 < ω < 2.

10



1 SIMPLE ITERATIONS 1.3 Iterative Refinement

Remark 5. (SOR Convergence).

• The choice of ω can affect convergence speed.

• If ω → ∞, M = L is an ill-conditioned matrix.

1.2.3 More Stationary Iterative Methods

• SSOR (Symmetric Successive OverRelaxation)

• Regular Splittings

• Block Approaches.

Example 1.2.4 Block Jacobi

Suppose

A =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
, where Aij ∈ Rp×p

is a block matrix. Assume the diagonal blocks Aii are non-singular. Then, the block Jacobi will use

M =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

A11

A22

. . .

Amm

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
.

1.3 Iterative Refinement

1.3.1 Motivation

• Iteratively improve qualities of a computed quantity.

• For linear systems, there is a close relationship to the simple iteration.

1.3.2 Solve for Ax = b, where A ∈ Rn×n is non-singular

Suppose x0 is a computed solution of Ax = b. Let r0 = b−Ax0 be the residual.

• Now, suppose we solve the linear system Ad = r0 and update

x1 = x0 + d

11



1 SIMPLE ITERATIONS 1.3 Iterative Refinement

• If we compute d exactly, then

x1 = x0 + d

= x0 +A−1r0

= x0 +A−1(b−Ax0) = A−1b,

which gives the exact solution of Ax = b in just one iteration.

• Of course, we cannot solve Ad = r0 exactly. But, we might hope that x1 = x0 + d is a better

approximation than x0.

• We can do this iteratively:

Algorithm 2: Naive Iterative Refinement

1 for k = 0, 1, 2, . . . do

2 rk = b−Axk;

3 solve Adk = rk;

4 update xk+1 = xk + dk;

This looks like simple iteration with M = A.

• Question: Our set-up was that solving Ax = b is hard. But now we are asked to solve Adk = rk?

Answer: We solve Adk = rk with a lower precision.

• In practice, iterative refinement for Ax = b is implemented in multiple precisions. Specifically,

consider three precisions:

µr ≤ µ ≤ µs,

where µr is the smallest unit roundoff (highest precision; usually the distance between 1 and the

next floating point number), µ is the working precision, and µs is the largest unit roundoff (lowest

precision).

Example 1.3.1 Three Precisions

– Double: µr = 1.11× 10−16

– Single: µ = 5.96× 10−8

– Half: µs = 4.88× 10−4

12



1 SIMPLE ITERATIONS 1.3 Iterative Refinement

Algorithm 3: Iterative Refinement for Ax = b Using Three Precisions

Input: initial approximate solution x0, stored in precision µ

1 begin

2 factorize A (e.g., [L, U] = lu(A));

3 for k = 0, 1, 2, . . . do

4 compute: rk = b−Axk in precision µr;

5 solve: Adk = rk in precision µs [can use GEPP, faster than QR; d=U\(L\r) ];

6 update: xk+1 = xk + dk in precision µ;

1.3.3 Relate Iterative Refinement with Simple Iteration

Simplified Assumption: Only errors in the algorithm come from solving Adk = rk.

We will recall from MATH 515/MATH 315 the backward error analysis (where we want to show the

computed solution is the exact solution of a near-by problem).

So, in the iterative refinement context, the computed dk is the exact solution of a near-by problem.

That is,

(A+∆Ak)󰁿 󰁾󰁽 󰂀
Mk

dk = rk

dk = M−1
k rk.

Repeating convergence discussion from simple iteration, if ek+1 = x− xk+1, then

ek+1 =
󰀃
I −M−1

k A
󰀄
ek

Hence, ek+1 → 0 if
󰀐󰀐I −M−1

k A
󰀐󰀐 < 1 ∀ k.

• We cannot take this convergence analysis any further since we don’t know ∆Ak and hence don’t

know Mk and M−1
k .

• Also, what do we mean by “convergence” is questionable: the exact solution might no be repre-

sentable in precision µ at all!

• Instead, it makes more sense to try to find bounds on limiting accuracy and limiting residual:

Limiting accuracy =
󰀂󰁥x− x󰀂
󰀂x󰀂 ≤ some bound,

Limiting residual = 󰀂b−A󰁥x󰀂 ≤ some bound,

where 󰁥x is an iterate xk.

• To identify those bounds, we need rounding error analysis, which is very technical.

13



1 SIMPLE ITERATIONS 1.3 Iterative Refinement

1.3.4 Iterative Refinement for Least Squares Problems

Consider the least square problem

min
x

󰀂b−Ax󰀂22, (LS)

where A ∈ Rm×n with m ≥ n, and rank(A) = n (A is a full rank matrix).

• Naturally, we could apply iterative refinement to the Normal Equations:

A⊤Ax = A⊤b. (Normal Equations)

But, recall that, in the case of 󰀂·󰀂2, κ2(A⊤A) = (κ2(A))
2. Iterative refinement does not work well

on ill-conditioned systems.

• An alternative approach is to apply iterative refinement to the following augmented system:

󰀥
I A

A⊤ 0

󰀦󰀥
r

x

󰀦
=

󰀥
b

0

󰀦
(1)

The solution to (1) gives the solution of the least squares problem and its corresponding residual:

r+Ax = b =⇒ r = b−Ax.

A⊤r = 0 =⇒ A⊤(b−Ax) = 0 =⇒ A⊤Ax = A⊤b.

1.3.5 Other Linear Algebra Problems with Iterative Refinement

• Find an eigenvalue/eigenvector pair:

Solve: Ax = λx.

• Find a singular value/vector triplet:

Solve: Av = σu and A⊤u = σv.

14
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1.4 Floating Point Numbers

Definition 1.4.1 (Normalized Floating Point Numbers). Usually, we write it as

x = ±βe+1

󰀕
d1
β

+
d2
β2

+ · · ·+ dt
βt

󰀖
= ±βe+1 × (0.d1d2 . . . dt),

where

• 0 ≤ di ≤ β − 1 with d1 ∕= 0 is called mantissa.

• emin ≤ e ≤ emax is called exponent,where emin is a large negative integer, and emax is a

large positive integer.

[In IEEE standard, emin = 1− emax.]

• t is called precision

Example 1.4.2 β = 10 and t = 4

• π is presented as

πfl = 101 × 0.3142 = 101 ×
󰀕

3

10
+

1

102
+

4

103
+

2

104

󰀖
.

• Largest representable number is

xmax = 10emax+1

󰀕
9

10
+

9

102
+

9

103
+

9

104

󰀖

= 10emax+1 × 0.9999

Note that if m = 0.9999, then

m+ 10−4 = 0.9999 + 0.0001 = 1 =⇒ m = 1− 10−4.

So,

xmax = 10emax+1(1− 10−4) = 10emax+1(1− 10−t)

• Smallest representable number is

xmin = 10emin+1

󰀕
1

10
+

0

102
+

0

103
+

0

104

󰀖

= 10emin .

15



1 SIMPLE ITERATIONS 1.4 Floating Point Numbers

Example 1.4.3 β = 2 and t = 4

• Largest representable number:

xmax = 2emax+1

󰀕
1

2
+

1

22
+

1

23
+

1

24

󰀖

= 2emax+1(1− 2−4) = 2emax+1(1− 2−t).

• Smallest representable number:

xmin = 2emin+1

󰀕
1

2
+

0

22
+

0

23
+

0

24

󰀖

= 2emin .

Example 1.4.4 For any base β and precision t

•
1 = β1(0.100 · · · 0) = β1

󰀕
1

β
+

0

β2
+

0

β3
+ · · ·+ 0

βt

󰀖

• The next representable FP number is

x = β1(0.100 · · · 1)

= β1

󰀕
1

β
+

0

β2
+

0

β3
+ · · ·+ 1

βt

󰀖

= 1 + β1−t.

Definition 1.4.5 (Machine Epsilon and Unit Roundoff ).

• Machine epsilon: ε = β1−t = distance from 1 to the next largest FP.

So, any number in between 1 and 1 + ε is NOT representable. They will be rounded to

either 1 or 1 + ε.

• Unit roundoff : µ =
1

2
β1−t =

1

2
ε = The largest rounding error when rounding a number

in (1, 1 + ε) to the next FP number.

Remark.

• All computers use binary, i.e., β = 2. That is, FL numbers are represented with β = 2,

16
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di = 0 or 1, and d1 = 1. [This means we know for sure d1 = 1, and thus we don’t store it!]

• Computers store FP numbers with a sequence of bits (0 or 1), allocating some bits for the

mantissa, and some for the exponent.

• (+/−) usually takes 1 bit in the mantissa. [Since d1 = 1 and we are not storing it, we don’t

lose any bit by storing the sign.]

Example 1.4.6 Bit Allocations for Commonly Used FP Precision Types

Precision Type # Bits for Mantissa # Bits for Exponent

Google half, bfloat16 8 8

half, fp16 11 5

IEEE single, fp32 24 8

Standards double, fp64 53 11

quad, fp128 113 15

Remark.

• Fewer bits for mantissa =⇒ more roundoff error.

• Fewer bits for exponent =⇒ less dynamic range (more risk for overflow or underflow).

• Fewer bits =⇒ lower storage and faster.

Now, the question is how do we determine emin and emax.

• There is no sign bit in the exponent.

• Consider fp32 (or bfloat16) for example. We have 8 bits for the exponent. These can represent

integers 0 ∼ 255.

• [Wait... We need negative exponents to represent small numbers. How to achieve this without the

sign bit?]

• To get negative integers, IEEE standards uses half the integers to denote positive exponents and

the other half to denote negative exponents by subtracting a bias.

• In fp32, bias is 127. So,

biased exponent = actual exponent + 127.

17



1 SIMPLE ITERATIONS 1.4 Floating Point Numbers

Actual Exponent Biased Exponent Binary Representation

Special case −127 0 00000000

−126 1 00000001

−125 2 00000010

−124 3 00000011
...

...
...

0 127 01111111
...

...
...

127 254 11111110

Special case 128 255 11111111

Remark.

• Because we assume d1 = 1 and this is not stored, the mantissa alone cannot represent 0.

• [This is ridiculous! We need 0 for sure in our computation. ]

• To represent 0, the IEEE standards define it as

mantissa = all 0 bits and exponent = all 0 bits.

• Representing ∞, IEEE standards define it as

mantissa = all 1 bits and exponent = all 1 bits.

• Therefore, for fp32, emax = 127 and emin = −126.

Precision Mantissa Exponent µ emin xmin emax xmax

bfloat16 8 8 3.91× 10−3 −126 1.18× 10−38 127 3.39× 1038

fp16 11 5 4.88× 10−4 −14 6.1× 10−5 15 6.55× 104

fp32 24 8 5.96× 10−8 −126 1.18× 10−38 127 3.40× 1038

fp64 53 11 1.11× 10−16 −1022 2.22× 10−308 1023 1.80× 10308

fp128 113 15 9.63× 10−35 −16382 3.36× 10−4932 16383 1.19× 104932

Example 1.4.7 Verify

x =
1

10
= (0.1)10

Its normalized binary representation:

x = 2−3 × (0.110011001100 · · · ).

18



2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES

2 Krylov Subspace Methods for Eigenvalues

2.1 Introduction to Krylov Subspaces

Definition 2.1.1 (k-th Krylov Subspace). Given A ∈ Rn×n, v ∈ Rn, v ∕= 0, the k-th Krylov

subspace is

Kk(A,v) = span
󰁱
v, Av, A2v, . . . , Ak−1v

󰁲
,

where span includes all linear combinations.

Definition 2.1.2 (Basis of a Subspace). {u1,u2, . . . ,uk} is a basis if

• u1,u2, . . . ,uk span the subspace, and

• u1,u2, . . . ,uk are L.I.

So, a basis is the minimal spanning set.

• Therefore, the vectors
󰀋
v, Av, A2v, . . . , Ak−1v

󰀌
will be a basis forKk(A,v) ifv, Av, A2v, . . . , Ak−1v

are L.I. (they already form a spanning set).

Example 2.1.3

A = I, v ∕= 0.

• K1(I,v) = {v} =⇒ basis for K1(I,v).

• K2(I,v) = {v, Iv} = {v,v} =⇒ not a basis.

Example 2.1.4 Largest k

A ∈ Rn×n,v ∕= 0 ∈ Rn. What is the largest k for which
󰀋
v, Av, . . . , Ak−1v

󰀌
is L.I.?

Solution 1.

Since Ajv ∈ Rn, the most we can have is n L.I. vectors. So, the maximum k is n. □

• Thus, when generating vectors
󰀋
v, Av, A2v, . . . , Ak−1v

󰀌
, a linear dependence must eventually

occur.

• Application of Krylov subspaces: Iterative methods for solving eigenvalue and singular value

problems, and solving linear systems draw approximations from Krylov subspace.

• Generally, we expand the basis until a dependence occurs.

• But,
󰀋
v, Av, A2v, . . . , Ak−1v

󰀌
might be an ill-conditioned basis. We will transform these into an

orthonormal basis using Gram-Schmidt-like algorithms.
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2.2 Arnoldi Method

Given A = Rn×n. Suppose we want to find an orthogonal matrix Q ∈ Rn×n and an upper Hessenberg

matrix H s.t.

Q⊤AQ = H.

That is, we also have [Q is orthogonal: Q−1 = Q⊤]

AQ = QH.

Let Q =
󰁫
q1 q2 · · · qn

󰁬
and consider

A
󰁫
q1 q2 · · · qn

󰁬
=

󰁫
q1 q2 · · · qn qn+1

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

h11 h12 · · · h1n

h21 h22 · · · h2n

h32 · · · h3n
. . .

...

hnn

hn+1,n

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

(2)

• Let q1 be any vector with 󰀂q1󰀂2 = 1.

• Matching the first column in (2):

Aq1 = h11q1 + h21q2. (3)

[We know q1 (picked by us). So, we need to find q2, h11, and h21.]

We want q2 s.t. q
⊤
1 q2 = 0 and 󰀂q2󰀂2 = 1 since Q is orthonormal. Multiply (3) by q⊤

1 , we have

q⊤
1 Aq1 = h11 q

⊤
1 q1󰁿 󰁾󰁽 󰂀
=1

+h21 q
⊤
1 q2󰁿 󰁾󰁽 󰂀
=0

h11 = q⊤
1 Aq1 .

Now, define

h21q2 = Aq1 − h11q1 =: w1.

If w1 ∕= 0, then

󰀂w2󰀂2 = 󰀂h21q2󰀂2 = h21 󰀂q2󰀂2󰁿 󰁾󰁽 󰂀
=1

= h21.

So,

h21 = 󰀂w1󰀂2 .

Then,

q2 =
w1

h21
.

20
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• Matching the second column in (2):

Aq2 = h12q1 + h22q2 + h32q3 (4)

Unknowns: q3, h12, h22, h32.

Find q3 s.t. q
⊤
1 q3 = 0, q⊤

2 q3 = 0, and 󰀂q3󰀂2 = 1.

Multiply (4) by q⊤
1 :

q⊤
1 Aq2 = h12 q

⊤
1 q1󰁿 󰁾󰁽 󰂀
=1

+h22 q
⊤
1 q2󰁿 󰁾󰁽 󰂀
=0

+h32 q
⊤
1 q3󰁿 󰁾󰁽 󰂀
=0

h12 = q⊤
1 Aq2 .

Multiply (4) by q⊤
2 :

q⊤
2 Aq2 = h12 q

⊤
2 q1󰁿 󰁾󰁽 󰂀
=0

+h22 q
⊤
2 q2󰁿 󰁾󰁽 󰂀
=1

+h32 q
⊤
2 q3󰁿 󰁾󰁽 󰂀
=0

h22 = q⊤
2 Aq2 .

Now, define

h32q3 = Aq2 − h12q1 − h22q2 =: w2.

If w2 ∕= 0, then 󰀂w2󰀂2 = 󰀂h32q3󰀂2 = h32 󰀂q3󰀂2󰁿 󰁾󰁽 󰂀
=1

. So,

h32 = 󰀂w2󰀂2 . =⇒ q3 =
w2

h32
.

In general, we have the Arnoldi Method (Algorithm 4).

Algorithm 4: Arnoldi Method

Input: A, q1 with 󰀂q1󰀂2 = 1.
1 begin
2 for j = 1, 2, . . . ,m do

// This is Gram-Schmidt-like procedure
3 Compute hij = q⊤

i Aqj for i = 1, . . . , j;

4 Compute wj = Aqj −
j󰁛

i=1

hijqi;

5 Compute hj+1,j = 󰀂wj󰀂2;
6 if hj+1,j = 0 then

// We get linear dependence
7 m = j;
8 break;

9 Compute qj+1 = wj/hj+1,j ;
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Remark.

• If {v, Av, . . . , Amv} are L.I., then the above algorithm is just classical Gram-Schmidt to

produce an orthonormal set {q1,q2, . . . ,qm+1}, with

span {v, Av, . . . , Amv} = span {q1,q2, . . . ,qm+1}.

• We know for better stability, we should use modified Gram-Schmidt (Algorithm 5).

Algorithm 5: Arnoldi (Modified Gram-Schmidt Approach)

Input: A ∈ Rn×n, q1 ∈ Rn with 󰀂q1󰀂2 = 1.
1 begin
2 for j = 1, . . . , n do
3 wj = Aqj // Most time-consuming part
4 for i = 1, . . . , j do
5 hij = q⊤

i wj ;
6 wj = wj − hijqi;

7 ω = 󰀂wj󰀂2;
8 if ω = 0 then
9 m = j;

10 break;

11 hj+1,j = ω;
12 qj+1 = wj/hj+1,j ;

Output: AQ = QH , where Q ∈ Rn×m, Q⊤Q = I ∈ Rm×m, n ≥ m, and H is upper Hessenberg.

2.2.1 Matrix Relations in Arnoldi

Definition 2.2.1 (Ritz Values and Vectors). Eigenvalues and eigenvectors of Hk are called the

Ritz values and vectors of A.

• If (λ,v) is an eigenpair of Hk, then (λ, Qkv) is an approximate eigenpair of A.

• From Important Relations to Eigenpair:

From the derivation using matched columns,

AQk = Qk+1
󰁨Hk,

where

Qk =
󰁫
q1 q2 . . . qk

󰁬
,
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and

󰁨Hk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

h11 h12 · · · h1k

h21 h22 · · · h2k
. . .

. . .
...

. . . hkk

hj+1,k

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=

󰀥
Hk

hk+1,ke
⊤
k

󰀦
, where e⊤k =

󰁫
0 · · · 0 1

󰁬
.

That is,

AQk = Qk+1

󰀥
Hk

hk+1,ke
⊤
k

󰀦

=
󰁫
Qk | qk+1

󰁬󰀥 Hk

hk+1,ke
⊤
k

󰀦

AQk = QkHk + hk+1,kqk+1e
⊤
k . (Important Relation I)

Note, hk+1,kqk+1e
⊤
k above is a rank-1 matrix.

Also note

Q⊤
k AQk = Q⊤

k Qk󰁿 󰁾󰁽 󰂀
=I

Hk + hk+1,k Q⊤
k qk+1󰁿 󰁾󰁽 󰂀

=0, orthogonality

e⊤k

Q⊤
k AQk = Hk . (Important Relation II)

Then, from the two relations, we get

AQkv =
󰀓
QkHk + hk+1,kqk+1e

⊤
k

󰀔
v [by (Important Relation I)]

= QkHkv + hk+1,kvkqk+1 [e⊤k v = vk]

= λQkv + hk+1,kvkqk+1 [v is eigenvector of Hk]

(A− λI)Qkv = hk+1,kvkqk+1 [move terms]

󰀂(A− λI)Qkv󰀂2 = 󰀂hk+1,kvkqk+1󰀂2 [take 2-norm]

= |hk+1,k| · 󰀂vk󰀂2 [󰀂qk+1󰀂2 = 1]

If hk+1,k = 0, them,

󰀂(A− λI)Qkv󰀂2 = 0

(A− λI)Qkv = 0 =⇒ (λ, Qkv) is an eigenpair of A.

• So, if the Arnoldi algorithm stops, we know we get an eigenpair of A.

• This is the basic approach used by ARPACK (e.g., eig in MATLAB) for estimating a few eigenval-

ues/vectors for large sparse matrices.
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Remark 1. (Clarifying Remarks).

• In Arnoldi, we use q1 to be any vector with 󰀂q1󰀂2 = 1.

• These are constructed so that

span {q1,q2, . . . ,qk} = span
󰁱
q1, Aq1, . . . , A

k−1q1

󰁲
.

• If we use q1 = v/󰀂v󰀂2, then

span {q1,q2, . . . ,qk} = span
󰁱
q1, Aq1, . . . , A

k−1q1

󰁲

= span

󰀝
v

󰀂v󰀂2
, A

v

󰀂v󰀂2
, . . . , Ak−1 v

󰀂v󰀂2

󰀞

= span
󰁱
v, Av, . . . , Ak−1v

󰁲

= Kk(A,v).

