Emory University MATH 362 Mathematical Statistics II Learning Notes

Jiuru Lyu

June 18, 2025

Contents

1	Esti	mation	2	
	1.1	Introduction	2	
	1.2	The Method of Maximum Likelihood and the Method of Moments	3	
	1.3	The Method of Moment	10	
	1.4	Interval Estimation	12	
	1.5	Properties of Estimation	15	
	1.6	Best Unbiased Estimator	18	
	1.7	Sufficiency	21	
	1.8	Consistency	24	
	1.9	Bayesian Estimator	25	
2	Inference Based on Normal			
	2.1	Sample Variance and Chi-Square Distribution	32	
	2.2	Inference on μ and σ	35	
3	Hypothesis Testing			
	3.1	Decision Rules	39	
	3.2	Types of Errors	41	
	3.3	Two-Sample Inferences	43	
4	Regression Analysis			
	4.1	Introduction to Regression	45	
	4.2	Linear Regression Model	46	

1 Estimation

1.1 Introduction

Definition 1.1.1 (Model). A model is a distribution with certain parameters.

Example 1.1.2 The normal distribution: $N(\mu, \sigma^2)$.

Definition 1.1.3 (Population). The *population* is all the objects in the experiment. **Definition 1.1.4 (Data, Sample, and Random Sample).** *Data* refers to observed value from sample. The *sample* is a subset of the population. A *random sample* is a sequence of independent, identical (*i.i.d.*) random variables.

Definition 1.1.5 (Statistics). Statistics refers to a function of the random sample.

Example 1.1.6 The sample mean is a function of the sample:

$$\overline{Y} = \frac{1}{n}(Y_1 + \dots + Y_n).$$

Example 1.1.7 Central Limit Theorem

We randomly toss n = 200 fair coins on the table. Calculate, using the central limit theorem, the probability that at least 110 coins have turned on the same side.

$$\overline{X} = \frac{X_1 + \dots + X_{200}}{200} \quad \stackrel{\text{CLT}}{\sim} \quad N(\mu, \sigma^2),$$

where

$$\mu = \mathbf{E}\left(\overline{X}\right) = \frac{\sum_{i=1}^{200} \mathbf{E}(X_i)}{200},$$
$$\sigma^2 = \mathbf{Var}\left(\overline{X}\right) = \mathbf{Var}\left(\frac{X_1 + \dots + X_{200}}{200}\right) = \frac{\sum_{i=1}^{200} \mathbf{Var}(X_i)}{200^2}.$$

Definition 1.1.8 (Statistical Inference). The process of *statistical inference* is defined to be the process of using data from a sample to gain information about the population.

Example 1.1.9 Goals in statistical inference

- 1. **Definition 1.1.10 (Estimation).** To obtain values of the parameters from the data.
- 2. Definition 1.1.11 (Hypothesis Testing). To test a conjecture about the parameters.
- 3. **Definition 1.1.12 (Goodness of Fit).** How well does the data fit a given distribution.
- 4. Linear Regression

1.2 The Method of Maximum Likelihood and the Method of Moments

Example 1.2.1 Given an unfair coin, or *p*-coin, such that

$$X = \begin{cases} 1 & \text{head with probability } p, \\ 0 & \text{tail with probability } 1 - p. \end{cases}$$

How can we determine the value *p*? *Solution 1.*

- 1. Try to flip the coin several times, say, three times. Suppose we get HHT.
- 2. Draw a conclusion from the experiment.

Key idea: The choice of the parameter p should be the value that maximizes the probability of the sample.

$$\mathbf{P}(X_1 = 1, X_2 = 1, X_3 = 0) = \mathbf{P}(X_1 = 1)\mathbf{P}(X_2 = 1)\mathbf{P}(X_3 = 0) = p^2(1-p) \coloneqq f(p).$$

Solving the optimization problem $\max_{p>0} f(p)$, we find it is most likely that $p = \frac{2}{3}$. This method is called the *likelihood maximization method*.

Definition 1.2.2 (Likelihood Function). For a random sample of size *n* from the discrete (or continuous) pdf $p_X(k;\theta)$ (or $f_Y(y;\theta)$), the *likelihood function*, $\mathbf{L}(\theta)$, is the product of the pdf evaluated at $X_i = k_i$ (or $Y_i = y_i$). That is,

$$\mathbf{L}(\theta) \coloneqq \prod_{i=1}^{n} p_X(k_i; \theta) \quad \text{or} \quad \mathbf{L}(\theta) \coloneqq \prod_{i=1}^{n} f_Y(y_i; \theta).$$

Definition 1.2.3 (Maximum Likelihood Estimate). Let $L(\theta)$ be as defined in Definition 1.2.2. If θ_e is a value of the parameter such that $L(\theta_e) \ge L(\theta)$ for all possible values of θ , then we call θ_e the *maximum likelihood estimate* for θ .

Theorem 1.2.4 The Method of Maximum Likelihood

Given random samples X_1, \ldots, X_N and a density function $p_X(x)$ (or $f_X(x)$), then we have the likelihood function defined as

$$\mathbf{L}(\theta) = p_X(X; \theta) = \mathbf{P}(X_1, X_2, \dots, X_N)$$

= $\mathbf{P}(X_1)\mathbf{P}(X_2)\cdots\mathbf{P}(X_N)$ [independent]
= $\prod_{i=1}^N p_X(X_i; \theta)$ [identical]

Then, the maximum likelihood estimate for θ is given by

$$\theta^* = \arg\max_{\theta} L(\theta)$$

where

$$\mathbf{L}\left(\arg\max_{\theta} L(\theta)\right) = \mathbf{L}^*(\theta) = \max_{\theta} \mathbf{L}(\theta).$$

Example 1.2.5 Consider the Poisson distribution X = 0, 1, ..., with $\lambda > 0$. Then, the pdf is given by

$$p_X(k,\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Given data k_1, \ldots, k_n , we have the likelihood function

$$\mathbf{L}(\lambda) = \prod_{i=1}^{n} p_X(X=k;\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \frac{\lambda^{\sum k_i}}{k_1! \cdots k_n!}$$

Then, to find the maximum likelihood estimate of λ , we need to $\max_{\lambda} \mathbf{L}(\lambda)$. That is to solve $\frac{\partial \mathbf{L}(\lambda)}{\partial \lambda} = 0$ and $\frac{\partial^2 \mathbf{L}(\lambda)}{\partial \lambda^2} < 0$.

