Emory University
MATH 517 Iterative Methods

Learning Notes

Jiuru Lyu

December 16, 2025

Contents

1 Simple Iterations

1.1

1.2

1.3

1.4

2.1
2.2

2.3
2.4
2.5

Introduction e
1.1.1 Simple Iteration Algorithm L L o
1.1.2 Stopping Criterion o i i e e e e e e e
1.1.3 ConvergencCe o i i i it i e e e e e e e e e
Stationary Methods e e e e
1.2.1 Well-Known SplittingMethods
1.22 CONVEIZENCE v v vttt i e e e e e e e e e e e e e e e
1.2.3 More Stationary Iterative Methods
Iterative Refinement L e
1.3.1 Motivation e e
1.3.2 Solve for Ax = b, where A € R"*™isnon-singular
1.3.3 Relate Iterative Refinement with Simple Iteration
1.3.4 Iterative Refinement for Least Squares Problems
1.3.5 Other Linear Algebra Problems with Iterative Refinement
Floating Point Numbers e
2 Krylov Subspace Methods for Eigenvalues

Introduction to KrylovSubspaces
ArnoldiMethod
2.2.1 MatrixRelationsinArnoldi o o
LanczosMethod e
Golub-Kahan Bidiagonalization
HessenbergMethod e
2.5.1 Relationship between Arnoldi and Hessenberg
2.5.2 HessenbergVersionof GKB

11
11
11
11
13
14
14
15

CONTENTS CONTENTS
3 Iterative Methods for Ax = b and LS Problems 36
3.1 Krylove Subspace Iteration e 36
3.1.1 What should we choose for vin Krylovsubspace? 36

3.1.2 Howtorepresentzi? i v i v i ittt et e e e e e e 36

3.1.3 What optimality condition should we use togetagoodz;? 36

3.1.4 Different Iterative Methods L L. 39

3.1.5 Practical Considerationsof GMRES 42

3.1.6 CostinPracticaAl GMRES 47

3.1.7 Lanczosand MINRES e 47

3.2 QuadraticFunctionsand CG e e e e 47
3.2.1 Steepest Descent Through Optimization Methods 47

3.2.2 Alternative Derivation of Steepest Descent 50

3.2.3 Conjugate GradientMethod 51

3.3 Preconditioning L e e e 53
3.3.1 Introductory Remarks on Convergence 54

3.3.2 Preconditioning e e e 55

3.4 CONVEIGEIICE v v v v it e 59
3.4.1 GMRESConvergence 59

342 CGCONVEIZENCE . .+« v v v v e et et e e et e e e e e e e e e e e e 62

3.4.3 CGConvergence, Revisited 67

3.5 LSMR . o o e e e 70

4 Inverse Problems and Iterative Methods 74
4.1 IntroductiontoInverseProblems 74
4.2 Krylov Methods for Inverse Problems 76
4.3 Tterative Regularization e 80
4.3.1 Motivation e e e e e e e e e e e e 80

4.3.2 LandweberIteration e 83

4.3.3 Hybrid Iterative Methods e 87

4.3.4 Regularization Parameters e 88

4.3.5 Other Regularization Approaches 91

4.4 Flexible Methods. e e e e e e 92

5 Fast Fourier Transforms (FFT) 98
5.1 Integral EQuations e e e e e e e e e 98
5.2 FastFourier Transforms e 100
5.2.1 Discrete Fourier Transform (DFT) Matrix 100

5.2.2 Idea of FFTs: Divideand Conquer, 101

5.2.3 HigherDimensions. e 103

5.3 Toeplitz and Circulant Matrices i i ittt it e e 103
5.3.1 Eigenvalues and Eigenvectors e 104

LIST OF ALGORITHMS LIST OF ALGORITHMS

5.3.2 Matrix-Vector Multiplication and Solving Linear Systems 105
5.3.3 Preconditioning Toeplitz Matrices 106
A Applications of Iterative Methods 107
A.1 Radioactive Imaging and Iterative Methods 107
List of Algorithms
1 Simplelterationfor Ax =b e 4
2 Naive Iterative Refinement 12
3 Iterative Refinement for Ax = b Using Three Precisions 13
4 ArnoldiMethod L 21
5 Arnoldi (Modified Gram-Schmidt Approach) 22
6 Lanczos (Symmetric A) e e e e e e e e e e 25
7 Lanczos Algorithm with Full Reorthogonalization 26
8 Golub-Kahan Bidiagonalization (GKB) 28
9 Golub-Kahan Bidiagonalization with Full Reorthogonalization 29
10 Hessenberg Algorithm e 32
11 Basic Generalized Minimum Residual (GMRES) 40
12 Practical GMRES e e e 46
13 SteepestDescent e e e e e e e e 49
14 Conjugate Gradient e 53
15 Preconditioned Conjugate Gradient (PCG) 57
16 Iteratively Reweighted LS (SimplelIdea) 92
17 Right Preconditioned GMRES L 95
18 Flexible GMRES (FGMRES) e 96
19 Preconditioned CG o i i i i e e e e e e 96
20 Flexible Preconditioned CG i e e 97
21 Expectation Maximization (EM) e e 107
22 Ordered Subset EM (OSEM) i it e e e e e 107

1 SIMPLE ITERATIONS

1 Simple Iterations

1.1 Introduction

Suppose we want to solve the linear system Ax = b, where A € R™"*" is nonsingular, and x, b € R".
e We can use LU factorization. But if A is large, LU factorization takes a long time.
¢ In such cases, we should consider using an iterative method.

e When A is large and sparse, doing matrix vector multiplication is much cheaper than directly
factorize A.

e So, in iterative method, we should aim to only do matrix vector multiplications.

1.1.1 Simple Iteration Algorithm

Suppose M € R™*" is a nonsingular matrix. Let x(be an initial approximation of x. Suppose M !4 ~
I. Thatis, M ~ A in some sense. Then,

x—x0=A"'b—xg

=AYb — Ax¢) ~ M1 (b — Axy).
Hence, a better approximation is given by
X1 = Xg + M_l(b — Axg).
In general, we can iterate:

Xpe1 =X+ M1 (b — Axy), fork=0,1,2,....

Algorithm 1: Simple Iteration for Ax = b
Input: Initial guess, x

1 begin

2 fork=0,1,2,... do
3 rp =b — Axy;

4 Solve Md;, = ry;
5 Xp+1 = Xg + di;

Remark. We should assume:

e Inverting M, or solving Md = r (Line 4), is easier than it would be for A.

e Computing matrix vector multiplications Ax;, are relativelly cheap.

1 SIMPLE ITERATIONS 1.1 Introduction

1.1.2 Stopping Criterion

For now, we stop the iteration when

1. M < tol.

Ibell —
For example, tol = 1075,

We might need to worry about conditioning number, but let’s ignore it for now.

2. k> max # of iteration.

Otherwise, if we set tol to small, the algorithm might never stop.

1.1.3 Convergence

Definition 1.1.1 (Spectral Radius). Suppose A € R"*". Then, the spectral radius of A, denoted
as p(A) is defined as
p(A) = maX{|/\1|a I/\2|7 ooog |)‘n|}7

where \; € Cis the eigenvalue of A.

Theorem 1.1.2 Convergence of Simple Iteration
Suppose A € R"*"™ and M € R™*" are nonsingular, and

p(I—M™1A4) < 1.

Then, the simple iteration converges linearly to x = A~'b.

Proof 1. Let e, 1 = x — xi41 be the error at iteration k. [If converging, e;.; — 0.] Note that
X411 = X + M~1(b — Ax}) is the iteration, we have

€pt1 =X — Xjpp] =X — (xk + M_l(b — Axk))

=x—x} — M} (Ax — Axy,) [Ax = b]
=x—xp— M7TA(x — xp)

—e, — M 1 Ae

=(I-M1Aey.

Therefore,

eri1 =T - M1 Ae,=1—-M 1A - M 'Ae;,
= (I - M~1A)kHe.

[This error will go to zero, i.e., the iteration converges, if (I — M*A)*+1 — (]

1 SIMPLE ITERATIONS 1.1 Introduction

Now, assume I — M ~! A is diagonalizable, i.e.,
I-MT'A=VAVY,

where V' = [vl,VQ, e ,vn] is consists of eigenvectors of I — M 1A and A = diag(\1, Ao, ..., \y) is
formed by the eigenvalues of I — M ' A. Then,

(I _ M—lA)k—H — (VAV—I)k+1
= (VAV H(vAV =Y ... (vAV Y
= VAHy-L

Since A is a diagonal matrix, to have (I — M~1A)F+! = VAR1y—1 5 0, we want each \F™' — 0. To

achieve so, we require |\;| <1 Vi=1,...,n. Thatis,

i=1,...

p(I — M~ 1A) = max {|\]} < 1.
a0

QED. H

Remark.

e We can relax the assumption that I — M ~! A is diagonalizable. Just take the Jordan form.

o If |I — M~'A|| < 1, the error decays monotonically:

lewsill = [[(7 = M ey |
<||T— 24| - el

This is the ideal situation.

e However, p(I — M~'A) < 1 does notimply |7 — M1 A|| < 1.

Example 1.1.3
0 2 0

LetA= |0 0 2|.Thisisnota normal matrix.
0 0 0

[A matrix A is a normal matrix if AAT = AT A, or A is orthogonally diagonalizable. |

Note that p(A) = 0 (with A\ = Ay = A3 = 0). But |A]|; = || 4] = |4, =2 > 1.

So, it could happen that the error increases in early iterations before decreasing.

o If we have the ideal situation,

I—M~'A]| <1, then

k+1
lex|l

lewsll < ||7—MA|

1 SIMPLE ITERATIONS 1.2 Stationary Methods

This gives us an representation of relative error:

el < HI_ M_lAHk+1.
[leoll

Example 1.1.4 Number of Iterations
lexll
leol|
That is, we want ||/ — M‘lAHkJr1 < 4. So,

Suppose we want < §. How many iterations do we need?

|1 —arta) ! <
(k+1)log ||l — M~'Al| <logs

L
log &
F2 o A
(Under the ideal situation, || — M~'A| <1 = log|I — M~'A| <0.]

1.2 Stationary Methods
Stationary iterative methods are based on “splitting” A as

A= M — N, where M is nonsingular.
So, from the system Ax = b, we get

Ax=b = (M —N)x=Db
Mx—-Nx=Db
x=M"'Nx+ M 'b (Fixed Point Iteration)

Hence, the natural iteration to use is the Fixed Point Iteration:

Xpp1 = M INx, + M 'b.

1 SIMPLE ITERATIONS 1.2 Stationary Methods

1.2.1 Well-Known Splitting Methods

Let’s partition A as:

aip a2 -+ Qain
az; a2 -+ A2p

A= 7 Tl =D+L+U,
anl Qp2 - ann

where D is the diagonal entries of A, L is the strictly lower triangular part of A, and U is the strictly

upper triangular part of A.
e Jacobi: Take M = D (diagonal) amd N = —(L + U)
e Gauss-Seidel: Take M = D + L (lower triangular) and N = —U.

e SOR (Successive OverRelaxation): Let w be the relaxation parameter. Then,

M= piL and N=1"%D 1
w

w

1. If w = 1, we are back to Gauss-Seidel.
2. If w > 1, we have over relaxation.

3. If w < 1, we have under relaxation.

Remark. Stationary iterations are simple iterations. Here’s a simple proof.
Proof 1.

Xpp1 = MINx, + M~ 'b

=M (M- M+ N)x;,+ M 'b [Add and subtract M|
:Xk—M_lAXk—I—M_lb [A= M — N|
=xp + M~ (b — Axy) [Exactly simple iteration]

QED. H

1.2.2 Convergence

Recall that the convergence of simple iteration depends on I— M ~! A. For stationary iteration methods,

it means
I-M''MA=I-MYM-N)=M"!N.

So, we will be looking at p(M~*N) or || M~ N]||.

1 SIMPLE ITERATIONS

1.2 Stationary Methods

Theorem 1.2.1 Jacobi Convergence

If A is strictly diagonally dominant by rows or by columns, then the Jacobi iteration converges

for every x.

Proof 2. For Jacobi, assume A = D + L+ U and take M = D and N = —(L + U). Then,

M™IN=-DYL+U)

1/a11
1/&22

1/ann |

a21

Gnl

a12

an2

A1n

A2n

0

Recall that multiplying a diagonal matrix from the left is equivalent to scaling the row vectors. So,

0 ai2/an

VN — az1/az: 0

_anl/ann an?/ann

Note that if we take the co-norm of M~ N, we get

dij
s

[M7IN| = max)
b

ain /a1t

a2 /a22

=3 fouf
:max— G,Z]
7 |am\j¢i

If |aii| >) laij| fori=1,...,n, (ie., Ais diagonally dominant by rows), then ||[M~'N||_ < 1. Hence,

J#i
Jacobi converges.

[If we want to get results for diagonally dominant by columns, we need to use ||-||, instead.] Q.E.D. W

Theorem 1.2.2 Gauss-Seidel Convergence

If A is symmetric positive definite (SPD), then the Gauss-Seidel iteration will converge for any

Xq.

~

Proof 3. For Gauss-Seidel, A= D + L + U, and take M = D + L and N = —U. Suppose A is SPD.

Remark 4. (Properties of SPD). Here, we review some properties of SPD:

e Symmetry: U = L.

e Positive-definite: x"Ax >0 Vx # 0.

Then, eiTAez- = a;; > 0. Hence, the diagonal entries of A are positive. That is, d;; > 0.

We will use these properties later in the proof.

1 SIMPLE ITERATIONS

1.2 Stationary Methods

Let A be an eigenvalue of M ~! N and v be one of its corresponding eigenvector. Let v be normallized

sothatv'Dv = 1.
By symmetry

Then,

MIN=—-(D+L)'U=—(D+L)'L".

M INv=—D+L)'LTv=)\v

Since v’ LTv is a scalar,

Hence,

Since A is SPD, we know

Also,

Hence,

—L"v=X\D+ L)v=\Dv + Lv)
—v'LTv=Av"Dv+v'Lv)
=1
—~VvI LTv=X1+v'Lv).

T
v LTv = (VTLTV> =v ' Lv.

v Lv= >\<1 + vTLv)

v Lv \2 (v Lv)?

Ao YV e VIV
1+vTLv (1+vTLv)?

0<v' Av = VT<D+L+LT>V
=v' Dv —{—VTLV + v LTv
—— ~——
=1 =v ' Lv

=1+ v Lv.

2 2
(1 + VTLV) =1+ v Lv +(VTLV>
—_——
>0
T 2
> (v Lv) .

(vTLv)?

2 _
A= (1+vTLv)2

<1l = |\ <L

Therefore, p(M~1N) < 1, leading to convergence of Gauss-Seidel.

QED. H

Theorem 1.2.3 SOR Convergence

If A is SPD, then SOR converges for any xg if and only if 0 < w < 2.

10

1 SIMPLE ITERATIONS

1.3 Iterative Refinement

Remark 5. (SOR Convergence).

e The choice of w can affect convergence speed.

o Ifw — oo, M = Lis an ill-conditioned matrix.

1.2.3 More Stationary Iterative Methods

e SSOR (Symmetric Successive OverRelaxation)

e Regular Splittings

e Block Approaches.

Example 1.2.4 Block Jacobi

Suppose i
A A
Az Ag
A= . .
Aml Am2

A

Alm
A2m

Amm

, where Aij € RP*P

is a block matrix. Assume the diagonal blocks A;; are non-singular. Then, the block Jacobi will use

1.3 Iterative Refinement

1.3.1 Motivation

e Iteratively improve qualities of a computed quantity.

e For linear systems, there is a close relationship to the simple iteration.

1.3.2 Solve for Ax = b, where A € R"*" is non-singular

Suppose x(is a computed solution of Ax = b. Letry = b — Ax(be the residual.

e Now, suppose we solve the linear system Ad = ry and update

11

X1 :X0+d

1 SIMPLE ITERATIONS 1.3 Iterative Refinement

¢ If we compute d exactly, then

X1 =X + d
= Xxg + A_lro
= Xo + A_l(b — AX[)) = 14_11)7
which gives the exact solution of Ax = b in just one iteration.

e Of course, we cannot solve Ad = r(exactly. But, we might hope that x; = x¢ + d is a better
approximation than x.

e We can do this iteratively:

Algorithm 2: Naive Iterative Refinement

1 fork=0,1,2,... do

2 r, = b — Axy;

3 solve Ady, = ry;

4 update xj11 = xj + dy;

This looks like simple iteration with M = A.

e Question: Our set-up was that solving Ax = b is hard. But now we are asked to solve Ady = rj?

Answer: We solve Ady = rj with a lower precision.

¢ In practice, iterative refinement for Ax = b is implemented in multiple precisions. Specifically,
consider three precisions:

Pr S p < s,

where 1, is the smallest unit roundoff (highest precision; usually the distance between 1 and the
next floating point number), 1 is the working precision, and p is the largest unit roundoff (lowest

precision).

Example 1.3.1 Three Precisions
- Double: y1, = 1.11 x 10716

- Single: ;1 = 5.96 x 1078
- Half: s = 4.88 x 10~*

12

1 SIMPLE ITERATIONS 1.3 Iterative Refinement

Algorithm 3: Iterative Refinement for Ax = b Using Three Precisions
Input: initial approximate solution x, stored in precision p

1 begin
2 factorize A (e.g., [L, U] = 1u(A));
3 fork=0,1,2,... do

4 compute: rp, = b — Axy in precision pu,;
5 solve: Ady =y, in precision us [can use GEPE faster than QR; d=U\ (L\r) |;
6 update: xp41 =%, +d; inprecision y;

1.3.3 Relate Iterative Refinement with Simple Iteration

Simplified Assumption: Only errors in the algorithm come from solving Ad;, = r.
We will recall from MATH 515/MATH 315 the backward error analysis (where we want to show the
computed solution is the exact solution of a near-by problem).