2.3 Lanczos Method

• If we apply the Arnoldi method to a symmetric matrix, we get the Lanczos method.

• If A is symmetric, then A⊤ = A. Also,

H⊤
k =

󰀓
Q⊤

k AQk

󰀔⊤
= Q⊤

k A
⊤Qk = Q⊤

k AQk = Hk.

So, Hk is also symmetric,

But Hk is upper Hessenberg, so it has the form tridiagonal.

Hk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

h11 h21

h21 h22 h32

h32 h33
. . .

. . . hk,k−1

hk,k−1 hk,k

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

−→ symmetric tridiagonal

• Notation: In this case, we change notation: Arnoldi←→Lanczos: Hk ←→ Tk, and

󰁨Tk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α1 β1

β1 α2 β2
. . .

. . . βk−1

βk−1 αk

βk

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=

󰀥
Tk

βke
⊤
k

󰀦
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• We have similar matrix relations:

1. AQk = QkTk + βkqk+1e
⊤
k , and

2. Q⊤
k AQk = Tk.

Algorithm 6: Lanczos (Symmetric A)

Input: q1, with 󰀂q1󰀂2 = 1; symmetric A

1 begin
2 Set β0 = 0 and q0 = 0;
3 for k = 1, . . . , n do
4 w = Aqk;
5 αk = q⊤

k w;
6 w = w − βk−1qk−1 − αkqk // three-term recurrence
7 βk = 󰀂w󰀂2;
8 if βk = 0 then
9 m = k;

10 break;

11 qk+1 = w/βk;

Remark.

• To generate symmetric matrices:

1.
1

2
(A+A⊤),

2. A⊤A, and

3.

󰀥
0 A⊤

A 0

󰀦

• Algorithm 6 computes Tm ∈ Rm×m, tridiagonal, and Qm ∈ Rn×m, with orthonormal

columns s.t. AQm = QmTm.

• The vectors qi are supposed to be orthogonal.

• But, as with classical Gram-Schmidt, round-off errors cause loss of orthogonality.

• Remedy: reorthogonalize (Algorithm 7).
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Algorithm 7: Lanczos Algorithm with Full Reorthogonalization

Input: symmetric A ∈ Rn×n, q1 ∈ Rn with 󰀂q1󰀂2 = 1.

1 begin

2 Set β0 = 0;

3 for j = 1, . . . , n do

4 w = Aqj ;

5 αj = q⊤
j w;

6 w = w − βj−1qj−1 − αjqj ;

// modified GS style

7 for k = 1, . . . , j − 1 do

8 w = w −
󰀃
q⊤
k w

󰀄
qk;

9 βj = 󰀂w󰀂2;

10 if βj = 0 then

11 Set m = j;

12 Break;

13 qj+1 = w/βj ;

Remark.

• Reorthogonalization requires additional work. The work grows as we continue going.

We can use Partial Reorthogonalization: replace the loop with

1 for k = 1, . . . , s do

2 w = w −
󰀃
q⊤
k w

󰀄
qk;

where we need to choose a small s such as

s = min {j − 1, 10}.

• Later, when we use Arnoldi or Lanczos to solve Ax = b, reorthogoanlization is often not

needed.

2.4 Golub-Kahan Bidiagonalization

GKB is very similar to Arnoldi and Lancaoz, but it can be used on general A ∈ Rm×n.

Suppose we want to find U, V with orthonormal columns and B an upper bidiagonal matrix s.t.

U⊤AV = B or V ⊤A⊤U = B⊤.

[This is the start of an SVD.] That is, AV = UB or A⊤U = V B⊤.
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• Now, let’s match columns of AV = UB.

A
󰁫
v1 · · · vj · · ·

󰁬
=

󰁫
u1 · · ·uj−1 uj · · ·

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α1 β1

α2 β2
. . .

. . .

. . . βj−1

αj
. . .

. . .

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

Avj = βj−1uj−1 + αjuj

αjuj = Avj − βj−1uj−1 [Assume β0 = 0.]

Note that because we want 󰀂uj󰀂2 = 1, we have

αj = 󰀂Avj − βj−1uj−1󰀂2

uj = (Avj − βj−1uj−1)/αj

• Similarly, match columns of A⊤U = V B⊤.

A⊤
󰁫
u1 · · · uj · · ·

󰁬
=

󰁫
v1 · · · vj vj+1 · · ·

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α1

β1 α2

β2
. . .

. . . αj

βj
. . .

. . .

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

A⊤uj = αjvj + βjvj+1

βjvj+1 = A⊤uj − αjvj .

Because we want 󰀂vj+1󰀂2 = 1, we have

βj =
󰀐󰀐󰀐A⊤uj − αjvj

󰀐󰀐󰀐
2

vj+1 =
󰀓
A⊤ij − αjvj

󰀔
/βj .
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Algorithm 8: Golub-Kahan Bidiagonalization (GKB)

Input: A ∈ Rm×n, v1 ∈ Rn with 󰀂v1󰀂2 = 1

1 begin

2 Set β0 = 0;

3 for j = 1, . . . , n do

4 uj = Avj − βj−1uj−1;

5 αj = 󰀂uj󰀂2;

6 if αj = 0 then
// Linear dependency in Krylov subspace generation

7 Set m = j;

8 Break;

9 uj = uj/αj ;

10 vj+1 = A⊤uj − αjvj ;

11 βj = 󰀂vj+1󰀂2;

12 if βj = 0 then
// Linear dependency

13 Set m = j;

14 Break;

15 vj+1 = vj+1/βj ;

But... What is the Krylov subspace we are generating?

• Kk(A,v) =
󰀋
v, Av, A2v, . . . , Ak−1v

󰀌
. However, if A ∈ Rm×n with m ∕= n, A2 doesn’t make sense

due to dimension mismatch.

• Similar to Arnoldi and Lanczos, GKB compute bases for Krylov subspaces:

1. v1,v2, . . . ,vk is basis for

Kk

󰀓
A⊤A,v1

󰀔
= span

󰁱
v1, (A

⊤A)v1, (A
⊤A)2v1, . . . , (A

⊤A)k−1v1

󰁲

2. u1,u2, . . . ,uk is basis for

Kk

󰀓
AA⊤,u1

󰀔
= span

󰁱
u1, (AA

⊤)u1, (AA
⊤)2u1, . . . , (AA⊤)k−1u1

󰁲

Remark. As with Arnoldi and Lanczos, the vectors uj and vj can lose orthogonality. So, we

need to do reorthogonalization (Algorithm 9).
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Algorithm 9: Golub-Kahan Bidiagonalization with Full Reorthogonalization

Input: A ∈ Rm×n, v1 ∈ Rn with 󰀂v1󰀂2 = 1

1 begin

2 Set β0 = 0;

3 for j = 1, . . . , n do

4 uj = Avj − βj−1uj−1;

5 for k = 1, . . . , j − 1 do

6 uj = uj −
󰀃
u⊤
k uj

󰀄
uk;

7 αj = 󰀂uj󰀂2;

8 if αj = 0 then

9 Set m = j;

10 Break;

11 uj = uj/αj ;

12 vj+1 = A⊤uj − αjvj ;

13 for k = 1, . . . , j do

14 vj+1 = vj+1 −
󰀃
v⊤
k vj+1

󰀄
vk;

15 βj = 󰀂vj+1󰀂2;

16 if βj = 0 then

17 Set m = j;

18 Break;

19 vj+1 = vj+1/βj ;

Remark. To verify that our Algorithm produces a basis for Kk(A,v) in general, build

K =
󰁫
v Av A2v · · · Ak−1v

󰁬
.

Then, 󰁫
Q R

󰁬
= qr(K).

Suppose {v1,v2, . . . ,vk} is the output from our algorithm. Then build

V =
󰁫
v1 v2 · · · vk

󰁬
.

Check if K⊤V = I (up to signs).

2.5 Hessenberg Method

In this section, we will do something similar to Arnoldi for A ∈ Rn×n, but we do not enforce orthogo-

nality of Krylov basis vectors.
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Specifically, we build

ALk = Lk+1
󰁨Hk

=
󰁫
Lk ℓk+1

󰁬󰀥 Hk

hk+1e
⊤
k

󰀦
,

where Hk is upper Hessenberg, and Lk is a nonsingular, unit lower triangular matrix:

Lk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1

ℓ21 1

ℓ31 ℓ32 1

ℓ41 ℓ42 ℓ43
. . .

...
...

...
. . .

ℓk1 ℓk2 ℓk3 · · · · · · 1

ℓk+1,1 ℓk+1,2 ℓk+1,3 · · · · · · ℓk+1,k

...
...

...
...

ℓn1 ℓn2 ℓn3 · · · · · · ℓnk

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

To build Lk and Hk, let’s match columns:

A
󰁫
ℓ1 ℓ2 · · · ℓk

󰁬
=

󰁫
ℓ1 ℓ2 · · · ℓk ℓk+1

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

h11 h12 · · · h1k

h21 h22 · · ·
...

h32 · · ·
...

. . .
...

hkk

hk+1,k

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

• Let v =

󰀵

󰀹󰀹󰀷

v1
...

vn

󰀶

󰀺󰀺󰀸 be any vector, with v1 ∕= 0. Then,

ℓ1 = v/v1.

• Match first columns:

Aℓ1 = h11ℓ1 + h21ℓ2.

Here, we know ℓ1 and aim to find h11, h21, and ℓ2. Denote w := Aℓ1. Then,

w = h11ℓ1 + h21ℓ2
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That is,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

w1

...

...

wn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
= h11

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1

ℓ21
...

ℓn1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
+ h21

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

0

1
...

ℓn2

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

=⇒ h11 = w1 .

Override w := w − h11ℓ1. Then,

w = h21e2

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

w1

w2

...
...

wn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
= h21

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0

1

ℓ32
...

ℓn2

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=⇒ h21 = w2

ℓ2 = w/h21 .

• Match second columns:

Aℓ2 = h12ℓ1 + h22ℓ2 + h32ℓ3.

Denote w := Aℓ2. Then,

w = h12ℓ1 + h22ℓ2 + h32ℓ3
󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

w1

w2

w3

...

wn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= h12

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1

ℓ21

l31
...

ln1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+ h22

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0

1

ℓ32
...

ln2

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+ h32

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0

0

1
...

ℓn3

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=⇒ h12 = w1 .

Override w := w − h12ℓ1. Then,

w = h22ℓ2 + h32ℓ3
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That is,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

w1

w2

w3

...

wn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= h22

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0

1

ℓ32
...

ℓn2

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+ h32

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0

0

1
...

ℓn3

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=⇒ h22 = w2

Override w := w − h22ℓ2. Then,

w = h32ℓ3
󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

w1

w2

w3

...

wn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= h32

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0

0

1
...

ℓn3

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=⇒ h32 = w3

ℓ3 = w/h32

Algorithm 10: Hessenberg Algorithm

Input: A ∈ Rn×n, v ∈ Rn with v1 ∕= 0

1 begin
// column-oriented forward substitution style

2 Set ℓ1 = v/v1;

3 for j = 1, . . . do

4 w = Aℓj ;

5 for i = 1, 2, . . . , j do

6 hij = wj ;

7 w = w − hijℓi;

8 hj+1,j = wj+1;

9 ℓj+1 = w/hj+1,j ;

Remark.

(+) No inner product involved in Algorithm 10. Inner products are bottleneck for parallel com-

puting because they are hard to parallelize.

(-) What if v1 = 0? We have to do pivoting so that v1 ∕= 0.
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(-) What if hj+1,j = 0?

1. Try to pivot w so that wj+1 ∕= 0.

2. If we cannot find non-zero entries, then stop. We reach linear dependency.

2.5.1 Relationship between Arnoldi and Hessenberg

Given A ∈ Rn×n and v ∈ Rn:

• Arnoldi Matrix Relations: Let q1 = v/󰀂v󰀂2, and compute

AQk = Qk+1
󰁨Ha
k

=
󰁫
Qk qk+1

󰁬
󰁨Ha
k .

• Hessenberg Matrix Relations: Let ℓ1 = v/v1, and compute

ALk = Lk+1
󰁨Hh
k

=
󰁫
Lk ℓk+1

󰁬
󰁨Hh
k .

Define

Kk =
󰁫
v Av · · · Ak−1v

󰁬
.

Then,

Kk+1 =
󰁫
v Av · · · Ak−1v Akv

󰁬

=
󰁫
Kk Akv

󰁬

=
󰁫
v AKk

󰁬
.

• Arnold Matrix Relations: Suppose we have QR factorizations:

Kk = Qk
󰁨Rk, Kk+1 = Qk+1

󰁨Rk+1.

Consider

AKk =
󰁫
v AKk

󰁬󰀥0⊤

Ik

󰀦

= Kk+1

󰀥
0⊤

Ik

󰀦

AQk
󰁨Rk = Qk+1

󰁨Rk+1

󰀥
0⊤

Ik

󰀦
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AQk = Qk+1
󰁨Rk+1

󰁫
0⊤Ik

󰁬
󰁨R−1
k

󰁿 󰁾󰁽 󰂀
= 󰁨Ha

k

AQk = Qk+1
󰁨Ha
k .

• Hessenberg Matrix Relations: Suppose we have LU factorizations:

Kk = LkUk, Kk+1 = Lk+1Uk+1.

Consider

AKk =
󰁫
v AKk

󰁬󰀥0⊤

Ik

󰀦

= Kk+1

󰀥
0⊤

Ik

󰀦

ALkUk = Lk+1Uk+1

󰀥
0⊤

Ik

󰀦

ALk = Lk+1 Uk+1

󰀥
0⊤

Ik

󰀦
U−1
k

󰁿 󰁾󰁽 󰂀
= 󰁨Hh

k

ALk = Lk+1
󰁨Hh
k .

So, we have Kk = LkUk = Qk
󰁨Rk. Then, we can find

Kk = LkUk = Qk
󰁨Rk

Lk = Qk
󰁨RkU

−1
k󰁿 󰁾󰁽 󰂀

upper △ matrix

Lk = QkRk, where Rk = 󰁨RkU
−1
k

is the thin QR factorization of Lk

Qk = LkR
−1
k .

Furthermore,

AQk = ALkR
−1
k = Lk+1

󰁨Hh
kR

−1
k [ALk = Lk+1

󰁨Hh
k ]

= Qk+1Rk+1
󰁨Hh
kR

−1
k [Lk+1 = Qk+1Rk+1]

Qk+1
󰁨Ha
k = Qk+1Rk+1

󰁨Hh
kR

−1
k [AQk = Qk+1

󰁨Ha
k ]

󰁨Ha
k = Rk+1

󰁨Hh
kR

−1
k
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2.5.2 Hessenberg Version of GKB

In the case of rectangular A ∈ Rm×n, we can do something similar to GKB.

Compute basis ℓj , jj s.t.

ALk = Dk+1
󰁨Hk and A⊤Dk+1 = Lk+1Wk+1,

where 󰁨Hk is an upper Hessenberg (k+1)×k matrix, Wk+1 is an upper triangular (k+1)×(k+1) matrix,

and Dk+1, Lk+1 are unit lower triangular matrices.

Remark. Basically, we apply Hessenberg method to AA⊤ and A⊤A.
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3 Iterative Methods for Ax = b and LS Problems

3.1 Krylove Subspace Iteration

Consider solving Ax = b, where A ∈ Rn×n is nonsingular. The basic approach is to

1. x0 is an initial guess (could be x0 = 0)

2. update xk = x0 + zk,

where zk is a vector in an appropriate Krylov subspace Kk(A,v) (usually of increasing dimension).

Example 3.1.1 Naive Update

Suppose x0 is given. Then, the updates will look like

x1 = x0 + z1, z1 ∈ K1(A,v) = span {v}.

x2 = x0 + z2, z2 ∈ K2(A,v) = span {v, Av}.

x3 = x0 + z3, z3 ∈ K3(A,v) = span
󰀋
v, Av, A2v

󰀌
.

...

3.1.1 What should we choose for v in Krylov subspace?

Typically, we use

v = r0 = b−Ax0 (Residual)

3.1.2 How to represent zk?

If we have a basis for Kk(A, r0) (e.g., {q1,q2, . . . ,qk}), then zk = Kk(A, r0) =⇒ we can write zk as a

linear combination of qi. That is, ∃ scalars y1, y2, . . . , yk s.t.

zk = y1q1 + y2q2 + · · ·+ ykqk.

Equivalently, ∃ a vector yk s.t.

zk = Qkyk.

3.1.3 What optimality condition should we use to get a good zk?

Minimum Residual Approach Find

zk = arg min
z∈Kk(A,r0)

󰀂b−Ax󰀂22, x = x0 + z.
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Notice that

󰀂b−Ax󰀂2 = 󰀂b−A(x0 + z)󰀂2
= 󰀂b−Ax0󰁿 󰁾󰁽 󰂀

=r0

−Az󰀂2

= 󰀂r0 −Az󰀂2

If we restrict z ∈ Kk(A, r0), then

󰀂b−Ax󰀂2 = 󰀂r0 −AQky󰀂2, z = Qky.

The Basic Idea of Minimum residual Approach

1. Find basis Qk for Kk(A, r0)

2. Compute yk = argmin
y

󰀂r0 −AQky󰀂2

3. Update xk = x0 +Qkyk󰁿 󰁾󰁽 󰂀
zk

How we solve (2) depends on the basis Qk (e.g., Arnoldi, Lanczos, etc.).

Minimum A-Norm Error Approach If A is SPD, we can try to find z = Qky to minimize

󰀂ek󰀂2A = 󰀂x− xk󰀂2A,

where x is the true solution.

Definition 3.1.2 (A-Norm).

󰀂ek󰀂2A = e⊤k Aek.

Note: ek is the error, not the unit vector.

We want to find z ∈ Kk(A, r0) to minimize

󰀂ek󰀂2A = 󰀂x− xk󰀂2A
= 󰀂x− (x0 + zk)󰀂2A

But if z ∈ Kk(A, r0), z = Qky, where y ∈ Rk. Therefore, an equivalent problem is to find y ∈ Rk

to minimize

󰀂x− (x0 +Qky)󰀂2A = 󰀂e0 −Qky󰀂2A, where e0 = x− x0.
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Note that

e⊤0 A(Qky)󰁿 󰁾󰁽 󰂀
scalar

=
󰀓
e⊤0 A(Aky)

󰀔⊤
= (Qky)

⊤A⊤e0 = (Qky)
⊤Ae0 [Since A is SPD]

and

e⊤0 A(Qky) =
󰀓
e⊤0 AQk

󰀔
y =

󰀓
Q⊤

k Ae0

󰀔⊤
y.

We will use these two relationships later in the derivation.

Let e(y) = e0 −Qky be a function of y. Consider

f(y) = 󰀂e(y)󰀂2A
= 󰀂e0 −Qky󰀂2A
= (e0 −Qky)

⊤A(e0 −Qky)

= e⊤0 Ae0 − (Qky)
⊤Ae0 − e⊤0 A(Qky) + (Qky)

⊤A(Qky)

= e⊤0 Ae0 − 2
󰀓
Q⊤

k Ae0

󰀔⊤
y + y⊤Q⊤

k AQky [by relationships above]

∇f(y) = −2Q⊤
k Ae0 + 2Q⊤

k AQky.

Set ∇f(y) = 0:

−2Q⊤
k Ae0 + 2Q⊤

k AQky = 0

−Q⊤
k Ae0 +Q⊤

k AQky = 0

Q⊤
k A(e0 −Qky) = 0

=⇒ Q⊤
k Ae(y) = 0.

Then, we let yk be the vector for which Q⊤
k Ae(yk) = 0.

Problem Note that

e(yk) = e0 −Qkyk

= x− x0 −Qkyk

✘ But... we don’t know x.

Resolution Do we really need to know x?

Ae(yk) = A(x− x0 −Qkyk) = Ax−Ax0 −AQkyk

= b−Ax0 −AQkyk [Ax = b]

= r0 −AQkyk [b−Ax0 = r0]

✔ So, we don’t need to know x!!
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Therefore, we want to find yk s.t.

Q⊤
k (r0 −AQkyk) = 0 =⇒ Q⊤

k AQk󰁿 󰁾󰁽 󰂀
A is SPD⇒Lanczos

tridiagonal

yk = Q⊤
k r0

Let’s take a closer look at the RHS. Suppose Qk =
󰁫
q1 q2 · · · qk

󰁬
. Then, by Lanczos, we

know q1 =
r0
󰀂r0󰀂

. Therefore, q⊤
1 r0 is a scalar. However,

q⊤
2 r0 = 0 since q2 ⊥ q1 =

r0
󰀂r0󰀂

.