Example 1.2.6 Waiting Time. Consider the exponential distribution $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$. Find the MLE λ_e of λ . Solution 2. The likelihood function of the exponential distribution is given by

$$\mathbf{L}(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right).$$

Now, define

$$\ell(\lambda) = \ln \mathbf{L}(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i$$

To optimize $\ell(\lambda)$, we compute

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\ell(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i \stackrel{set}{=} 0$$

So,

$$\frac{n}{\lambda} = \sum_{i=1}^{n} y_i \implies \lambda_e = \frac{n}{\sum_{i=1}^{n} y_i} \eqqcolon \frac{1}{\overline{y}},$$

where \overline{y} is the sample mean.

Example 1.2.7 Given the exponential distribution $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$. Find the MLE of λ^2 .

Solution 3.

Define $\tau = \lambda^2$. Then, $\lambda = \sqrt{\tau}$, and so

$$f_Y(y) = \sqrt{\tau} e^{-\sqrt{\tau}y}, \quad y \ge 0.$$

Then, the likelihood function becomes

$$\mathbf{L}(\tau) = \prod_{i=1}^{n} f_Y(y) = \tau^{\frac{n}{2}} \exp\left(-\sqrt{\tau} \sum_{i=1}^{n} y_i\right).$$

Similarly, after maximization, we find

$$\tau_e = \frac{1}{\left(\overline{y}\right)^2}.$$

Theorem 1.2.8 Invariant Property for MLE

Suppose λ_e is the MLE of λ . Define $\tau \coloneqq h(\lambda)$. Then, $\tau_e = h(\lambda_e)$.

Proof 4. In this proof, we will prove the case when *h* is a one-to-one function. The case of *h* being a many-to-one function is beyond the scope of this course.

Suppose $h(\cdot)$ is a one-to-one function. Then, $\lambda = h^{-1}(\tau)$ is well-defined. Then,

$$\max_{\lambda} \mathbf{L}(\lambda; y_1, \dots, y_n) = \max_{\tau} \mathbf{L}(h^{-1}(\tau); y_1, \dots, y_n) = \max_{\tau} \mathbf{L}(\tau; y_1, \dots, y_n).$$

Example 1.2.9 Waiting Time with an unknown Threshold.

Let $\lambda = 1$ in exponential but there is an unknown threshold θ , that, is $f_Y(y) = e^{-(y-\theta)}$ for $y \ge \theta$, $\theta > 0$.

Solution 5.

Note that the likelihood function is given by

$$\mathbf{L}(\theta; y_1, \dots, y_n) = \prod_{i=1}^n f_Y(y_1) = \exp\left(-\sum_{i=1}^n (y_i - \theta)\right), \quad y_i \ge \theta, \ \theta > 0$$
$$= \exp\left(-\sum_{i=1}^n (y_i - \theta)\right) \cdot \mathbb{1}_{[y_i \ge 0, \ \theta > 0]},$$

where

$$\mathbb{1}_{x \in A} = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Using order statistics,

$$\mathbf{L}(\theta) = \exp\left(-\sum_{i=1}^{n} (y_i - \theta)\right) \cdot \mathbb{1}_{\left[y_{(n)} \ge y_{(n-1)} \ge \cdots \ge y_{(1)} \ge \theta, \ \theta > 0\right]}$$
$$= \exp\left(-\sum_{i=1}^{n} y_i + n\theta\right) \mathbb{1}_{\left[y_{(n)} \ge \cdots \ge y_{(1)} \ge \theta, \ \theta > 0\right]}.$$

So, we know $\theta \leq y_{(1)} = y_{\min}$.

To maximize the likelihood function, we want to maximize $-\sum y_i + n\theta$. That is, to maximize θ , as $\theta \leq y_{\min}$, it must be that $\theta_{\max} = y_{\min}$. Therefore, the MLE is $\theta^* = y_{\min}$. \Box

Example 1.2.10 Suppose $Y_1, \ldots, Y_n \sim \text{Uniform}[0, a]$. That is, $f_Y(y; a) = \frac{1}{a}$ for $y \in [0, a]$. Find MLE a_e of a.

Solution 6.

Note that

$$f_{Y}(y;a) = \frac{1}{a} \cdot \mathbb{1}_{\{y \in [0,a]\}}$$

= $\frac{1}{a} \cdot \mathbb{1}_{\{0 \le y_{(1)} \le \dots \le y_{(n)} \le a\}}$ where $y_{(1)} = \min y_i$ and $y_{(n)} = \max y_i$

Then,

$$\mathbf{L}(a) = \frac{1}{a^n} \mathbb{1}_{\left\{0 \le y_{(1)} \le \dots \le y_{(n)} \le a\right\}}$$

To maximize L(a), we want to minimize a^n . Since $a \ge y_{(n)}$, it must be that $a_e = y_{(n)}$. Here, we call $a_e = y_{(n)}$ an *estimate*, and $\widehat{a_{\text{MLE}}} = Y_{(n)}$ an *estimator*.

Example 1.2.11 MLE that Does Not Esist Suppose $f_Y(y; a) = \frac{1}{a}$, $y \in [0, a)$. Find the MLE. Solution 7.

The likelihood function is the same:

$$\mathbf{L}(a) = \frac{1}{a^n} \mathbb{1}_{\{0 \le y_{(1)} \le \dots \le y_{(n)} < a\}}.$$

However, since [0, a) is not a closed set, the optimization problem $\max_{a \in [0,a)} \mathbf{L}(a)$ does not have a solution. Hence, the estimate does not exist.