So, in the iterative refinement context, the computed dy is the exact solution of a near-by problem.
That is,

(A + AAk) d, =r;
————
My,
dk = Mk_lrk.
Repeating convergence discussion from simple iteration, if e; .1 = x — x;41, then
€r+1 — (I — Mk,_lA)ek
Hence, e, — 0if |7 — M 'Al| <1 Vk.

e We cannot take this convergence analysis any further since we don’'t know A A;, and hence don’t
know M;, and M, "

e Also, what do we mean by “convergence” is questionable: the exact solution might no be repre-
sentable in precision p at all!

¢ Instead, it makes more sense to try to find bounds on limiting accuracy and limiting residual:

1% — x|

Limiting accuracy = < some bound,

Limiting residual = ||b — AX|| < some bound,

where X is an iterate x;,.

¢ To identify those bounds, we need rounding error analysis, which is very technical.

13

1 SIMPLE ITERATIONS 1.3 Iterative Refinement

1.3.4 Iterative Refinement for Least Squares Problems

Consider the least square problem
min ||b — Ax||3, (LS)

where A € R™*™ with m > n, and rank(A) = n (A is a full rank matrix).

e Naturally, we could apply iterative refinement to the Normal Equations:

ATAx = ATb. (Normal Equations)

But, recall that, in the case of ||-||,, k2(AT A) = (k2(A))?. Tterative refinement does not work well

on ill-conditioned systems.

e An alternative approach is to apply iterative refinement to the following augmented system:

_ m (1)

The solution to (1) gives the solution of the least squares problem and its corresponding residual:

I A
AT 0

r

X

r+-Ax=b = r=D>b — Ax.

Alr=0 = ATb-4Ax)=0 = ATAx=ATb.

1.3.5 Other Linear Algebra Problems with Iterative Refinement

¢ Find an eigenvalue/eigenvector pair:

Solve: Ax = Ax.

¢ Find a singular value/vector triplet:

Solve: Av=cu and A u=ov.

14

1 SIMPLE ITERATIONS 1.4 Floating Point Numbers

1.4 Floating Point Numbers

Definition 1.4.1 (Normalized Floating Point Numbers). Usually, we write it as

d d d
z= i@e“(? tg ot é) = £6 x (0.didy. .. dy),
where

e 0 <d; <p—1withd; # 0is called mantissa.

e enin < e < enmax is called exponent,where ey, is a large negative integer, and e,y is a
large positive integer.

[In IEEE standard, emin = 1 — €max.]

e tis called precision

Example1.4.2 5 =10andt =4

e 7 is presented as

3 1 4 2
=10' x 0.3142 = 10! S+ —).
T 0" x0.3 0X<10+102+103+1O4)

e Largest representable number is

9 9 9 9
max = 1 emax—+1 _ _ _ _
v 0 <10+102+103+104>

= 10%m=xF1 % 0.9999
Note that if m = 0.9999, then
m+107* = 0.9999 4 0.0001 =1 = m=1-10""
So,

Tmax = 10€max+1(1 _ 10—4) — 1O€max+1(1 _ 10—75)

e Smallest representable number is
1 0 0 0
P 1Oemin+1 _ - R -
Fmin 10102 T 105 T 10
= 10°min,

15

1 SIMPLE ITERATIONS 1.4 Floating Point Numbers

Example 1.4.3 5 =2andt =4

e Largest representable number:

1 1 1 1
Tmax = 2° (54-?—1-?4‘?)

— 2€max+1(1 _ 2*4) — 2emax+1(1 _ 2*t).

e Smallest representable number:

1
Tmin = 9€min+1 (_ + E + E + E)

— 2emin .

Example 1.4.4 For any base 5 and precision ¢

_ gl =g (Lt 0 0 0
1='(0.100---0) B(5+62+53+ +5t>

e The next representable FP number is

= £(0.100---1)

_q(t 0 0 i)
5(/3*52*[33* T
:1+/81_t-

Definition 1.4.5 (Machine Epsilon and Unit Roundoff).

e Machine epsilon: ¢ = 3~ = distance from 1 to the next largest FP.
So, any number in between 1 and 1 + ¢ is NOT representable. They will be rounded to
eitherlorl +e.

. 1 1 . :
e Unit roundoff: u = 3 Gt = 3¢ = The largest rounding error when rounding a number

in (1,1 + ¢) to the next FP number.

Remark.

e All computers use binary, i.e.,, 3 = 2. That is, FL numbers are represented with g = 2,

16

1 SIMPLE ITERATIONS 1.4 Floating Point Numbers

d; =0or1, and d; = 1. [This means we know for sured, = 1, and thus we don’t store it!]

e Computers store FP numbers with a sequence of bits (0 or 1), allocating some bits for the
mantissa, and some for the exponent.

e (+/—) usually takes 1 bit in the mantissa. [Since d; = 1 and we are not storing it, we don’t
lose any bit by storing the sign.]

Example 1.4.6 Bit Allocations for Commonly Used FP Precision Types

Precision Type | # Bits for Mantissa # Bits for Exponent
Google half, bfloat16 8 8
half, fp16 11 5
IEEE single, fp32 24 8
Standards double, fp64 53 11
quad, fp128 113 15

Remark.
e Fewer bits for mantissa = more roundoff error.
e Fewer bits for exponent —> less dynamic range (more risk for overflow or underflow).

e Fewer bits —> lower storage and faster.

Now, the question is how do we determine e,;, and e, ..
e There is no sign bit in the exponent.

e Consider fp32 (or bfloat16) for example. We have 8 bits for the exponent. These can represent
integers 0 ~ 255.

o [Wait... We need negative exponents to represent small numbers. How to achieve this without the
sign bit?]

¢ To get negative integers, IEEE standards uses half the integers to denote positive exponents and
the other half to denote negative exponents by subtracting a bias.

e In fp32, bias is 127. So,

biased exponent = actual exponent + 127.

17

1 SIMPLE ITERATIONS 1.4 Floating Point Numbers

Actual Exponent Biased Exponent Binary Representation

Special case —127 0 00000000

—126 1 00000001

—125 2 00000010

—124 3 00000011

0 127 01111111

127 254 11111110

Special case 128 255 11111111
Remark.

e Because we assume d; = 1 and this is not stored, the mantissa alone cannot represent 0.

[This is ridiculous! We need 0 for sure in our computation. |

To represent 0, the IEEE standards define it as

mantissa = all 0 bits and exponent = all 0 bits.

e Representing oo, IEEE standards define it as

mantissa = all 1 bits and exponent = all 1 bits.

Therefore, for £p32, enmax = 127 and e, = —126.

Precision | Mantissa | Exponent 1 €min ZLmin €max Tmax
bfloat16 8 8 3.91x1073 | —126 | 1.18 x 1073 | 127 | 3.39 x 1038
fp16 11 5 488 x 1074 | —14 6.1 x 107° 15 6.55 x 10*
fp32 24 8 596 x 1078 | —126 | 1.18 x 10738 127 | 3.40 x 1038
fp64 53 11 1.11 x 10716 | —1022 | 2.22 x 107308 | 1023 | 1.80 x 1038
fp128 113 15 9.63 x 1073% | —16382 | 3.36 x 1074932 | 16383 | 1.19 x 10932
Example 1.4.7 Verify

1
r = E ES (0.1)10
Its normalized binary representation:

z =273 % (0.110011001100 - - -).

18

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES

2 Krylov Subspace Methods for Eigenvalues

2.1 Introduction to Krylov Subspaces

Definition 2.1.1 (k-th Krylov Subspace). Given A € R"*", v € R", v # 0, the k-th Krylov
subspace is
Kr(A,v) = span {v, Av, A%y, ... ,Ak_lv},

where span includes all linear combinations.

Definition 2.1.2 (Basis of a Subspace). {u;, uy, ..., ux} is a basis if
e uj, uy,...,u; span the subspace, and
® uj,us,...,Uu;are L.I.

So, a basis is the minimal spanning set.

e Therefore, the vectors {v, Av, A%v, ..., A*~!v} will be abasis for K (4, v) if v, Av, A*v,... A1y

are L.I. (they already form a spanning set).

Example 2.1.3
A=1,v#0.

e KCi(I,v) ={v} = basisfor K;(I,v).

o Co(I,v) ={v,Iv} ={v,v} = notabasis.

Example 2.1.4 Largest &
A € R™™" v # 0 € R". What is the largest k for which {v, Av,..., A*"1v} is L.1.2

Solution 1.
Since A’v € R"”, the most we can have is n L.I. vectors. So, the maximum £ is n. O

e Thus, when generating vectors {v, Av, A%v,..., A*~!v}, a linear dependence must eventually
occur.

Application of Krylov subspaces: Iterative methods for solving eigenvalue and singular value
problems, and solving linear systems draw approximations from Krylov subspace.

Generally, we expand the basis until a dependence occurs.

But, {v, Av, A%v,..., A*~1v} might be an ill-conditioned basis. We will transform these into an
orthonormal basis using Gram-Schmidt-like algorithms.

19

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.2 Arnoldi Method

2.2 Arnoldi Method

Given A = R™*". Suppose we want to find an orthogonal matrix Q € R™*" and an upper Hessenberg
matrix H s.t.
QTAQ = H.

That is, we also have [Q is orthogonal: Q~' = Q"]

AQ = QH.
Let@ = {ql qQ qn] and consider
(hiy hiz - hin |
hor haoa -+ hay
hsa -+ hs,
A[Ql Q@ qn}=[q1 Q@ - dn Qntl . : (2)
hnn
| hn+1,n_
e Let q; be any vector with ||q ||, = 1.
e Matching the first column in (2):
Aqi = h11q1 + h21q2. 3)

[We know q. (picked by us). So, we need to find qa, h11, and ho; .]

We want qz s.t. q g2 = 0 and ||q2 |, = 1 since @ is orthonormal. Multiply (3) by q; , we have

ai Aqi = hi1af g1 +ho1 qf a2
=1 -0

hi1 = qi Aqq |

Now, define

ho1q2 = Aqi — hi1q1 = wi.

If wy # 0, then

[w2lly = l[h212lly = hat ||q2lly = har-
=1

So,
ho1 = [[w1lly |
Then,
i hoi |

20

KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.2

Arnoldi Method

e Matching the second column in (2):

Adz = hi12q1 + h22q2 + h32q3

Unknowns: qs3, h12, h22, h32.

Find q3 s.t. q]—qg =0, q;rqg =0, and ||q3||, = 1.

Multiply (4) by q :
ai Adz = hi2q{ g1 +ha2 qf g2 +hs2 i g3
—— ~—— ——
1 =0 -0
hi2 = q{ Aqa |
Multiply (4) by q :
ds Aq2 = h12qy Q1 +h22 Qg g2 +h32 q9 3
—~— =~ ——
=0 1 =0
has = qg Aqa |
Now, define

h32q3 = Aqa — h12q1 — h22q2 = wa.

Ifwy 7 0, then [|w2|, = [|ha2qsl; = haz [lasll,- So,
——

=1

hsa = ||[wally | = |a3 = —|

In general, we have the Arnoldi Method (Algorithm 4).

4)

Algorithm 4: Arnoldi Method

Input: A, q; with ||qi|, = 1.

1 begin

2

for;=1,2,...,mdo
// This is Gram-Schmidt-like procedure
Compute h;; = q; Aq; fori=1,...,j;

J
Compute W, = qu — Z hijqi;
i=1

Compute hji1; = [[w;ly;
ifhj_H’j = (0 then

// We get linear dependence

m=j;

break;

Compute q; 1 = W;/hji15;

21

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.2 Arnoldi Method

Remark.
o If {v,Av,...,A™v} are L.I,, then the above algorithm is just classical Gram-Schmidt to
produce an orthonormal set {q1,q2, ..., qm+1}, with

span{v, Av,..., A"v} = span{qi,q2, ..., Qm+1}-

e We know for better stability, we should use modified Gram-Schmidt (Algorithm 5).

Algorithm 5: Arnoldi (Modified Gram-Schmidt Approach)

Input: A € R"*", q; € R" with [|¢||, = 1.
1 begin

2 forj=1,...,ndo

3 w; = qu // Most time-consuming part
4 fori=1,...,5do
5 hij = qiTWj;

6 | W =w; — hjjq;
7 w = [[wjl|;

8 ifw = 0 then

9 m=j;

10 break;

11 hjy1,; = w;

12 || gt =W/

Output: AQ = QH, where Q € R™™, QTQ =1 € R™*™, n > m, and H is upper Hessenberg.

2.2.1 Matrix Relations in Arnoldi

Definition 2.2.1 (Ritz Values and Vectors). Eigenvalues and eigenvectors of Hj, are called the
Ritz values and vectors of A.

e If (), v) is an eigenpair of Hy, then (A, Qxv) is an approximate eigenpair of A.

e From Important Relations to Eigenpair:

From the derivation using matched columns,

AQy, = Qp11 Hy,

where

Qr = q 9q9q2 ... Qk},

22

KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.2 Arnoldi Method

and) i
hi1 hio hik
hoi hoy --- hogg
~ . . . H
Hk: : :M’ Wheree;:[o ..o 0 1.
hii1 k€
. +1,k€CL
o hgg
L hji1k
That is,
Hy,
AQr = Qr41 -
hiy1k€y
Hy,
= [Qk | Qk+1] T
hi+1 €y
AQy, = QrHy + hi1 pQrt1€), | (Important Relation I)

Note, hi+1,,qk+1€;, above is a rank-1 matrix.

Also note

QLAQL =QlQLHL +heyrn Qiarit e
N—— N !

=I =0, orthogonality
Qp AQy = Hy | (Important Relation II)
Then, from the two relations, we get
AQpv = (Qka + hk+17qu+1e;>v [by (Important Relation I)]
= QkHpv + hiy1 kVEQrt1 [ef v =vy]
= AQkV + i1 b VEQk+1 [v is eigenvector of Hy]
(A= A)QKV = hjpt1 kVEQkt1 [move terms|
14 = ADQivlly = k1 kVidkaally (take2-norm|
= [Pt 1] - [1viell lak+1lly = 1]

If hk-i—l,k =0, them,

(A= ADQvl, =0
(A= XM)Qrv =0 = (A, QyVv)is an eigenpair of A.

e So, if the Arnoldi algorithm stops, we know we get an eigenpair of A.

e This is the basic approach used by ARPACK (e.g., eig in MATLAB) for estimating a few eigenval-
ues/vectors for large sparse matrices.

23

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.3 Lanczos Method

Remark 1. (Clarifying Remarks).
¢ In Arnoldi, we use q; to be any vector with ||q; ||, = 1.

e These are constructed so that
span {qla q2,... 7qk} = span {qla Aqla cee 7Ak_1q1}~
e Ifweuse q; = v/||v||,, then

span {qi,q2, ..., qr} = span {Oﬂ,Aql, B "Ak—1q1}

:span{ M ,AFL M }

il vl ™ vl
= span {V, Av, ... ,Ak_lv}
= Kr(A,v).

2.3 Lanczos Method
¢ If we apply the Arnoldi method to a symmetric matrix, we get the Lanczos method.

e If A is symmetric, then AT = A. Also,

il = (Q1AQ:) = QI ATQx = Q[AQy = H,.

So, Hj, is also symmetric,

But Hj, is upper Hessenberg, so it has the form tridiagonal.

(h11 hor
ha1 hao h3o

Hj, = h3a hss — symmetric tridiagonal

Pk k-1

hir—1 hig |

e Notation: In this case, we change notation: Arnoldi<—Lanczos: Hy «— T}, and

ar B
f1 az P -
Tk = o . . . /Bk—l — %
Br-1 g
A Br |

24

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.3 Lanczos Method

e We have similar matrix relations:

1. AQk = QT + Brakr1e; , and
2. Q) AQy =Ty

Algorithm 6: Lanczos (Symmetric A)
Input: q;, with ||q ||, = 1; symmetric A

1 begin
2 Set 5y = 0 and qp = 0;
3 fork=1,...,ndo
4 w = Aqy;
5 ap = q;—W;
6 W =W — [B;_19x_1 — Qxqi // three-term recurrence
7 By = lIwll;
8 if 5, = 0 then
9 m=k;
10 L break;
11 | Ak =W/ Bk
Remark.

¢ To generate symmetric matrices:

1. %(A-l—AT),
2. AT A, and

0 AT
A 0

Algorithm 6 computes 7,, € R™*™, tridiagonal, and @,, € R"*™, with orthonormal
columns s.t. AQ,, = QmTn.

The vectors q; are supposed to be orthogonal.

But, as with classical Gram-Schmidt, round-off errors cause loss of orthogonality.

Remedy: reorthogonalize (Algorithm 7).

25

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.4 Golub-Kahan Bidiagonalization

Algorithm 7: Lanczos Algorithm with Full Reorthogonalization
Input: symmetric A € R™*", q; € R" with ||qi ||, = 1.