Summary of Krylov Subspace Iterative Methods

To use iterative methods to solve Ax = b, with A ∈ Rn×n, we construct Krylov subspaces.

1. Let x0 be an initial guess, and compute r0 = b−Ax0.

2. Construct a basis for the Krylov subspace Kk(A, r0), Qk =
󰁫
q1 q2 · · · qk

󰁬
.

3. Compute xk = x0 + z, where z ∈ Kk(A, r0) (i.e., z = Qky, where y ∈ Rk) and z satisfies an

optimality condition:

• Minimize the residual:

󰀂b−A(x0 + z)󰀂22 = 󰀂r0 −Az󰀂22 = 󰀂r0 −AQky󰀂22 z ∈ Kk(A, r0) and y ∈ Rk.

• Or, if A is SPD, compute z ∈ Kk(A, r0) to minimize the A-norm of the error:

󰀂x− (x0 + z)󰀂2A = 󰀂e0 − z󰀂2A = 󰀂e0 −Qky󰀂2A z ∈ Kk(A, r0) and y ∈ Rk,

where 󰀂e0 −Qky󰀂2A = (e0 −Qky)
⊤A(e0 −Qky).

This is equivalent to compute y ∈ Rk s.t.

Q⊤
k (r0 −AQky) = 0.

3.1.4 Different Iterative Methods

We get different iterative methods using different bases for the Krylov subspaces and different opti-

mization criteria.

Suppose A ∈ Rn×n, and we use Arnoldi and minimal residual

From Arnoldi, we have AQk = Qk+1
󰁨Hk. We need to consider

󰀂r0 −AQky󰀂22 =
󰀐󰀐󰀐r0 −Qk+1

󰁨Hky
󰀐󰀐󰀐
2

2
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In Arnoldi, we use

q1 =
r0

󰀂r0󰀂2
=⇒ r0 = 󰀂r0󰀂2q1 = βq1, where β = 󰀂r0󰀂2.

So,

󰀂r0 −AQky󰀂22 =
󰀐󰀐󰀐βq1 −Qk+1

󰁨Hky
󰀐󰀐󰀐
2

2

Note that Qk+1e1 = q1, we have βq1 = Qk+1(βe1). So,

󰀂r0 −AQky󰀂22 =
󰀐󰀐󰀐Qk+1(βe1)−Qk+1

󰁨Hky
󰀐󰀐󰀐
2

2

=
󰀐󰀐󰀐Qk+1

󰀓
βe1 − 󰁨Hky

󰀔󰀐󰀐󰀐
2

2

=
󰀐󰀐󰀐βe1 − 󰁨Hky

󰀐󰀐󰀐
2

2
[This is a (k × 1)× k LS problem.]

[The final equality holds because Qk+1 has orthonormal columns, so it is 2−norm invariant under

orthogonal transformation.]

This leads to the basic Generalized Minimum Residual Method (GMRES). Algorithm 11 outlines

the algorithm.

Algorithm 11: Basic Generalized Minimum Residual (GMRES)

Input: A ∈ Rn×n, b ∈ Rn, and x0 ∈ Rn

1 begin

2 Set r0 = b−Ax0, β = 󰀂r0󰀂2, and q1 = r0/β;

3 for j = 1, . . . ,m do
// Arnoldi Method

4 wj = Aqj ;

5 for i = 1, . . . , j do

6 hij = q⊤i wj ;

7 wj = wj − hijqi;

8 hj+1,j = 󰀂wj󰀂w;

9 if hj+1,j = 0 then

10 Set m = j;

11 Break;

12 qj+1 = wj/hj+1,j ;

13 ym = argmin
y

󰀐󰀐󰀐βe1 − 󰁨Hmy
󰀐󰀐󰀐
2
// Solving the LS problem

14 xm = x0 +Qmym;

Remark. However, Algorithm 11 is not practical... To make it practical, we need

• Solve the LS for ym more efficiently, and
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• Better test for convergence than hj+1,j = 0.

We will be talking about the practical considerations in Section 3.1.5 and outline the prac-

tical GMRES algorithm in Algorithm 12.

Suppose A ∈ Rn×n, with A = A⊤, and we use Lanczos and minimal residual

Similar to Arnoldi, except instead of an upper Hessenberg, we got a tridiagonal matrix. From

Lanczos iteration, we get AQk = Qk+1
󰁨Tk. So,

󰀂r0 −AQky󰀂 =
󰀐󰀐󰀐βe1 − 󰁨Tky

󰀐󰀐󰀐
2

2
[This is a (k + 1)× k LS problem]

This gives the basic Minimum Residual Method (MINRES).

Again, more needs to be done to make this a practical algorithm.

Suppose A ∈ Rm×n, and we use GKB and minimal residual

Using the initial vector u1 = r0/󰀂r0󰀂2, then since AVk = Uk+1Bk from GKB iterations, we have

󰀂r0 −AVky󰀂22 = 󰀂r0 − Uk+1Bky󰀂22 [Vky ∈ Kk(A
⊤A,v1)]

= 󰀂Uk+1(βe1 −Bky)󰀂22
= 󰀂βe1 −Bky󰀂22󰁿 󰁾󰁽 󰂀

(k+1)×k LS Problem

[Uk+1 has orthonormal columns]

This gives the basic LSQR Algorithm. Again, more needs to be done to make this a practical

algorithm.

Suppose A ∈ Rn×n, and we use Hessenberg and minimal residual

If we use Hessenberg with ℓ1 = r0/β, where β = |r0(1)|, the first entry of r0 (or, β = 󰀂r0󰀂∞ and

then permute, so the maximum entry is on the top). Then,

󰀂r0 −ALky󰀂22 =
󰀐󰀐󰀐r0 − Lk+1

󰁨Hky
󰀐󰀐󰀐
2

2
[From Hessenberg: ALk = Lk+1

󰁨Hk.]

=
󰀐󰀐󰀐Lk+1

󰀓
βe1 − 󰁨Hky

󰀔󰀐󰀐󰀐
2

2
.

But here, Lk+1 does not have orthonormal columns, so

󰀐󰀐󰀐Lk+1

󰀓
βe1 − 󰁨Hky

󰀔󰀐󰀐󰀐
2

2
∕=

󰀐󰀐󰀐βe1 − 󰁨Hky
󰀐󰀐󰀐
2

2

in general. However, we can still proceed like GMRES: minimizing the “quasi-residual:”

󰀐󰀐󰀐βe1 − 󰁨Hky
󰀐󰀐󰀐
2

2
, and xk = x0 + Lky.
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This leads to the Changing Minimum Residual Hessenberg Method (CMRH), which is part of the

Quasi-Minimum Residual Methods (QMR) family.

Suppose A ∈ Rn×n, with A SPD and we use Lanczos and minimal A-norm error

Here, we need to find y satisfying

Q⊤
k (r0 −AQky) = 0

=⇒ solve Q⊤
k AQk󰁿 󰁾󰁽 󰂀
=Tk

y = Q⊤
k r0 [From Lanczos: Q⊤

k AQk = Tk]

Tky = βe1 [Q⊤
k r0 = βe1]

This gives the basic Conjugate Gradient Method (CG). Again, more needs to be done to get a

practical implementation.

Remark. We derived LSQR using GKB and the minimal residual criterion. This is equiva-

lent to using Lanczos on the SPD system A⊤Ax = A⊤b, with the minimal A⊤A-norm error

criterion.

3.1.5 Practical Considerations of GMRES

Now, we focus on two practical details:

• Need to efficiently solve the LS problem to compute ym, and

• Need to compute an estimate of 󰀂rj󰀂2 at each iteration, to help determine stopping iteration.

Consider the LS problem at iteration k − 1:

min
y

󰀐󰀐󰀐g − 󰁨Hy
󰀐󰀐󰀐
2
, where g = βe1

and

󰁨H =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

h11 · · · h1,k−1

h21 · · ·
...

. . .
...

hk−1,k−1

hk,k−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Let 󰁨H = 󰁨Q 󰁨R be the QR factorization of 󰁨H , where

󰁨Q⊤ 󰁨Q = I, and 󰁨R =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

r11 · · · r1,k−1

0 · · ·
...

. . . rk−1,k−1

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
.
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To solve the LS problem:

󰀐󰀐󰀐g − 󰁨Hy
󰀐󰀐󰀐
2
=

󰀐󰀐󰀐Q⊤g − 󰁨Q⊤ 󰁨Hq
󰀐󰀐󰀐
2

=
󰀐󰀐󰀐󰁥g − 󰁨Ry

󰀐󰀐󰀐
2

[󰁥g = Q⊤g]

=

󰀐󰀐󰀐󰀐󰀐

󰀥
󰁥g(1 : k − 1)

󰁥gk

󰀦
−

󰀥
󰁨R(1 : k − 1, 1 : k − 1)

0⊤

󰀦
y

󰀐󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐󰀐

󰀥
󰁥g(1 : k − 1)− 󰁨R(1 : k − 1, 1 : k − 1)y

󰁥gk

󰀦󰀐󰀐󰀐󰀐󰀐
2

This norm will be minimized if

󰁥g(1 : k − 1)− 󰁨R(1 : k − 1, 1 : k − 1)y = 0

This is equivalent to solve 󰁨R(1 : k − 1, 1 : k − 1)y = 󰁥g(1 : k − 1) by backward substitution (since 󰁨R is an

upper triangular matrix). In addition, the norm of the corresponding residual is |󰁥gk|.
Note: If all we need is the norm of the residual, then we do not need to compute y.

Now, at iteration k, out LS problem becomes

min
y

󰀐󰀐󰀐󰀐󰀐

󰀥
g

0

󰀦
−
󰀥
󰁨H h

0⊤ hk+1,k

󰀦
y

󰀐󰀐󰀐󰀐󰀐

2

2

.

Assume we know the QR factorization 󰁨H = 󰁨Q 󰁨R. Since 󰁨Q is an orthogonal matrix, so is

󰀥
󰁨Q 0

0⊤ 1

󰀦
.

Therefore,

󰀐󰀐󰀐󰀐󰀐

󰀥
g

0

󰀦
−

󰀥
󰁨H h

0⊤ hk+1,k

󰀦
y

󰀐󰀐󰀐󰀐󰀐

2

2

=

󰀐󰀐󰀐󰀐󰀐

󰀥
󰁨Q⊤ 0⊤

0 1

󰀦󰀣󰀥
g

0

󰀦
−
󰀥
󰁨H h

0⊤ hk+1,k

󰀦
y

󰀤󰀐󰀐󰀐󰀐󰀐

2

2

=

󰀐󰀐󰀐󰀐󰀐

󰀥
󰁥g
0

󰀦
−

󰀥
󰁨Q⊤ 󰁨H 󰁥h
0 hk+1,k

󰀦
y

󰀐󰀐󰀐󰀐󰀐

2

2

[󰁥h = 󰁨Q⊤h and 󰁥g = 󰁨Q⊤g]

=

󰀐󰀐󰀐󰀐󰀐

󰀥
󰁥g
0

󰀦
−

󰀥
󰁨R 󰁥h
0 hk+1,k

󰀦
y

󰀐󰀐󰀐󰀐󰀐

2

2

[ 󰁨H = 󰁨Q 󰁨R]

Note, the matrix

󰀥
󰁨R 󰁥h
0 hk+1,k

󰀦
takes a special form, and using 1 Givens rotation, we can easily turn it
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into an upper triangular form: 󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

∗ · · · ∗
. . .

...

∗
0 · · · 0

∗
...

∗
∗

0 · · · 0 ∗

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

That is, we find scalars ck, sk s.t. c2k + s2k = 1 and

󰀥
ck sk

−sk ck

󰀦󰀥
󰁥hk

hk+1,k

󰀦
=

󰀥
∗
0

󰀦
.

Then, (mathematically) we get

󰁨Q⊤
k =

󰀵

󰀹󰀹󰀷

I 0

0
ck sk

−sk ck

󰀶

󰀺󰀺󰀸 .

Qk is an orthogonal matrix, so at the k-th iteration, we can minimize

󰀐󰀐󰀐󰀐󰀐Q
⊤
k

󰀥
󰁥g
0

󰀦
−Q⊤

k

󰀥
󰁨R 󰁥h
0⊤ hk+1,k

󰀦
y

󰀐󰀐󰀐󰀐󰀐
2󰁿 󰁾󰁽 󰂀

update and overwrite

=

󰀐󰀐󰀐󰀐󰀐

󰀥
󰁥g′

󰁥gk+1

󰀦
−

󰀥
󰁨R′

0⊤

󰀦
y

󰀐󰀐󰀐󰀐󰀐
2

.

where Q⊤
k 󰁥g = 󰁥g′.

Now, we can again solve the LS problem to get y, and the norm of the residual is just |󰁥gk+1|.

Summary of Practical Implementation

• Let

g =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

β

0
...

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
and 󰁨H =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

h11 · · · h1,k−1

h21 · · ·
...

. . . hk−1,k−1

hk,k−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
.

Also, 󰁨H = 󰁨Q 󰁨R is the QR factorization.

• Suppose g and 󰁨H have been overwritten with

g ← 󰁨Q⊤g, 󰁨H ← 󰁨Q⊤ 󰁨H.

That is, 󰁨H is now upper triangular.
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• At the next iteration, we get a new column:

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

h1,k
...

hk,k

hk+1,k

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
=

󰀥
h

hk+1,k

󰀦
.

• Overwrite

h ← 󰁨Q⊤h.

• Find ck, sk s.t. 󰀥
ck k

−sk ck

󰀦󰀥
hkk

hk+1,k

󰀦
=

󰀥
∗
0

󰀦

• Overwrite

hkk ← ckhkk + skhk+1,k

hk+1,k ← 0
󰀥

gk

gk+1

󰀦
←

󰀥
ck sk

−sk ck

󰀦󰀥
gk

0

󰀦
=

󰀥
ckgk

−skgk

󰀦
.

• Compute the norm of residual:

ρ = |gk+1|.

• If we want the solution, solve H(1 : k, 1 : k)y = g(1 : k) by back substitution, and set

x = x0 +Qky.

Remark.

• The orthogonal matrix 󰁨Q⊤ is a product of Givens rotations:

󰁨Q⊤ = 󰁨Q⊤
k−1 · · · 󰁨Q⊤

2
󰁨Q⊤
1 ,

where

󰁨Q⊤
1 =

󰀵

󰀹󰀹󰀷

c1 s1

−s1 c1
0

0 I

󰀶

󰀺󰀺󰀸, 󰁨Q⊤
2

󰀵

󰀹󰀹󰀹󰀹󰀷

1

c2 s2

−s2 c2

I

󰀶

󰀺󰀺󰀺󰀺󰀸
, . . .
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To apply 󰁨Q⊤, all we need is to store

c =
󰁫
c1 c2 · · · ck−1

󰁬⊤
and s =

󰁫
s1 s2 · · · sk−1

󰁬⊤
.

That is, to overwrite h ← 󰁨Q⊤h, we use

󰀥
hi,k

hi+1,k

󰀦
←

󰀥
ci si

−si ci

󰀦󰀥
hi,k

hi+1,k

󰀦
for i = 1, 2, . . . , k − 1.

• In GMRES, we only need y if we want to compute the solution

xk = x0 +Qkyk.

But we don’t need xk to compute the residual norm

󰀂rk󰀂2 = 󰀂b−Axk󰀂2.

Instead, this comes for free: ρ = |gk+1|.

Algorithm 12: Practical GMRES

1 begin
2 Compute r0 = b−Ax0, β = 󰀂r0󰀂2, q1 = r0/β, and Q1 = q1;

3 Initialize g =
󰀅
β 0 · · · 0

󰀆⊤
;

4 for k = 1, 2, . . . do
5 while ρ > tol do
6 Compute qk+1, hi,k for i = 1, 2, . . . , k + 1, using Arnoldi. // most expensive

operation: matrix-vector multiplication
7 Set Q =

󰀅
Q qk+1

󰀆
;

8 for i = 1, 2, . . . , k − 1 do

9

󰀗
hi,k
hi+1,k

󰀘
=

󰀗
ci si
−si ci

󰀘󰀗
hi,k
hi+1,k

󰀘
;

10 Compute ck, sk s.t.

󰀗
ck sk
−sk ck

󰀘󰀗
hk,k
hk+1,k

󰀘
=

󰀗
∗
0

󰀘
;

11 Update hk,k = ckhk,k + skhk+1,k and hk+1,k = 0;

12 Update
󰀗

gk
gk+1

󰀘
=

󰀗
ck sk
−sk ck

󰀘󰀗
gk
0

󰀘
;

13 Set ρ = |gk+1|;

14 Solve upper triangular system H(1 : k, 1 : k)y = g(1 : k) using back substitution;
15 Update x = x0 +Qy // Recall: this Q comes from Arnoldi

Remark. Full practical GMRES can be expensive if many iterations are needed.
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3.1.6 Cost in Practical GMRES

1. Computational cost:

• O(nk) flopsneeded per iteration + matrix-vector multiplication (depending on the matrix).

• O
󰀃
k2
󰀄

for triangular solve.

• O(nk) to compute x.

2. Storage:

• What ever we need to store A.

• O(nk) for Q.

That is, computational cost and storage increase at each iteration.

=⇒ Improvement: GMRES(j) (Restarted GMRES)

• Stops GMRES at j-th iteration and restarts with the latest iterate as an initial guess.

• But it can delay convergence.

3.1.7 Lanczos and MINRES

Instead of 󰁨H , we have 󰁨T tridiagonal.

We can exploit to reduce work per iteration and storage (as we don’t need to save all qi’s).

3.2 Quadratic Functions and CG

3.2.1 Steepest Descent Through Optimization Methods

Theorem 3.2.1

If A is SPD, then the following problems are equivalent:

• Solve Ax = b, and

• Minimize ϕ(x) =
1

2
x⊤Ax− x⊤b.

Proof 1. (⇒): Suppose x solves Ax = b, and consider

ϕ(y) =
1

2
y⊤Ay − y⊤b.

[WTS: ϕ(x) ≤ ϕ(y) ∀y ∈ Rn] Trick: write y as y = x+ (y − x). Then,

ϕ(y) = ϕ
󰀓
x+ (y − x)

󰀔

=
1

2
(x+ (y − x))⊤A(x+ (y − x))− (x+ (y − x))⊤b

=
1

2

󰀓󰁽 󰂀󰁿 󰁾
x⊤Ax+x⊤A(y − x)󰁿 󰁾󰁽 󰂀+(y − x)⊤Ax+ (y − x)⊤A(y − x)

󰀔 󰁽 󰂀󰁿 󰁾
−x⊤b−(y − x)⊤b
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Note that x⊤A(y − x) is a scalar, so x⊤A(y − x) = (y − x)⊤Ax. Then, we get

ϕ(y) =
1

2
x⊤Ax− x⊤b

󰁿 󰁾󰁽 󰂀
ϕ(x)

+
1

2
· 2(y − x)⊤Ax− (y − x)⊤b+

1

2
(y − x)⊤A(y − x)

= ϕ(x) + (y − x)⊤Ax− (y − x)⊤b+
1

2
(y − x)⊤A(y − x)

= ϕ(x) + (y − x)⊤ (Ax− b)󰁿 󰁾󰁽 󰂀
=0

+
1

2
(y − x)⊤A(y − x)󰁿 󰁾󰁽 󰂀

≥0, A is SPD

So, ϕ(y) ≥ ϕ(x) □
(⇐): Suppose we wish to find the minimum of

ϕ(x) =
1

2
x⊤Ax− x⊤b.

Use first order condition, we have

∇ϕ(x) = Ax− b
set
= 0 =⇒ Ax = b

Q.E.D. 󰃈
The previous Theorem 3.2.1 suggests that we can solve Ax = b, when A is SPD, by finding a mini-

mum of the function

ϕ(x) =
1

2
x⊤Ax− x⊤b.

Hence, we motivate steepest descent:

• Start with an initial x0

• Go downhill by taking a step in the direction of

−∇ϕ(x0) ← steepest descent direction

• For a general step k:

∇ϕ(xk) = Axk − b

=⇒ −∇ϕ(xk) = b−Axk = rk ← residual

• If rk ∕= 0, we are not at the minimum, and there must ∃ a scalar s.t.

ϕ(xk + αrk) < ϕ(xk).

The question becomes “how to choose α?” We do so by line search.
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Consider the function

ψ(α) = ϕ(xk + αrk)

=
1

2
(xk + αrk)

⊤A(xk + αrk)− (xk + αrk)
⊤b

=
1

2
x⊤
k Axk + αr⊤k Axk +

1

2
α2r⊤k Ark − x⊤

k b− αr⊤k b.