Remark 1.1 *MLE may not be unique all the time.*

Example 1.2.12 Multiple MLE Values Suppose $X_1, \ldots, X_n \sim \text{Uniform}\left[a - \frac{1}{2}, a + \frac{1}{2}\right]$, where $f_X(x; a) = 1, x \in \left[a - \frac{1}{2}, a + \frac{1}{2}\right]$. Find the MLE. **Solution 8.** In the indicator function notation, we can rewrite the pdf to be $f_X(x; a) = \mathbb{1}_{\left\{a - \frac{1}{2} \le x \le a + \frac{1}{2}\right\}} = \mathbb{1}_{\left\{a - \frac{1}{2} \le x_{(1)} \le \cdots \le x_{(n)} \le a + \frac{1}{2}\right\}}.$ So, the likelihood function will be

$$\mathbf{L}(a) = \prod_{i=1}^{n} f_x(x_i; a) = \begin{cases} 1, & a \in \left[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2} \right] \\ 0, & \text{otherwise.} \end{cases}$$

So, the L(*a*) will be maximized whenever $a \in \left[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}\right]$. Therefore, MLE can be any value in the range $\left[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}\right]$. Say, $a_e = x_{(n)} - \frac{1}{2}$ or $a_e = x_{(1)} - \frac{1}{2}$ or $a_e = \frac{x_{(n)} - \frac{1}{2} + x_{(1)} + \frac{1}{2}}{2} = \frac{x_{(n)} + x_{(1)}}{2}$.

Theorem 1.2.13 MLE for Multiple Parameters

In general, we have the likelihood function $\mathbf{L}(\theta)$, where $\theta = (\theta_1, \dots, \theta_p)$. To find the MLE, we need

$$\frac{\partial \mathbf{L}(\theta)}{\partial \theta_i} = 0 \quad i = 1, \dots, p,$$

and the Hessian matrix

$$\left(\frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{i}\partial\theta_{j}}\right)_{i,j=1,\dots,p} \coloneqq \begin{pmatrix} \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{1}^{2}} & \cdots & \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{1}\partial\theta_{p}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{p}\partial\theta_{1}} & \cdots & \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{p}^{2}} \end{pmatrix}$$

should be negative dfinite.

Example 1.2.14 MLE for Multiple Parameters: Normal Distribution

Suppose $Y_1, \ldots, Y_n \sim N(\mu, \sigma)$. Then,

$$f_{Y_i}(u;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(y_i-\mu)^2/(2\sigma^2)}.$$

Find the MLE for μ and σ . *Solution* 9. The likelihood function will be

$$\mathbf{L}(\mu,\sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-(y_i - \mu)^2 / (2\sigma^2)}.$$

Then, we define

$$\ell(\mu,\sigma) = \ln \mathbf{L}(\mu,\sigma) = -\frac{n}{2}\ln 2\pi - \frac{n}{2}\ln \sigma^2 - \frac{1}{2}(\sigma^2)^{-1}\sum_{i=1}^n (y_i - \mu)^2.$$

Set

$$\begin{cases} \frac{\partial \ell(\mu, \sigma)}{\partial \mu} = 0 & \text{(1)} \\ \frac{\partial \ell(\mu, \sigma)}{\partial \sigma} = 0 & \text{(2)} \end{cases}$$

From ①, we have

$$\frac{1}{\sigma^2} \sum_{i=1}^n (y_1 - \mu) = 0$$
$$\sum_{i=1}^n y_i = n\mu \implies \boxed{\mu_e = \frac{\sum y_i}{n} = \overline{y}}$$

From ⁽²⁾, by the invariant property of MLE, we instead set

$$\frac{\partial \ell(\mu, \sigma)}{\partial \sigma^2} = 0$$

$$-\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2} \left(\frac{1}{\sigma^2}\right)^2 \sum_{i=1}^n (y_i - \mu)^2 = 0$$

$$\frac{1}{2\sigma^2} \left(-n + \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right) = 0$$

$$-n\sigma^2 + \sum_{i=1}^n (y_i - \mu)^2 = 0 \qquad (\mu_e = \overline{y})$$

$$\sum_{i=1}^n (y_i - \overline{y})^2 = n\sigma^2$$

$$\sigma_e^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 \implies \sigma_e = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2}$$

1.3 The Method of Moment

Definition 1.3.1 (Moment Generating Function). The *Moment Generating Function (MGF)* is defined as

$$\mathbf{M}_X(t) = \mathbf{E} \big[e^{tX} \big],$$

and it uniquely determines a probability distribution. **Definition 1.3.2 (Moment).** The *k*-th order moment of X is $\mathbf{E}[X^k]$.

Example 1.3.3 Meaning of Different Moments

- $\mathbf{E}[X]$: location of a distribution
- $\mathbf{E}[X^2] = \mathbf{Var}(X) \mathbf{E}[X]^2$: width of a distribution
- $E[X^3]$: skewness positively skewed / negatively skewed
- $\mathbf{E}[X^4]$: kurtosis / tailedness speed decaying to 0.

Example 1.3.4 Moment Estimate: Moments of Population and Sample				
Population	Sample, X_1, \ldots, X_n			
	$\widehat{\mu} = \overline{X} = \frac{X_1 + \dots + X_n}{n}$			
$\mathbf{E}[X^2] = \mu^2 + \sigma^2$	$\widehat{\mu}^2 + \widehat{\sigma}^2 = \frac{X_1^2 + \dots + X_n^2}{n}$			
$\mathbf{E}[X^k]$	$\widehat{\mu}^2 + \widehat{\sigma}^2 = \frac{X_1^2 + \dots + X_n^2}{n}$ \vdots $\frac{X_1^k + \dots + X_n^k}{n}$			

Rationale: The population moments should be close to the sample moments.

Example 1.3.5

- Consider N(μ, σ²), where σ is given. Estimate μ.
 By the method of moment estimate, we have μ_e = X̄.
- Consider $N(\mu, \sigma^2)$. Estimate μ and σ .

We have $\mu_e = \overline{X}$ and $\mu_e^2 + \sigma_e^2 = \frac{X_1^2 + \dots + X_n^2}{n}$.

• Consider $N(\theta, \sigma^2)$. Given $\mathbf{E}(X^4) = 3\sigma^4$, estimate μ and σ . We have $\mu_e = \overline{X}$, $\mu_e^2 + \sigma_e^2 = \frac{X_1^2 + \dots + X_n^2}{n}$, and $3\sigma^4 = \frac{X_1^4 + \dots + X_n^4}{n}$. We have three equations but only two unknowns, then a solution is not guaranteed. So, we need some restrictions on this method (see Remark 1.2).