1 begin

2 Set By = 0;

3 forj=1,...,ndo

4 w = Aq;;

5 o = quw;

6 w=w — f3;_1qj—1 — @;q;;

// modified GS style

7 fork=1,...,7—1do

8 | w=w— (a] W)

o || B=lwly

10 if 5; = 0 then

11 Setm = j;

12 L Break;

13 91 =w/Bj;
Remark.

e Reorthogonalization requires additional work. The work grows as we continue going.

We can use Partial Reorthogonalization: replace the loop with

1 fork=1,...,sdo
2 | w=w-— (qfw)ay

where we need to choose a small s such as
s =min{j — 1,10}.

e Later, when we use Arnoldi or Lanczos to solve Ax = b, reorthogoanlization is often not
needed.

2.4 Golub-Kahan Bidiagonalization

GKB is very similar to Arnoldi and Lancaoz, but it can be used on general A € R™*",
Suppose we want to find U, V with orthonormal columns and B an upper bidiagonal matrix s.t.

U'AV=B or V'ATU=B".

[This is the start of an SVD.] Thatis, AV = UBor A'U = VBT,

26

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.4 Golub-Kahan Bidiagonalization

e Now, let’s match columns of AV = UB.

ar B
az [
Alvy \Z] = {ul uj_1 uj]
Bj-1
Qj
AVj = ﬁj_luj‘_1 + QU
a;ju; = AVj — ﬁj_luj_l [Assumeﬁo = ().]
Note that because we want |lu;|, = 1, we have
aj = [|[Av; — Bj—1aj-1],
u; = (Av; — Bj-1uj1)/ay
e Similarly, match columns of A"U = VBT.
» .
1 a2
: B
Qj
Bj

-
A u; = Q;v;+ /ijj+1

v = AT — v
Bivit1 = A uj — ayv;.

Because we want ||v;; 1|, = 1, we have

o]

2

Vit = (ATij - ozjvj)/ﬁj !

27

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.4 Golub-Kahan Bidiagonalization

Algorithm 8: Golub-Kahan Bidiagonalization (GKB)
Input: A € R™*", v; € R" with ||vq||, =1

1 begin
2 Set 5y = 0;
3 forj=1,...,ndo
4 u; = AV]' — /ijllljfl;
5 aj = [[ujlly;
6 if o; = 0 then
// Linear dependency in Krylov subspace generation
7 Setm = j;
8 Break;
9 uj = uj/ag;
10 Vitl = ATUj — OV
11 Bi = Ivitllys
12 if 3; = 0 then
// Linear dependency
13 Setm = j;
14 Break;
15 | Vi = vi+1/Bj

But... What is the Krylov subspace we are generating?

o Ki(A,v) = {v,Av, A%v,..., A*"1v}. However, if A € R™*" with m # n, A? doesn’t make sense

due to dimension mismatch.
e Similar to Arnoldi and Lanczos, GKB compute bases for Krylov subspaces:

1. vi,Vvoa,..., vy is basis for
K (ATA, vl) = span {vl, (AT A)vy, (AT A)Pvy, ..., (ATA)kflvl}
2. uy,uy,...,uy is basis for

Ky (AAT, u1> = span {ul, (AATuy, (AAT) 2y, .. ., (AAT)k_lul}

Remark. As with Arnoldi and Lanczos, the vectors u; and v; can lose orthogonality. So, we
need to do reorthogonalization (Algorithm 9).

28

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES

2.5 Hessenberg Method

Algorithm 9: Golub-Kahan Bidiagonalization with Full Reorthogonalization

Input: A € R™*", v; € R" with ||vq||, =1

1 begin

2 Set By = 0;

3 forj=1,...,ndo

4 u; = Avj — fj_1uj_1;

5 fork=1,...,j—1do
6 L W = u; — (ufwy)uy;
7 aj = [lujlly;

8 if o; = 0 then

9 Setm = j;

10 L Break;

11 u; = uj/aj;

12 vit1 = ATw; — ajvj;

13 fork=1,...,jdo

14 L Vitl = Vjp1 — (VkTVj+1)Vlc;
15 Bi = 1vjllys

16 if 3; = 0 then

17 Setm = j;

18 L Break;

19 | Vi1 = Vi/Bj

Then,

Check if KTV = I (up to signs).

Remark. To verify that our Algorithm produces a basis for £ (A, v) in general, build

K = [V Av A%v

[Q R] — qr(K).

Suppose {v1,va,...,vi} is the output from our algorithm. Then build

V = {vl \'D)

2.5 Hessenberg Method

In this section, we will do something similar to Arnoldi for A € R"*", but we do not enforce orthogo-

nality of Krylov basis vectors.

29

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.5 Hessenberg Method

Specifically, we build

ALy, = Ly Hy,
[L ¢] Hy,
= k k+1)
the;

where Hy, is upper Hessenberg, and L, is a nonsingular, unit lower triangular matrix:

1

2% 1

(31 l32 1

Ly lyo ly3

Ly =

Uk Uk lgz oo e 1
ley11 lrv12 lkv13 0 o ek
L ln1 ln2 ln3 Cni, |

To build L, and Hy, let’s match columns:

[hi1 iz -+ hag
ha1 hao ;
h
Aley & o ou] =0 6 b b 32
Pk
L Pk1 k|
U1
e Letv = | : | beany vector, with v; # 0. Then,
Un,
El = V/?)l.

e Match first columns:
Al = h11£41 + ho1£5.

Here, we know ¢; and aim to find h11, ho1, and £5. Denote w := A¢;. Then,

w = h11£1 + ho1£2

30

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.5 Hessenberg Method

That is,
o e o]
U1
=hu| | +ha
| Wn, | _enl_ _£n2_

— =]

Override w .= w — h114;. Then,

w = hoje
- - [0]
w
! 1
w2
= h21 632
y :
L _€n2

e
=it

e Match second columns:
Aly = hi2€y + hoolsy + h3als.

Denote w := A¥¢5. Then,

W = hi12€1 + hoola + h3ols

w1 1 0 0
w2 lay 1
w3 | = hyg l31] 4+ hao l32 + h3o 1

W, lnl an £n3_

— [h=w]

Override w := w — hi12€;1. Then,
W = hgoly + h3ol3

31

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.5 Hessenberg Method

That is,

w3 | = hog l32 + h3o

Wn, €n2 £n3_

— =]

Override w := w — ha9f5. Then,

W = h32£3
wl _ 0 -
w9 0
| Wn, | _£n3_

Algorithm 10: Hessenberg Algorithm
Input: A € R"*", v € R"withv; #0

1 begin
// column-oriented forward substitution style
2 Set €y = v/vy;
3 forj=1,... do
4 w = Al;;
5 fori=1,2,...,jdo
6 hij = Wy;
7 w =W — h;jl;;
8 hjt1,j = wjt;
o | | L =w/hj;
Remark.

(+) Noinner productinvolved in Algorithm 10. Inner products are bottleneck for parallel com-
puting because they are hard to parallelize.

(-) What if v; = 02 We have to do pivoting so that v; # 0.

32

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES

2.5 Hessenberg Method

(-) What ifhj+17j =0?

1. Try to pivot w so that w;; # 0.

2. If we cannot find non-zero entries, then stop. We reach linear dependency.

2.5.1 Relationship between Arnoldi and Hessenberg
Given A € R and v € R™:

¢ Arnoldi Matrix Relations: Let q; = v/||v||,, and compute

AQi = Qi1 HY
= [Qk Qk+1} Hy.
e Hessenberg Matrix Relations: Let £; = v/v;, and compute

ALy = Ly H}!

= {Lk £k+1}ﬁ1?'

Define
Ki=|v Av - 4],
Then,
KkH:[v Av - Akly Akv}
- [Kk Akv}
= v AK.

¢ Arnold Matrix Relations: Suppose we have QR factorizations:

K = QuRr, Kpy1 = Qpi1Ris.

Consider

OT

AR, = [V AKk} I

OT
I,

AQiRy = Qi1 Riy

= Kgq1

OT

k

33

A

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.5

Hessenberg Method

AQy, = Qi1 R [OTIk} R;!
=H}

AQr = Qi HY-

e Hessenberg Matrix Relations: Suppose we have LU factorizations:

Ky = LUy, Kpi1 = Lg1Upyar.

Consider
OT
AR, = [v AKk]
1y,
OT
= Kgy1 I
OT
ALkUg = Li1Ug4a
I,
OT
ALp = Ly Upr | | U!
k
~—_————
—fh

k

ALy = Lyy HJ.

So, we have K}, = LU, = Qkﬁk. Then, we can find

Ky, = LyUy, = Qi Ry,
Ly = Qy f%kU,;l

N——
upper A matrix

Ly = QxRy, where Ry, = RyU, !
is the thin QR factorization of L,

Qr = Ly R,
Furthermore,
AQy = ALLR;' = Ly HIR; ! [ALy, = Lyy 1 H}Y
= Qk+1Rk+1ﬁ£R;1 [Lit1 = Qrr1Rpq1]
Qi1 HE = Qi1 Ry HER; [AQ), = Qry1 H]

H{ = Ry HI'R;*

34

2 KRYLOV SUBSPACE METHODS FOR EIGENVALUES 2.5 Hessenberg Method

2.5.2 Hessenberg Version of GKB

In the case of rectangular A € R"™*", we can do something similar to GKB.
Compute basis £, j; s.t.

ALy = Dy Hy, and A" Dyyy = Ly 1 Wi,

where H;, is an upper Hessenberg (k -+ 1) x k matrix, Wj,_, is an upper triangular (k+1) x (k+ 1) matrix,
and Dy1, Ly are unit lower triangular matrices.

Remark. Basically, we apply Hessenberg method to AA™ and AT A.

35

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS

3 Iterative Methods for Ax = b and LS Problems

3.1 Krylove Subspace Iteration

Consider solving Ax = b, where A € R"*" is nonsingular. The basic approach is to
1. x¢ is an initial guess (could be x; = 0)
2. update x; = xg + 2,

where z;, is a vector in an appropriate Krylov subspace (A, v) (usually of increasing dimension).

Example 3.1.1 Naive Update
Suppose xq is given. Then, the updates will look like

X1 =X0+21, 21 €Ki(A,v)=span{v}.
X2 = X0 + 22, 22 € K2(A,v) =span{v, Av}.

X3 = X0 + 23, 23 € K3(A,v)=span {v, Av, AQV}.

3.1.1 What should we choose for v in Krylov subspace?

Typically, we use

v=rg=b— Axg (Residual)
3.1.2 How to represent z;?
If we have a basis for (A, ro) (e.g., {q1,92,...,q%}), then z, = Kx(A,rg) = we can write z; as a
linear combination of q;. That is, 3 scalars y1, yo, . .., yi s.t.

Zi = y1d1 + Y2d2 + - - - + Yr k-

Equivalently, 3 a vector yy, s.t.
2k = QkYk-

3.1.3 What optimality condition should we use to get a good z;?

Minimum Residual Approach Find

Zp = ar min b— Ax|?, x=x + z.
p=arg min [112, 0

36

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

Notice that

b — Ax|ly = [|b — A(xo + 2)|,
= | b— Axy —Az||2
——

=ro

= |lro — Az,
If we restrict z € K (A, rp), then
b — Ax||, = [[ro — AQkylly, 2= Qry-

The Basic Idea of Minimum residual Approach
1. Find basis @y, for (A, ro)

2. Compute y; = argmin ||ty — AQxy|,
Y4

3. Update x;, = xg + QY&
——

Zj

How we solve (2) depends on the basis Q) (e.g., Arnoldi, Lanczos, etc.).

Minimum A-Norm Error Approach If A is SPD, we can try to find z = @1y to minimize

lew % = IIx — xxll%,

where x is the true solution.

Definition 3.1.2 (A-Norm).

lex|ly = e Aex.

Note: e, is the error, not the unit vector.

We want to find z € K (A, ro) to minimize

2 2
lexlla = IIx — xxll4

= [Ix — (xo0 +z)[1%

Butifz € Ki(A,r0), z = Qry, where y € R*. Therefore, an equivalent problem is to find y € R*
to minimize

I — (x0 + Quy)II% = lleo — Quy %, where ey = x —xo.

37

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

Note that
-
ed A(Quy) = (eg A(Aky)) = (Qry)"ATeo = (Qry) T Aey [Since A is SPD)
——
scalar
and .
e] A(Quy) = (o7 AQk)y = (@[Aeo) .

We will use these two relationships later in the derivation.

Lete(y) = eg — Qry be a function of y. Consider

) = lle)Il%
= lleo — Quyll%
= (e0 — Qry) ' A(eo — Qry)
= ey Aeg — (Qry) ' Aeo — eg A(Qry) + (Qry) " A(Qry)
= e Aeg — 2 (QkTAe()) Ty +yv'Q} AQry [by relationships above

Vi(y) = —2Q, Aey + 2Q; AQyy.
Set Vf(y) =0:

—2Qy Aeg +2Q) AQry =0
—Qf Aeg + QL AQry =0
QF Aleg — Qry) =0
= Q;Ae(y) =0.
Then, we let y;, be the vector for which Q] Ae(y) = 0.
Problem Note that
e(yr) = eo — Qryr

=X —x0 — Qryk

X But... we don’t know x.

Resolution Do we really need to know x?

Ae(yy) = A(x —x0 — Qryr) = Ax — Axg — AQryx
=b — Axg — AQLyk [Ax = D]
=19 — AQLYk [b — Axg = ro)

v’ So, we don't need to know x!!

38

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

Therefore, we want to find y;, s.t.

Qp(ro— AQryr) =0 = QL AQr yr=Q.ro
——

A is SPD=-Lanczos

tridiagonal
Let’s take a closer look at the RHS. Suppose Q; = [ql q2 --- qi|- Then, by Lanczos, we
know q; = Hr—OH. Therefore, qlTrg is a scalar. However,
To

. r
qro=0 sinceqs L q = ——.
[[rol|

Summary of Krylov Subspace Iterative Methods
To use iterative methods to solve Ax = b, with A € R"*", we construct Krylov subspaces.
1. Let x¢ be an initial guess, and compute rp = b — Axy.

2. Construct a basis for the Krylov subspace K (A, rg), Qr = [ql Q qk} .

3. Compute x;, = xq + z, where z € Kj(4,rg) (i.e., z = Qry, where y € R¥) and z satisfies an

optimality condition:

e Minimize the residual:
b — A(xo + 2)|12 = |[ro — Az|3 = |lro — AQry|l3 2z € Ki(A,r) andy € RF.
e Or, if Ais SPD, compute z € K;(A, rp) to minimize the A-norm of the error:
< — (x0 +2)|% = lleo — zll% = lleo — Qrylls 2 € Ki(A, o) and y € R,

where |leg — Qry|% = (€0 — Qry) " Aleo — Qry).
This is equivalent to compute y € R s.t.

Qf (ro — AQry) = 0.

3.1.4 Different Iterative Methods

We get different iterative methods using different bases for the Krylov subspaces and different opti-
mization criteria.

Suppose A € R"*", and we use Arnoldi and minimal residual

From Arnoldi, we have AQ; = Qk+1ﬁk. We need to consider

~ 2
Iro = AQu¥ I3 = ||ro — QuarHiy

39

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

In Arnoldi, we use

So,

Io

ol

ai = 1o = [[rollyq1 = Bq1, where 8 = [|rol|,.

2
Iro — AQry|l5 = Hﬂql - Qk+1HkYHQ

Note that Qx41e1 = qi, we have 5q; = Qr11(Se1). So,

Qry1(Ber1) — Qk+1ﬁk}”’z
~ 2
o)

~ 2
= ||fe; — Hksz [Thisisa (k x 1) x k LS problem.]

Iro — AQwyll3

[The final equality holds because Q.1 has orthonormal columns, so it is 2—norm invariant under

orthogonal transformation.]

This leads to the basic Generalized Minimum Residual Method (GMRES). Algorithm 11 outlines
the algorithm.

Algorithm 11: Basic Generalized Minimum Residual (GMRES)

Input: A € R"*", b € R”, and xg € R"

1 begin

2

3

10

11

12

13

14

Setrg =b — Axq, 8 = [|ro|ly, and a1 = ro/f;
forj=1,...,mdo
// Arnoldi Method
wj = Aqy;
fori=1,...,jdo
\; hij = ¢/ wj;
wj = W; — hijqi;
hjr1g = 1w;ll,
ifh;,1; = 0 then
Setm = j;
Break;

| Qi+ = Wi/ b

ynl::argrnhl’ﬁel-—»iinyWI // Solving the LS problem
y 2

Xm = X0 + mem;

Remark. However, Algorithm 11 is not practical... To make it practical, we need

e Solve the LS for y,,, more efficiently, and

40

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

o Better test for convergence than hj;; = 0.

We will be talking about the practical considerations in Section 3.1.5 and outline the prac-
tical GMRES algorithm in Algorithm 12.

Suppose A ¢ R"*", with A = AT, and we use Lanczos and minimal residual

Similar to Arnoldi, except instead of an upper Hessenberg, we got a tridiagonal matrix. From
Lanczos iteration, we get AQy = Qk+1fk. So,

~ 2
Iro — AQuy| = ngl - TkyHZ [Thisis a (k + 1) x k LS problem]

This gives the basic Minimum Residual Method (MINRES).

Again, more needs to be done to make this a practical algorithm.