To find the optimal α, we use FoC, set ψ′(α) = 0:

ψ′(α) = r⊤k Axk + αr⊤k Ark − r⊤k b

= αr⊤k Ark − r⊤k (b−Axk)

= αr⊤k Ark − r⊤k rk
set
= 0 =⇒ α =

r⊤k rk

r⊤k Ark
.

Algorithm 13: Steepest Descent

Input: A ∈ Rn×n and b,x0 ∈ Rn

1 begin
2 Compute r0 = b−Ax0;
3 for k = 0, 1, 2, . . . do
4 w = Ark;
5 αk =

󰀃
r⊤k rk

󰀄
/(r⊤k w);

6 xk+1 = xk + αkrk;
7 rk+1 = rk − αkw;

Remark. Why don’t we use rk+1 = b−Axk+1 to calculate the residual?

rk+1 = b−Axk+1

= b−A(xk + αkrk)

= b−A−1xk − αkArk

= rk − αkArk

= rk − αkw [Set w = Ark]

Using rk = b − Axk+1 requires an additional matrix vector multiplication, which we can avoid

using the recursion rk+1 = rk − αkArk+1.

Remark. The Stochastic Gradient Descent method is a form of steepest descent that is used

in deep learning to minimize loss functions. It uses only one component, or a small batch of

components, of the gradient at each step.

49



3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.2 Quadratic Functions and CG

3.2.2 Alternative Derivation of Steepest Descent

Assume A is SPD, and consider

xk+1 = xk + αkrk ← steepest descent update

This time, we try to choose αk to minimize the A-norm of the error. That is,

ek+1 = x− xk+1.

Recall: A-norm is given by 󰀂ek+1󰀂2A = e⊤k+1Aek+1. Notice that

ek+1 = x− xk+1

= x− (xk + αkrk) [From Steepest Descent]

= x− xk󰁿 󰁾󰁽 󰂀−αkrk

= ek − αrrk.

Then, note that since A is SPD, we can write A = R⊤R, the Cholesky Factorization. Then,

󰀂ek+1󰀂2A = e⊤k+1Aek+1

= e⊤k+1R
⊤Rek+1

= 󰀂Rek+1󰀂2.

Thus, we want to minimize

󰀂ek+1󰀂2A = 󰀂ek − αkrk󰀂2A,

or, equivalently, minimize

󰀂Rek+1󰀂22 = 󰀂R(ek − αkrk)󰀂22
= 󰀂Rek − αkRrk󰀂22

Let 󰁥ek+1 = Rek+1, 󰁥ek = Rek, and 󰁥rk = Rrk. Consider

󰀂󰁥ek+1󰀂22 = 󰀂󰁥ek − αk󰁥rk󰀂22 (5)

Goal: Find αk to minimize (5).

Visualization: vector projection

The minimum comes from orthogonal projection:

󰁥r⊤k (󰁥ek − αk󰁥rk) = 0 =⇒ αk =
󰁥r⊤k 󰁥ek
󰁥r⊤k 󰁥rk

.
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󰁥rk

α∗
k󰁥rk

αk󰁥rk

󰁥ek 󰁥ek − αk󰁥rk

That is,

αk =
r⊤k

A󰁽 󰂀󰁿 󰁾
R⊤R ek

r⊤k R⊤R󰁿 󰁾󰁽 󰂀
A

rk
=

r⊤k Aek

r⊤k Ark
.

Note: we don’t know ek. But we also don’t need it. What we really need is Aek. Observe that

r⊤k Aek = r⊤k A(x− xk) [ek = x− xk]

= r⊤k (Ax−Axk)

= r⊤k (b−Axk) [Ax = b]

= r⊤k rk [rk = b−Axk]

So,

αk =
r⊤k rk

r⊤k Ark
← This is exactly the same as we found previously.

Remark. We see that if A is SPD, each iteration of steepest descent minimizes 󰀂ek+1󰀂A over

span {rk}.

Recall: CG minimizes 󰀂ek+1󰀂A over Kk(A, r0) =
󰀋
r0, Ar0, . . . , A

k−1r0
󰀌

.

3.2.3 Conjugate Gradient Method

We derived CG using Lanczos method, which shows the connection of CG to Krylov subspaces. Ex-

tending the optimization approach will lead us to the same algorithm.

Assume A is SPD and consider

xk+1 = xk + αkpk [pk is a general descent direction.]

ek+1 = x− xk+1

• For steepest descent, we use the step direction: pk = rk.

• For conjugate gradient method, use pk = rk − βk−1rk−1.
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With the constraint p⊤
k−1Apk = 0 (A-conjugate direction), we choose step length αk so that

󰀂ek+1󰀂A is minimized over span {pk,pk−1}.

Using projections and derivations previously, we have

p⊤
k Aek+1 = 0 and p⊤

k−1Aek+1 = 0.

To find βk−1, we want

p⊤
k−1Apk = 0

p⊤
k−1A(rk − βk−1pk−1) = 0

=⇒ βk−1 =
p⊤
k−1Ark

p⊤
k−1Apk−1

= · · · = −
r⊤k rk

r⊤k−1rk−1
.

To find αk, denote ek+1 = ek −w, where w = span {pk−1,pk}. So,

ek+1 = ek −w = ek − c1pk − c2pk−1.

Then,

p⊤
k Aek+1 = 0 [Optimality condition]

p⊤
k A(ek − c1pk − c2pk−1) = 0

p⊤
k Aek − c1p

⊤
k Apk − c2 p⊤

k Apk−1󰁿 󰁾󰁽 󰂀
=0, A-conjugate

= 0

=⇒ c1 =
p⊤
k Aek

p⊤
k Apk

=
p⊤
k rk

p⊤
k Apk

.

Meanwhile,

p⊤
k−1Aek+1 = 0

p⊤
k−1A(ek − c1pk − c2pk−1) = 0

p⊤
k−1Aek󰁿 󰁾󰁽 󰂀

=0, optimality
condition

−c1 p⊤
k−1Apk󰁿 󰁾󰁽 󰂀

=0, A-conjugate

−c2p
⊤
k−1Apk−1 = 0

Since p⊤
k−1Apk−1 ∕= 0 in general, it must be c2 = 0. So,

αk = c1 =
p⊤
k rk

p⊤
k Apk

= · · · =
r⊤k rk

p⊤
k Apk

.
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Algorithm 14: Conjugate Gradient

Input: A ∈ Rn×n and b,x0 ∈ Rn

1 begin

2 Compute r0 = b−Ax0;

3 Set p0 = r0;

4 for k = 0, 1, 2, . . . do

5 w = Apk;

6 αk =
󰀃
r⊤k rk

󰀄
/(p⊤

k w);

7 xk+1 = xk + αkpk;

8 rk+1 = rk − αkw;

9 βk =
󰀃
r⊤k+1rk+1

󰀄
/
󰀃
r⊤k rk

󰀄
;

10 pk+1 = rk+1 + βkpk;

3.3 Preconditioning

Important Krylov Subspace Iterative Methods to Solve Ax = b or min
x

󰀂b−Ax󰀂2

• We use the conjugate gradient method (CG) when A is SPD.

1. Or the preconditioned conjugate gradient method (PCG)

2. Requires one matrix-vector multiplication with A per iteration.

• If A is symmetric, but not positive definite, then we can use the minimum residual method

(MINRES)

1. Requires one matrix-vector multiplication with A per iteration.

• If A is square, nonsingular, but not symmetric, then we can use the generalized minimum

residual method (GMRES).

1. Storage grows at each iteration.

2. Requires one matrix-vector multiplication with A per iteration.

• For least squares problems, we can use the LSQR method.

1. This is equivalent to using CG on the normal equations, A⊤Ax = A⊤b.

2. Requires one matrix-vector multiplication with A and one with A⊤ per iteration.

3. A mathematically equivalent method is known as CGLS.
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3.3.1 Introductory Remarks on Convergence

Conjugate Gradient In exact arithmetic, if A ∈ Rn×n is SPD, then CG is guaranteed to converge in at

most n iterations. [But n is still too many...]

• If A is SPD and can be written as A = I + B, where B is symmetric and rank(B) = r (i.e., B

is a low rank matrix), then CG will converge in at most r + 1 iterations.

Because B is symmetric, it can be written as B = V ΛV ⊤, where V ⊤V = V V ⊤ = I and

Λ =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

λ1

. . .

λr

0

. . .

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Since rank(B) = r, B has only r nonzero eigenvalues. So, A = I + B = I + V λV ⊤ =

V (I + Λ)V ⊤. Then, I + Λ decodes the eigenvalues of A.

I + Λ =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 + λ1

. . .

1 + λr

1

. . .

1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

where we know that n− r eigenvalues of A are 1.

• This property implies that if the eigenvalues of A are clustered around a single value (differ-

ent from 0), then CG will converge fast.

• Meanwhile, for CG, we can also show that

󰀂ek󰀂A
󰀂e0󰀂A

≤ 2

󰀣󰁳
κ(A)− 1󰁳
κ(A) + 1

󰀤k

,

where κ(A) is the condition number of A.

1. Smallest condition number is κ(A) = 1. Then,

󰀂ek󰀂A
󰀂e0󰀂A

≤ 0 =⇒ convergence in one step.

2. If A is well-conditioned (e.g., κ(A) ≈ 1), we get fast convergence.

3. If A is ill-conditioned, convergence may be slow.
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• The previous two bullet points are related to each other. If all eigenvalues of A are clustered

around a single point, then κ(A) ≈ 1.

LSQR LSQR is equivalent to CG applied to A⊤Ax = A⊤b, so convergence of LSQR depends on the

eigenvalues and condition number of A⊤A.

• Clustered eigenvalues of A⊤A ⇐⇒ Clustered singular values of A.

• κ(A⊤A) = κ2(A). So, if A is ill-conditioned, A⊤A is even worse.

GMRES More complicated convergence behavior

Definition 3.3.1 (Normal Matrix). If A ∈ Rn×n and A⊤A = AA⊤, then we say A is a

normal matrix.

• If A is normal, then A has a spectral decomposition (although eigenvalues and eigenvectors

might be complex). That is,

A = V ΛV ∗, where V ∗V = I.

Recall that V ∗ = V
⊤

is the conjugate transpose (or Hermitian transpose) of V . Also, note

that V and V ∗ are unitary matrix with κ(V ) = 1.

In this case, if eigenvalues are tightly clustered (away from 0), usually we have fast conver-

gence.

• If A is not normal and A = PΛP−1 (diagonalizable) with κ(P ) ≈ 1, then tightly clustered

eigenvalues (away from 0) usually means fast convergence.

• If A is not normal and A = PΛP−1 with large κ(P ), it’s complicated...

3.3.2 Preconditioning

Basic Idea of Preconditioning

• Apply CG (or MINRES, or GMRES, or LSQR, or ...) to a “transformed” system 󰁥A󰁥x = 󰁥b, where
󰁥A, 󰁥x, 󰁥b are related to A, x, b.

• 󰁥A has a more favorable spectrum (e.g., more clustered eigenvalues) than A.

• Compute x from 󰁥x.

Left Preconditioning

Ax = b ⇐⇒ M−1Ax = M−1b

⇐⇒ 󰁥A󰁥x = 󰁥b, where 󰁥A = M−1A, 󰁥x = x, 󰁥b = M−1b.

Note that this method can be sued for GMRES but not exactly for CG. This is because 󰁥A has to be

SPD for CG, but 󰁥A = M−1A is probably not symmetric.
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Right Preconditioning

Ax = b ⇐⇒ AM−1Mx = b

⇐⇒ 󰁥A󰁥x = 󰁥b, where 󰁥A = AM−1, 󰁥x = Mx, 󰁥b = b.

Again, AM−1 might not be symmetric.

Remark. When min 󰀂b−Ax󰀂22 using LSQR, we use right preconditioning more often,

because

• M can be smaller in dimension:

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

A

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰁫
M

󰁬󰁫
M−1

󰁬

•
󰀐󰀐b−AM−1Mx

󰀐󰀐2
2

doesn’t change norm,

but
󰀐󰀐M−1(b−Ax)

󰀐󰀐2
2

changes norm unless M is orthogonal.

Two-Sided Preconditioning Suppose M is SPD, then M = R⊤R (Choleksy). Then,

Ax = b ⇐⇒ R−⊤AR−1
󰁿 󰁾󰁽 󰂀

󰁥A

Rx󰁿󰁾󰁽󰂀
󰁥x

= R−⊤b󰁿 󰁾󰁽 󰂀
󰁥b

In this case, 󰁥A = R−⊤AR−1. If A is SPD and R is nonsingular, then 󰁥A is also SPD.

If we apply CG to this 󰁥A󰁥x = 󰁥b, we get Preconditioned CG (or, PCG).

Remark 1. (Convergence of PCG). Convergence of PCG depends on eigenvalues of

󰁥A = R−⊤AR−1.

But notice that

󰁥A = R−⊤AR−1

R−1 󰁥AR = R−1(R−⊤AR−1)R󰁿 󰁾󰁽 󰂀
=I

= (R⊤R)−1A

R−1 󰁥AR = M−1A.

So, R−1 󰁥AR is a similarity transformation and eigenvalues of 󰁥A are the same as eigen-

values of M−1A. So, we can investigate convergence of PCG by studying eigenvalues of

M−1A. [One can also show 󰁥A is similar to AM−1]
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Remark.

• Mathematically, PCG is CG for
󰁥A󰁥x = 󰁥b,

where 󰁥A = R−⊤AR−1, 󰁥x = Rx, 󰁥b = R−⊤b, and M = R⊤R.

• But, we should not explicitly form 󰁥A or 󰁥b. [A is huge and sparse, but 󰁥A might not be

sparse any more.]

• Instead, we should do some algebra to show that the steps of CG on 󰁥A󰁥x = 󰁥b can be

done by only accessing A, b, and M .

Algorithm 15: Preconditioned Conjugate Gradient (PCG)

Input: A ∈ Rn×n, b,x0 ∈ Rn, and SPD M ∈ Rn×n [There is not matrix R!]

1 begin

2 Compute r0 = b−Ax0;

3 Solve Mz0 = r0;

4 Set p0 = z0;

5 for k = 0, 1, 2, . . . do

6 w = Apk;

7 αk =
󰀃
z⊤k rk

󰀄
/
󰀃
p⊤
k w

󰀄
;

8 xk+1 = xk + αkpk;

9 rk+1 = rk − αkw;

10 Solve Mzk+1 = rk+1;

11 βk =
󰀃
z⊤k+1rk+1

󰀄
/
󰀃
z⊤k rk

󰀄
;

12 pk+1 = zk+1 + βkpk;

The major work per iteration:

• One matrix-vector multiplication with A, and

• One linear system solve with M .

So, we need to select M so that the linear system solve is easy. For example, diagonal M (and this

is called Jacobi preconditioner).

Remark. Preconditioners should be designed so that

• M (e.g., R⊤R) is not too expensive to construct.

• M−1A has a more favorable spectrum than A.

• Solving Mz = r should not be too expensive.

These conditions can be in conflict with each other.
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Some Choices for Preconditioners

• 1. Jacobi:

M = diag(A) =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

a11

a22
. . .

ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
.

[Assumption was that A is SPD. So, diagonal entries are positive.]

(+) Trivial to construct

(+) Trivial to solve Mz = b

(+) If A has widely-varying diagonals, this may work OK.

2. Similarly, we can use Gauss-Seidel or SOR to construct M .

3. Block versions can also be sued. For example, Block Jacobi:

A =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
=⇒ M =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

A11

A22

. . .

Ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
.

(+) Each Aii are smaller problems to solve.

(+) Solving each system Aii is independent from other smaller systems =⇒ completely

parallelizable!

• 1. Incomplete Cholesky (ichol, for SPD, CG):

Idea: Find triangular matrix R such that:

– A ≈ R⊤R

– R is restricted to have a certain sparsity pattern.

– Can also use drop tolerance (droptol) to get even more sparsity.

2. Incomplete LU factorization (ilu, for nonsymmetric A, GMRES)

Similar to incomplete Cholesky, but with

A ≈ LU.

• Sparse Approximate Inverses

• Preconditioners based on insight into the problem.

Example 3.3.2

Consider the PDE:

−∇(a(x, y)∇u) = f(x, y) 0 < x, y < 1 (6)

with Dirichlet BCs: u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0.
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Goal Compute u(x, y).

Discretize to solve: Au = f . One approach to preconditioning: set a(x, y) = 1. Then, (6)

becomes

−uxx − uyy = f(x, y) (Poisson’s Equation)

Discretize (Poisson’s Equation) to get an appropriate M .

3.4 Convergence

3.4.1 GMRES Convergence

The basic idea is that at each iteration k, find z ∈ Kk(A, r0) so that xk = x0 + z

min 󰀂b−Axk󰀂2.

Suppose we take x0 = 0. So, r0 = b−Ax0 = b. Then, we want to find xk ∈ Kk(A,b) to

min 󰀂b−Axk󰀂2,

where Kk(A,b) = span
󰀋
b, Ab, A2b, . . . , Ak−1b

󰀌
.

In deriving GMRES, we use Arnoldi to find an orthonormal basis {q1,q2, . . . ,qk} of Kk. Recall that

xk ∈ Kk(A,b) =⇒ ∃ scalars y1, y2, . . . , yk such that

xk = y1q1 + y2q2 + · · ·+ ykqk

= Qky.

So, in GMRES, at iteration k, we find y ∈ Rk so that

󰀂b−Axk󰀂2 = 󰀂b−AQky󰀂2 is minimized, (7)

where Qk =
󰁫
q1 q2 · · · qk

󰁬
∈ Rn×k. But xk ∈ Kk(A,b) = span

󰀋
b, Ab, A2b, . . . , Ak−1b

󰀌
also means

∃ scalars such that

xk = c1b+ c2Ab+ · · ·+ ckA
k−1b

=
󰁫
b Ab · · · Ak−1b

󰁬

󰁿 󰁾󰁽 󰂀
Kk

c

= Kkc.

Thus, a GMRES alternative to above is that at each iteration, find c ∈ Rk so that

󰀂b−Axk󰀂2 = 󰀂b−AKkc󰀂2 is minimized, (8)
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where Kk =
󰁫
b Ab · · · Ak−1b

󰁬
∈ Rn×k

Connection between (7) and (8): If Kk = QkRk (thin, economy QR factorization, where Rk ∈ Rk×k

is nonsingular), then

󰀂b−AKkc󰀂2 = 󰀂b−AQkRkc󰀂2
= 󰀂b−AQky󰀂2, where y = Rkc.

Now, let’s consider the alternative derivation (8) of GMRES. Let

rk = b−AKkc

= b−A
󰀓
c1b+ c2Ab+ · · ·+ ckA

k−1b
󰀔

= b−
󰀓
c1Ab+ c2A

2b+ · · ·+ ckA
kb

󰀔

=
󰀓
I − c1A− c2A

2 − · · ·− ckA
k
󰀔

󰁿 󰁾󰁽 󰂀
pk(A)

b

= pk(A)b,

where pk(t) is a polynomial of degree k with pk(0) = 1 (monic polynomial).

Thus, GMREs can now be considered as: at each iteration k, find pk ∈ Pk such that

󰀂pk(A)b󰀂2 is minimized,

where Pk = {all polynomials p of degree ≤ k, p(0) = 1}. Note that

󰀂rk󰀂2 = 󰀂pk(A)b󰀂2 ≤ 󰀂pk(A)󰀂2󰀂b󰀂2.

The critical factor that determines how quickly 󰀂rk󰀂2 decreases is usually 󰀂pk(A)󰀂2. Specifically,

󰀂rk󰀂2
󰀂b󰀂2

≤ min
pk∈Pk

󰀂pk(A)󰀂2.

Question: Given A and K, how small can 󰀂pk(A)󰀂2 be?

If A is diagonalizable, then A = V ΛV −1, where

Λ = diag(λ1,λ2, . . . ,λn) are eigenvalues and V =
󰁫
v1 v2 · · · vn

󰁬
are eigenvectors.

Notice that

Aj = A ·A · · ·A

= V ΛV −1V󰁿 󰁾󰁽 󰂀
=I

ΛV −1 · · ·V ΛV −1

= V ΛjV −1.
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So, if p ∈ Pk, then

p(A) = I + c1A+ c2A
2 + · · ·+ ckA

k

= V V −1 + c1V ΛV −1 + c2V Λ2V −1 + · · ·+ ckV ΛkV −1

= V
󰀓
I + c1Λ+ c2Λ

2 + · · ·+ ckΛ
k
󰀔
V −1

= V p(Λ)V −1.