Theorem 1.3.6 Method of Moments Estimates

For a random sample of size *n* from the discrete (or continuous) population/pdf $p_X(k; \theta_1, \ldots, \theta_s)$ (or $f_Y(y; \theta_1, \ldots, \theta_s)$), solutions to the system

$$\begin{cases} \mathbf{E}(Y) = \frac{1}{n} \sum_{i=1}^{n} y_i \\ \vdots \\ \mathbf{E}(Y^s) = \frac{1}{n} \sum_{i=1}^{n} y_i^s \end{cases}$$

which are denoted by $\theta_{1e}, \ldots, \theta_{se}$, are called the **method of moments estimates** of $\theta_1, \ldots, \theta_s$.

Remark 1.2 To estimate k parameters with the method of moments estimates, we will only match the first k orders of moments.

Example 1.3.7 Consider the Gamma distribution:

$$f_Y(y; r, \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y} \quad \text{for } y \ge 0.$$
Given $\mathbf{E}(Y) = \frac{r}{\lambda}$ and $\mathbf{E}(Y^2) = \frac{r}{\lambda^2} + \frac{r^2}{\lambda^2}$. Estimate r and λ .
Solution 1.

$$\mathbf{E}(Y) = \frac{r}{\lambda} \implies \frac{r_e}{\lambda_e} = \frac{y_1 + \dots + y_n}{n} = \overline{y} \quad \textcircled{0}$$

$$\mathbf{E}(Y^2) = \frac{r}{\lambda^2} + \frac{r^2}{\lambda^2} \implies \frac{r_e}{\lambda_e^2} + \frac{r_e^2}{\lambda_e^2} = \frac{y_1^2 + \dots + y_n^2}{n} \quad \textcircled{0}$$
Substitute $\textcircled{0}$ into $\textcircled{0}$, we have

$$\frac{\overline{y}}{\lambda_e} + (\overline{y})^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 \implies \boxed{\lambda_e = \frac{\overline{y}}{\frac{1}{n} \sum y_i^2 - \overline{y}^2}} \quad \Im$$

Substitute 3 into 1, we have

$$r_e = \overline{y}\lambda_e = \boxed{\frac{\overline{y}^2}{\frac{1}{n}\sum y_i^2 - \overline{y}^2}}$$

Remark 1.3 The sample variance is defined as

$$\frac{1}{n}\sum_{i=1}^{n} (y_i - \overline{y})^2 = \frac{1}{n}\sum_{i=1}^{n} (y_i^2 - 2y_i\overline{y} + \overline{y}^2)$$
$$= \frac{1}{n}\sum_{i=1}^{n} y_i^2 - 2\overline{y} \cdot \frac{\sum y_i}{n} + \frac{1}{n} \cdot n\overline{y}^2$$
$$= \frac{1}{n}\sum_{i=1}^{n} y_i^2 - 2\overline{y}^2 + \overline{y}^2$$
$$\overline{y} = \frac{\sum y_i}{n}$$
$$= \frac{1}{n}\sum_{i=1}^{n} y_i^2 - \overline{y}^2.$$

So, in Example 1.3.7, if we define $\hat{\sigma}^2$ to be the sample variance, we can further simply our estimate as follows:

$$\lambda_e = \frac{\overline{y}}{\widehat{\sigma}^2}, \qquad r_e = \frac{\overline{y}^2}{\widehat{\sigma}^2}.$$

1.4 Interval Estimation

Example 1.4.1 Estimate μ , where $X \sim N(\mu, 1)$. We take some samples and compute their sample means: $\overline{X}^1 = \frac{x_1 + \dots + x_n}{n}, \overline{X}^2 = \frac{\widetilde{x}_1 + \dots + \widetilde{x}_n}{n}, \dots$ Finding the distribution of \overline{X} , we can find an interval $\left[\widehat{\theta}_L, \widehat{\theta}_U\right]$ such that $\mathbf{P}\left(\widehat{\theta}_L \leq \overline{X} \leq \widehat{\theta}_U\right) = 1 - \alpha.$

Remark 1.4 *By using the variance of the estimator, one can construct an interval such that with a high probability that the interval contains the unknown parameter.*

Definition 1.4.2 (Confidence Interval). The interval, $\left[\hat{\theta}_L, \hat{\theta}_U\right]$ is called the *confidence interval*, and the high probability is $1 - \alpha$, where α is given.

Remark 1.5 Take $\alpha = 5\%$, then $\left[\widehat{\theta}_L, \widehat{\theta}_U\right]$ is the 95% confidence interval of μ . It does not mean that μ has 95% chance to be in $\left[\widehat{\theta}_L, \widehat{\theta}_U\right]$. However, if we construct 1000 such intervals, 950 of them will contain μ .

Example 1.4.3 A random sample of size 4, $(Y_1 = 6.5, Y_2 = 9.2, Y_3 = 9.9, Y_4 = 12.4)$, from a normal population:

$$f_Y(y;\mu) = \frac{1}{\sqrt{2\pi}0.8} e^{-\frac{1}{2}\left(\frac{y-\mu}{0.8}\right)^2} \sim N(\mu,\sigma^2 = 0.64).$$

Both MLE and MME give $\mu_e = \overline{y} = 9.5$. The estimator $\hat{\mu} = \overline{Y}$ follows normal distribution. Construct 95%-confidence interval for μ .

Solution 1.