Suppose A € R™*", and we use GKB and minimal residual

Using the initial vector u; = rq/||rol|,, then since AV}, = U1 B, from GKB iterations, we have

Iro — AViyll3 = lIvo — U1 Bryll3 Viy € Ki(AT A, v1)]
= |Urs1(Ber — Biy) |3
= ||Pe1 — Bky||g [Uk+1 has orthonormal columns]
————

(k+1)xk LS Problem

This gives the basic LSQR Algorithm. Again, more needs to be done to make this a practical
algorithm.
Suppose A € R"*", and we use Hessenberg and minimal residual

If we use Hessenberg with ¢, = ry/3, where 8 = |ro(1)|, the first entry of rg (or, 3 = ||r||, and
then permute, so the maximum entry is on the top). Then,

~ 2 ~
HI‘O — Akaug = ||To — Lk+1HkyH2 [From Hessenberg: ALy = Lk+1Hk.]

2

= HLk+1 (ﬁel - ﬁk}’) H2

But here, L1 does not have orthonormal columns, so

_ 2 2
HLk+1(/Bel - Hk)’) H2 i Hﬁel — HkYH2

in general. However, we can still proceed like GMRES: minimizing the “quasi-residual:”

~ 2
Hﬁel —Hkyuz, and x; = xg + Ly.

41

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

This leads to the Changing Minimum Residual Hessenberg Method (CMRH), which is part of the
Quasi-Minimum Residual Methods (QMR) family.

Suppose A € R"*", with A SPD and we use Lanczos and minimal A-norm error

Here, we need to find y satisfying

Qi (ro — AQry) =0

— solve Q AQiy = Q/ ro [From Lanczos: Q; AQj, = Ty
——
=T}
Try = Ber [Q4 ro = Bei]

This gives the basic Conjugate Gradient Method (CG). Again, more needs to be done to get a
practical implementation.

Remark. We derived LSQR using GKB and the minimal residual criterion. This is equiva-
lent to using Lanczos on the SPD system A" Ax = A"b, with the minimal A" A-norm error
criterion.

3.1.5 Practical Considerations of GMRES
Now, we focus on two practical details:
¢ Need to efficiently solve the LS problem to compute y,,, and
¢ Need to compute an estimate of ||r;||, at each iteration, to help determine stopping iteration.

Consider the LS problem at iteration k& — 1:

min ’g — f[y S where g = Be;
Yy
and _ -
hit - hig—1
ho1
H =
Pg—1k—1
i hig—1 |
Let H = Qﬁ be the QR factorization of H, where
(ri1 o Tige1 |
~T = ~ 0
Q' Q=1, and R=
Tk—1,k—1
0

42

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

To solve the LS problem:
&= 7y]], = |["e - @74l
= g~ Ry], g=Q'g
gl:k—1) R(1:k—1,1:k—1)
= . - y
9k o’)
B lg(1:k—1)—1§(1:k—1,1:k;—1)y]
Gk)

This norm will be minimized if

gl:k—1)—R(1:k—-1,1:k—1)y=0

This is equivalent to solve R(1: k — 1,1 : k — 1)y = g(1 : k — 1) by backward substitution (since R is an
upper triangular matrix). In addition, the norm of the corresponding residual is |gy|.

Note: If all we need is the norm of the residual, then we do not need to compute y.

Now, at iteration k, out LS problem becomes

g H h
0 0" hpiik Y

Assume we know the QR factorization H= @ﬁ. Since @ is an orthogonal matrix, so is

2

min
y

2

Q O
o' 1|

" |[@" oT]([e] [H n
, IILo 1t]\[o] [oT I

r r~ ~ ~ 2

g Q'H h
= Yy

0 0 kg
L r~ ~ 2
g R h

Yy

0 10 A1k

Therefore,

g H h
0 0" hptik Y

2

2

h=Q handg=Q' g

2

=GR

2

Note, the matrix [] takes a special form, and using 1 Givens rotation, we can easily turn it

Py

43

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

into an upper triangular form:

* * *
* *

0 *

*

That is, we find scalars c, s s.t. ¢z + s = 1 and
Ck Sk /ﬁk . *
=Sk Ck| [Ptk 0|

Il o

Then, (mathematically) we get

~T
Qr = cL Sk
k 0

—Sk Ck

Qy is an orthogonal matrix, so at the k-th iteration, we can minimize

R h g
y ~
T Jk+1

0" gtk
Now, we can again solve the LS problem to get y, and the norm of the residual is just |gx1].

El
OT

Yy

Qr H Yo

~
update and overwrite

2 ‘ 2

where Q) g = g'.

Summary of Practical Implementation

o Let .))
8 h11 -+ hig
0 ~ h :
g=|. | and H= 2
: hg—1 -1
0] L P k-1 |

Also, H = QR is the QR factorization.

e Suppose g and H have been overwritten with
g+ Q'g, H«Q'H

That is, H is now upper triangular.

44

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

e At the next iteration, we get a new column:

ha k
| [n
Pk - [hkﬂ,kl
| Ptk
e Overwrite
h+ Q'h.

e Find Ck, Sk S-T.

Ck k Pk _|*
=5k ¢k | | Prsik 0

hik < crhik + skhia

e Overwrite

hk-{—l,k(_O

9k - Ck o Sk||9k| _ Ckgk.

Jk+1 =Sk c| |0 —SkJk
e Compute the norm of residual:

P = |grs1|-

¢ If we want the solution, solve H(1 : k,1 : k)y = g(1 : k) by back substitution, and set

X =Xg + Qry.

Remark.

e The orthogonal matrix Q" is a product of Givens rotations:
QT =Qi 1 QQ(,

where

€1 31
~T 0 ~T Cc2 59

—S52 (2

45

ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.1 Krylove Subspace Iteration

To apply Q7, all we need is to store
-
Cc = |:Cl Cy ck—l] and s = |:31 S9 +++ Sp_1

That is, to overwrite h < QTh, we use

hi i Si| | D ,
L I k| fori=1,2,....k—1.
Pit1k =8 G| |hir1k

¢ In GMRES, we only need y if we want to compute the solution
X = X0 + QrYk-
But we don’t need x;, to compute the residual norm
Irklly = I — Axk |5

Instead, this comes for free: p = |gr41]-

Algorithm 12: Practical GMRES

1

2
3
4
5
6

o N

10

11

12

13

14
15

begin
Compute rg = b — AXO, 5 = ”1‘0”2, q) = 1‘0/5, and Ql =dq1;
Initializeg = [8 0 --- O]T;
fork=1,2,... do
while p > tol do
Compute qy41, b fori =1,2,...,k+ 1, using Arnoldi. // most expensive

operation: matrix-vector multiplication

SetQ = [Q Qqry1);
fori=1,2,....k—1do

[hi] _ [Ci 51’] [i }
Rit1k —si ¢i| |hivik]’

¢k Sk|| Pk *
Compute ¢y, sj. s.t. ' = ;
PHIE @ 5k [—Sk Ck] [hkﬂ,k] [O}

Update hk,k = Ckhk,k + Skhk-l-l,k and hk—l—l,k = 0;

Update | 9] _ [Ck Sk} [Qk}
P [gk+1 =Sk ¢k |0

Set p = |gr+1l;

Solve upper triangular system H(1 : k,1 : k)y = g(1 : k) using back substitution;
| Update x = x¢ + Qy // Recall: this () comes from Arnoldi

Remark. Full practical GMRES can be expensive if many iterations are needed.

46

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.2 Quadratic Functions and CG

3.1.6 Costin Practical GMRES
1. Computational cost:

e O(nk) flops needed per iteration + matrix-vector multiplication (depending on the matrix).
e O(k?) for triangular solve.

e O(nk) to compute x.
2. Storage:

e What ever we need to store A.
e O(nk) for Q.

That is, computational cost and storage increase at each iteration.

— Improvement: GMRES(j) (Restarted GMRES)

e Stops GMRES at j-th iteration and restarts with the latest iterate as an initial guess.

e But it can delay convergence.

3.1.7 Lanczos and MINRES

Instead of H, we have T tridiagonal.
We can exploit to reduce work per iteration and storage (as we don’t need to save all q;’s).

3.2 Quadratic Functions and CG

3.2.1 Steepest Descent Through Optimization Methods

~

Theorem 3.2.1
If A is SPD, then the following problems are equivalent:

e Solve Ax = b, and

1
e Minimize p(x) = §XTAX —x"b.

Proof 1. (=): Suppose x solves Ax = b, and consider

1
e(y) = §yTAy ~y'b.

[WTS: p(x) < p(y) Vy € R"] Trick: writey asy = x + (y — x). Then,

—~ —~
(xTAx—FxTA(y —xX)+(y—x)"Ax + (y —x) " A(y — x)) —x'b—(y-x)"b
———

47

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.2 Quadratic Functions and CG

Note that x" A(y — x) is a scalar, so x' A(y — x) = (y — x) " Ax. Then, we get

1 1 1
ply) = 5x Ax—x"bo -2y —x) " Ax — (y %) 'b+ S (y = x) "A(y - %)

o(x)

= () + (v~ %) Ax— (y = x)Tb + 5y —x) T Aly %)

= 000+ (y)T (Ax —b) 2 (y =0T Aly ~ %)
———
=0 >0, Ais SPD

S0, p(y) > p(x) O
(«<): Suppose we wish to find the minimum of

o(x) = §XTAX —x'b.

Use first order condition, we have

set

Vo(x) =Ax—b =0 = Ax=Db

QED. =
The previous Theorem 3.2.1 suggests that we can solve Ax = b, when A is SPD, by finding a mini-
mum of the function

o(x) = ixTAx —x'b.

Hence, we motivate steepest descent:
e Start with an initial xg

e Go downhill by taking a step in the direction of

—Vp(xp) < steepest descent direction

e For a general step k:

Vp(xr) = Axp — b

— —Vp(xi) =b— Ax, =1, <+ residual
e Ifr, # 0, we are not at the minimum, and there must 3 a scalar s.t.

o(xk + ary) < (Xg).

The question becomes “how to choose a?” We do so by line search.

48

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.2 Quadratic Functions and CG

Consider the function

Y(a) = p(x; + arg)
= %(xk + ary) T A(xy + ary) — (x +arg) b
= %x;Axk + argAxk + %azrgArk — xgb — argb.
To find the optimal «, we use FoC, set ¢/ (a)) = 0:

Y'(a) =} Axy + ar] Ar,, —r] b

= ar] Ary, —] (b — Axy,)

_ TipTk

set
= ar,IArk — rgrk =) — = i
r, Ary

Algorithm 13: Steepest Descent
Input: A € R™"™ and b, x¢g € R”

1 begin

2 Computerg = b — Axg;
3 fork=0,1,2,... do

4 w = Ary;

5 o = (r;rk)/(rgw);
6 Xk+1 = Xg + QgTg;

7 Tyl =T — QW

Remark. Why don't we use ry;; = b — Axj; to calculate the residual?

T = b — Axpq
=b — A(xr + axrg)
=b— A 'x;, — apAry,
=1} — apAryg

=TI, — QW [Setw = Ary]

Using r;, = b — Ax;; requires an additional matrix vector multiplication, which we can avoid
using the recursion ry 1 = ry — apArg4q.

Remark. The Stochastic Gradient Descent method is a form of steepest descent that is used
in deep learning to minimize loss functions. It uses only one component, or a small batch of
components, of the gradient at each step.

49

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.2 Quadratic Functions and CG

3.2.2 Alternative Derivation of Steepest Descent

Assume A is SPD, and consider
Xp11 = Xk + apry < steepest descent update

This time, we try to choose oy to minimize the A-norm of the error. That is,
€pt+1 = X — Xft1-
Recall: A-norm is given by |le; 1] = e,LlAekH. Notice that
€r+1 = X — X1

=x — (x + axrg) [From Steepest Descent|

=X — Xk — Ik
——

= €L — QuI.
Then, note that since A is SPD, we can write A = R' R, the Cholesky Factorization. Then,

Hekz+1\|,24 = el—cr+1Aek+1
= e,;rHRTRekH
= ||Rek+1||2~
Thus, we want to minimize
len+1l% = llex — e,
or, equivalently, minimize

|Rek1]l3 = [|R(ex — ary)|3

= || Rey, — oy Rrylf3
Letey 1 = Rey1, €x = Rey, andr;, = Rri. Consider
8k+113 = [k — a3 ®)

Goal: Find o}, to minimize (5).

Visualization: vector projection
The minimum comes from orthogonal projection:

)8y

/\T/\ *
r, Ik

i‘\;—(é\k — Oéki‘\k) =0 = o =

50

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.2 Quadratic Functions and CG

That is,

/-fr\
r;—R Rep rgAek

=T LT =T :
rkR Rry I‘kAI‘k
A

Note: we don’t know e. But we also don’t need it. What we really need is Ae;. Observe that

I‘;—Aek = I';—A(X — Xk) [ek =X — Xk]
=1} (Ax — Axy)
=r/ (b — Ax}) [Ax = D]
= I‘;—I‘k [I‘k =b — AXk]
So,
rTrk .
o = —£ + This is exactly the same as we found previously.

- T
r, Ary

Remark. We see that if A is SPD, each iteration of steepest descent minimizes ||ej1|| , over
span {ry}.

Recall: CG minimizes ||ex1] 4, over Ki(A, o) = {ro, Arg,..., A* ro}.

3.2.3 Conjugate Gradient Method

We derived CG using Lanczos method, which shows the connection of CG to Krylov subspaces. Ex-
tending the optimization approach will lead us to the same algorithm.
Assume A is SPD and consider

Xpil = Xk + Pk [Pk is a general descent direction.]

Ck+1 = X — Xp+1
e For steepest descent, we use the step direction: py = ry.

e For conjugate gradient method, use py, = ry — Bx_1rk—1.

51

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.2 Quadratic Functions and CG

With the constraint p; , Apy, = 0 (A-conjugate direction), we choose step length oy so that
llek+1]| 4 is minimized over span {py, pr—1}-
Using projections and derivations previously, we have
pp Aey1 =0 and p;_ Aey = 0.

To find 3,_1, we want

PII—1API< =0
Pi_1 Aty — Br—1Pk—1) = 0
p,;r_lArk r;rk
pk_lApk—l rp 1Tk—1
To find a4, denote e, 1 = e, — w, where w = span {px_1, px}. So,
€+l =€ — W = € — C1Pk — C2Pk—1-

Then,

pp Aepi1 =0 [Optimality condition]

pj. Aler — c1pr — c2Pj—1) =0
pj Ae, — c1pf Apr — 2 Py Apr—1 =0
———
=0, A-conjugate
p.Ae; pirp

— (1 = = .
p; Api P, Apy

Meanwhile,

p_1Aer =0

pi_1A(ex — 1Py — c2pp_1) =0

T A _ T A _ T A -0
Pr_14€r —C1 Prp_1A4Pk C2Pk—14Pk-1

—— ——
=0, optimality =0, A-conjugate
condition

Since pZ_lApk,l # 0 in general, it must be ¢ = 0. So,

PiTh _ _ TiTk
p; Apy, P, Apk

ak‘:CIZ

52

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.3 Preconditioning

Algorithm 14: Conjugate Gradient
Input: A € R"*" and b, xo € R"

1 begin

2 Computerg = b — Ax;

3 Set pg = rp;

4 fork=0,1,2,... do

5 w = Apg;

6 ar = (rir)/(Ppw);

7 Xi+1 = Xi + QkPk;

8 Tyl = Tg — QW5

9 Be = (vfy1rer1)/ () rr);
10 | Prt1 = Trp1 + BkPrs

3.3 Preconditioning

Important Krylov Subspace Iterative Methods to Solve Ax = b or min ||b — Ax||,

e We use the conjugate gradient method (CG) when A is SPD.

1. Or the preconditioned conjugate gradient method (PCG)

2. Requires one matrix-vector multiplication with A per iteration.

e If Ais symmetric, but not positive definite, then we can use the minimum residual method
(MINRES)

1. Requires one matrix-vector multiplication with A per iteration.

e If Aissquare, nonsingular, but not symmetric, then we can use the generalized minimum
residual method (GMRES).

1. Storage grows at each iteration.

2. Requires one matrix-vector multiplication with A per iteration.
e For least squares problems, we can use the LSQR method.

1. This is equivalent to using CG on the normal equations, AT Ax = A b.
2. Requires one matrix-vector multiplication with A and one with A" per iteration.

3. A mathematically equivalent method is known as CGLS.

53

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.3 Preconditioning

3.3.1 Introductory Remarks on Convergence

Conjugate Gradient In exact arithmetic, if A € R"*" is SPD, then CG is guaranteed to converge in at
most n iterations. [Butn is still too many...]

e If Ais SPD and can be written as A = I + B, where B is symmetric and rank(B) = r (i.e., B
is a low rank matrix), then CG will converge in at most + 1 iterations.

Because B is symmetric, it can be written as B = VAV ", where V'V = VVT = I and

A1

Since rank(B) = r, B has only » nonzero eigenvalues. So, A = [+ B = [+ VAV =
V(I +A)VT.Then, I + A decodes the eigenvalues of A.

—1+)\1

1+ A
T+A= * :

where we know that n — r eigenvalues of A are 1.

e This property implies that if the eigenvalues of A are clustered around a single value (differ-
ent from 0), then CG will converge fast.

e Meanwhile, for CG, we can also show that

lewlls o (Vo) —1Y)"
eols =\ Ve +1)

where x(A) is the condition number of A.

1. Smallest condition number is x(A) = 1. Then,

ekl 4
HeOHA

<0 = convergence in one step.

2. If Ais well-conditioned (e.g., x(A) ~ 1), we get fast convergence.

3. If Aisill-conditioned, convergence may be slow.

54

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.3 Preconditioning

e The previous two bullet points are related to each other. If all eigenvalues of A are clustered
around a single point, then x(A) ~ 1.