Hence,

󰀂p(A)󰀂2 =
󰀐󰀐V p(Λ)V −1

󰀐󰀐
2

≤ 󰀂V 󰀂2󰀂p(Λ)󰀂2
󰀐󰀐V −1

󰀐󰀐
2

= 󰀂V 󰀂2
󰀐󰀐V −1

󰀐󰀐
2󰁿 󰁾󰁽 󰂀

=κ(V )

󰀂p(Λ)󰀂2

= κ(V )󰀂p(Λ)󰀂2.

Now, look at

p(Λ) = I + c1Λ+ c2Λ
2 + · · ·+ ckΛ

k

󰁿 󰁾󰁽 󰂀
all diagonal matrices

=

󰀵

󰀹󰀹󰀷

1 + c1λ1 + · · ·+ ckλ
k
1

. . .

1 + c1λk + · · ·+ ckλ
k
k

󰀶

󰀺󰀺󰀸

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

p(λ1)

p(λ2)

. . .

p(λk)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
,

where p(λj) = 1 + c1λj + c2λ
2
j + · · ·+ ckλ

k
j .

Theorem 3.4.1 Convergence of GMRES

If A is diagonalizable with A = V ΛV −1, then

󰀂rk󰀂2
󰀂b󰀂2

≤ min
pk∈Pk

󰀂pk(A)󰀂2 ≤ κ(V ) min
pk∈Pk

max
λ1,...,λn

|pk(λi)|,

where V =
󰁫
v1 · · · vn

󰁬
are eigenvectors of A and λ1, . . . ,λn are eigenvalues of A.
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Remark 1. (Special Case of the Theorem). Suppose A is diagonalizable, and A has m distinct

eigenvalues λ1,λ2, . . . ,λm (non-zero) .

If k ≥ m, then take

pk(t) =

󰀕
1− t

λ1

󰀖󰀕
1− t

λ2

󰀖
· · ·

󰀕
1− t

λm

󰀖
∈ Pk

and pk(λj) = 0 ∀ j = 1, 2, . . . ,m. Then, pk(A) = 0.

That is, GMRES must converge in at most m iterations.

Remark.

• This argument holds only if A is diagonalizable.

• If A is not diagonalizable, then convergence analysis is very complicated.

• If A is diagonalizable, and κ(V ) is large, there may be a slow decrease in residual at each

iteration.

• IfA is symmetric (MINRES case), thenA is orthogonally diagonalizable, A = V ΛV ⊤, where

V V ⊤ = V ⊤V = I. In this case, κ(V ) = 1. Convergence only depends on eigenvalues.

3.4.2 CG Convergence

Assume A ∈ Rn×n is symmetric and positive definite. The approximation problem is: find pk ∈ Pk such

that

󰀂ek󰀂A = 󰀂pk(A)e0󰀂A is minimized.

Since ek = pk(A)e0, where pk ∈ Pk, the set of polynomials with degree ≤ k and p(0) = 1, we have

󰀂ek󰀂A
󰀂e0󰀂A

= min
pk∈Pk

󰀂pk(A)e0󰀂A
󰀂e0󰀂A

.

Since A = V ΛV ⊤ (as A is SPD), then

pk(A) = V pk(Λ)V
⊤ =⇒ p⊤k (A) =

󰀓
V pk(Λ)V

⊤
󰀔⊤

= V p⊤k (Λ)V
⊤ = V pk(Λ)V

⊤.

So,

󰀂pk(A)e0󰀂2A = (pk(A)e0)
⊤A(pk(A)e0) = e⊤0 p

⊤
k (A)Apk(A)e0

= e⊤0

p⊤k (A)
󰁽 󰂀󰁿 󰁾
V pk(Λ)V

⊤

A󰁽 󰂀󰁿 󰁾
(V ΛV ⊤)

pk(A)󰁽 󰂀󰁿 󰁾
(V pk(Λ)V

⊤) e0

= e⊤0 V pk(Λ)Λpk(Λ)V
⊤e0.

62
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Note that pk(Λ)Λpk(Λ) are all diagonal matrices. So

pk(Λ)Λpk(Λ) = D = diag(λ1p
2
k(λ1),λ2p

2
k(λ2), . . . ,λnp

2
k(λn)).

Let d = V ⊤e0, then

󰀂pk(A)e0󰀂2A =

d⊤
󰁽󰂀󰁿󰁾
e⊤0 V D

d󰁽 󰂀󰁿 󰁾
V ⊤e0

= d⊤Dd =

n󰁛

j=1

d2jλjp
2
k(λj).

Also, the denominator is

󰀂e0󰀂2A = e⊤0 Ae0 = e⊤0 V󰁿󰁾󰁽󰂀
d⊤

ΛV ⊤e0󰁿 󰁾󰁽 󰂀
d

= d⊤Λd

=

n󰁛

j=1

d2jλj .

So, we now have

󰀂pk(A)e0󰀂2A
󰀂e0󰀂2A

=

n󰁛

j=1

d2jλjp
2
k(λj)

n󰁛

j=1

d2jλj

≤

n󰁛

j=1

d2jλjM
2

n󰁛

j=1

d2jλj

,

where M = max
λ1,...,λn

|pk(λj)|.

Theorem 3.4.2 Convergence of CG

If A is SPD with A = V ΛV −1 (the spectral decomposition), then

󰀂ek󰀂A
󰀂e0󰀂A

≤ min
pk∈Pk

max
λ1,...,λn

|pk(λj)|

≤ min
p∈Pk

max
λ∈[λmin,λmax]

|pk(λ)|.

Distinct Eigenvalues

• We see again if λ, . . . ,λm with m ≤ n are distinct eigenvalues. If k ≥ m, then

pk(t) =

󰀕
1− t

λ1

󰀖󰀕
1− t

λ2

󰀖
· · ·

󰀕
1− t

λm

󰀖
∈ Pk

and pk(0) = 1. Also, pk(λj) = 0 ∀ j = 1, . . . ,m. So, CG must converge by iteration m.

63
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• Note: A special case of this is when

A = I +B,

where B is symmetric and rank(B) = m− 1.

B = V

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

δ1
. . .

δm−1

0

. . .

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

V ⊤.

Then,

A = I +B

= V IV ⊤ + V

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

δ1
. . .

δm−1

0

. . .

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

V ⊤

= V

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

I +

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

δ1
. . .

δm−1

0

. . .

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

V ⊤

= V

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

δ1 + 1

. . .

δm−1 + 1

1

. . .

1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

V ⊤.

So, we have m distinct eigenvalues. So, CG on A converges by m iterations.

• Extension: If A = I+B+E, with B symmetric has rank(B) = m−1 and 󰀂E󰀂 is “small,” then

CG for A will converge by approximately m iterations.
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What can be said if we don’t know the eigenvalue distribution? For any p∗k ∈ Pk, we have

󰀂ek󰀂A
󰀂e0󰀂

≤ min
pk∈Pk

max
λ∈[λmin,λmax]

|pk(λ)| ≤ max
λ∈[λmin,λmax]

|p∗k(λ)| ≤ ?

• We want to find a p∗k(λ), where |p∗k(λ)| has a tight upper bound.

• We get this from the first kind Chebyshev polynomials:

Tk(t) = cos(k arccos(t)) for k = 0, 1, . . . , where t ∈ [−1, 1].

These may not look like polynomials, but notice:

T0(t) = cos(0 · arccos(t)) = cos(0) = 1

T1(t) = cos(1 · arccos(t)) = t

T2(t) = cos(2 arccos(t)) [cos(2θ) = 2 cos2 θ − 1]

= 2 cos2(arccos(t))− 1 = 2t2 − 1

It is not difficult to show that (with the right trigonometric identities):

Tk(t) + Tk−2(t) = 2tTk−1(t), k = 2, 3, . . .

So,

Tk(t) = 2tTk−1(t)− Tk−2(t), k = 2, 3, . . .

• Important Properties of Tk:

1.

Tk(−t) = cos(k arccos(−t)) = cos(k(π − arccos(t)))

= cos(kπ − k arccos(t))

= cos(kπ)󰁿 󰁾󰁽 󰂀
±1

cos(k arccos(t))󰁿 󰁾󰁽 󰂀
Tk(t)

+sin(kπ)󰁿 󰁾󰁽 󰂀
=0

sin(arccos(t))

= ±Tk(t).

So,

|Tk(−t)| = |Tk(t)| .

2. If α = eiθ = cos θ + i sin θ, then α−1 = e−iθ = cos θ − i sin θ. Hence,

t =
α+ α−1

2
=

eiθ + e−iθ

2
=

cos θ + i sin θ + cos θ − i sin θ

2
= cos θ.
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So,

Tk

󰀕
α+ α−1

2

󰀖
= Tk(cos θ) = cos(k arccos(cos θ))

= cos(kθ)

=
eikθ + e−ikθ

2

=
αk + α−k

2
.

So,

Tk

󰀕
α+ α−1

2

󰀖
=

αk + α−k

2
.

3. For t ∈ [−1, 1],

|Tk(t)| = |cos(k arccos(t))| ≤ 1.

This is a good tight bound on Tk(t), but it only works on [−1, 1].

4. Tk(t) is a polynomial of degree ≤ k. But Tk(0) is not always = 1.

• We would like p∗k ∈ Pk (i.e., p∗k(0) = 1) that is bounded on [λmin,λmax].

We can get p∗k by shifting and scaling Tk:

1. Shifting: Let

t(λ) =
2λ− (λmax + λmin)

λmax − λmin
.

This maps λ ∈ [λmin,λmax] to t ∈ [−1, 1] and

|Tk(t(λ))| ≤ 1 for λ ∈ [λmin,λmax].

2. Scaling: we want p∗k(0) = 1. Let’s use

p∗k(λ) =
Tk(t(λ))

Tk(t(0))
.

[One can verify that Tk(t(0)) ∕= 0.]

Now, we have

dfrac󰀂ek󰀂A󰀂e0󰀂A ≤ min
pk∈Pk

max
λ∈[λmin,λmax]

|pk(λ)|

≤ max
λ∈[λmin,λmax]

|p∗k(λ)|

= max
λ∈[λmin,λmax]

󰀏󰀏󰀏󰀏
Tk(t(λ))

Tk(t(0))

󰀏󰀏󰀏󰀏

≤ 1

|Tk(t(0))|
.
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Now, let’s look at Tk(t(0)):

t(0) =
−(λmax + λmin)

(λmax − λmin)

=
−(λmax + λmin)

(λmax − λmin)
· 1/λmin

1/λmin

=
−(λmax/λmin + 1)

(λmax/λmin − 1)

= −κ(A) + 1

κ(A)− 1
[κ(A) =

λmax

λmin
]

So,

|Tk(t(0))| =
󰀏󰀏󰀏󰀏Tk

󰀕
−κ(A) + 1

κ(A)− 1

󰀖󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏Tk

󰀕
κ(A) + 1

κ(A)− 1

󰀖󰀏󰀏󰀏󰀏.

Let α =

󰁳
κ(A) + 1󰁳
κ(A)− 1

. Then,

α+ α−1 =

󰁳
κ(A) + 1󰁳
κ(A)− 1

+

󰁳
κ(A)− 1󰁳
κ(A) + 1

=
2(κ(A) + 1)

κ(A)− 1
.

So,
α+ α−1

2
=

κ(A) + 1

κ(A)− 1
= t(0).

Hence,

|Tk(t(0))| =
󰀏󰀏󰀏󰀏Tk

󰀕
α+ α−1

2

󰀖󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏
αk + α−k

2

󰀏󰀏󰀏󰀏 ≥
αk

2
.

=⇒ 1

|Tk(t(0))|
≤ 2

αk
= 2

󰀣󰁳
κ(A)− 1󰁳
κ(A) + 1

󰀤k

.

Theorem 3.4.3 Convergence of CG, II

If A is SPD, then

󰀂ek󰀂A
󰀂e0󰀂A

≤ 2

󰀣󰁳
κ(A)− 1󰁳
κ(A) + 1

󰀤k

.

3.4.3 CG Convergence, Revisited

We have shown that
󰀂ek󰀂A
󰀂e0󰀂A

≤ min
pk∈Pk

max
λ1,...,λn

|pk(λi)|.
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This tells us that if there are only m distinct eigenvalues, λ0,λ1, . . . ,λm, then CG should converge in at

most m iterations. [But it may still take a little bit more iterations, due to round-off errors.]

We can see this by exhibiting a polynomial

pk(λ) =

󰀕
1− λ

λ1

󰀖󰀕
1− λ

λ2

󰀖
· · ·

󰀕
1− λ

λm

󰀖

=

󰀕
λ1 − λ

λ1

󰀖󰀕
λ2 − λ

λ2

󰀖
· · ·

󰀕
λm − λ

λm

󰀖
,

which will be zero for all eigenvalues.

We also showed, using properly shifted and scaled Chebyshev polynomials,

󰀂ek󰀂A
󰀂e0󰀂A

≤ min
p∈Pk

max
λ∈[λ1,λn]

|pk(λ)| ≤ 2

󰀣󰁳
κ(A)− 1󰁳
κ(A) + 1

󰀤k

,

where λ1 = λmin, λn = λmax, and κ(A) =
λn

λn
, condition number of A.

Now, suppose we have eigenvalues of A distributed like the following

0 < λ1 ≤ · · · ≤ λℓ󰁿 󰁾󰁽 󰂀
outliers

≤ γ1 ≤ λℓ+1 ≤ · · · ≤ λn−m ≤ γ2󰁿 󰁾󰁽 󰂀
cluster

≤ λn−m+1 ≤ · · · ≤ λn󰁿 󰁾󰁽 󰂀
outliers

,

where λ1 = λmin and λn = λmax. Note that if γ1 ≈ γ2 (e.g., γ1 = c− ε and γ2 = c+ ε), then we know that

there are n− (m+ ℓ) eigenvalues of A clustered around c.

Outlying Eigenvalues Think about these like the case of having m+ ℓ distinct eigenvalues.

Let

q(λ) =

ℓ󰁜

j=1

󰀕
λ− λj

λj

󰀖 n󰁜

j=n−m+1

󰀕
λj − λ

λj

󰀖
.

Note:

• q(0) = ±1 (we can easily adjust the sign by taking absolute values).

• q(λj) = 0 for all outlying eigenvalues.

=⇒ minmax of |q(λ)| for λ1,λ2, . . . ,λn has to occur in [γ1, γ2].

Interior (Clustered) Eigenvalues Use scaled and shifted Chebyshev polynomials.

Use k − ℓ−m degree Chebyshev polynomial (properly shifted and scaled):

Tk−ℓ−m

󰀕
γ2 + γ1 − 2λ

γ2 − γ1

󰀖

Tk−ℓ−m

󰀕
γ2 + γ1
γ2 − γ1

󰀖 .
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Now, let’s look at the whole spectrum :

󰁥pk(λ) =
Tk−ℓ−m

󰀕
γ2 + γ1 − 2λ

γ2 − γ1

󰀖

Tk−ℓ−m

󰀕
γ2 + γ1
γ2 − γ1

󰀖
ℓ󰁜

j=1

󰀕
λ− λj

λj

󰀖 n󰁜

j=n−m+1

󰀕
λj − λ

λj

󰀖
.

Observe:

󰀂ek󰀂A
󰀂e0󰀂A

≤ min
pk∈Pk

max
λj

|pk(λj)|

≤ 2

󰀕
γ − 1

γ + 1

󰀖k−ℓ−m

󰁿 󰁾󰁽 󰂀
comes from the

Chebyshev polynomial

max
λ∈[γ1,γ2]

󰀏󰀏󰀏󰀏󰀏󰀏

ℓ󰁜

j=1

󰀕
λ− λj

λj

󰀖 n󰁜

j=n−m+1

󰀕
λj − λ

λj

󰀖󰀏󰀏󰀏󰀏󰀏󰀏
󰁿 󰁾󰁽 󰂀

max occur within the clustered interval

,

where γ =

󰁵
γ2
γ1

≥ 1.

Theorem 3.4.4 Convergence of CG, III

Let A ∈ Rn×n be SPD and we use CG to solve Ax = b. If the eigenvalues of A satisfy

0 < λ1 ≤ · · · ≤ λℓ ≤ γ1 ≤ λℓ+1 ≤ · · · ≤ λn−m ≤ γ2 ≤ λn−m+1 ≤ · · · ≤ λn,

then

󰀂ek󰀂A
󰀂e0󰀂A

≤ 2

󰀕
γ − 1

γ + 1

󰀖k−ℓ−m

max
λ∈[γ1,γ2]

󰀏󰀏󰀏󰀏󰀏󰀏

ℓ󰁜

j=1

󰀕
λ− λj

λj

󰀖 n󰁜

j=n−m+1

󰀕
λj − λ

λj

󰀖󰀏󰀏󰀏󰀏󰀏󰀏
,

where γ =

󰁵
γ2
γ1

≥ 1.

• Suppose γ1 = c− ε and γ2 = c+ ε, where 0 < ε ≪ 1.

It is not too difficult ot show that

γ − 1

γ + 1
=

c−
√
c2 − ε2

ε
< ε.

In this case, we have

󰀂ek󰀂A
󰀂e0󰀂A

≤ 2 εk−ℓ−m
󰁿 󰁾󰁽 󰂀

will be
small

max
λ∈[γ1,γ2]

󰀏󰀏󰀏󰀏󰀏󰀏

ℓ󰁜

j=1

󰀕
λ− λj

λj

󰀖 n󰁜

j=n−m+1

󰀕
λj − λ

λj

󰀖󰀏󰀏󰀏󰀏󰀏󰀏
.

• We might expect:

1. At most 1 iteration for each outlying eigenvalue, and
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2. Approximately 1 more iteration for each cluster. [e.g., if we have 3 clusters, we expect to have

approximately 3 more iterations.]

• Goal for preconditioning:

Find preconditioner M such that M−1A has clustered eigenvalues.

3.5 LSMR

Recall LSQR: Suppose we want to solve min
x

󰀂b−Ax󰀂2 through LSQR.

• Mathematically, it is equivalent to applying CG on the normal equations, A⊤Ax = A⊤b.

• We use Golub-Kahan bidiagonalization.

That is, give A,b, let u1 = b/β1 with β1 = 󰀂b󰀂2. GKB iterations compute

Avk = αkuk + βkuk+1

A⊤uk = βk−1vk−1 + αkvk

and

AVk = Uk+1Bk, Bk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α1 β1

α2 β2
. . .

. . .

. . . βk−1

αk

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

• At each iteration, LSQR uses GKB to compute

yk = argmin
y

󰀂Bky − β1 − e1󰀂2,

where e1 =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1

0
...

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
, and then set xk = Vkyk.

• Also, recall that CG on normal equations: A⊤Ax = A⊤b.

CG minimizes 󰀂ek󰀂2A⊤A = 󰀂x∗ − xk󰀂2A⊤A, where x∗ is the exact solution of the normal equation.

[Here, we abuse notation, and ek = error = x∗ − xk.]

Proposition 3.1 : If x∗ is the exact least squares solution, then

󰀂x∗ − xk󰀂2A⊤A = 󰀂rk − r∗󰀂22,

where r∗ = b−Ax∗.
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Proof 1. Note that

󰀂x∗ − xk󰀂2A⊤A = (x∗ − xk)
⊤A⊤A(x∗ − xk)

= [A(x∗ − xk)]
⊤(A(x∗ − xk))

= 󰀂A(x∗ − xk)󰀂22 = 󰀂Aek󰀂22

Also note that

A(x∗ − xk) = Ax∗ −Axk

= Ax∗ − b+ b−Axk

= −(b−Ax∗) + (b−Axk)

Denote rk = b − Axk, the residual from the k-th iteration, and r∗ = b − Ax∗, the residual if we know

the solution. Then,

A(x∗ − xk) = rk − r∗.

Hence,

󰀂x∗ − xk󰀂2A⊤A = 󰀂rk − r∗󰀂22.

Q.E.D. 󰃈
Proposition 3.2 : (r∗)⊤Ax = 0 for any vector z. In other words, r∗ ⊥ range(A).

Proof 2. If x∗ is the exact LS solution, then

A⊤(b−Ax∗) = 0

by normal equation. So,

A⊤(r∗) = 0

z⊤A⊤r∗ = 0 for any z

(r∗)⊤Ax = 0 for any z [take transpose.]

Q.E.D. 󰃈
Proposition 3.3 : r⊤k Avi for i = 1, 2, . . . , k, where vi are vectors computed from GKB.

Proof 3. Note that

rk = b−Axk = b−AVkyk

= Uk+1(β1e1 −Bkyk) [Uk+1Bk = AVk]

V ⊤
k A⊤rk = V ⊤

k A⊤Uk+1󰁿 󰁾󰁽 󰂀 (β1e1 −Bkyk)

= B⊤
k (β1e1 −Bkyk) [Bk = U⊤

k+1AVk]

= 0 [yk = argmin
y

󰀂β1e1 −Bkyk󰀂2 is a LS problem]

71



3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.5 LSMR

Take transpose of everything, we have

󰀓
V ⊤
k A⊤rk

󰀔⊤
= r⊤k AVk = 0.