 $\mathbf{E}(\overline{Y}) = \mu$ and $\mathbf{Var}(\overline{Y}) = \frac{\sigma^2}{n} = \frac{0.64}{4}$. By the Central Limit Theorem, \overline{Y} approximately follow $N\left(\mu, \frac{\sigma^2}{n}\right)$. So, $\frac{\overline{Y} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1)$. Then,

$$\mathbf{P}\left(z_1 \le \frac{\overline{Y} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \le z_2\right) = 0.95 \implies \mathbf{P}\left(\overline{Y} - z_2\sqrt{\frac{\sigma^2}{n}} \le \mu \le \overline{Y} - z_1\sqrt{\frac{\sigma^2}{n}}\right) = 0.95$$

There are infinite many ways to construct a confidence interval by selecting different z_1 and z_2 . However, since we don't have any prior knowledge on μ , it is good for us to choose z_1 and z_2 symmetrically. Moreover, symmetric z_1 and z_2 will yield a smaller interval. We know the symmetric z_1 , z_2 pair will be $z_1 = -1.96$ and $z_2 = 1.96$. Therefore,

$$\mathbf{P}\left(\overline{Y} - 1.96\sqrt{\frac{0.64}{4}} \le \mu \le \overline{Y} + 1.96\sqrt{\frac{0.64}{4}}\right) = 0.95.$$

Then, 95% confidence interval is $[9.5 - 1.96 \times 0.4, 9.5 + 1.96 \times 0.4]$.

Theorem 1.4.4 Confidence Interval

In general, for a normal population with σ known, the $100(1-\alpha)\%$ *two-sided confidence interval* for μ is

$$\left(\overline{y} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{y} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

Theorem 1.4.5 Variation of Confidence Interval

• One-sided interval:

$$\left(\overline{y} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \, \overline{y}\right)$$
 or $\left(\overline{y}, \, \overline{y} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$

- σ is unknown and sample size is small: z-score.
- σ is unknown and sample size is large: *z*-score by CLT.
- Non Gaussian population but sample size is large: *z*-score by CLT.

Theorem 1.4.6

Let k be the number of successes in n independent trials, where n is large and $p = \mathbf{P}(\text{success})$ is unknown. An approximate $100(1 - \alpha)\%$ confidence interval for p is the set of numbers

$$\left(\frac{k}{n} - z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}, \ \frac{k}{n} + z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right)$$

Definition 1.4.7 (Margin of Error). The margin of error, denoted by d, is the quantity

$$d = z_{\alpha/2} \sqrt{\frac{(k/n)(1-k/n)}{n}}.$$

Remark 1.6 Stating the sample mean and the margin of error is equivalent to stating the confidence interval. Note that $C. I. = \hat{p} \pm d$.

Theorem 1.4.8 Estimate Margin of Error When p is close to $\frac{1}{2}$, then $d \approx d_m = \frac{z_{\alpha/2}}{2\sqrt{n}}$, which is equivalent to $\sigma_n \approx \frac{1}{2\sqrt{n}}$. However, if p is away from $\frac{1}{2}$, d and d_m are very different.

Remark 1.7 Theorem 1.4.8 gives a conservative estimation of the margin of error, which is d_m .

Proposition 1.9 : Given *d*, we can estimate the sample size.

Proof 2.

$$d = z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} \implies n \approx \widehat{p}(1-\widehat{p}) / \left(\frac{d}{z_{\alpha/2}}\right)^2.$$

However, since *n* is unknown, \hat{p} is also unknown. We, therefore, need information on the actual *p* to conclude an estimation of the sample size.

• If *p* is known,

$$n = \frac{p(1-p)}{\left(\frac{d}{z_{\alpha/2}}\right)^2}.$$

• If p is unknown. Let f(p) = p(1-p). f will be maximized when p = 0.5. So, $f(p) = p(1-p) \le 0.25$. Then,

$$n \le \frac{0.25}{\left(\frac{d}{z_{\alpha/2}}\right)^2}.$$

Since we are conservative, take $n = \frac{\frac{1}{4}z_{\alpha/2}^2}{d^2} = \frac{z_{\alpha/2}^2}{4d^2}$. This estimation is a conservative estimation of the sample size.

1.5 Properties of Estimation

The main question is that estimators are not unique in general. How do we choose a good estimator?

Definition 1.5.1 (Unbiasedness). Given a random sample of size *n* when whose population distribution depends on an unknown parameter θ . Let $\hat{\theta}$ be an estimator of θ . Then,

- $\widehat{\theta}$ is called *unbiased* if $\mathbf{E}(\widehat{\theta}) = \theta$.
- $\hat{\theta}$ is called *asymptotically unbiased* if $\lim_{n \to \infty} \mathbf{E}(\hat{\theta}) = \theta$.
- If θ is biased, then the *bias* is given by the quantity $\mathbf{B}(\widehat{\theta}) = \mathbf{E}(\widehat{\theta}) \theta$.

Example 1.5.2 Consider the exponential distribution: $f_Y(y; \lambda) = \lambda e^{-\lambda y}$ for $y \ge 0$. Determine if the estimator $\hat{\lambda} = \frac{1}{\overline{V}}$ is biased or not.

Hint:
$$n\overline{Y} = \sum_{i=1}^{n} Y_i \sim Gamma(n, \lambda).$$

Solution 1.

Recall that $\mathbf{E}[g(x)] = \int_x g(x) f_X(x) \, dx$. Define $X = \sum_{i=1}^n Y_i \sim \text{Gamma}(n, \lambda)$. Also, recall the following facts:

$$\Gamma(n) = (n-1)! = (n-1)\Gamma(n-1)$$

and the integration over any probability density function will yield a result of 1 by definition.

Then,

$$\begin{split} \mathbf{E}(\widehat{\lambda}) &= \mathbf{E}\left(\frac{1}{\overline{Y}}\right) = \mathbf{E}\left(\frac{n}{\sum Y_i}\right) = n\mathbf{E}\left(\frac{1}{\sum Y_i}\right) \\ &= n\mathbf{E}\left(\frac{1}{X}\right) \\ &= n\int_x \frac{1}{x} \cdot \frac{\lambda^n}{\Gamma(n)} x^{n-1} e^{-\lambda x} \, \mathrm{d}x \\ &= n\int_x \frac{\lambda^n}{(n-1)!} x^{n-2} e^{-\lambda x} \, \mathrm{d}x \\ &= \frac{n\lambda}{(n-1)} \underbrace{\int_x \frac{\lambda^{n-1}}{\Gamma(n-1)} x^{n-2} e^{-\lambda x} \, \mathrm{d}x}_{=1} \\ &= \frac{n}{n-1}\lambda. \end{split}$$

Therefore, $\mathbf{E}(\widehat{\lambda}) \neq \lambda$, and so $\widehat{\lambda}$ is biased. However, note that

$$\lim_{n \to \infty} \mathbf{E}(\widehat{\lambda}) = \lim_{n \to \infty} \frac{n}{n-1} \lambda = \lambda.$$

By definition, then $\hat{\lambda}$ is asymptotically unbiased.