LSQR LSQR is equivalent to CG applied to AT Ax = ATb, so convergence of LSQR depends on the
eigenvalues and condition number of AT A.

e Clustered eigenvalues of AT A <= Clustered singular values of A.

e k(ATA) = k%(A). So, if A isill-conditioned, A" A is even worse.

GMRES More complicated convergence behavior

Definition 3.3.1 (Normal Matrix). If A € R™" and ATA = AAT, then we say A is a
normal matrix.

e If Aisnormal, then A has a spectral decomposition (although eigenvalues and eigenvectors
might be complex). That is,

A=VAV* where V*V = 1.

Recall that V* = V' is the conjugate transpose (or Hermitian transpose) of V. Also, note
that V and V* are unitary matrix with (V) = 1.

In this case, if eigenvalues are tightly clustered (away from 0), usually we have fast conver-
gence.

e If A is not normal and A = PAP~! (diagonalizable) with x(P) =~ 1, then tightly clustered
eigenvalues (away from 0) usually means fast convergence.

e If Ais not normal and A = PAP~! with large x(P), it's complicated...

3.3.2 Preconditioning
Basic Idea of Preconditioning

e Apply CG (or MINRES, or GMRES, or LSQR, or ...) to a “transformed” system A% = b, where
E, X, b are related to A, x,b.

e A has a more favorable spectrum (e.g., more clustered eigenvalues) than A.

e Compute x from X.

Left Preconditioning

Ax=b <— M 'Ax=M"'b
— Ax=b, whereA=M"'4,%=x,b=M'b.

Note that this method can be sued for GMRES but not exactly for CG. This is because Ahas to be
SPD for CG, but A = M~ A is probably not symmetric.

55

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.3 Preconditioning

Right Preconditioning

Ax=b <— AM'Mx=b
~ Ax=Db, whereA=AM"! %= Mx, b=hb.

Again, AM ~! might not be symmetric.

Remark. When min ||b — Ax||§ using LSQR, we use right preconditioning more often,
because

e M can be smaller in dimension: | A [M H M-t }

o |b- AM—lMng doesn’t change norm,

but ||[M (b — Ax) ||; changes norm unless M is orthogonal.

Two-Sided Preconditioning Suppose M is SPD, then M = R' R (Choleksy). Then,
Ax=b < R "TAR' Rx =R 'b
Yy
A X b

In this case, A = R~ T AR~!. If A is SPD and R is nonsingular, then A4 is also SPD.
If we apply CG to this A% = b, we get Preconditioned CG (or, PCG).

Remark 1. (Convergence of PCG). Convergence of PCG depends on eigenvalues of

A=RTAR™.
But notice that
A=R TAR™
R'MR=R YR TARY)R=(R'R)'4
——

=/
RYAR=M1A.

So, R AR is a similarity transformation and eigenvalues of A are the same as eigen-
values of M ~!A. So, we can investigate convergence of PCG by studying eigenvalues of
M~ A. [One can also show A is similar to AM]

56

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.3 Preconditioning

Remark.
e Mathematically, PCG is CG for
A% = b,
where A = R-TAR",% = Rx,b= R~ 'b,and M = R'R.

e But, we should not explicitly form A or . [A is huge and sparse, but A might not be
sparse any more.]

¢ Instead, we should do some algebra to show that the steps of CG on A% = b can be
done by only accessing A, b, and M.

Algorithm 15: Preconditioned Conjugate Gradient (PCG)

Input: A € R"*", b, xg € R", and SPD M € R"*" [There is not matrix R!|

1 begin

2 Computerg = b — Axg;
3 Solve Mzg = rg;

4 Set pg = zo;

5 fork=0,1,2,... do

6 w = Apg;

7 o = (z¢1x)/ (P W);

8 Xk+1 = Xk + O, Pk;

9 eyl =T — QpW;
10 Solve Mzy11 = riy1;
1 B = (zpyare1)/ (2 T);
12 | Pk+1 = Zit1 + OrPrs

The major work per iteration:

e One matrix-vector multiplication with A, and

e One linear system solve with M.

So, we need to select M so that the linear system solve is easy. For example, diagonal M (and this
is called Jacobi preconditioner).

Remark. Preconditioners should be designed so that

o M (e.g, RTR) is not too expensive to construct.
e M~ Ahas a more favorable spectrum than A.

e Solving Mz = r should not be too expensive.

These conditions can be in conflict with each other.

57

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS

3.3 Preconditioning

Some Choices for Preconditioners

1. Jacobi:

[Assumption was that A is SPD. So, diagonal entries are positive.]

(+) Trivial to construct

M = diag(A) =

(+) Trivial to solve Mz = b

ail

a22

(+) If A has widely-varying diagonals, this may work OK.

A
A2y

Anl

A1z
Az

An?

Aln
A2n

A'I’LTL

(+) Each Aj;; are smaller problems to solve.

Ann

Similarly, we can use Gauss-Seidel or SOR to construct M.

3. Block versions can also be sued. For example, Block Jacobi:

(+) Solving each system A;; is independent from other smaller systems = completely

parallelizable!

1. Incomplete Cholesky (ichol, for SPD, CG):

Idea: Find triangular matrix R such that:

- A~R"R

- Risrestricted to have a certain sparsity pattern.

— Can also use drop tolerance (droptol) to get even more sparsity.

Similar to incomplete Cholesky, but with

e Sparse Approximate Inverses

e Preconditioners based on insight into the problem.

~
~

LU.

Incomplete LU factorization (ilu, for nonsymmetric A, GMRES)

Example 3.3.2
Consider the PDE:

—V(a(z,y)Vu) = f(z,y)

O<z,y<l1

with Dirichlet BCs: «(0,y) = u(1,y) = u(z,0) = u(z,1) = 0.

(6)

58

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

Goal Compute u(z,y).

Discretize to solve: Au = f. One approach to preconditioning: set a(z,y) = 1. Then, (6)
becomes
—Ugy — Uyy = f(2,Y) (Poisson’s Equation)

Discretize (Poisson’s Equation) to get an appropriate M.

3.4 Convergence
3.4.1 GMRES Convergence

The basic idea is that at each iteration &, find z € Ky (A, rp) so that x; = xo + z
min [[b — Axg|,.

Suppose we take xy = 0. So, ryp = b — Axy = b. Then, we want to find x;, € (A, b) to
min ||b — Axgl|,,

where K (A4, b) = span {b, Ab, A?b, ..., A*'b}.
In deriving GMRES, we use Arnoldi to find an orthonormal basis {qi, q2, ..., q;} of K. Recall that
xi, € Ki(A,b) = Jscalars y1, v, . . ., yx such that

Xk = Y1d1 + Y292 + - - + Yk
= Qry-

So, in GMRES, at iteration k, we find y € R” so that
b — Axyl|, = ||b — AQrYy||, is minimized, (7)

where Q;, = {ql qz - qk] € R™**. But x4, € Ki(A,b) = span {b, Ab, A’b, ..., A*~1b} also means
3 scalars such that

x; = c1b+ oAb + -+ + ¢, AF b
:[b Ab - Ak_lb]c

/

Ky
= ch.

Thus, a GMRES alternative to above is that at each iteration, find ¢ € R so that

b — Axgl[, = ||b — AKjc|, is minimized, (8)

59

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

where K, = [b Ab - Ak_lb} e R™*k
Connection between (7) and (8): If K}, = QR (thin, economy QR factorization, where R, € R¥**
is nonsingular), then

b — AKjel|, = [|b — AQxRycll,
=|b— AQwyll,, wherey = Ryc.

Now, let’s consider the alternative derivation (8) of GMRES. Let
re = b - AK kC
—b-— A(clb F oAb 4 ckAk‘lb)

—b-— (clAb 4 g A%b et ckA’“b>

=(I—c1A— A% — - —c ,AF) b
()

pr(A)
= pr(A)b,

where py(t) is a polynomial of degree k£ with p;(0) = 1 (monic polynomial).
Thus, GMREs can now be considered as: at each iteration k, find p; € P, such that

|pk(A)b||, is minimized,
where P;, = {all polynomials p of degree < k, p(0) = 1}. Note that

[exlly = llPe(A)blly < [[px(A)la[[bll,-

The critical factor that determines how quickly ||r, ||, decreases is usually ||pi(A)||,. Specifically,

lIrkllo :
< min All,.
”bHQ — PLEP; ”pk<)HZ

Question: Given A and K, how small can ||p;(A)||, be?

If A is diagonalizable, then A = VAV !, where
A = diag(A1, A2, ..., \y,) are eigenvalues and V = [vl O vn] are eigenvectors.
Notice that

Al=A-A--- A

=VAV 'VAVL VAV
=I
=VANVTL

60

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

So, if p € P, then

p(A) =T+ 1A+ A2+ - + ¢ A
—VV L 4 VAV 4 VAV 4+ 4 g VARV
- V(1+C1A+CQA2 + ~-+c,€Ak)v—1
=Vp(A)V L.

Hence,

[p(A)ly = [[V(A)V],
< VIl V=2,

= HVHQHV_IHQ [p(A)]|
————
=k(V)

= k(V)|lp(A)l,-
Now, look at

p(A) =T+ A+ coA? + - 4 AP

all diagonal matrices

_1+Cl)\1+"'+6k)\’f

L4 cidg + -+ Al

p(A1)
p(A2)

(k)

where p()\j) =14+ Cl)\j + 02/\? +---+ C].C)\;~C

Theorem 3.4.1 Convergence of GMRES
If A is diagonalizable with A = VAV ~!, then

HrkHQ .)
< min A)|l, < k(V) min max s
o, < peep, Is(Als < w(V) mip max oAl

where V = [vl e vn} are eigenvectors of A and A4, ...,)\, are eigenvalues of A.

61

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

Remark 1. (Special Case of the Theorem). Suppose A is diagonalizable, and A has m distinct
eigenvalues A\, Ao, ..., \,,, (non-zero) .

If £ > m, then take
t t t

al’ldpk<)\j) =0 V] =1,2,...,m. Then, pk(A) =0.
That is, GMRES must converge in at most m iterations.

Remark.
e This argument holds only if A is diagonalizable.
e If Ais not diagonalizable, then convergence analysis is very complicated.

o If Ais diagonalizable, and «(V) is large, there may be a slow decrease in residual at each
iteration.

e If Ais symmetric (MINRES case), then A is orthogonally diagonalizable, A = VAV T, where

VVT =V TV = I. In this case, x(V') = 1. Convergence only depends on eigenvalues.

3.4.2 CG Convergence

Assume A € R"*" is symmetric and positive definite. The approximation problem is: find p;, € P, such
that

lexll4 = |lpk(A)eoll, is minimized.
Since e, = p(A)eq, where py, € Py, the set of polynomials with degree < k and p(0) = 1, we have

A
lenlla _ ., IPe(A)eolly
leoll.s peepi leoll

Since A = VAV (as A is SPD), then
T T "
pr(A) = Vi (AVT = pl(4) = (Ver(A)VT)
=Vpr (MVT = Vpp(M)VT.

So,

Ik (A)eol’, = (pe(A)eo) " A(pr(A)en) = e] pi (A)Api(A)eo
Py (4) A Pr(A)
RTINSy N ——
=eg Vpe(M)V ' (VAV) (Vpe(A)V 1) g

= e Vpr(A)Apr(A)V ey.

62

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4

Convergence

Note that p;(A)Apk(A) are all diagonal matrices. So

pr(M)Apr(A) = D = diag(Mpi (M), Aapp(A2), - -+, AP (An))-

Letd = Ve, then

d’ d
9 /-_/I_\ /—_/r\
Ipe(A)eoll’s =eg VDV e

=d'Dd = dI\pi(\).
j=1
Also, the denominator is
2 T T T
e =eyAeg=ey VAV 'e
lleoll’s = eg Aeo = e 0

—~—
daT d

=d'Ad
2
= i)
j=1

So, we now have

2 : 2 2 E : 2 2
5 : dj)‘jpk:()‘j) . dj/\jM
HPk(A)eoHA _J=1 j=1

lleol% g T g
LY YA
j=1 =1

Y

where M = max |pi(};)].

1yeesAn

Theorem 3.4.2 Convergence of CG
If A is SPD with A = VAV ~! (the spectral decomposition), then

lexll 4 :
< min max i
lleoll 4 = PrEP: Aryshn Px(33)]

< min max M.
B pePk)\E[)\miny)\max] |pk()I

Distinct Eigenvalues

e We see againif \, ..., \,, with m < n are distinct eigenvalues. If £ > m, then

(4o £ ()

and p;(0) = 1. Also, p(A\;) =0 Vj=1,...,m. So, CG must converge by iteration m.

63

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

e Note: A special case of this is when
A=1+B,

where B is symmetric and rank(B) = m — 1.

")
O
B=V m-l VT
0
0
Then,
A=I+B
"]
S
— VIV 4V ! vT
0
0
n)
S
—v|I+ ! VT
0
0
_51 +1 |
G141
-V 1+ v,
1
1

So, we have m distinct eigenvalues. So, CG on A converges by m iterations.

e Extension: If A = [+ B + E, with B symmetric has rank(B) = m — 1 and || E|| is “small,” then
CG for A will converge by approximately m iterations.

64

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

What can be said if we don’t know the eigenvalue distribution? For any p; € P, we have

lexla :
< min max A < max (A <7
Heo H B kaPk)\e[)\min,)\max] ’pk()’ -)\e[)\min:)‘max] ’pk()’ B

e We want to find a pj (), where |p; (\)| has a tight upper bound.
e We get this from the first kind Chebyshev polynomials:

Ty (t) = cos(k arccos(t)) fork=0,1,..., wheret e [-1,1].

These may not look like polynomials, but notice:

To(t) = cos(0 - arccos(t)) = cos()=1

T (t) = cos(1 - arccos(t)) =

T (t) = cos(2arccos(t)) [cos(20) = 2cos? O — 1]
= 2cos?(arccos(t)) —1 =2t — 1

It is not difficult to show that (with the right trigonometric identities):
Ti(t) + Th—o(t) = 2tTK_1(t), k=2,3,...

So,
Tk‘(t) = QtTk—l(t) - Tk_g(t), k= 25 37 s

e Important Properties of T}:

1.

Ti(—t) = cos(k arccos(—t)) = cos(k(m — arccos(t)))
= cos(km — karccos(t))
= cos(km) cos(k arccos(t)) + sin(kn) sin(arccos(t))

—_—— ——— — N——
+1 T () =0
= Ty ().
So,
T(=t)] = |T(0)] |

2. Ifa =€ =cos@ +isind, thena ! = e 1 = cosf — isin 6. Hence,

a+at e? + e cosh+isin€ + cosf —isind
t= > = 5 = 5 = cos .

65

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

So,
a+al
Tk) = Ty (cos 0) = cos(k arccos(cos §))

= cos(k0)
B eike +e—ik9
B 2
B af 4+ a7k
=

So,

3. Fort e [-1,1],
| Ty (t)| = |cos(k arccos(t))| < 1.
This is a good tight bound on 7 (t), but it only works on [—1, 1].
4. Ty(t) is a polynomial of degree < k. But 7} (0) is not always = 1.
e We would like p; € Py (i.e., p;(0) = 1) that is bounded on [Amin, Amax]-
We can get p;; by shifting and scaling 7}

1. Shifting: Let
- 2)\ - (/\max + /\min)

)\max -)\min

t(A)

This maps A € [Anin, Amax] to t € [—1,1] and
’Tk(t()\))’ <1 for \ € [/\miny)\max]-

2. Scaling: we want p; (0) = 1. Let’s use

[One can verify that T}, (t(0)) # 0.]

Now, we have

dfracl|e e < min max A
fraclecl yleoll, < mip max [pi()

< max pp(A)]

A€ [Amin;Amax]
Ti(t(A) ‘
T, (t(0))

e [>\min7/\max]
1

= T O)]

66

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

Now, let’s look at T (¢(0)):

0= T
_ _()\max + Amin) 1/)\min
B ()\max -)\min) . 1/)\min
o _()\max/)\min + 1)
B ()\max/)\min - 1)
_ K,(A) + 1 . o)\max
= TaA) -1 1(4) = 3]
w0 A)+1 A)+1
moo = [(-5 %) | = [(i)
Leta = 7MH1 Then,
k(A) -1
et VEA 1R -1
VEA) =1 Ve(A) +1
_2(s(A) +1)
k(A -1
* b s(4)
a4+ o K +1
2 k(A -1 =1(0)
Hence,
a+al
0] = |1 (<5)
_ ok +aF > a_k‘
2 -2
b2 (vl
T3 (t(0))] ~ a* VE(A) +1

Theorem 3.4.3 Convergence of CG, II
If A is SPD, then

3.4.3 CG Convergence, Revisited

We have shown that

lenlla o iy max Pk ()]

lleoll 4 = PrEPE Atyeihn

67

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

This tells us that if there are only m distinct eigenvalues, A\, A1, . . ., A, then CG should converge in at
most m iterations. [But it may still take a little bit more iterations, due to round-off errors.]
We can see this by exhibiting a polynomial

which will be zero for all eigenvalues.
We also showed, using properly shifted and scaled Chebyshev polynomials,

k
llexll 4 . k(A)—1
< min max N <2l F————| ,
leolla — pEPL A€] PV < VE(A) +1

where A\ = A\pin, A\ = Amax, and k(A) = i—", condition number of A.