So,

r⊤k Avi = 0 for i = 1, 2, . . . , k.

Q.E.D. 󰃈
Proposition 3.4 : (r∗)⊤(rk − r∗) = 0.

Proof 4. We know (r∗)⊤Az = 0 for any z. So,

(r∗)⊤Aek = 0

(r∗)⊤(rk − r∗) = 0 [Proposition 3.1]

Q.E.D. 󰃈
Proposition 3.5 : 󰀂rk+1󰀂22 ≤ 󰀂rk󰀂22. That is, rk = b−Axk are monotonically non-increasing.

Proof 5. Since we are using CG on the normal equations, we know

󰀂ek+1󰀂2A⊤A ≤ 󰀂ek󰀂2A⊤A

󰀂rk+1 − r∗󰀂22 ≤ 󰀂rk − r∗󰀂22 [Proposition 3.1]

But notice that

rk = r∗ + (rk − r∗).

Then,

󰀂rk󰀂22 = 󰀂r∗ + (rk − r∗)󰀂22
= (r∗ + (rk − r∗))⊤(r∗ + (rk − r∗))

= (r∗)⊤r∗ + 2 (r∗)⊤(rk − r∗)󰁿 󰁾󰁽 󰂀
=0

+(rk − r∗)⊤(rk − r∗)

= 󰀂r∗󰀂22 + 󰀂rk − r∗󰀂22 [Proposition 3.4]

So, 󰀂rk − r∗󰀂22 = 󰀂rk󰀂22 − 󰀂r∗󰀂22. Similarly, 󰀂rk+1 − r∗󰀂22 = 󰀂rk+1󰀂22 − 󰀂r∗󰀂22. We have previously shown

󰀂rk+1 − r∗󰀂22 ≤ 󰀂rk − r∗󰀂22
󰀂rk+1󰀂22 −✟✟✟󰀂r∗󰀂22 ≤ 󰀂rk󰀂22 −✟✟✟󰀂r∗󰀂22

󰀂rk+1󰀂22 ≤ 󰀂rk󰀂22.

Q.E.D. 󰃈
In summary

• LSQR residuals 󰀂rk󰀂2 = 󰀂b−Axk󰀂2 are monotonically non-increasing.
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• But it doesn’t say that the normal equation residual

󰀐󰀐󰀐A⊤rk

󰀐󰀐󰀐
2
=

󰀐󰀐󰀐A⊤(b−Axk)
󰀐󰀐󰀐
2

decrease monotonically.

LSMR

Like LSQR: we use GKB, but for the projected system, it solves

yk = argmin
y

󰀐󰀐󰀐B⊤
k (Bky − β1e1)

󰀐󰀐󰀐
2

xk = Vkyk.

This means that xk minimizes

󰀐󰀐󰀐A⊤rk

󰀐󰀐󰀐
2
=

󰀐󰀐󰀐A⊤(b−Axk)
󰀐󰀐󰀐
2
,

the normal equation residual. It corresponds to MINRES on the normal equations.

• Algorithm is very similar to LSQR>

• LSMR ensures
󰀐󰀐A⊤rk

󰀐󰀐
2

is monotonically non-increasing.

• 󰀂rk󰀂2 is “nearly” monotonically non-increasing.
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4 INVERSE PROBLEMS AND ITERATIVE METHODS

4 Inverse Problems and Iterative Methods

4.1 Introduction to Inverse Problems

A linear inverse problem is usually written as

b = Axexact + η = bexact + η,

where η is a vector representing unknown errors/noise in the measured data, b. [We don’t know η, but

we might know 󰀂η󰀂.]

Ideally, we want to solve

Axexact = bexact,

but we don’t know bexact. So, since we only know b, if we assume η is “small,” we can try to solve

Ax = b ⇐⇒ xnaïve = A−1b.

We call this method the naïve inverse solution.

xnaïve = A−1b

= A−1(bexact + η)

= A−1bexact +A−1η

= xexact +A−1η.

Note that A−1bexact = xexact is the exact solution (i.e., what we want), but A−1η is the inverted noise.

This noise may be “large” and may dominate/hide anything in xexact. To see this, we will use SVD.

Singular Value Expansion of A

A = UΣV ⊤ =
󰁫
u1 u2 · · · un

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

σ1

σ2
. . .

σn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

v⊤
1

v⊤
2
...

v⊤
n

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
=

n󰁛

i=1

σuiv
⊤
i ,

where σ1 ≥ σ2 ≥ · · · ≥ σn > 0 and uiv
⊤
i are rank-1 matrices.

Singular Value Expansion of A−1

A−1 = V Σ−1U⊤ =
󰁫
v1 v2 · · · vn

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1/σ1

1/σ2
. . .

1/σn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

u⊤
1

u⊤
2
...

u⊤
n

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
=

n󰁛

i=1

1

σi
viu

⊤
i ,

where viu
⊤
i are rank-1 matrices.
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Now, let’s reconsider the naïve inverse solution approximation:

xnaïve = A−1b =

n󰁛

i=1

1

σi
vi u

⊤
i b󰁿󰁾󰁽󰂀

scalar

=

n󰁛

i=1

u⊤
i b

σu
vi [linear combination of vi’s]

=

n󰁛

i=1

u⊤
i (bexact + η)

σi
vi

=

n󰁛

i=1

u⊤i bexact

σi
vi +

n󰁛

i=1

u⊤
i η

σi
vi

= xexact +A−1η

What can we say about A−1η?

• If η is small, u⊤
i η is small.

• A−1η will be small if
u⊤
i η

σi
are small.

Properties of Inverse Problems

•
󰀏󰀏u⊤

i η
󰀏󰀏 are small, and roughly the same order of magnitude for all i.

• σ1 ≥ σ2 ≥ · · · ≥ σn with σn ≈ 0.

• Since σj → 0 fast, σj is tiny for large j. The matrix A is very ill-conditioned (κ(A) is huge).

residual =
󰀂b−Axk󰀂2

󰀂b󰀂2

In tis cases, residuals do not tell us how good the solution is,

• For large σi, σi >
󰀏󰀏u⊤

i η
󰀏󰀏

For small σi, σi <
󰀏󰀏u⊤

i η
󰀏󰀏,

and σn ≪
󰀏󰀏u⊤

nη
󰀏󰀏.

• The singular vectors ui and vi oscillate more as i increases (that is, as σi decreases). Dividing

by small σi amplifies oscillations in vi.

Question Can we compute an approximation where the inverted noise is not too large?

One idea Truncated SVD

Leave out components of xnaïve corresponding to small singular values. That is,

xk =

k󰁛

i=1

u⊤
i b

σi
vi, k < n [k is not an iteration but where we truncate.]
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Note that

xk =

k󰁛

i=1

u⊤
i bexact

σi
vi +

k󰁛

i=1

u⊤
i η

σi
vi.

If we select k well, we should have small η term,. while preserving information from bexact.

Theorem 4.1.1 Picard Condition Assumption
󰀏󰀏u⊤

i bexact
󰀏󰀏 decays on average faster than σi

With this assumption,

•
k󰁛

i=1

u⊤
i bexact

σi
vi

󰀻
󰀿

󰀽
small k : get info about solution ← Good!

large k : terms → 0 =⇒ we can discard these w/o losing much info

•
k󰁛

i=1

u⊤
i η

σi
vi

󰀻
󰀿

󰀽
small k : terms ≈ 0 ← Good!

large k :
󰀏󰀏u⊤

i η
󰀏󰀏 > σi, so can be large ← BAD...

What is a good k? More later... But generally speaking, with Truncated SVD (TSVD), we will choose an

optimal kopt that balances reconstructing enough info, without letting the noise blow up:

xtsvd =

kopt󰁛

i=1

u⊤
i η

σi
vi, 1 ≤ kopt ≤ n.

4.2 Krylov Methods for Inverse Problems

Summary of Inverse Problems

• Large singular value components correspond to the solution.

We want to reconstruct theses.

• Small singular value components magnify noise.

We don’t want to reconstruct these.

• The SVD is a great tool, but is too expensive for large-scale problems.

• We will use Krylov subspace iterative methods to solve inverse problems.

First consider A ∈ Rn×n, symmetric and positive definite. Then, all eigenvalues are positive, and

A = V ΛV ⊤, (Spectral Decomposition)

where V V ⊤ = V ⊤V = I, and Λ = diag(λ1, . . . ,λn).

If we write V =
󰁫
v1 v2 · · · vn

󰁬
, then

Avi = λivi, A2vi = λiAvi = λ2
ivi, . . . , Ajvi = λj

ivi.
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Assume λ1 ≥ λ2 ≥ · · · ≥ λn.

Suppose we run k iterations of Lanczos on A with initial vector q, with 󰀂q󰀂2 = 1. This generates

q1 = q, q2, q3, . . . , qk,

an orthonormal basis for the Krylov subspace

Kk(A,q) = span
󰁱
q, Aq, A2q, . . . , Ak−1q

󰁲

and

Q⊤
k AQk = Tk ∈ Rk×k.

What can we say about the vectors in Kk(A,q)?

• Notice

Aj =
󰀓
V ΛV ⊤

󰀔j
= V ΛjV ⊤,

where Λj = diag(λj
1,λ

j
2, . . . ,λ

j
n).

• Consider vectors in Kk(A,q):

Ajq = V ΛjV ⊤q = V Λj

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

c1

c2
...

cn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
, c = V ⊤q

= V

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

c1λ
j
1

c2λ
j
2

...

cnλ
j
n

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
= c1λ

j
1V

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1

c2
c1

󰀕
λ2

λ1

󰀖j

...

cn
c1

󰀕
λn

λ1

󰀖j

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
(󰂏)

1. We assume c1 ∕= 0 (so that we can divide safely). If c1 = 0, just choose another q to

construct Kk(A,q) again.

2. We assume λ1 > λ2 ≥ · · · ≥ λn > 0.

3. If λ1 ≫ λ2, then
λi

λ1
≪ 1, and it goes to 0 fast for large j.

4. Since
λi

λ1
< 1 for j = 2, . . . , n, we know that the vector (󰂏) →

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1

0
...

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
as j increases.
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So, let c = c1λ
j
1 be a scalar, we have

Ajq → cV

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1

0
...

0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
= cv1,

where v1 is the eigenvector of A corresponding to its largest eigenvalue λ1.

• Also notice that if we let 󰁥q = Ajq, then

󰁥q⊤A󰁥q → c2v⊤
1 Av1 = c2v⊤

1 (λ1v1) [Av1 = λ1v1]

= c2λ1v
⊤
1 v1 = c2λ1 [v⊤

1 v1 = 1]

=⇒ 󰁥q⊤A󰁥q
c2

→ λ1.

• This implies that at early iterations of Lanczos,

1. The largest eigenvalue of Tk = Q⊤
k AQk will be a good approximation of the largest eigen-

value of A.

2. Also, the Krylov subspace Kk(A,q) is closely aligned with v1 (eigenvector of A).

• This can be generalized:

1. If λ1 > λ2 > · · · > λn, then the early iterations of Lanczos produce Tk = Q⊤
k AQk with

largest eigenvalues approximating the largest eigenvalues of A.

2. If the gaps between λ1,λ2, . . . ,λn are large, convergence will be faster.

Bidiagonalization Methods for More General A ∈ Rm×n

• Golub-Kahan Bidiagonalization (GKB): produces upper bidiagonal matrix.

AVk = UkBk =⇒ A⊤Uk − VkB
⊤
k + rank-1 matirx

Bk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

α1 β1

α2
. . .

. . . βk−1

αk

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

• Paige-Saunders Bidiagonalization: produces lower bidiagonal matrix.

AVk = Uk
󰁥Bk + rank-1 matrix =⇒ A⊤Uk = Vk

󰁥Bk

󰁥Bk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

α1

β1 α2

. . .
. . .

βk−1 αk

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
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• Lanczos on A⊤A produces Tk = B⊤
k Bk.

Lanczos on AA⊤ produces Tk = 󰁥Bk
󰁥B⊤
k .

• Eigenvalues of A⊤A or AA⊤ ←→ Singular values squared of A.

Lanczos Property Summary

If A ∈ Rn×n is SPD, then at early iterations of Lanczos,

• The largest eigenvalues of

Tk = Q⊤
k AQk ∈ Rk×k

tend to be good approximations of the largest eigenvalues of A.

• The Krylov subspace tends to contain components of corresponding eigenvectors of

A.

How fast the approximations become good depends on the spread of eigenvalues.

Bidiagonalization Property Summary

If A ∈ Rm×n, then at early iterations of Golub-Kahan Bidiagonalization,

• The largest singular values of

Bk = U⊤
k AVk ∈ Rk×k

thend to be good approximations of the largest singular values of A.

• The Krylov subspace tends to contain components of corresponding singular vectors

of A.

How fast the approximations become good depends on the spread of singular valules.

What This Means for Inverse Problems? If we use CG or LSQR, then

• Early iterations:

Reconstruct information corresponding to largest singular value components.

approximate solution gets better at each iteration.

This is called semi-convergence.

• Later iterations:

Reconstruct inverted noise.

approximate solution starts to get worse.

• If we iterate too long:

Then, xk → A−1b = xnaïve. This is a bad solution.

So, semi-convergence does converge, but it converges to something bad eventually.
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• Iterative methods behaves like:

TSVD, but we don’t need to compute the full SVD on A!

• Questions?

1. Semi-convergence applies to
󰀂xk − xexact󰀂2

󰀂xexact󰀂2
. That is, we need to relative error to deter-

mine the optimal iteration number k. However, we don’t know xexact.

2. The residual does not show when semi-convergence occurs because the problems are

ill-conditioned (κ(A) is huge). So, how to determine when to stop?

4.3 Iterative Regularization

4.3.1 Motivation

A linear inverse problem is usually written as

b = Axexact + η,

where η is a vector representing (unknown) erros/noise in the measured data b.

• Ideally, we would like to solve

Axexact = bexact ,

but we don’t know bexact .

• We could try to ignore η and compute the naïve inverse solution:

xnaïve = A−1b,

but ill-conditioning and even a small amount of noise produces a bad approximation to xexact .

• Truncated SVD (TSVD): Choose an optimal kopt that balances reconstructing enough info, with-

out letting the noise blow up:

xtsvd =

kopt󰁛

i=1

u⊤
i b

σi
vi, 1 ≤ kopt ≤ n

=

n󰁛

i=1

ϕi
u⊤
i b

σi
vi, where ϕTSVD

i =

󰀻
󰀿

󰀽
1 for “large” σi

0 for “small” σi.

Notation 4.1. kopt is called the TSVD regularization parameter.
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σi

ϕTSVD
i

small σi

large σi
1

• General SVD Filtering:

xfilt =

n󰁛

i=1

ϕi
u⊤
i b

σi
vi, where ϕi ≈

󰀻
󰀿

󰀽
1 for “large” σi

0 for “small” σi

Example 4.3.2 Regularization Parameter and Tikhonov Filtering

Consider the following Tikhonov filtering:

ϕTik
i =

σ2
i

σ2
i + λ2

.

For example, λ = 10−3 =⇒ λ2 = 10−6. If σi = 1, then

ϕTik
i =

1

1 + 10−6
≈ 1,

and if 0 ≈ σn ≪ λ, then

ϕTik
0 ≈ 0.

σi

ϕTSVD
i

small σi

large σi
1

Here, λ is called the regularization parameter. The region in-between is called the transition

area.

We can motivate the Tikhonoc filtering by considering the Tikhonov optimization problem:

min
x

󰀂b−Ax󰀂22 + λ2󰀂x󰀂22 = min
x

󰀐󰀐󰀐󰀐󰀐

󰀥
b

0

󰀦
−

󰀥
A

λI

󰀦
x

󰀐󰀐󰀐󰀐󰀐

2

2

.
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Or, the normal equations version:

󰀓
A⊤A+ λ2I

󰀔
x = A⊤b.

Replace A with A = UΣV ⊤ (SVD), and solve for x, we get

xTik =

n󰁛

i=1

σ2
i

σ2
i + λ2

󰁿 󰁾󰁽 󰂀
ϕTik
i

u⊤
i b

σi
vi

Recall that CG/LSQR behave like TSVD:

• Early iterations: Reconstruct information corresponding to large singular value components.

• Later iterations: Start to reconstruct inverted noise.

• Iterate too long: Converge to the naïve inverse solution, which is dominated by the inverted

noise.

• If we stop at the right spot, xopt, we get an approximate solution similar to TSVD.

We can write CG/LSQR solutions as filtering methods. Specifically, at each iteration, we can write

xLSQR
k =

n󰁛

i=1

ϕLSQR
i,k

u⊤
i b

σi
vi,

where

ϕLSQR
i,k = σ2

iRk(σ
2
k), Rk(t) is a (rather complicated) polynomial.

There is no closed form for Rk(t), but we can write a recursive formula.

• At early iterations, (e.g., k = 1, 2, 3),

ϕLSQR
i,k =

󰀻
󰀿

󰀽
1 for a few large σ′

is

0 for most of the rest.

So, it’s filtering a lot in early iterations.

• As we iterate further,

ϕLSQR
i,k ≈

󰀻
󰀿

󰀽
1 for more of the large σ′

is

0 for fewer of the small σ′
is.

• Eventually, if we iterate long enough,

ϕLSQR
i,k ≈ 1 for all σ′

is.
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However, the question remains: how to choose kopt?

4.3.2 Landweber Iteration

The Landweber method is the most used iterative methods for nonlinear inverse problems, and it

makes a nice (and relatively easy) connection to SVD filtering for iterative methods. To motivate it,

look at a simple iteration:

xk+1 = xk + αk A
⊤(b−Axk)󰁿 󰁾󰁽 󰂀

Normal equation;
Steepest descent

direction

,

where:

• If we take αk as the step size from line search, we get steepest descent method.

• If we use constant step size,

αk = α,

we get Landweber or Richardson Iteration.

From the convergence results for simple iteration, we know it converges if

ρ
󰀓
I − αkA

⊤A
󰀔
< 1,

where ρ(·) denotes the spectral radius.

Landweber Convergence Assume αk = α is constant.

Let A = UΣV ⊤. Then,

I − αA⊤A = V
󰀓
I − αΣ⊤Σ

󰀔
V ⊤

= V diag
󰀃
1− ασ2

i

󰀄
V ⊤.

So, for convergence, we need

󰀏󰀏1− ασ2
i

󰀏󰀏 < 1 =⇒ −1 < 1− ασ2
i < 1

−2 < −ασ2
i < 0

0 < ασ2
i < 2

0 < α <
2

σ2
i

.

Therefore, we need

0 < α <
2

σ2
max

=
2

󰀂A⊤A󰀂2
.

But...How do we estimate σ2
max =

󰀐󰀐A⊤A
󰀐󰀐
2
?

• From Numerical Linear Algebra,
󰀐󰀐A⊤A

󰀐󰀐
2
≤ 󰀂A󰀂1󰀂A󰀂∞.
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• If A contains no negative values [This may not be a bad assumption in inverse problems],

then

󰀂A󰀂∞ = max entry of A1

󰀂A󰀂1 = max entry of A⊤1.

• Therefore, we can take

α =
c

󰀂A󰀂1󰀂A󰀂∞
≤ c

󰀂A⊤A󰀂2
, 0 < c < 2.

Remark. If we run Landweber to “convergence,”

xk → naïve inverse solution (BAD!)

So, we would wonder if early stopping working as LSQR for Landweber.

Landweber and SVD Filtering

Definition 4.3.3 (SVD Filtering Method). If b = Axexact + η, then an SVD filtering method

is

xfilt =

n󰁛

i=1

ϕi
u⊤
i b

σi
vi, where ϕi ≈

󰀻
󰀿

󰀽
1 if σi is large

0 if σi is small.

Now, consider

xk+1 = xk + αA⊤(b−Axk)

=
󰀓
I − αA⊤A

󰀔
xk + αA⊤b.

WLOG, assume x0 = 0, then

x1 = αA⊤b

x2 =
󰀓
I − αA⊤A

󰀔
x1 + αA⊤b

=
󰀓
I − αA⊤A

󰀔󰀓
αA⊤b

󰀔
+ αA⊤b

= α
󰁫
I +

󰀓
I − αA⊤A

󰀔󰁬
A⊤b.

x3 =
󰀓
I − αA⊤A

󰀔
x2 + αA⊤b

=
󰀓
I − αA⊤A

󰀔
α
󰁫
I +

󰀓
I − αA⊤A

󰀔󰁬
A⊤b+ αA⊤b

= α
󰁫
I +

󰀓
I − αA⊤A

󰀔
+ (I − αA⊤A)2

󰁬
A⊤b
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In general,

xk+1 = α

k󰁛

j=0

󰀓
I − αA⊤A

󰀔j
A⊤b.