Example 1.5.3 Consider the exponential distribution $f(y;\theta) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$. Then, $\hat{\theta} = \overline{Y}$ is unbiased.

Remark 1.8 Suppose $\{X_1, \ldots, X_n\}$ are *i.i.d.* random variables, and $\mathbf{E}(X_i) = \mu$ for $i = 1, \ldots, n$. Then, \overline{X} , the sample mean, is always an unbiased estimator:

$$\mathbf{E}(\overline{X}) = \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}(X_{i}) = \frac{1}{n}\cdot n\cdot \mu = \mu.$$

Theorem 1.5.4 Sample Variance is Biased

Suppose $\{X_1, \ldots, X_n\}$ are *i.i.d.* random variables, and $\mathbf{E}(X_i) = \mu$, $\mathbf{Var}(X_i) = \sigma^2$ for $i = 1, \ldots, n$. Then, the sample variance $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ is biased.

Proof 2. Note that

$$\begin{split} \mathbf{E}(\widehat{\sigma}^2) &= \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2\right) \\ &= \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^n (X_i - \mu + \mu - \overline{X})^2\right) \\ &= \frac{1}{n}\sum_{i=1}^n \mathbf{E}\Big[(X_i - \mu)^2 + (\mu - \overline{X})^2 + 2(X_i - \mu)(\mu - \overline{X})\Big] \\ &= \frac{1}{n}\sum_{i=1}^n \left\{\frac{\mathbf{E}(X_i - \mu)^2}{\mathbf{Var}(X_i)} + \mathbf{E}(\mu - \overline{X})^2 + 2\mathbf{E}\big[(\mu - \overline{X})(X_i - \mu)\big]\right\} \\ &\left| \quad Hint: \frac{1}{n}\sum_{i=1}^n (X_i - \mu) = \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n \mu = \overline{X} - \mu \right. \\ &= \frac{1}{n}\sum_{i=1}^n \mathbf{Var}(X_i) + \frac{1}{n} \cdot n\mathbf{E}(\mu - \overline{X})^2 + 2\mathbf{E}\Big[(\mu - \overline{X})\frac{1}{n}\sum_{i=1}^n (X_i - \mu)\Big] \\ &= \frac{1}{n}\sum_{i=1}^n \sigma^2 + \mathbf{E}(\mu - \overline{X})^2 + 2\mathbf{E}\big[(\mu - \overline{X})(\overline{X} - \mu)\big] \\ &= \frac{1}{n}\cdot n \cdot \sigma^2 + \mathbf{E}(\mu - \overline{X})^2 - 2\mathbf{E}\big[(\mu - \overline{X})^2\big] \\ &= \sigma^2 - \mathbf{E}(\mu - \overline{X})^2 \\ &= \sigma^2 - \frac{\mathbf{E}(\overline{X} - \mu)^2}{-\mathbf{Var}(\overline{X})} \\ &= \sigma^2 - \frac{\sigma^2}{n} = \frac{n-1}{n}\sigma^2 \neq \sigma^2 \end{split}$$

Therefore, $\hat{\sigma}^2$ is not an unbiased estimator.

Theorem 1.5.5 Adjusted Sample Variance is Unbiased

With the same set up in Theorem 1.5.4, define the adjusted sample variance to be

$$S^{2} = \frac{n}{n-1}\widehat{\sigma}^{2} = \frac{1}{n-1}\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}.$$

Then, S^2 is an unbiased estimator of $\sigma^2.$

Definition 1.5.6 (Decision Theory). Minimize the error of an estimator (sample statistics) relative to the true parameter (population parameter) using a loss function.

Definition 1.5.7 (Mean Squared Error). The mean squared error (MSE) is defined by

$$\mathbf{MSE}(\widehat{\theta}) = \mathbf{E}\Big[(\widehat{\theta} - \theta)^2\Big]$$

Theorem 1.5.8 Decomposition of MSE Generally,

$$\mathbf{MSE}(\theta) = \mathbf{Var}(\widehat{\theta}) + \mathbf{B}\left(\widehat{\theta}\right)^2$$

If $\hat{\theta}$ is unbiased, $MSE(\hat{\theta}) = Var(\hat{\theta})$. $Var(\theta)$ measures the precision of the estimator.

Proof 3. Note that we will the following:

$$\begin{split} \mathbf{MSE}(\widehat{\theta}) &= \mathbf{E} \Big[(\widehat{\theta} - \theta)^2 \Big] \\ &= \mathbf{E}(\widehat{\theta}^2 + \theta^2 - 2\widehat{\theta}\theta) \\ &= \mathbf{E}(\widehat{\theta}) - 2\theta \mathbf{E}(\widehat{\theta}) + \theta^2 \\ &= \underbrace{\mathbf{E}(\widehat{\theta}^2) - \mathbf{E}(\widehat{\theta})^2}_{} + \underbrace{\mathbf{E}(\widehat{\theta})^2 - 2\theta \mathbf{E}(\widehat{\theta}) + \theta^2}_{} \\ &= \mathbf{Var}(\widehat{\theta}) + \Big[\mathbf{E}(\widehat{\theta}) - \theta \Big]^2 \\ &= \mathbf{Var}(\theta) + \mathbf{B}(\widehat{\theta})^2 \end{split}$$

If $\hat{\theta}$ is unbiased, $\mathbf{B}(\hat{\theta}) = 0$, and so $\mathbf{MSE}(\hat{\theta}) = \mathbf{Var}(\hat{\theta})$.

Definition 1.5.9 (Efficiency). Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators for a parameter θ . If we have $\operatorname{Var}(\hat{\theta}_1) < \operatorname{Var}(\hat{\theta}_2)$, then we say that $\hat{\theta}_1$ is *more efficient* than $\hat{\theta}_2$. The *relative efficiency* of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is the ratio $\frac{\operatorname{Var}(\hat{\theta}_2)}{\operatorname{Var}(\hat{\theta}_1)}$.