Now, suppose we have eigenvalues of A distributed like the following

0<)\1§"'§AZ§71 S)\Z-I—lS“'S)\n—mgﬂﬂé)\n—m—i—lS"'S)\nv

~~

~
outliers cluster outliers

where \; = \pin and A, = Apax. Note thatif 4 =~ 9 (e.g., 71 = ¢ — ¢ and y2 = ¢ + ¢), then we know that
there are n — (m + ¢) eigenvalues of A clustered around c.

Outlying Eigenvalues Think about these like the case of having m + ¢ distinct eigenvalues.

-5 T (257

j=n—m+1

Let

Note:

e ¢(0) = £1 (we can easily adjust the sign by taking absolute values).

e ¢()\j) = 0 for all outlying eigenvalues.

= minmax of |g(\)| for A1, Ag, ..., A\, has to occur in [y, 12].

Interior (Clustered) Eigenvalues Use scaled and shifted Chebyshev polynomials.

Use k — ¢ — m degree Chebyshev polynomial (properly shifted and scaled):

72—

2+
Tk—z—m<7 i >

T2—N

68

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.4 Convergence

Now, let’s look at the whole spectrum :

Y2+ 7 —2A
R A e B S S VI
Pe(A) = 2+ H(XJ) 11 (J)“)
Te—t-m (2 ! > J=1 J Jj=n—m+1 J
Y2 M
Observe:
ekl :
< min max |pr(A;
HeOHA PLEP)\j ‘p (])‘
k—f—m {4 n
v—1 A=) Aj— A
SQ(’) max H('l> H (J) ,
7 T £ _ A€bn] J=1 /\] j=n—m+1 /\]
comes from the
Chebyshev polynomial max occur within the clustered interval
where v = e > 1.
gi!

Theorem 3.4.4 Convergence of CG, III
Let A € R™*" be SPD and we use CG to solve Ax = b. If the eigenvalues of A satisfy

O< M S A< S m < S emt1 - < Ay,

lexl| 4 (7 R 1)“"” (A — Aj) - (Aj - A)
<2 —— max 5
lleoll, = \v+1 Xe[y1,72] H Aj H Aj

j=1 j=n—m-+1
where v = i > 1.
7

e Supposey; =c—candy; =c+¢, where (0 < ¢ < 1.

then

It is not too difficult ot show that

y—1 c—vc?—¢g?
y4+1 €

In this case, we have

V4 n
HekHA k—0—m A=A Aj— A
28 < 2¢ max H y - H B y .

HeUHA TS~ XeMm] |;
will be

e We might expect:

1. At most 1 iteration for each outlying eigenvalue, and

69

3 ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.5 LSMR

2. Approximately 1 more iteration for each cluster. [e.g., if we have 3 clusters, we expect to have
approximately 3 more iterations.]

¢ Goal for preconditioning:

Find preconditioner M such that M/ ~! A has clustered eigenvalues.

3.5 LSMR

Recall LSQR: Suppose we want to solve mxin |b — Ax||, through LSQR.
e Mathematically, it is equivalent to applying CG on the normal equations, A" Ax = A'b.
e We use Golub-Kahan bidiagonalization.

That is, give A, b, let u; = b/g; with 3; = ||b||,. GKB iterations compute

Avy = apuy + Brugq

N
A'u, = Br_1Vi—1 + vy

and

ar P

az [
AV = U1 By, Br= '
Br—1

093

e At each iteration, LSQR uses GKB to compute

Vi = argm}}n |Bry — B1 — eilly,

wheree; = | |, and then set x; = Viyx.

O

e Also, recall that CG on normal equations: A" Ax = A'b.
CG minimizes [e||% 4 = [[x* — xx]% 4, where x* is the exact solution of the normal equation.

[Here, we abuse notation, and e;, = error = x* — xj.]

Proposition 3.1 : If x* is the exact least squares solution, then
2 2
1" = kg4 =[x —7l3,
where r* = b — Ax*.

70

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.5 LSMR

Proof 1. Note that

™ = i[5 4 = (7 = x5) T AT AR =)
= [AG = xp)] (A" =)

2 2
= [[AX" —xx)[l5 = [|Aexl3
Also note that

AX" —xi) = AX* — Axy,
= Ax* —b+b - Ax,
= —(b — Ax™) + (b — Axy)

Denote r;, = b — Ax;, the residual from the k-th iteration, and r* = b — Ax*, the residual if we know
the solution. Then,

A(X* — Xk) =Tr — r.

Hence,

I =%l 4 = llee =715

QED. n
Proposition 3.2: (r*)" Ax = 0 for any vector z. In other words, r* L range(A).
Proof 2. If x* is the exact LS solution, then
AT(b - Ax*) =0
by normal equation. So,
AT =0
z' A'r* =0 foranyz
(r*)TAx =0 foranyz [take transpose.]
QED. m
Proposition 3.3 : r;Avi fori=1,2,...,k, where v; are vectors computed from GKB.

Proof 3. Note that

I‘k:b—Axk:b—Akak
= Uk+1(B1e1 — Bryr) [Uk41Br = AVj]
Vi) ATr, = V,] ATU 1 (Brer — Bryr)
————

= B (Bie1 — Biyx) (B, = Uy AV;]
=0 [yr = argmin ||S1e1 — Byl is a LS problem)]
y

71

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.5 LSMR

Take transpose of everything, we have
-
(VkTATI'k) = I';Avk =0.

So,
riAv; =0 fori=1,2,... k.

QED. nm
Proposition 3.4 : (r*) " (r;, — r*) = 0.
Proof 4. We know (r*) " Az = 0 for any z. So,
(r*)" Aep =0
) (rp, — 1) =0 [Proposition 3.1]
QED. m

Proposition 3.5 : |ry, 1|5 < ||ry||3. Thatis, rj, = b — Ax,, are monotonically non-increasing.
Proof'5. Since we are using CG on the normal equations, we know

2 2
lextallara < llexllara

Irpss —)15 < |lep — 3 [Proposition 3.1]

But notice that

rp =r"+ (ry —r").

Then,

=0

= [|r*||3 + |t — |3 [Proposition 3.4]
So, |ty — r*[|3 = [[rx]l3 — |[r*||3. Similarly, |rsy1 — r*||5 = ||lrxi1]/3 — [[r*]|3. We have previously shown

A e EA YA

2 2
rssalls — M5 < el — L2t

2 2
rr+1lls < [leklls-

QED. n
In summary

e LSQR residuals ||ry||, = ||b — Ax;]|, are monotonically non-increasing.

72

3 [ITERATIVE METHODS FOR AX = B AND LS PROBLEMS 3.5 LSMR

e Butit doesn’t say that the normal equation residual
a7, = [[47 0 - s

decrease monotonically.

LSMR

Like LSQR: we use GKB, but for the projected system, it solves

Vi = argm}}n ’BkT(Bky - 5191)H2
Xk = Viyk-

This means that x; minimizes

v = 7t s

2’

the normal equation residual. It corresponds to MINRES on the normal equations.
e Algorithm is very similar to LSQR>
e LSMR ensures || A r.||, is monotonically non-increasing.

e [ryl, is “nearly” monotonically non-increasing.

73

4 INVERSE PROBLEMS AND ITERATIVE METHODS

4 Inverse Problems and Iterative Methods

4.1 Introduction to Inverse Problems

A linear inverse problem is usually written as
b = AXexact + 1 = bexact + 7,

where 7 is a vector representing unknown errors/noise in the measured data, b. [We don’t know n, but
we might know ||n||.]
Ideally, we want to solve

AXexact = Dexact s

but we don’t know bexact. SO, since we only know b, if we assume 7 is “small,” we can try to solve
AX == b <:> Xna'l've == A_lb.
We call this method the naive inverse solution.

Xnaive = A~'b
= A" (bexact + 1)
= A bexact + A7
= Xexact + A7'n.

Note that A 'bexact = Xexact 1S the exact solution (i.e., what we want), but A~'n is the inverted noise.
This noise may be “large” and may dominate/hide anything in xexact. To see this, we will use SVD.

Singular Value Expansion of A

g1 Vir
-
T 72 V2 - T
A=UXV =|uy u - u,) . :E ou;v; ,
" : i=1
onl| |V,

where o1 > 09 > --- > 0, > 0 and u;v; are rank-1 matrices.

Singular Value Expansion of A~

1/01 ulT
/oy uy "1
A=V T = vy vy - W, ‘ =) v/,
. : im1 ag;
on| |u)
where v;u; are rank-1 matrices.

74

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.1 Introduction to Inverse Problems

Now, let’s reconsider the naive inverse solution approximation:

n
1
—1 T
Xnaive = A7 b = Z ;Vi u; b
— 0, o~
=1 scalar
no_T
u b .)))
=> v [linear combination of v;s]
i—1 u
no T
Z u, (bexact + n)v

0

7
i=1

n . T n T
u; Dexact u; n
= E — Vit E Vi
oF] oF]

=1 =1

= Xexact T Afl”’)

What can we say about A~'n?
e Ifnis small, u; n is small.

.
o A~'n will be small if %M are small.

gj
Properties of Inverse Problems
e |u/n| are small, and roughly the same order of magnitude for all i.
e gy >09>--- >0, Witho, ~ 0.
e Since o; — 0 fast, o, is tiny for large j. The matrix A is very ill-conditioned (x(A) is huge).

b — Axgll,

residual =
bl

In tis cases, residuals do not tell us how good the solution is,
e Forlarge o;, o; > |u/ n|

For small 05, 0; < \uZT n

)

and o, < ’u2n|.

e The singular vectors u; and v; oscillate more as i increases (that is, as o; decreases). Dividing
by small o; amplifies oscillations in v;.

Question Can we compute an approximation where the inverted noise is not too large?

One idea Truncated SVD

Leave out components of xpaive cOrresponding to small singular values. That is,

.
u' b . . .
X = Z vi, k<n [k is not an iteration but where we truncate.]

75

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.2 Krylov Methods for Inverse Problems

Note that

k T k T
u. bexact u;
X;, = Z i Dexac vi+ Z i nvi.
: 0; : g;
=1 =1

If we select k£ well, we should have small n term,. while preserving information from bexact.

Theorem 4.1.1 Picard Condition Assumption
|u bexact| decays on average faster than o;

With this assumption,

small k£ : get info about solution + Good!

k
i

-
u, bexactv
i—1 gi large k : terms — 0 = we can discard these w/o losing much info

l.T small £ : terms ~ 0 + Good!

large k : |u; n| > o, so can be large + BAD...

What is a good £? More later... But generally speaking, with Truncated SVD (TSVD), we will choose an
optimal kop¢ that balances reconstructing enough info, without letting the noise blow up:

kopt UT’I’]
Xtsvd = Z ;' vi, 1< kopt <n.
3

=1

4.2 Krylov Methods for Inverse Problems

Summary of Inverse Problems

e Large singular value components correspond to the solution.

We want to reconstruct theses.

e Small singular value components magnify noise.

We don’t want to reconstruct these.
e The SVD is a great tool, but is too expensive for large-scale problems.

e We will use Krylov subspace iterative methods to solve inverse problems.

First consider A € R"*", symmetric and positive definite. Then, all eigenvalues are positive, and
A=VAVT, (Spectral Decomposition)

where VV' = VTV = I,and A = diag(\1, ..., \n).
If we write V = [vl vy - vn],then

AVi = /\ivi, A2Vi =)\zsz = /\?VZ', ey AJVZ' = /\‘sz

76

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.2 Krylov Methods for Inverse Problems

Assume A\ > X9 > - >\,
Suppose we run k iterations of Lanczos on A with initial vector q, with ||q||, = 1. This generates

Q. =9, 92, 493, ..., Yk,

an orthonormal basis for the Krylov subspace

Ki(A,q) = span {q7 Aq, A’q, ... ,A’Hq}

and
Q} AQy = T, € RF*k,

What can we say about the vectors in (A4, q)?

e Notice .
Al = (vmﬂ)] — VAV,
where A7 = diag(X, A}, ..., \)).

e Consider vectors in K (A, q):

"
. . .| C2
Alq=VANVTq=VA| 7|, ¢c=V'q
Cn
o 1]
01)\?1' g(&y
CaA . A
—v| =Ny [N
oy en (M)’
i : Ler \ A/
N— ———

(*)
1. We assume ¢; # 0 (so that we can divide safely). If ¢; = 0, just choose another q to
construct K (A4, q) again.
2. Weassume A\; > Ao > --- >\, > 0.

A))
3. If A\ > A9, then ™ < 1, and it goes to 0 fast for large j.
1

. Ai . .
4. Since /\i < lforj =2,...,n, weknow that the vector (x) — | | asj increases.
1 .

77

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.2 Krylov Methods for Inverse Problems

So, let ¢ = ¢1\] be a scalar, we have

Alq — ¢V | =cvy,

._O_

where v, is the eigenvector of A corresponding to its largest eigenvalue ;.

e Also notice that if we let q = A’q, then

q'AG — v Avy = Av] (\vy) [Av] = A\vq]
=Ny v =EN [v{vi=1]
a a —)\1.

c2

e This implies that at early iterations of Lanczos,

1. The largest eigenvalue of 7}, = Q; AQj, will be a good approximation of the largest eigen-
value of A.

2. Also, the Krylov subspace K (A, q) is closely aligned with v, (eigenvector of A).
e This can be generalized:

1. If Ay > A2 > .-+ >)\, then the early iterations of Lanczos produce 7}, = Q;AQk with
largest eigenvalues approximating the largest eigenvalues of A.

2. If the gaps between A\, Ao, ..., A\, are large, convergence will be faster.
Bidiagonalization Methods for More General A ¢ R™*"

e Golub-Kahan Bidiagonalization (GKB): produces upper bidiagonal matrix.

AV, = UpB, — A'Uj — VkB,;r + rank-1 matirx

a1 A
as

Br—1

893

e Paige-Saunders Bidiagonalization: produces lower bidiagonal matrix.

AV = Ukﬁk + rank-1 matrix = A'U, = Vkﬁk
—oq

~ B1 o
B, =

Br-1 o

78

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.2 Krylov Methods for Inverse Problems

e Lanczos on A" A produces T), = B, By.
Lanczos on AAT produces T}, = B;B] .

e Eigenvalues of AT A or AAT «+— Singular values squared of A.

Lanczos Property Summary

If A € R™*" is SPD, then at early iterations of Lanczos,

e The largest eigenvalues of
T, = Qp AQy, € RF*¥

tend to be good approximations of the largest eigenvalues of A.

¢ The Krylov subspace tends to contain components of corresponding eigenvectors of
A.

How fast the approximations become good depends on the spread of eigenvalues.

Bidiagonalization Property Summary

If A € R™*", then at early iterations of Golub-Kahan Bidiagonalization,

e The largest singular values of
By, = U/ AV}, € RF*k

thend to be good approximations of the largest singular values of A.

¢ The Krylov subspace tends to contain components of corresponding singular vectors
of A.

How fast the approximations become good depends on the spread of singular valules.

What This Means for Inverse Problems? If we use CG or LSQR, then

e Early iterations:
Reconstruct information corresponding to largest singular value components.
approximate solution gets better at each iteration.
This is called semi-convergence.
e Later iterations:
Reconstruct inverted noise.
approximate solution starts to get worse.
e If we iterate too long:
Then, x;, — A~ 'b = Xpaive. This is a bad solution.

So, semi-convergence does converge, but it converges to something bad eventually.

79

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Tterative Regularization

e Iterative methods behaves like:
TSVD, but we don’t need to compute the full SVD on A!

e Questions?

M. That is, we need to relative error to deter-
”Xexact”2

mine the optimal iteration number k. However, we don't know xexact-

1. Semi-convergence applies to

2. The residual does not show when semi-convergence occurs because the problems are
ill-conditioned (x(A) is huge). So, how to determine when to stop?

4.3 Iterative Regularization
4.3.1 Motivation

A linear inverse problem is usually written as
b = AXexact + ,'77

where 7 is a vector representing (unknown) erros/noise in the measured data b.

e Ideally, we would like to solve

exact ~ ~exact?

but we don’t know b

exact *

e We could try to ignore n and compute the naive inverse solution:

= A" 'b,

X naive

but ill-conditioning and even a small amount of noise produces a bad approximation to x

exact *

e Truncated SVD (TSVD): Choose an optimal k,p, that balances reconstructing enough info, with-

out letting the noise blow up:

kopt T
u'b
thvd:Z l' Vi, 1<kopt<n

i=1 "

uZTb TSVD 1 for “large” o;
=Y iy, where p!SVP —
o

i=1 g 0 for “small” o;.

Notation 4.1. ko is called the TSVD regularization parameter.

80

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Tterative Regularization

TSVD
(]
large o
1F---=-=---- | ge gi
|
|
|
|
]
small ¢, i
e General SVD Filtering:
b 1 for “large” o;
Xﬁlt:Z@iUZ v;, where ¢; ~ 8¢ 7
- T 0 for “small” o;

Example 4.3.2 Regularization Parameter and Tikhonov Filtering
Consider the following Tikhonov filtering:
2

Tk — 9
! o + N2

For example, A = 1072 = X2 = 1076, If 5; = 1, then

. 1
Tik
i 1+10-6 ’

and if 0 =~ o0,, <)\, then

Tik
Yo ~

TSVD

(2

large o;

small o; Ti

Here,) is called the regularization parameter. The region in-between is called the transition

area.