Now, use A = UΣV ⊤, we get

xk+1 = α

k󰁛

j=0

󰀓
I − αV Σ⊤ΣV ⊤

󰀔j
V Σ⊤U⊤b

= V

󰀳

󰁃α

k󰁛

j=0

󰀓
I − αΣ⊤Σ

󰀔j

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
diagonal

Σ⊤U⊤b

= V DkΣ
⊤U⊤b, where Dk = α

k󰁛

j=0

󰀓
I − αΣ⊤Σ

󰀔j

=

n󰁛

i=1

d
(k)
i σi

󰀓
u⊤
i b

󰀔
vi,

where d
(k)
i = α

k󰁛

j=0

󰀃
1− ασ2

i

󰀄j
is a geometric series.

Remark. For a geometric series, we know

k󰁛

j=1

αrj =
1− rk+1

1− r

if |r| < 1.

In this case, we require
󰀏󰀏1− ασ2

i

󰀏󰀏 < 1 in order to have a convergent geometric series. We will

choose α such that the inequality is satisfied. Therefore,

d
(k)
i = α

k󰁛

j=0

󰀃
1− ασ2

i

󰀄j
= α

1−
󰀃
1− ασ2

i

󰀄k+1

1− 1 + ασ2
i

=✚α
1−

󰀃
1− ασ2

i

󰀄k+1

✚ασ2
i

=
1− (1− ασ2

i )
k+1

σ2
i

.

Therefore, each iteration of Landweber can be written as

xk+1 =

n󰁛

i=1

d
(k)
i σi

󰀓
u⊤
i b

󰀔
vi =

n󰁛

i=1

1−
󰀃
1− ασ2

i

󰀄k+1

σ✁2i
✚✚σi
󰀓
u⊤
i b

󰀔
vi

85



4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Iterative Regularization

Reorder terms, we get

xk+1 =

n󰁛

i=1

󰁫
1−

󰀃
1− ασ2

i

󰀄k+1
󰁬

󰁿 󰁾󰁽 󰂀
ϕ
(k+1)
i

󰀃
u⊤
i b

󰀄

σi
vi

=

n󰁛

i=1

ϕ
(k+1)
i

u⊤
i b

σi
vi,

where the Landweber Filter Factors, for iteration k, are

ϕ
(k+1)
i = 1−

󰀃
1− ασ2

i

󰀄k+1
.

Notice: If α = 1 and σmax = σi = 1, then

• ϕ
(k+1)
1 = 1− (1− 1)k+1 = 1

• ϕ
(k+1)
n ≈ 1− (1− 0)k+1 ≈ 0

• If k = 0, then

ϕ
(1)
i = 1−

󰀃
1− σ2

i

󰀄
= σ2

i ≈

󰀻
󰀿

󰀽
1 for large σ′

is

0 for small σ′
is.

Thus, Landweber is an SVD filtering method.

Remark.

• If αk is not constant, the method is steepest descent.

• For steepest descent (αk not constant), we cannot get closed form expressions for

ϕ
(k+1)
i . But as with LSQR, we can write

ϕ
(k+1)
i = σi poly

󰀃
σ2
i

󰀄
.

• Landweber and steepest descent converge much more slowly than Krylov subspace

methods. This means semi-convergence is slower =⇒ don’t risk to a bad solution.

• We can precondition those methods, but care is needed.

1. We want to reconstruct components of the solution corresponding to large σi’s

(i.e., cluster large σi’s).

2. But we don’t want to reconstruct components of the solution corresponding to

small σi’s (i.e., don’t cluster small σi’s).

Landweber for Nonlinear Problems Consider a nonlinear inverse problem:

b = F (xexact) + η,
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where F : Rn → Rm is differentiable. As with the linear case, we can look at

min
x

󰀂b− F (x)󰀂22.

Using Landweber, we get

xk+1 = xk + αF ′(xk)
⊤(b− F (xk)),

where F ′(x) is the Jacobian of F (x).

4.3.3 Hybrid Iterative Methods

Recall Tikhonov regularization for inverse problems computes

xλ = argmin
x

󰀂b−Ax󰀂22 + λ2󰀂x󰀂22,

or, equivalently,

xλ = argmin
x

󰀐󰀐󰀐󰀐󰀐

󰀥
b

0

󰀦
−

󰀥
A

λI

󰀦
x

󰀐󰀐󰀐󰀐󰀐

2

2

,

which could also be computed via the normal equations, by solving

󰀓
A⊤A+ λ2I

󰀔
xλ = A⊤b.

We can use LSQR to solve the least squares problem.

• Since LSQR uses GKB to project on Krylov subspaces, we call this regularize-then-project.

• Challenge: What to use for λ?

An alternative idea is to start with trying to (iteratively) solve the LS problem

min
x

󰀂b−Ax󰀂22.

That is, we use GKB to first project onto Krylov subspaces, and then enforce regularization.

Using Lower Bidiagonalization Approach A ∈ Rm×n, and the k steps of bidiagonalization computes

• Uk =
󰁫
u1 · · · uk uk+1

󰁬
∈ Rm×(k+1)

• Vk =
󰁫
v1 · · · vk

󰁬
∈ Rn×k

• Bk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

α1

β1
. . .

. . . αk

βk

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
∈ R(k+1)×k such that

A⊤Uk = VkB
⊤
k + αk+1vk+1e

⊤
k+1 and AVk = UkBk.
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We start the iteration with u1 = b/󰀂b󰀂2 = b/β, where β = 󰀂b󰀂2.

Projected LS Problem At each iteration, we want to solve

xk = arg min
x∈R(Vk)

󰀂b−Ax󰀂22 ⇐⇒ min
y∈Rk

󰀐󰀐󰀐U⊤
k b−Bky

󰀐󰀐󰀐
2

2

⇐⇒ arg min
y∈Rk

󰀂βek −Bky󰀂22,

where R(Vk) = span {v1,v2, . . . ,vk} and xk = Vkyk.

Solving the Projected LS Problem

• If A is ill-conditioned, σi → 0 fast. Then, Bk will have similar properties (provided k is large

enough).

• Therefore, instead of solving

yk = arg min
y∈Rk

󰀂βek −Bky󰀂22,

we could consider solving

yk = arg min
y∈Rk

󰀂βek −Bky󰀂22 + λ2
k󰀂y󰀂

2
2

= arg min
y∈Rk

󰀐󰀐󰀐󰀐󰀐

󰀥
βek

0

󰀦
−

󰀥
Bk

λkI

󰀦
y

󰀐󰀐󰀐󰀐󰀐

2

2

.

We call this project-then-regularize.

• We still have the question of how to choose λk (see the next subsection!)

Extension 4.1 We can also do this for the LASSO regression, i.e.,

min
x

󰀂b−Ax󰀂2 + λ󰀂x󰀂1,

where the 1-norm encourages sparsity. We will discuss in the future sections.

4.3.4 Regularization Parameters

In this section, we finally get into different ways to estimate regularization parameters. Consider our

standard linear inverse problem

b = Axexact + η

and suppose we want to compute a Tikhonov regularized solution

xλ = argmin
x

󰀂b−Ax󰀂22 + λ2󰀂x󰀂22 = argmin
x

󰀐󰀐󰀐󰀐󰀐

󰀥
b

0

󰀦
−

󰀥
A

λI

󰀦
x

󰀐󰀐󰀐󰀐󰀐

2

2
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We can also write it in the normal equation form

xλ =
󰀓
A⊤A+ λ2I

󰀔−1
A⊤

󰁿 󰁾󰁽 󰂀
=A†

λ

b

Remark. There is no one fool proof method that is optimal for all problems. Methods should

be consider guides.

Discrepancy Principle

• Requires knowing the norm of the noise: 󰀂η󰀂2.

• Notice: b = Axexact + η.

If xλ is a good approximation of xexact , we might expect that 󰀂b−Axλ󰀂2 ≈ 󰀂η󰀂2.

Or,

󰀂b−Axλ󰀂22 ≈ τ󰀂η󰀂22, where τ 󰃔 1.

[The notation gtrapprox implies that τ is approximately equal to 1, but might be slightly big-

ger. It reads as “greater than about.”]

=⇒ D(λ) = 󰀂b−Axλ󰀂22 − τ󰀂η󰀂22 = 0 ← A root finding problem.

Generalized Cross Validation (GCV)

• Do not need the norm of the noise.

• We skip details (tedious)

• Find λ to minimize

G(λ) =
n󰀂b−Axλ󰀂22󰁫
tr
󰀓
I −AA†

λ

󰀔󰁬2
,

where A†
λ =

󰀃
A⊤A+ λ2I

󰀄−1
A⊤.

To implement these methods, we must first simplify the expressions. We will use SVD to simplify

A = UΣV ⊤

xλ =
󰀓
A⊤A+ λ2I

󰀔−1
A⊤b

= V
󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤U⊤b

Axλ = UΣ
󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤U⊤b

b−Axλ = UU⊤b− UΣ
󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤U⊤b

= U

󰀕
I − Σ

󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤

󰀖

󰁿 󰁾󰁽 󰂀
diagonal matrix

U⊤b
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Note that

I − Σ
󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤ = diag

󰀕
1− σ2

i

σ2
i + λ2

󰀖
= diag

󰀕
λ2

σ2
i + λ2

󰀖
,

we have

󰀂b−Axλ󰀂22 =
󰀐󰀐󰀐󰀐U diag

󰀕
λ2

σ2
i + λ2

󰀖
U⊤b

󰀐󰀐󰀐󰀐
2

2

=

󰀐󰀐󰀐󰀐diag
󰀕

λ2

σ2
i + λ2

󰀖
󰁥b
󰀐󰀐󰀐󰀐
2

2

[󰁥b = U⊤b & U is orthogonal]

=

n󰁛

i=1

󰀣
λ2󰁥bi

σ2
i + λ2

󰀤2

.

• DP is to find λ such that

D(λ) = 󰀂b−Ax󰀂22 − τ󰀂η󰀂22 = 0

n󰁛

i=1

󰀣
λ2󰁥bi

σ2
i + λ2

󰀤2

− τ󰀂η󰀂22 = 0,

where τ 󰃔 1. This is a simple 1D root finding problem. We will use MATLAB’s fzero() function.

• For GCV,

G(λ) =
n󰀂b−Axλ󰀂22󰁫
tr
󰀓
I −AA†

λ

󰀔󰁬2 =

n

n󰁛

i=1

󰀣
λ2󰁥bi

σ2
i + λ2

󰀤2

󰁫
tr
󰀓
I −AA†

λ

󰀔󰁬2 .

A†
λ =

󰀓
A⊤A+ λ2I

󰀔−1
A⊤ = V

󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤U⊤

AA†
λ = UΣ

󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤U⊤

I −AA†
λ = I − UΣ

󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤U⊤

= U

󰀕
I − Σ

󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤

󰀖

󰁿 󰁾󰁽 󰂀
diagonal matrix

U⊤

I − Σ
󰀓
Σ⊤Σ+ λ2I

󰀔−1
Σ⊤ = diag

󰀕
1− σ2

i

σ2
i + λ2

󰀖
= diag

󰀕
λ2

σ2
i + λ2

󰀖

tr
󰀓
I −AA†

λ

󰀔
= tr

󰀕
U diag

󰀕
λ2

σ2
i + λ2

󰀖
U⊤

󰀖

= tr

󰀕
diag

󰀕
λ2

σ2
i + λ2

󰀖󰀖

=

n󰁛

i=1

λ2

σ2
i + λ2
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Hence,

G(λ) =

n

n󰁛

i=1

󰀣
󰂸󰂸λ
2󰁥bi

σ2
i + λ2

󰀤2

󰀣
n󰁛

i=1

󰂸󰂸λ
2

σ2
i + λ2

󰀤2 =

n

n󰁛

i=1

󰀣
󰁥bi

σ2
i + λ2

󰀤2

󰀣
n󰁛

i=1

1

σ2
i + λ2

󰀤2 .

We can use, for example, MATLAB’s fminbnd to solve it. The bound will be [0,σ1], where σ1 is the

largest singular value.

Remark. Objection!

Recall that A is often too large to compute its SVD. The formulas require us to have the full SVD

computed, so it will not be feasible. But, we can use these formulas on the projected problems

min
y∈Rk

󰀂βe1 −Bky󰀂22 + λ2
k󰀂y󰀂

2
2.

That is, at each iteration, use the SVD of Bk (a tiny matrix).

4.3.5 Other Regularization Approaches

In this section, we will see the LASSO regression:

min
x

󰀂b−Ax󰀂22 + λ󰀂x󰀂1.

First notice: If Dx = diag

󰀣
1󰁳
|xi|

󰀤
, then

Dxx =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

x1/
󰁳

|x1|
x2/

󰁳
|x2|

...

xn/
󰁳

|xn|

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
.

So,

󰀂Dxx󰀂22 =
x21
|x1|

+
x22
|x2|

+ · · ·+ x2n
|xn|

= |x1|+ |x2|+ · · ·+ |xn|

= 󰀂x󰀂1.

Can we just replaced 󰀂x󰀂1 as 󰀂Dxx󰀂22? No.

Problems

• What if xi = 0? Remedy: add a small entry to it. For example,
1󰁳

|xi|+ ε
.
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• Dx depends on x, but we don’t know x. Remedy: Iterative update!

Algorithm 16: Iteratively Reweighted LS (Simple Idea)

1 begin

2 x0 =initial guess;

3 Dk = diag

󰀕
1/

󰁵󰀏󰀏󰀏x(i)
0

󰀏󰀏󰀏
󰀖

;

4 for k = 0, 1, 2, . . . do

5 xk+1 = argmin
x

󰀂b−Ax󰀂22 + 󰀂Dkx󰀂22;

6 update Dk+1 = diag

󰀕
1/

󰁵󰀏󰀏󰀏x(i)
k

󰀏󰀏󰀏
󰀖

Remark. We are dividing by small numbers? Don’t worry!

Let 󰁥x = Dx. So, x = D−1󰁥x. Then,

󰀂b−Ax󰀂22 + λ󰀂Dx󰀂22 =
󰀐󰀐b−AD−1󰁥x

󰀐󰀐2
2
+ λ󰀂x󰀂22.

It is just a preconditioning method, and the preconditioner is

D−1 = diag
󰀓󰁳

|xi|
󰀔
.

We have no division at all.

Another Problem This requires solving a large LS problem at each iteration.

Workaround Consider

min 󰀂b−Ax󰀂22 + λ󰀂Dkx󰀂22 (9)

If Dk is invertible, then we can rewrite (9) as

min
󰀐󰀐b−AD−1

k 󰁥x
󰀐󰀐2
2
+ λ󰀂x󰀂22.

This looks like preconditioning. We can embed this into a Krylov solver, and use Dk as a precon-

ditioner that changes at each iteration.

4.4 Flexible Methods

Non-Constant Preconditioners We know that preconditioning is often used in Krylov subspace meth-

ods. For example, to solve Ax = b with a right preconditioner M , we consider

AM−1Mx = b ⇐⇒ 󰁥A󰁥x = b.
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Our discussion assumed that the preconditioner remained constant at each iteration. However,

there are problems/applications where the preconditioner can change at each iteration. For ex-

ample,

• Mj might depend on xj , or

• Mj is not (explicitly) a matrix, but instead there is a function to (inexactly or incompletely)

solve linear systems with Mj .

GMRES Revisit To understand how to build non-constant preconditioners, we start from GMRES.

In GMRES, we use Arnoldi to build an orthonormal basis for the Krylov subspace:

Km(A, r0) = span
󰀋
r0, Ar0, . . . , A

m−1r0
󰀌
.

This gives

Qm+1 =
󰁫
q1 · · · qm qm+1

󰁬
, q1 =

r0
󰀂r0󰀂2

, r0 = 󰀂r0󰀂2q1

upper Hessenberg 󰁨Hm ∈ R(m+1)×m s.t. AQm = Qm+1
󰁨Hm.

Algorithm 11 outlines the Basic GMRES Algorithm. If we use a preconditioner, Lines 4 and 14 will

change.

Right Preconditioned GMRES We want to solve Ax = b. Suppose M ∈ Rn×n, non-singular, is the

preconditioner. Consider

AM−1Mx = b,

or
󰁥A󰁥x = b,

where 󰁥A = AM−1 and 󰁥x = Mx. Then, x = M−1󰁥x.

Apply Arnoldi to the preconditioned system:

• Given x0, we get 󰁥x0 = Mx0.

• Notice that

r0 = b−Ax0 = b−AM−1Mx0 = b− 󰁥A󰁥x0 = 󰁥r0.

Therefore,

q1 =
󰁥r0

󰀂󰁥r0󰀂2
=

r0
󰀂r0󰀂2

.

• Arnoldi builds an orthonormal basis for

span
󰁱
󰁥r0, 󰁥A󰁥r0, . . . , 󰁥Am−1󰁥r0

󰁲
= span

󰁱
r0, AM

−1r0, . . . ,
󰀃
AM−1

󰀄m−1
r0

󰁲
.

Again, this gives Qm+1 =
󰁫
q1 · · · qm qm+1

󰁬
and an upper Hessenberg matrix 󰁨Hm such
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that
󰁥AQm = Qm+1

󰁨Hm or AM−1Qm󰁿 󰁾󰁽 󰂀
=Zm

= Qm+1
󰁨Hm ⇐⇒ AZm = Qm+1

󰁨Hm,

where

Zm =
󰁫
z1 z2 · · · zm

󰁬
=

󰁫
M−1q1 M−1q2 · · · M−1qm

󰁬
.

So, we will change wj = Aqj (Line 4 in Algorithm 11) into

wj = AM−1qj .

Now, let’s consider the optimality condition (minimizing residual). For 󰁥A󰁥x = b, we compute

󰁥xm = 󰁥x0 +Qmy, y ∈ Km

󰀓
󰁥A,󰁥r0

󰀔
.

The residual is

󰁥rm = b− 󰁥A󰁥xm = b− 󰁥A(󰁥x0 +Qmy)

= b− 󰁥A󰁥x0󰁿 󰁾󰁽 󰂀−
󰁥AQmy

= 󰁥r0 − 󰁥AQmy

= r0 −Qm+1
󰁨Hmy [ 󰁥AQm = Qm+1

󰁨Hm]

= βq1 −Qm+1
󰁨Hmy [r0 = 󰀂r0󰀂2q1 = βq1, where β = 󰀂r0󰀂2]

For GMRES, we compute

ym = argmin
y

󰀐󰀐󰀐βq1 −Qm+1
󰁨Hmy

󰀐󰀐󰀐
2

= argmin
y

󰀐󰀐󰀐Qm+1

󰀓
βe1 − 󰁨Hmy

󰀔󰀐󰀐󰀐
2

= argmin
y

󰀐󰀐󰀐βe1 − 󰁨Hmy
󰀐󰀐󰀐
2
.

Once we get ym, we update 󰁥x0:

󰁥xm = 󰁥x0 +Qmym

Mxm = Mx0 +Qmy [󰁥x = Mx]

xm = x0 +M−1Qmym [M is nonsingular]

So, we change xm = xm +Qmym (Line 14 in Algorithm 11) to

xm = x0 +M−1Qmym .

We could also write

xm = x0 + Zmym, where Zm = M−1Qm.
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Algorithm 17: Right Preconditioned GMRES

Input: A ∈ Rn×n,M ∈ Rn×n,b, and x0 ∈ Rn

1 begin

2 Compute r0 = b−Ax0, β = 󰀂r0󰀂2, and q1 = r0/β;

3 for j = 1 : m do

4 wj = A
󰀃
M−1qj

󰀄
;

5 for i = 1 : j do

6 hij = q⊤
i wj ;

7 wj = wj − hijqi;

8 hj+1,j = 󰀂wj󰀂2;

9 if hj+1,j = 0 then

10 m = j;

11 break;

12 qj+1 = wj/hj+1,j ;

13 ym = argminy
󰀐󰀐󰀐β]e1 − 󰁨Hmy

󰀐󰀐󰀐
2
;

14 xm = x0 +M−1(Qmym);

Remark.

• We should compute wj = A
󰀃
M−1qj

󰀄
in two steps:

zj = M−1qj ⇐⇒ solve Mzj = qj

wj = Azj

It avoids matrix-matrix multiplications. Also, we do not need to store zj ’s,

• We should compute M−1(Qmym) in two steps:

󰁥z = Qmym

z = M−1󰁥z ⇐⇒ solve Mz = 󰁥z.

Non-constant Preconditioners Now, suppose Mj is a preconditioner that changes at each iteration.