1.6 Best Unbiased Estimator

Definition 1.6.1 (Best/Minimum-Variance Estimator). Let Θ be the set of all estimators $\hat{\theta}$ that are unbiased for the parameter θ . We way that $\hat{\theta}^*$ is a *best* or *minimum-variance estimator* (MVE) if $\hat{\theta}^* \in \Theta$ and $\operatorname{Var}(\hat{\theta}^*) \leq \operatorname{Var}(\hat{\theta}) \quad \forall \, \hat{\theta} \in \Theta$.

Definition 1.6.2 (Fisher's Information). The *Fisher's information* of a continuous random variable *Y* with pdf $f_Y(y; \theta)$ is defined as

$$\mathbf{I}(\theta) = \mathbf{E}\left[\left(\frac{\partial \ln f_Y(y;\theta)}{\partial \theta}\right)^2\right] = -\mathbf{E}\left[\frac{\partial^2}{\partial \theta^2}\ln f_Y(y;\theta)\right].$$

Remark 1.9 The Fisher's information measures the amount of information that a sample Y contains about the unknown parameter θ . If $\mathbf{I}(\theta)$ is big, then the curvature of $f_Y(y;\theta)$ is big, and

thus it is more likely that we can find a region where $\hat{\theta}$ is concentrated.

Extension 1.1 (Joint Fisher's Information) Suppose Y_1, \ldots, Y_n are continuous *i.i.d.* random variables, each has a Fisher's information of $I(\theta)$. Then,

$$\mathbf{E}\left[\left(\frac{\partial}{\partial\theta}\ln f_{Y_1,\dots,Y_n}(y_1,\dots,y_n;\theta)\right)^2\right] = n\mathbf{I}(\theta).$$

Theorem 1.6.3 Properties of Fisher's Information Define the *Fisher's Score Function* $\frac{\partial}{\partial \theta} \ln f_Y(y;\theta)$. Then, $\mathbf{E}_Y \left[\frac{\partial}{\partial \theta} \ln f_Y(y;\theta) \right] = 0.$

Proof 1. Note that by chain rule, we have

$$\begin{split} \mathbf{E}_{Y} \left[\frac{\partial}{\partial \theta} \ln f_{Y}(y;\theta) \right] &= \int_{Y} \left(\frac{\partial}{\partial \theta} \ln f_{Y}(y;\theta) \right) f_{Y}(y;\theta) \, \mathrm{d}y \\ &= \int_{Y} \frac{1}{f_{Y}(y;\theta)} \left(\frac{\partial}{\partial \theta} f_{Y}(y;\theta) \right) f_{Y}(y;\theta) \, \mathrm{d}y \\ &= \int_{Y} \frac{\partial}{\partial \theta} f_{Y}(y;\theta) \, \mathrm{d}y \\ &= \frac{\partial}{\partial \theta} \int_{Y} f_{Y}(y;\theta) \, \mathrm{d}y = \frac{\partial}{\partial \theta} (1) = 0. \end{split}$$

Corollary 1.4:

$$\mathbf{I}(\theta) = \mathbf{Var}\left(\frac{\partial}{\partial \theta} \ln f_Y(y;\theta)\right).$$

Proof 2. By definition, we have

$$\begin{aligned} \mathbf{Var}\bigg(\frac{\partial}{\partial\theta}\ln f_Y(y;\theta)\bigg) &= \mathbf{E}\bigg[\bigg(\frac{\partial}{\partial\theta}\ln f_Y(y;\theta)\bigg)^2\bigg] - \left(\underbrace{\mathbf{E}\bigg(\frac{\partial}{\partial\theta}\ln f_Y(y;\theta)\bigg)}_{=0, \text{ by Theorem 1.6.3.}}\bigg)^2 \\ &= \mathbf{E}\bigg[\bigg(\frac{\partial}{\partial\theta}\ln f_Y(y;\theta)\bigg)^2\bigg] \\ &= \mathbf{I}(\theta). \end{aligned}$$

19

Theorem 1.6.5 Cramér-Rao Inequality

Under regular condition, let Y_1, \ldots, Y_n be a random sample of size n form the continuous population pdf $f_Y(y; \theta)$. Let $\hat{\theta} = \hat{\theta}(Y_1, \ldots, Y_n)$ be any unbiased estimator for θ . Then,

$$\operatorname{Var}(\widehat{\theta}) \ge \frac{1}{n\mathbf{I}(\theta)}.$$

Remark 1.10 A similar statement holds for the discrete case $p_X(k; \theta)$.

Definition 1.6.6 (Efficiency of Unbiased Estimator). An unbiased estimator $\hat{\theta}$ is *efficient* if $\operatorname{Var}(\hat{\theta})$ is equal to the Cramér-Rao lower bound. That is, $\operatorname{Var}(\hat{\theta}) = (n\mathbf{I}(\theta))^{-1}$. Such an estimator is the MVE defined in Definition 1.6.1. The *efficiency* of an unbiased estimator $\hat{\theta}$ is defined to be the quantity

$$\left(n\mathbf{I}(\theta)\mathbf{Var}(\widehat{\theta})\right)^{-1}$$
.

Example 1.6.7 Suppose $X \sim \text{Bernoulli}(p)$. Is $\hat{p} = \overline{X}$ efficient? *Solution 3.* Note that we have the following

$$f_X(x;p) = p^x (1-p)^{1-x}, \quad x = 0, 1$$
$$\ln f_X(x;p) = x \ln p + (1-x) \ln(1-p)$$
$$\frac{\partial}{\partial p} \ln f_X(x;p) = \frac{x}{p} - \frac{1-x}{1-p}$$
$$\frac{\partial^2}{\partial p^2} \ln f_X(x;p) = -\frac{x}{p^2} - \frac{1-x}{(1-p)^2}$$

Therefore, the Fisher's information can be computed by

$$\mathbf{I}(p) = -\mathbf{E}\left[\frac{\partial^2}{\partial p^2} \ln f_X(x;p)\right] = -\mathbf{E}\left[-\frac{x}{p^2} - \frac{1-x}{(1-p)^2}\right]$$
$$= \mathbf{E}\left[\frac{x}{p^2}\right] + \mathbf{E}\left[\frac{1-x}{(1-p)^2}\right]$$
$$= \frac{\mathbf{E}(x)}{p^2} + \frac{1-\mathbf{E}(x)}{(1-p)^2}$$
$$= \frac{p}{p^2} + \frac{1-p}{(1-p)^2} = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}$$

Note that

$$\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) = \frac{1}{n}\operatorname{Var}(X_{i}) = \frac{1}{n} \cdot p(1-p).$$

So, we have

$$\operatorname{Var}(\overline{X}) = \frac{p(1-p)}{n} = \frac{1}{n\left(\frac{1}{p(1-p)}\right)} = \frac{1}{n\mathbf{I}(p)}.$$

Therefore, \hat{p} is efficient.