We can motivate the Tikhonoc filtering by considering the Tikhonov optimization problem:

:

2
A

x
A

min ||b — Ax|)3 + A?||x||3 = min
X X

2

81

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3

Iterative Regularization

Or, the normal equations version:
(ATA +)\21>X — AT

Replace A with A = UXV " (SVD), and solve for x, we get

n 2 T
N b
i U2+)\2 ag;
= A,_/
Tik
¥i

Vi

Recall that CG/LSQR behave like TSVD:

e Earlyiterations: Reconstruct information corresponding to large singular value components.

e Later iterations: Start to reconstruct inverted noise.

e Iterate too long: Converge to the naive inverse solution, which is dominated by the inverted

noise.

o If we stop at the right spot, xop, we get an approximate solution similar to TSVD.

We can write CG/LSQR solutions as filtering methods. Specifically, at each iteration, we can write

LSQR Z LSQRU- b

where

@ZLiQR = 0?Ry(0?), Ry(t)is a (rather complicated) polynomial.

There is no closed form for Rj(¢), but we can write a recursive formula.

e Atearly iterations, (e.g., k = 1,2, 3),

LSQR _ 1 forafewlarge o’s

k
' 0 for most of the rest.

So, it’s filtering a lot in early iterations.

e As we iterate further,
1sqr _ J 1 formore of the large o;s

’i,k ~

0 for fewer of the small o;s.

e Eventually, if we iterate long enough,

ngLzQR ~1 forallo;s.

82

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Tterative Regularization

However, the question remains: how to choose kqpt?

4.3.2 Landweber Iteration

The Landweber method is the most used iterative methods for nonlinear inverse problems, and it
makes a nice (and relatively easy) connection to SVD filtering for iterative methods. To motivate it,
look at a simple iteration:

Xpi1 = Xg + o AT (b — Axy),

Normal equation;
Steepest descent
direction

where:
o If we take oy, as the step size from line search, we get steepest descent method.

e If we use constant step size,

we get Landweber or Richardson Iteration.

From the convergence results for simple iteration, we know it converges if
p(I — ozkATA> <1,

where p(-) denotes the spectral radius.

Landweber Convergence Assume o = « is constant.

Let A=UXV . Then,

[—aATA= V(I _ asz) al

=V diag (1 —ao?)V".
So, for convergence, we need

‘1—0[0’1-2‘<1 — —l<l-ao’<1

-2< —ozcri2 <0

0<ac? <2
2
0 <a< 3
i
Therefore, we need))
I<a< = .
Ur2nax HATAHQ
But...How do we estimate o7, = || A" A[,?

e From Numerical Linear Algebra,

83

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Iterative Regularization

e If A contains no negative values [This may not be a bad assumption in inverse problems],
then

|All, = max entry of A1

|All; = max entryof A"1.

e Therefore, we can take

Cc

C
= S 3 0<e<?2.
Al Al — IIAT Al

o

Remark. If we run Landweber to “convergence,”
X — haive inverse solution (BAD!)

So, we would wonder if early stopping working as LSQR for Landweber.

Landweber and SVD Filtering

+ n, then an SVD filtering method

exact

Definition 4.3.3 (SVD Filtering Method). If b = Ax

is
1 ifo;islarge

n T
u'b
Xfilt = Z 5 — Vi, where Vi & . .

i=1 i 0 ifo;is small.

Now, consider

Xp+1 = X + aAT (b — Axy)
= (I — aATA)xk +aA'b.
WLOG, assume xg = 0, then
x1=aA'b
Xg = (I - aATA) x1 +aATb

- (I — aATA) (aATb) +adA b

a [I + (I _ aATA)} ATb.
X3 = (I — aATA>X2 +ad b
= (I - aATA>oz[I + (I — aATAﬂATb +aA'b

—a [I + (I - aATA) (- aATA)Q] ATb

84

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Iterative Regularization

In general,
k .

Xpt1 = az (I - aATA>JATb.

=0
Now, use A = ULV T, we get

k .
Xp=ay (I — aVZTEVT)JVETUTb
=0

k

v (oY) (I _ aZTXl)j 27U
=0

diag)nal

k .
— VD Ub, where Dy, = a (I - ozETZ)j
=0

_ Z a0, (ulb)vi,

k
Z() — « E (1 — ao?)’ is a geometric series.

Jj=0

where d

Remark. For a geometric series, we know

k , k+1

if|r| < 1.

J

In this case, we require |1 - ao’i2| < 1 in order to have a convergent geometric series. We will
choose « such that the inequality is satisfied. Therefore,

1-(1-ao?)"™!

]

k .
dz(-k) =« (1 — omiz)J =«
=0

: 1-1+ cwi2
1-— (1 — Ozcriz)kJrl
=)@(a?
_1-(1—ac})H
= g~

7

Therefore, each iteration of Landweber can be written as

Xpoy = id(k)ai (u-Tb)vi _ i 1—(1- agg)kﬂ%(uTb)vi
) 7 O_g i

i=1 =1

85

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Iterative Regularization

Reorder terms, we get

3 (u/b)

Xk+1 = Z |:1 — (1 — aaf)kﬂ} —V;

o
i=1 v

(k+1)
n T

_ (k+1)u; b

=% 5. Vi
i=1 v

where the Landweber Filter Factors, for iteration &, are

oD Z 1 (1= ag?)tH,

Notice: If « = 1 and o0x = 0; = 1, then

° Spgk'i‘l) —1— (1 _ 1)k+1 -1

° gogg—l—l) ~1-—(1- O)k—H ~0
o Ifk =0, then

1 forlarge o’s
@El)zl—(l—af)zafz 8 ai

0 forsmall g;s.

Thus, Landweber is an SVD filtering method.

Remark.
e If o is not constant, the method is steepest descent.

e For steepest descent («j not constant), we cannot get closed form expressions for

(ngk+1)' But as with LSQR, we can write

gogk-’_l) = g; poly (aiz).

e Landweber and steepest descent converge much more slowly than Krylov subspace
methods. This means semi-convergence is slower —> don'’t risk to a bad solution.

e We can precondition those methods, but care is needed.

1. We want to reconstruct components of the solution corresponding to large o;’s
(i.e., cluster large o;’s).

2. But we don’t want to reconstruct components of the solution corresponding to
small 5;’s (i.e., don’t cluster small o;’s).

Landweber for Nonlinear Problems Consider a nonlinear inverse problem:

b = F(XEXHCI) + TI?

86

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Tterative Regularization

where F' : R® — R™ is differentiable. As with the linear case, we can look at
. 2
min [b — F(x)|3

Using Landweber, we get
Xp1 = X + aF (x) T (b — F(xy)),

where F’(x) is the Jacobian of F'(x).

4.3.3 Hybrid Iterative Methods

Recall Tikhonov regularization for inverse problems computes

x) = argmin [b — Ax|)3 4+ N2||x|3,

:

which could also be computed via the normal equations, by solving

or, equivalently,
2
A

A

Xil

2

X) = arg min
X

(ATA +)\QI)X)\ — ATb.
We can use LSQR to solve the least squares problem.
¢ Since LSQR uses GKB to project on Krylov subspaces, we call this regularize-then-project.
e Challenge: What to use for \?
An alternative idea is to start with trying to (iteratively) solve the LS problem
min [|b — Ax||3.

That is, we use GKB to first project onto Krylov subspaces, and then enforce regularization.

Using Lower Bidiagonalization Approach A € R"*", and the & steps of bidiagonalization computes

o U, = |:ul cee Ug uk+1} S R (k+1)
o V. = [Vl oo Vk] S R7xk
o ;
_ (B (k+1)xk
o B = eR such that
o
L Bk]

ATUk = Vk;B];r + ak+1vk+1ez+1 and AV, = U,B;.

87

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Tterative Regularization

We start the iteration with u; = b/|b||, = b/3, where g = ||b||,.

Projected LS Problem At each iteration, we want to solve

2
X, =arg min |b— AXH; <= min HU,;rb - BkyH
x€R(Vy) yERF 2

<= arg min ||fey — BkyH%,
yERF

where R(V}) = span {vi,va,...,vi} and x; = Vyyi.
Solving the Projected LS Problem

e If Aisill-conditioned, o; — 0 fast. Then, By will have similar properties (provided is large

enough).

e Therefore, instead of solving
. 2
yir = arg min ||fe, — Bryll3,
yERFK
we could consider solving

yir = arg min ||fe — Bk)’”% + AiHYH%
yERFK
Bey,
0

e We still have the question of how to choose A\ (see the next subsection!)

2
By,
Il

= arg min
yeRk

2

We call this project-then-regularize.

Extension 4.1 We can also do this for the LASSO regression, i.e.,
min [[b — Ax|l, + Alx]|,

where the 1-norm encourages sparsity. We will discuss in the future sections.

4.3.4 Regularization Parameters

In this section, we finally get into different ways to estimate regularization parameters. Consider our
standard linear inverse problem
b = Axexact + T’

and suppose we want to compute a Tikhonov regularized solution

A
X
Al

xy = argmin ||b — Ax||3 + A\?||x||3 = arg min
X X

:

2

88

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Iterative Regularization

We can also write it in the normal equation form

x5 = (ATA n AQI)_IAT b

J/

i
_A)\

Remark. There is no one fool proof method that is optimal for all problems. Methods should
be consider guides.

Discrepancy Principle

e Requires knowing the norm of the noise: ||7||,.
e Notice: b = Ax,_ ., + 7.
If x, is a good approximation of x
Or,

, we might expect that ||b — Ax, ||, = ||n]],-

exact

b — Axy||3 ~ 7||mll5, wherer % 1.
[The notation gtrapprox implies that T is approximately equal to 1, but might be slightly big-
ger. It reads as “greater than about.”]

— D(\) = ||b— Ax,||2 = 7|nl3 =0 + Aroot finding problem.
Generalized Cross Validation (GCV)

e Do not need the norm of the noise.
e We skip details (tedious)

e Find)\ to minimize)
n|b — AXA”2

121"

G\ =

where Al = (ATA+)21)71AT.
To implement these methods, we must first simplify the expressions. We will use SVD to simplify
A=Uxv"T
x, = (ATA+ >\21>_1ATb
—v(zTs+ /\21>_IETUTb
Axy = U (ETE n AQI)AETUTb
b— Ax), = UU'b—US (ETE n)\21) YU

—U <I - E(ZTE +)\21) _12T> UThb

diagonal matrix

89

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Iterative Regularization

Note that

I—E(ETE+)\2I>_1ZT:diag o9 — diag X
o + \? o2+ A2)’

we have

2 2

A
2 : T

n AN 2
(X
N — o2+ A2)

A2 ~
di ———)b
e <a? - A2>
e DPisto find) such that

2
2

[b=U"b &U is orthogonall

2

D) = [|b— Ax|3 — 7[n[3 =0

VAN A

i 2
Z - | —Tlnlz=0,
i=1 (Ui +A)

where 7 £ 1. This is a simple 1D root finding problem. We will use MATLAB's fzero () function.

VANV
”Z T 2)
n|/b —AXAHS i=1 <0i +A

G\ = -

o (1-aa)]” [ir(1-aa)]"

Al = (ATA+ /\21>_1AT ~v(zTs+ /\QI)_IZTUT

e For GCV,

~1
a4l =us(sT2+21) =TUT
-1
I-AA =1-US(3"S+21) 27U

—U (1 - E(ETE + W)_lzT) ol

diagonal matrix
1 2 A2
.) S o L
I—E(Z Y+ A I) ¥ = diag (1_01-2TZ)\2> = diag <—Ui2+)\2>
. A2 T
tr (1—44]) = tr <Ud1ag (W)U)
. A?
=1tr <d1ag <m>>
- Z o2 + \?

=1

90

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.3 Iterative Regularization

2 ~ 2
- Xb; § b;
nz<ai2+)\2) ni (J?—i—)\?)

=1

) (Sete)

i=1

Hence,

Q

We can use, for example, MATLAB’s fminbnd to solve it. The bound will be [0, o1], where o is the
largest singular value.

Remark. Objection!
Recall that A is often too large to compute its SVD. The formulas require us to have the full SVD
computed, so it will not be feasible. But, we can use these formulas on the projected problems

min ||Be; — Biy |2 + 2|y l%.
yERFk

That is, at each iteration, use the SVD of By, (a tiny matrix).

4.3.5 Other Regularization Approaches

In this section, we will see the LASSO regression:

. 2
min|[b — Ax|3 + Al .

First notice: If Dy = diag <

1 >then
VIzil)’

[21//Jen] |
w2/ |2

Dyx =
xn/v |$n|
So,
2 2 2
T T T
| Dax||? = =L 4+ =2 ... 4 0
ST IEe] 0]

= [z1| + |w2| + - + [

=[xl
Can we just replaced ||x|, as || Dxx||52 No.

Problems

e Whatif z; = 0? Remedy: add a small entry to it. For example,

1
]z Fe

91

4

INVERSE PROBLEMS AND ITERATIVE METHODS 4.4

Flexible Methods

e Dy depends on x, but we don’t know x. Remedy: Iterative update!

Algorithm 16: Iteratively Reweighted LS (Simple Idea)

1

2

3

4

begin
x(=initial guess;
fork=0,1,2,... do

Xit1 = argm)in b — Ax|3 + || Dix|3;

)

update Dy, = diag <1 / ’x,(f)

Remark. We are dividing by small numbers? Don’t worry!
Let X = Dx. So, x = D~!X. Then,

2 2 _1~112 2
Ib — Ax|; + M| Dx|l; = ||b — ADT'R[; + Allx[l3.
It is just a preconditioning method, and the preconditioner is

D! = diag (M)

We have no division at all.

Another Problem This requires solving a large LS problem at each iteration.

Workaround Consider

min [|b — Ax||3 + A|[Dx|3

If D,, is invertible, then we can rewrite (9) as

min |[b — AD;'%||2 + Al

9)

This looks like preconditioning. We can embed this into a Krylov solver, and use Dy, as a precon-

ditioner that changes at each iteration.

4.4 Flexible Methods

Non-Constant Preconditioners We know that preconditioning is often used in Krylov subspace meth-

ods. For example, to solve Ax = b with a right preconditioner M, we consider

AM'Mx=b < AX =b.

92

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.4 Flexible Methods

Our discussion assumed that the preconditioner remained constant at each iteration. However,
there are problems/applications where the preconditioner can change at each iteration. For ex-
ample,
e)M; might depend on x;, or
e)M, is not (explicitly) a matrix, but instead there is a function to (inexactly or incompletely)
solve linear systems with ;.
GMRES Revisit To understand how to build non-constant preconditioners, we start from GMRES.

In GMRES, we use Arnoldi to build an orthonormal basis for the Krylov subspace:
K (A, rg) = span {ro, Arg, ... ,Am_lro}.
This gives

o
Qmi1=|a1 -+ am Qm+1:|7 qr = ——, o= |[rollya1
ol

upper Hessenberg f]m e RmHD)xm g ¢ AQn, = Qm+1}~Im.

Algorithm 11 outlines the Basic GMRES Algorithm. If we use a preconditioner, Lines 4 and 14 will

change.

Right Preconditioned GMRES We want to solve Ax = b. Suppose M € R"*", non-singular, is the

preconditioner. Consider
AM~'Mx = b,

or
AX = b,
where A = AM~! and X = Mx. Then, x = M.
Apply Arnoldi to the preconditioned system:
e Given xq, we get Xo = Mxq.

e Notice that
Iro :b—AXO Zb—AM_lMXO :b—gﬁo :/fo.

Therefore,
T ro
Q9 =7=7 =7 -
Tolly lIrolly

e Arnoldi builds an orthonormal basis for

span {?0, Ary, ... ,f/l\mﬁl?o} = span {ro, AM 'rg, ..., (AMfl)mflro}.
Again, this gives Q,,+1 = [ql o+ dm qm+1} and an upper Hessenberg matrix H,, such

93

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.4 Flexible Methods

that
AQm = Qm+1Hm or AM_lQm = Qm+1Hm — AZ, = Qm+1Hma
——
=Zm
where
Zm = [Zl zZy - Zm:| = [M‘lql M= lqy -+ M7 lqm|

So, we will change w; = Aq; (Line 4 in Algorithm 11) into

W, = AM_lqj R

Now, let’s consider the optimality condition (minimizing residual). For AX = b, we compute
% = %0+ Qmy, ¥ € K (A,T).
The residual is

T =b— A%, =b — A(Xg + Qmy)
=b — ARy —AQuy
——

= /fO - A\me
=To— Qm+1ﬁmy [A\Qm - Qm«klﬁm]
= Ba1 — Qm1Hmy [ro = |Iroll,a1 = Bay, where B = ||ro||,]

For GMRES, we compute

’/3(11 - Qm-ﬁ-lﬁmyu2

= arg Irgn HQmH (Be1 - ﬁmy) Hz

Ym = argmin
y

= arg min Hﬁel — ﬁmyH .
y 2
Once we get y,,,, we update Xy:

Xm = X0 + QmYm
Mx,, = Mxo+ Qny X = Mx]

Xm = X0+ M 1Qumym [M is nonsingular]

So, we change x,,, = x;, + @y (Line 14 in Algorithm 11) to

Xm = X0 + M_lQmYm .

We could also write
Xm = X0 + ZmYm, Where Z,, = M 1Q,,.