In this case, the Arnoldi relation still holds

AZm = Qm+1
󰁨Hm,

where Zm =
󰁫
M−1

1 q1 M−1
2 q2 · · · M−1

m qm

󰁬
.

We cannot write Zm = M−1
j Qm in this case, but that’s okay. We just need to save all of the zj

vectors. We update the solution as

xm = x0 + Zmym
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Algorithm 18: Flexible GMRES (FGMRES)

Input: A, solver for Mj , b, and x0

1 begin

2 Compute r0 = b−Ax0, β = 󰀂r0󰀂2, and q1 = r0/β;

3 for j = 1 : m do

4 zj = M−1
j qj and wj = Azj ;

5 for i = 1 : j do

6 hij = q⊤
i wj ;

7 wj = wj − hijqi;

8 hj+1,j = 󰀂wj󰀂2;

9 if hj+1,j = 0 then

10 m = j;

11 break;

12 qj+1 = wj/hj+1,j ;

13 ym = argmin
y

󰀐󰀐󰀐βe1 − 󰁨Hmy
󰀐󰀐󰀐
2
;

14 xm = x0 + Zmym;

Remark. It is easy to see that if Mj is constant, FGMRES is GMRES.

Preconditioned CG and Flexible CG also follow a similar scheme.
Algorithm 19: Preconditioned CG

Input: A,b,x0, and SPD M

1 begin

2 Compute r0 = b−Ax0;

3 Solve Mz0 = r0;

4 p0 = z0;

5 for k = 0, 1, 2, . . . do

6 w = Apk;

7 αk =
󰀃
z⊤k rk

󰀄
/
󰀃
p⊤
k w

󰀄
;

8 xk+1 = xk + αkpk;

9 rk+1 = rk − αkw;

10 Solve Mzk+1 = rk+1;

11 βk =
󰀃
z⊤k+1rk+1

󰀄
/
󰀃
z⊤k rk

󰀄
// Fletcher-Reeves Formula

12 βk+1 = zk+1 + βkpk;
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Algorithm 20: Flexible Preconditioned CG

Input: A,b,x0, and solver for SPD Mk

1 begin

2 Compute r0 = b−Ax0;

3 Solve M0z0 = r0;

4 p0 = z0;

5 for k = 0, 1, 2, . . . do

6 w = Apk;

7 αk =
󰀃
z⊤k rk

󰀄
/
󰀃
p⊤
k w

󰀄
;

8 xk+1 = xk + αkpk;

9 rk+1 = rk − αkw;

10 Solve Mkzk+1 = rk+1;

11 βk =
󰀃
z⊤k+1(rk+1 − rk)

󰀄
/
󰀃
z⊤k rk

󰀄
// Polak-Ribiére Formula (This is basically a

reorthogonalization step)

12 pk+1 = zk+1 + βkpk;
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5 Fast Fourier Transforms (FFT)

5.1 Integral Equations

b(s) =

󰁝
a(s, t)x(t) dt

Forward Problem Given a(s, t) and x(t), compute b(s).

Backward Problem Given a(s, t) and b(s), find x(t).

Remark. The interval of integration could be finite (e.g., [0, 1]) or infinte (i.e., (−∞,∞)).

Discretize to Get a Linear Algebra Problem

• Use quadrature rule for integration: with notes t1, t2, . . . , tn and weights w1, w2, . . . , wn.

• Sample b(s) at s1, s2, . . . , sn.

This leads to

b(si) ≈
n󰁛

j=1

a(si, tj)x(tj)wj .

Define a matrix

A =
󰁫
a(si, bj)wj

󰁬n
i,j=1

and vectors

x =
󰁫
x(tj)

󰁬n
j=1

and b =
󰁫
b(si)

󰁬n
i=1

.

Then, we get a linear system

b ≈ Ax,

or, the inverse problem

b = Axexact + η.

Convolution and Deconvolution This is an integral equation where a(s, t) can be written as a(s− t):

b(s) =

󰁝
a(s− t)x(t) dt.

• Convolution: Given a(s− t) and x(t), compute b(s).

• Deconvolution: Given a(s− t) and b(s), compute x(t).

Example 5.1.1 Gaussian Kernel

a(s, t) = a(s− t) =
1√
2πσ

e−(s−t)2/(2σ2)
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In discretization: Assume wj = w is a constant and equally spaced points. Then, each entry of

matrix A is

aij = a(si − tj)w ≡ ai−j .

In this case:

A =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
−→ A =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·

a2 a1 a0
. . .

...
...

...
. . .

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

This is called a Toeplitz matrix.

This implicitly assumes that x(t) is zero outside the interval of convolution =⇒ Zero Boundary

conditions:

x(t−1) = x(t0) = 0, x(t1) = x1, x(t2) = x2, . . . , x(tn−1) = xn−1, x(tn) = xn󰁿 󰁾󰁽 󰂀
In discretization

, x(tn+1) = x(tn+2) = 0

Other BCs:

• Periodic BC: the function repeats itself.

x(t−1) = xn−1, x(t0) = xn, x(t1) = x1, x(t2) = x2, . . . , x(tn) = xn󰁿 󰁾󰁽 󰂀
In discretization

, x(tn+1) = x1, x(tn+2) = x2

• Neumann/Reflective: Mirror relfection of what’s inside the interval:

x(t−1) = x2, x(t0) = x1, x(t1) = x1, x(t2) = x2, . . . , x(tn) = xn󰁿 󰁾󰁽 󰂀
In discretization

, x(tn+1) = xn, x(tn+2) = xn−1

Different BCs lead to different structured matrices:

• Zero BC =⇒ A is Toeplitz

• Periodic BC =⇒ A is circulant

• Reflective BC =⇒ A is Toeplitz + Honkel.

2D Convolution/Deconvolution Problems Images

We get block structured matrices. For example, with zero BCs, we have

A =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

A0 A−1 A−2 · · ·
A1 A0 A−1 · · ·

A2 A1 A0
. . .

...
...

...
. . .

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
, where Ak =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

a
(k)
0 a

(k)
−1 a

(k)
−2 · · ·

a
(k)
1 a

(k)
0 a

(k)
−1 · · ·

a
(k)
2 a

(k)
1 a

(k)
0

. . .

...
...

...
. . .

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
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Remark. Computations with these matrices use Fast Fourier Transforms.

5.2 Fast Fourier Transforms

5.2.1 Discrete Fourier Transform (DFT) Matrix

Let ωn = e2πi/n, where i =
√
−1. Then, the unitary DFT matrix of dimension n is

Fn =
1√
n

󰁫
ω−jk
n

󰁬n−1

j,k=0

=
1√
n

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 1 1 · · · 1

1 ω−1
n ω−2

n · · · ω
−(n−1)
n

1 ω−2
n ω−4

n · · · ω
−2(n−1)
n

...
...

...
. . .

...

1 ω
−(n−1)
n ω

−2(n−1)
n · · · ω

−(n−1)(n−1)
n

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

Observations

• Fn is symmetric, F⊤
n = Fn. But it is not Hermitian symmetric. That is, FH

n = F
⊤
n ∕= Fn.

• Fn is unitary. That is,

FH
n Fn = I ⇐⇒ F−1

n = FH
n .

• Recall:

eiθ = cos θ + i sin θ

=⇒ e−iθ = cos(−θ) + i sin(−θ)

= cos θ − i sin θ

= eiθ

=⇒ ω−jk
n = ωjk

n

So,

FH
n =

1√
n

󰁫
ωjk
n

󰁬n−1

j,k=0

Remark. Given an n× n matrix A, computing

y = Ax

requires O
󰀃
n2

󰀄
flops. For Fn and FH

n , we can reduce this to O(n log n) if n = 2p (We can also do

2p2 · 3p3 · 5p5 · · · ) For example, n = 256 = 28. Then, n2 = 65, 536 but n log n = 2, 048.

Problem The constants behind the O(·) notation. But it’s modest in this case.
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5.2.2 Idea of FFTs: Divide and Conquer

Suppose n = 2m, and we want to compute

y = FH
n x,

where

FH
n =

󰀗
1√
n
ωjk
n

󰀘n−1

j,k=0

, x =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

x0

x1
...

xn−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
, y =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

y0

y1
...

yn−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

Let En be a permutation matrix such that

E⊤
n x =

󰀥
xe

xo

󰀦
, where xe =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

x0

x2
...

x2(m−1)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
(even entries), xo =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

x1

x3
...

x2m−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
(odd entries).

Since En is a permutation matrix, EnE
⊤
n = I. Therefore,

y = FH
n x = FH

n EnE
⊤
n x

=
󰀃
FH
n En

󰀄󰀓
E⊤

n x
󰀔
.

Multiplying a permutation on the right permutes the columns, so

FH
n En =

󰀵

󰀹󰀹󰀹󰀹󰀷

󰁫
ω
j(2k)
n

󰁬m−1

j,k=0

󰁫
ω
j(2k+1)
n

󰁬m−1

j,k=0

󰁫
ω
(j+m)(2k)
n

󰁬m−1

j,k=0

󰁫
ω
(j+m)(2k+1)
n

󰁬m−1

j,k=0

󰀶

󰀺󰀺󰀺󰀺󰀸
.

Since n = 2m, it follows that

• ω
j(2k)
n = e

2πi
n

j(2k) = e
2πi

✄2m
j(✁2k) = e

2πi
m

jk = ωjk
m

• ω
(j+m)(2k)
n = ω

j(2k)
n ω

m(2k)
n = ωjk

m · e
2πi

✁n
✘✘✘m(2k)

= ωjk
n · e2πik. Note that

e2πik = cos(2πk) + i sin(2πk) = 1,

we have ω
(j+m)(2k)
n = ωjk

m .

• ω
j(2k+1)
n = ω

j(2k)
n ωj

n = ωjk
mωj

n

• ω
(j+1)(2k+1)
n = · · · = −ωjk

mωj
n.
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Hence,

FH
n En =

1√
2

󰀵

󰀹󰀹󰀹󰀹󰀷

1√
m

󰁫
ωjk
m

󰁬m−1

j,k=0

1√
m

󰁫
ωjk
mωj

n

󰁬m−1

j,k=0

1√
m

󰁫
ωjk
m

󰁬m−1

j,k=0

1√
m

󰁫
−ωjk

mωj
n

󰁬m−1

j,k=0

󰀶

󰀺󰀺󰀺󰀺󰀸
[n = 2m =⇒ 1√

n
=

1√
2m

=
1√
2
· 1√

m
]

=
1√
2

󰀥
FH
m DmFH

m

FH
m −DmFH

m

󰀦
,

where Dm = diag
󰀓
ωj
n

󰀔m−1

j=0
. Thus,

y = FH
n x = FH

n EnE
⊤
n x

=
1√
2

󰀥
FH
m DmFH

m

FH
m −DmFH

m

󰀦󰀥
xe

xo

󰀦

=
1√
2

󰀥
FH
m xe +DmFH

m xo

FH
m xe −DmFH

m xo

󰀦
.

Therefore, we reduced the n-dimensional DFT to two m-dimensional DFTs.

• If m = 2ℓ, do it again.

• If n = 2p, we can continue in this way p = log2(n) times.

Definition 5.2.1 (Forward and Inverse FFTs).

• Forward FFT:

y = Fmx

• Inverse FFT

x = FH
n y = FH

n (Fnx) = x.

Remark. Most FFT software uses an alternative scaling

FH
n Fn =

󰀗
1√
n
ωjk
n

󰀘

󰁿 󰁾󰁽 󰂀
inverse FFT

󰀗
1√
n
ω−jk
n

󰀘

󰁿 󰁾󰁽 󰂀
forward FFT

=

󰀗
1

n
ωjk
n

󰀘

󰁿 󰁾󰁽 󰂀
inverse FFT

󰁫
ω−jk
n

󰁬

󰁿 󰁾󰁽 󰂀
forward FFT

For example, y = Fx (unitary version) can be computed in MATLAB as y =
1√
n
fft(x) and

z = FHw in MATLAB is z =
√
nifft(w).
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5.2.3 Higher Dimensions

• 2D FFT:

F2D = F1D ⊗ F1D, where F1D = Fn and ⊗ is the Kronecker product

Recall that (A⊗B)x = BXA⊤. So,

y = F2Dx = (F1D ⊗ F1D)x

Y = F1DXF1D, [F⊤
1D = F1D, symmetric]

where x = vec(X) and y = vec(Y ). In MATLAB, we will use reshape() to achieve this.

1. 2D FFT software works on arrays. That is,

Y = fft2(X).

2. Cost of 2D FFT:

O
󰀃
n2 log n2

󰀄
= O

󰀃
n2 log n

󰀄
[log n2 = 2 log n]

• 3D FFT:

F3D = F1D ⊗ F1D ⊗ F1D.

5.3 Toeplitz and Circulant Matrices

Definition 5.3.1 (Toeplitz Matrix). Toeplitz matrices have constant diagonals:

T =

󰀵

󰀹󰀹󰀹󰀹󰀷

t0 t−1 t−2 t−3

t1 t0 t−1 t−2

t2 t1 t0 t−1

t3 t2 t1 t0

󰀶

󰀺󰀺󰀺󰀺󰀸
.

T is structurally sparse. It is dense, but storage is sparse. We only need to store 2n− 1 entries.

Definition 5.3.2 (Circulant Matrix). Circulant matrices are Toeplitz matrices where each col-

umn (row) is a circular shift of its previous column (row):

C =

󰀵

󰀹󰀹󰀹󰀹󰀷

c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0

󰀶

󰀺󰀺󰀺󰀺󰀸

Circulant matrix is also structurally sparse. We only need to store n entries.
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5.3.1 Eigenvalues and Eigenvectors

Theorem 5.3.3

Every n × n circulant matrix has the same set of eigenvectors. Specifically, any circulant matrix

can be written as

C = FHΛF,

where F is the unitary FFT matrix.

F1D = Fn and Λ = diag (λ1,λ2, . . . ,λn).

Notice that C = FHΛF . So, multiply by F , we get FC = ΛF , where

F =
1√
n

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1 1 1 · · ·
1 ω−1

n ω−2
n · · ·

1 ω−2
n

. . . · · ·
...

...
...

. . .

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
.

Then,

FCe1 = ΛFe1.

Hence,

Fc1 = Λ

󰀕
1√
n
1

󰀖
=

1√
n
Λ1 1 =

󰀵

󰀹󰀹󰀷

1
...

1

󰀶

󰀺󰀺󰀸, and c1 is the first column of C

=
1√
n

󰀵

󰀹󰀹󰀷

λ1

. . .

λn

󰀶

󰀺󰀺󰀸

󰀵

󰀹󰀹󰀷

1
...

1

󰀶

󰀺󰀺󰀸

=
1√
n

󰀵

󰀹󰀹󰀷

λ1

...

λn

󰀶

󰀺󰀺󰀸.

So,
√
nFc1 = λ, where λ =

󰀵

󰀹󰀹󰀷

λ1

...

λn

󰀶

󰀺󰀺󰀸. Recall that in MATLAB, if F represents the unitary FFT, then

y = Fx ⇐⇒ y =
1√
n
fft(x).

Therefore,

fft(c1) = λ .
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5 FAST FOURIER TRANSFORMS (FFT) 5.3 Toeplitz and Circulant Matrices

Using FFT, λ = fft(c1) costs O(n log n). Compared to standard eigenvalue solvers, for den matrices,

which costs O
󰀃
n3

󰀄
, this is incredibly fast!

5.3.2 Matrix-Vector Multiplication and Solving Linear Systems

Circulant Matrix-Vector Multiplication

z = Cr = FHΛFr

=✚✚√nifft
󰀕
fft(c1). ∗

1

✚✚√n
fft(r)

󰀖

= ifft
󰀃
fft(c1).*fft(r)

󰀄

• The cost is O(n log n).

• If we are multiplying C times many vectors, we should only compute fft(c1) once. i.e., store

the result.

Solving Circulant Systems

Cz = r ⇐⇒ z = C−1r =
󰀃
FHΛF

󰀄−1
r = FHΛ−1Fr

⇐⇒ z = ifft
󰀃
fft(r)./fft(c1)

󰀄

• The cost is O(n log n).

• A typical linear solver for dense matrices cost O
󰀃
n3

󰀄
.

• If we need to solve many systems with the same matrix C, we should precompute fft(c1)

just once. [Or, 1./ fft(c1) because division are more expensive than multiplication. Usually,

to compute division on a computer, it is a root finding problem: We want to find x =
1

a
, i.e.,

solve ax = 1. We will apply Newton’s method to ax− 1 = 0 to find the root.]

Toeplitz Matrix-Vector Multiplication To solve z = Tr, we use ideas from circulant matrices by em-

bedding.

T =

󰀵

󰀹󰀹󰀷

t0 t−1 t−1

t1 t0 t−1

t2 t1 t0

󰀶

󰀺󰀺󰀸 =⇒ C =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

t0 t−1 t−2

t1 t0 t−1

t2 t1 t0

0 t2 t1

t−2 0 t2

t−1 t−2 0

0 t2 t1

t−2 0 t2

t−1 t−2 0

t0 t−1 t−2

t1 t0 t−1

t2 t1 t0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

In general, if T is an n× n Toeplitz matrix, we will embed it into a (2n)× (2n) circulant matrix:

C =

󰀥
T T1

T2 T

󰀦
.
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Then,

C

󰀥
r

0

󰀦
=

󰀥
T T1

T2 T

󰀦󰀥
r

0

󰀦
=

󰀥
Tr

∗

󰀦
.

Therefore, to compute z = Tr:

1. Use the first row and column of T to build the first column of C, c.

2. Set 󰁨r =

󰀥
r

0

󰀦
.

3. Compute 󰁨z = ifft
󰀃
fft(󰁨r).*fft(c)

󰀄

4. z = 󰁨z(1 : n).

The cost is O((2n) log(2n)) = O(n log(2n)) = O(n(log 2 + log n)) = O(n log n).

5.3.3 Preconditioning Toeplitz Matrices

Suppose we have a banded Toeplitz matrix

T =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

t0 t−1 t−2 0 0

t1 t0 t−1 t−2 0

t2 t1 t0 t−1 t−2

0 t2 t1 t0 t−1

0 0 t2 t1 t0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

To precondition iterative solver to Tx = b, we will find M as a circulant approximation of T .

That is, M = argmin
C

󰀂T − C󰀂.

• For 󰀂·󰀂1 and 󰀂·󰀂∞, the best M is obtained by filling in the corners:

M =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

t0 t−1 t−2 t2 t1

t1 t0 t−1 t−2 t2

t2 t1 t0 t−1 t−2

t−2 t2 t1 t0 t−1

t−1 t−2 t2 t1 t0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

That is, M = T + E, where E is a sparse, low-rank matrix with non-zero entries in the corners.

• For 󰀂·󰀂F , the first column of M is

mj =
(n− j)tj + jtj−n

n
, j = 0, 1, . . . , n− 1.

• For 󰀂·󰀂2, it is complicated.

Question How good are these approximations/preconditioners?

If the entries of T decay quickly away from the diagonal, then they are very good.
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A APPLICATIONS OF ITERATIVE METHODS

A Applications of Iterative Methods

A.1 Radioactive Imaging and Iterative Methods

• Consider Ax = b, A ∈ Rm×n with m > n. Let b be random, and

bi =
󰁫
Ax

󰁬

i

• Assume bi comes from counting (e.g., counting photons that hit a detector), then it makes sense

to use a Poisson model. That is,

b ∼ Poisson(Ax).

• To find the best x, write a likelihood function, and find its likelihood (maximum likelihood/min-

imum negative log likelihood).

• One can then derive the Expectation Maximization Algorithm (EM) (Algorithm 21).

Algorithm 21: Expectation Maximization (EM)

1 begin

2 for k = 0, 1, 2, . . . do

3 xk+1 = xk ⊗
󰀃
A⊤(b 󰌇 Axk)

󰀄
;

/* ⊗ and 󰌇 represents element-wise × and /. */

• Lets have 1, 2, 3, . . . ,m observations and group them into subsets:

i1, i2, . . . , ip.

Then, we have the Ordered Subset EM Algorithm (OSEM, Algorithm 22).

Algorithm 22: Ordered Subset EM (OSEM)

1 begin

2 for k = 0, 1, 2, . . . do

3 for ℓ = 1, 2, . . . , p do

4 As = A(iℓ, :);

5 bs = b(iℓ);

6 xk+1 = xk ⊗
󰀃
A⊤

s (bs 󰌇 Asxk)
󰀄

;

Remark.

1. Subsets iℓ are row vectors of integers. For example, i1 =
󰁫
1, 2, 3, 4

󰁬
, i2 =

󰁫
5, 6, 7, 8

󰁬
.

2. OSEM works well when the columns of A is well-balanced. if A has non-well-

balanced columns, the ordering matters and Algorithm 22 might fail.
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