94

4

INVERSE PROBLEMS AND ITERATIVE METHODS 4.4 Flexible Methods

Algorithm 17: Right Preconditioned GMRES

1

2

3

4

10

11

12

13

14

Input: A € R™*" A € R"*" b, and xg € R"
begin
Compute rg = b — Axg, 8 = ||rolly, and q; = ro/f;
forj=1:mdo
wj = A(M™q;);
fori=1:jdo
L hij = q] wj;
w; =W, — hi;Qi;
hivig = Iwilly
ifh;;1; = 0then
m = j;

break;

91 = Wi/

ym = argminy [ler — iy
Xm = X0 +]\[71 (me/m);

)

2

Remark.

e We should compute w; = A(M'q;) in two steps:

z; = M_lqj < solve MZj =q;

W]' = AZj

It avoids matrix-matrix multiplications. Also, we do not need to store z;’s,

e We should compute M ~(Q,,y,) in two steps:

z=M"'Z < solve Mz =z.

Non-constant Preconditioners Now, suppose 1/; is a preconditioner that changes at each iteration.

In this case, the Arnoldi relation still holds
AZm = Qm+1ﬁma

where Z,, = [Ml_lql Mz_lqg M#Qm]
We cannot write Z,, = M j‘lQm in this case, but that’s okay. We just need to save all of the z;
vectors. We update the solution as

‘Xm =X+ ZmYm

95

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.4 Flexible Methods

Algorithm 18: Flexible GMRES (FGMRES)
Input: A, solver for M}, b, and xg

1 begin
2 Computery = b — Axq, 5 = ||rol|y, and q1 =ro/f;
3 forj=1:mdo

4 Z; =]\[Jilq] and W, = AZ],
5 fori=1:j do

6 hij = af w;;

7 wj = W; — hijq;;

8 Rt = [[wjllys

9 ifh]q_ld‘ = 0 then

10 m=j;

11 break;

12 Qi+ = w;i/hjt1,55

)

2

13 Ym = arg min Hﬁel — H,y
y

14 Xm = X0 + ZmYm»

Remark. Itis easy to see that if M, is constant, FGMRES is GMRES.]

Preconditioned CG and Flexible CG also follow a similar scheme.
Algorithm 19: Preconditioned CG
Input: A, b, xg, and SPD M
1 begin

2 Compute ro = b — Axg;
3 Solve Mzy = ro;

4 Po = Zo;

5 fork=0,1,2,... do

6 w = Apy;

|| ok = () /(oI

8 Xk+1 = Xk + QPk;

9 Tyl =T — QpW,

10 Solve Mz 1 = rii1;

11 B = (Z/I+1rk’+1)/<zljrk’) // Fletcher-Reeves Formula
12 Br+1 = Zk+1 + BePis

96

4 INVERSE PROBLEMS AND ITERATIVE METHODS 4.4 Flexible Methods

Algorithm 20: Flexible Preconditioned CG
Input: A, b, x(, and solver for SPD M,
1 begin

2 Computerg = b — Axg;
3 Solve]\J()Z() =Ty,

4 Po = Zo;

5 fork=0,1,2,... do

6 w = Apg;

7 ar, = (2 k) /(P W);

8 Xk+1 = Xk + O Pk;

9 Tyl = Tp — QpW;

10 Solve Myzp+1 = rpi1;

11 B = (z;+1(rk;+1 — rk,))/<z2rk¢) // Polak-Ribiére Formula (This is basically a
reorthogonalization step)

12 | Prt1 = Zit1 + OrPrs

97

5 FAST FOURIER TRANSFORMS (FFT)

5 Fast Fourier Transforms (FFT)

5.1 Integral Equations

b(s) = /a(s, t)x(t) dt
Forward Problem Given a(s,t) and z(t), compute b(s).

Backward Problem Given a(s,t) and b(s), find z(t).

Remark. The interval of integration could be finite (e.g., [0, 1]) or infinte (i.e., (—o0, 00)).

Discretize to Get a Linear Algebra Problem

e Use quadrature rule for integration: with notes ¢4, t, . . . , t,, and weights wq, wa, . .., wy,.
e Sample b(s) at s1, s2, ..., Sp.
This leads to

n

b(s;) ~ Za(siytj>$(tj>wj'
j=1

Define a matrix
n

= o]

and vectors
= [2t)]" d b= [b(s }” .
x=|aty)] , an s
Then, we get a linear system
b ~ Ax,
or, the inverse problem
b = Axexacl + 17'

Convolution and Deconvolution This is an integral equation where a(s, t) can be written as a(s — t):

b(s) = /a(s —t)z(t) dt.

e Convolution: Given a(s — t) and z(t), compute b(s).

e Deconvolution: Given a(s — t) and b(s), compute x(t).

Example 5.1.1 Gaussian Kernel

98

5 FAST FOURIER TRANSFORMS (FFT)

5.1

In discretization: Assume w; = w is a constant and equally spaced points. Then, each entry of

matrix A is

In this case:

This is called a Toeplitz matrix.

This implicitly assumes that () is zero outside the interval of convolution = Zero Boundary

conditions:

a?(t,l) == $(7fo) == O, x(tl) =T, I(tg) = T2y...

ail

a21

an1

aij = a(si — tj)w = ai_j.

a12

a22

an2

Aln

a2n

Ann

— A=

ao

a

az

a_y

ao

ai

a_s

a_1

ao

7$(tn71) = Tn-1, :E(tn) = Tn, x(tn+1) = x(tn+2) =0

Other BCs:

e Periodic BC: the function repeats itself.

x(t_1) = Tp_1, z(to) = n, x(t1) = x1, z(t2) = z2,...

In discretization

7$(t'ﬂ) = Tn, $<tn+1) = 1, .’E(tn_;,_g) = T2

In discretization

e Neumann/Reflective: Mirror relfection of what’s inside the interval:

:U(t_l) = Z9, .T(t()) =2, .’E(tl) =2, m(tQ) =T2,...

~
In discretization

Different BCs lead to different structured matrices:

e Zero BC — A is Toeplitz

e Periodic BC = A is circulant

e Reflective BC — A is Toeplitz + Honkel.

2D Convolution/Deconvolution Problems Images

We get block structured matrices. For example, with zero BCs, we have

Ag
Aq

Ao

A
Ao

Ay

A g
A

Ay

99

, where A; =

(k)

(k)

a1
o

o

ax<tn) = Tn, x(tn—i-l) = Tn, m<tn+2) = Tn—1

Integral Equations

5 FAST FOURIER TRANSFORMS (FFT) 5.2 Fast Fourier Transforms

Remark. Computations with these matrices use Fast Fourier Transforms.]

5.2 Fast Fourier Transforms
5.2.1 Discrete Fourier Transform (DFT) Matrix

Let w,, = ¢*™/", where i = v/—1. Then, the unitary DFT matrix of dimension 7 is

1T o 1n—1
Fp = —=wa]
"yn “n k=0
1 1 1 1 1
1wt w2 . wi Y
= % 1 w,? w e wy 27
-1 w;(n—l) w;2(n—1) o wg(n—l)(n—l)-

Observations

. . . o . . =T
e F, is symmetric, F,| = F,,. But it is not Hermitian symmetric. Thatis, £ = F, # F,.

e [, is unitary. That is,
FAF, =1 < F,'=F".

e Recall:
e = cosh +isinf
— ¢ = cos(—0) + isin(—0)
=cosf —isinf
_ o
= wplt = w%k
So, . .
. n—
-
"yn wn k=0
Remark. Given ann x n matrix A, computing
y = Ax

requires O(n?) flops. For F,, and F¥/, we can reduce this to O(nlogn) if n = 2P (We can also do
2p2 . 3P3 . 5P5 ...) For example, n = 256 = 28, Then, n? = 65, 536 but nlogn = 2,048.

Problem The constants behind the O(-) notation. But it's modest in this case.

100

5 FAST FOURIER TRANSFORMS (FFT) 5.2 Fast Fourier Transforms

5.2.2 Idea of FFTs: Divide and Conquer

Suppose n = 2m, and we want to compute

y = Fi'x,

where _ - _ -
Lo Yo
1]t 1 Y1
FH = [—w%] ,ox=1 |, y=1| .
N k=0 : :

| Tn—1 | | Yn—1]

Let F,, be a permutation matrix such that
X0 x
T Xe 2 . 3 .
E,x = , where x, =) (even entries), x, =) (odd entries).
XO . .
| T2(m—1) | | T2m—1 |

Since E,, is a permutation matrix, EnE,T = . Therefore,

y=Fix=FIE,E"x
— (Fi'Ea) (Bx).

Multiplying a permutation on the right permutes the columns, so

j(%)}m_1 [j(2k+1)]m_1
[w” k=0 “n k=0
FHEE, =
[ng—l—m)(%)} [w7(z]+m)(2k+1)]
J:k=0 7,k=0

Since n = 2m, it follows that

J(2k)

2mi 2mi 5 (g 2mi ; ;
o WICR) _ Bhien) _ LI _ 2k

=epm e = Wm

27i

° wSLjer)(Qk) = w%(Qk)w,T(%) =wilf.ef = wiF . 27k Note that

e*™k — cos(27k) + isin(27k) = 1,

(+m)(2k) _ ik

we have w,; = Wiy, .
j(2k+1 i(2k) ik j
o Wi = WP = Wit
j+1)(2k+1 ik j
owﬁbﬂ_) +):...:—w#fw%,

101

5 FAST FOURIER TRANSFORMS (FFT) 5.2 Fast Fourier Transforms

Hence,
M1 o 1m—1 1 . 1
I]k:| _|: ik]]
! m[i FRET e 1 1 11
FEE, = — n=2m — — = = .
R Lo et 1 ik g™ | noV2m o V2 \/m]
ﬁ[m}j,kzo \/ﬁ[_wmw”}j,kzo
[D
V2|F! D, Fl

where D,, = diag (w%)m 0 Thus,
‘]:

y=Fix=FlE, E'x

1 |F§ DnFH | |xc
V2 |FEH —D,,FH||x,
1 |Flx, + D, Fllx,

V2

anf Xe — DmFTI,f X,
Therefore, we reduced the n-dimensional DFT to two m-dimensional DFTs.
e If m = 2¢, do it again.

e If n = 2P, we can continue in this way p = log,(n) times.

Definition 5.2.1 (Forward and Inverse FFTs).

e Forward FFT:
y = Fpx

e Inverse FFT
x=Fly = FH(Fx) =x.

Remark. Most FFT software uses an alternative scaling

1 ; 1
Rl = | ett| [5o

inverse FFT forwa‘r’d FFT

inverse FpT forward FET
.) .)
For example, y = Fx (unitary version) can be computed in MATLAB as y = Tf £t(x) and
n

z = F'win MATLAB is z = /nifft(w).

102

5 FAST FOURIER TRANSFORMS (FFT) 5.3 Toeplitz and Circulant Matrices

5.2.3 Higher Dimensions

e 2D FFT:
Fop = Fip ® Fip, where Fip = F,, and ® is the Kronecker product

Recall that (A ® B)x = BXAT. So,

y = Fopx = (Fip ® Fip)x
Y = FipXFip, [FITD = Fip, symmetric|

where x = vec(X) and y = vec(Y'). In MATLAB, we will use reshape () to achieve this.
1. 2D FFT software works on arrays. That is,

Y = £f£ft2(X).

2. Cost of 2D FFT:
(’)(n2 log nz) = (’)(n2 logn) [log n? = 2logn]

e 3D FFT:
F3p = Fip ® F1p ® Fip.

5.3 Toeplitz and Circulant Matrices

Definition 5.3.1 (Toeplitz Matrix). Toeplitz matrices have constant diagonals:

to t-1 t-2 t_3
t t t_1 t_
|t to 1 2
to 1 to t—1

t3 ta t1 o

T is structurally sparse. It is dense, but storage is sparse. We only need to store 2n — 1 entries.

Definition 5.3.2 (Circulant Matrix). Circulant matrices are Toeplitz matrices where each col-
umn (row) is a circular shift of its previous column (row):

Ch C3 C2 C1
Cl1 €y €3 C9
Cy C1 €y C3

Cy3 Cy C1 Cp

Circulant matrix is also structurally sparse. We only need to store n entries.

103

5 FAST FOURIER TRANSFORMS (FFT) 5.3 Toeplitz and Circulant Matrices

5.3.1 Eigenvalues and Eigenvectors

Theorem 5.3.3
Every n x n circulant matrix has the same set of eigenvectors. Specifically, any circulant matrix
can be written as

C =FHAF,

where F'is the unitary FFT matrix.

FID = Fn and A= diag ()\1,)\2,. o ,An)

Notice that C = F”AF. So, multiply by F', we get FC' = AF, where

1 1 1
. 1|1 wl w2
Vi1 w2
Then,
FCe1 = AFel.
Hence,
1
1 1
Fcy = A<%1) = %Al 1=|:|, and c isthe first column of C
1
[\ 1
_ 1
=7
i Al (1
oy
— 1 N
=7
_An
A1
So, \/nFcy = A, where A = | : |. Recall that in MATLARB, if F represents the unitary FFT, then
An
=Fx <= y= Lfft(x)
Therefore,

fft(Cl) = Al

104

5 FAST FOURIER TRANSFORMS (FFT) 5.3 Toeplitz and Circulant Matrices

Using FFT, A = £ft(c;) costs O(nlogn). Compared to standard eigenvalue solvers, for den matrices,
which costs O(n?), this is incredibly fast!

5.3.2 Matrix-Vector Multiplication and Solving Linear Systems

Circulant Matrix-Vector Multiplication

z=Cr=FIA\Fr

— ittt <fft(c1). *)/%fft(r))

= ifft(fft(cy). *fft(r))

e The costis O(nlogn).
¢ If we are multiplying C' times many vectors, we should only compute £ft(c;) once. i.e., store

the result.

Solving Circulant Systems

1

Cz=1 < z=0C"'r= (FHAF)7 r=FHIA Py

— 7= ifft(££t(r). /££t(c1))

e The costis O(nlogn).
e Atypical linear solver for dense matrices cost O(n?).

e If we need to solve many systems with the same matrix C, we should precompute fft(c;)
just once. [Or, 1. /fft(cy) because division are more expensive than multiplication. Usually,
to compute division on a computer, it is a root finding problem: We want to find x = —, i.e.,

a
solve ax = 1. We will apply Newton’s method to ax — 1 = 0 to find the root.]

Toeplitz Matrix-Vector Multiplication To solve z = T'r, we use ideas from circulant matrices by em-

bedding.
I to t—1 t_o to 1 i
t1 to t_q | to t9
fo -1t ty t ¢ bt
2 U 0 A R
T= |t to t_1| — C =
ta t | to t_1 t_o
ta 11 o
t_o to t1 to t_q
| 1t ta t1 to |

In general, if 7" is an n x n Toeplitz matrix, we will embed it into a (2n) x (2n) circulant matrix:

T T
T, T

105

5 FAST FOURIER TRANSFORMS (FFT) 5.3 Toeplitz and Circulant Matrices

Then,
r

T T
Therefore, to compute z = T'r:

1. Use the first row and column of T to build the first column of C, c.

_ r
2. Setr = []
0

3. Computez = ifft(££t(F).*fft(c))
4. z=1z(1:n).

The costis O((2n)log(2n)) = O(nlog(2n)) = O(n(log2 + logn)) = O(nlogn).

5.3.3 Preconditioning Toeplitz Matrices

Suppose we have a banded Toeplitz matrix

(4o t.1 to 0 0
t1 to t_1 t_o O
T=\|tas t, to t_1 to
te t1 to t
0 & t to

To precondition iterative solver to Tx = b, we will find M as a circulant approximation of 7'.
Thatis, M = arg m(}n 7 —C].

e For ||-|[; and [-|| ., the best M is obtained by filling in the corners:

Thatis, M = T + E, where E is a sparse, low-rank matrix with non-zero entries in the corners.

e For ||-||, the first column of M is

— i+t
mj:(” Dt + 3ti-n. j=01,...,n—1.
n

e For |||, itis complicated.

Question How good are these approximations/preconditioners?

If the entries of 7" decay quickly away from the diagonal, then they are very good.

106

A APPLICATIONS OF ITERATIVE METHODS

A Applications of Iterative Methods

A.1 Radioactive Imaging and Iterative Methods

e Consider Ax = b, A € R™*" with m > n. Let b be random, and

b; = | Ax|

i

e Assume b; comes from counting (e.g., counting photons that hit a detector), then it makes sense
to use a Poisson model. That is,

b ~ Poisson(Ax).

e To find the best x, write a likelihood function, and find its likelihood (maximum likelihood/min-
imum negative log likelihood).

e One can then derive the Expectation Maximization Algorithm (EM) (Algorithm 21).

Algorithm 21: Expectation Maximization (EM)

1 begin
2 fork=0,1,2,... do
3 L Xpr1 = x; @ (AT (b © Axy));

/* ® and @ represents element-wise X and /. */

e Letshave 1,2,3,..., m observations and group them into subsets:

iy, ia,...,ip.

Then, we have the Ordered Subset EM Algorithm (OSEM, Algorithm 22).

Algorithm 22: Ordered Subset EM (OSEM)

1 begin

2 fork=0,1,2,... do

3 for(=1,2,...,pdo

4 Ag = A(ig,:);

5 bs = b(iy);

6 Xp1 =X © (A (bs @ Agxy));

Remark.
1. Subsets i, are row vectors of integers. For example, i; = [1, 2, 3,4} ,ip = [5, 6,7, 8].

2. OSEM works well when the columns of A is well-balanced. if A has non-well-
balanced columns, the ordering matters and Algorithm 22 might fail.

107