Example 1.6.8 Suppose $X \sim N(\mu, \sigma^2)$, with σ^2 is known. What is $I(\mu)$? *Solution 4.*

٦

Note that

$$\frac{\mathrm{d}^2}{\mathrm{d}\mu^2}\ln f_X(x;\mu) = -\frac{1}{\sigma^2}.$$

Then,

$$\mathbf{I}(\mu) = -\mathbf{E}\left[\frac{\mathrm{d}^2}{\mathrm{d}\mu^2}\ln f_X(x;\mu)\right] = -\mathbf{E}\left[-\frac{1}{\sigma^2}\right] = \frac{1}{\sigma^2}.$$

1.7 Sufficiency

Remark 1.11 Use Likelihood Function to Define Fisher's Information

• We can define the score function as $\frac{\partial \ln \mathbf{L}(Y_1, \dots, y_n; \theta)}{\partial \theta} = 0 \implies MLE.$

•
$$\mathbf{E}\left[\frac{\partial \ln \mathbf{L}(Y;\theta)}{\partial \theta}\right] = 0$$

• $\mathbf{I}(\theta) = \mathbf{E}\left[\left(\frac{\partial \ln \mathbf{L}(Y;\theta)}{\partial \theta}\right)^2\right] = -\mathbf{E}_Y\left[\frac{\partial^2 \ln \mathbf{L}(Y;\theta)}{\partial \theta^2}\right]$
• $-\mathbf{E}_Y\left[\frac{\partial^2 \ln \mathbf{L}(Y_1,\ldots,Y_n;\theta)}{\partial \theta^2}\right] = n\mathbf{I}(\theta).$
Proof 1.

$$-\mathbf{E}_{Y}\left[\frac{\partial^{2}\ln\mathbf{L}(Y_{1},\ldots,Y_{n};\theta)}{\partial\theta^{2}}\right] = -\mathbf{E}_{Y}\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln\mathbf{L}(Y_{1},\ldots,Y_{m};\theta)\right]$$
$$= -\mathbf{E}_{Y}\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln\left(\prod_{i=1}^{n}f_{Y}(Y_{i};\theta)\right)\right]$$
$$= -\mathbf{E}_{Y}\left[\frac{\partial^{2}}{\partial\theta^{2}}\sum_{i=1}^{n}f_{Y}(y_{i};\theta)\right] = \sum_{i=1}^{n}\left(-\mathbf{E}_{Y}\left[\frac{\partial^{2}}{\partial\theta^{2}}f_{Y}(y_{i};\theta)\right]\right) = n\mathbf{I}(\theta)$$

• $\widehat{\theta_{MLE}} \xrightarrow{n \to \infty} N\left(\theta, \frac{1}{\mathbf{I}(\theta)}\right)$. Note that $\frac{1}{\mathbf{I}(\theta)}$ is the C-R lower bound. We see that $\widehat{\theta_{MLE}}$ is asymptotically efficient.

Remark 1.12 (Sufficiency Intuition) Sufficiency tells us how much information can we get out of the data.

Rationale Let $\hat{\theta}$ be an estimator to the unknown parameter θ . Does $\hat{\theta}$ contain all information *about* θ ? e.g., The data itself is a sufficient estimator.

Definition 1.7.1 (Sufficiency). Let $(X_1, ..., X_n)$ be a random sample of size *n* from a continuous population with an unknown parameter θ . We call θ is *sufficient* if

$$f_{Y_1,\ldots,Y_n\mid\widehat{\theta}}\Big(Y_1,\ldots,Y_n\mid\widehat{\theta}=\theta_e\Big)=b(y_1,\ldots,y_n),$$

where $b(y_1, \ldots, y_n)$ is independent of $\theta (\perp \theta)$. Also, $\hat{\theta} = h(Y_1, \ldots, Y_n)$ and $\theta_e = h(y_1, \ldots, y_n)$. In this case, $\hat{\theta}$ contains all the information about θ from $\{y_1, \ldots, y_n\}$.

Example 1.7.2

• Toss a coin 5 times and get 3 heads. Estimate p =probability of H.

Solution 2.

$$\mathbf{P}\left(HHHTT \mid p_e = \frac{3}{5}\right) = \frac{1}{\binom{3}{5}} \perp p \implies \text{sufficient}$$

• A random sample of size *n* from Bernoulli(*p*). Check the sufficiency of $p = \sum_{i=1}^{n} X_i$.

Solution 3.

Suppose the random sample is $\{X_1, \ldots, X_n\}$. Then, consider

$$\mathbf{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = C \mid \hat{p} = C) = \frac{\mathbf{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = C)}{\mathbf{P}(\hat{p} = C)}.$$

What new information can $\sum_{i=1}^{n} X_i = C$ tell us? $X_n = C - \sum_{i=1}^{n-1} X_i$.

Note that
$$P(\hat{p} = C) = P\left(\sum_{i=1}^{n} X_i = C\right)$$
. Since the summation of Bernoulli(*p*) random
variables is a Binomial(*n*, *p*) random variable, we have $P(\hat{p} = C) = \binom{n}{C} p^C (1-p)^{n-C}$.

$$\boxed{Case I} \text{ Suppose } \sum_{i=1}^{n} X_i = C. \text{ Then,}$$

$$\frac{P(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^{n} X_i = C)}{P(\hat{p} = C)}$$

$$= \frac{\binom{n-1}{p(\hat{p} = C)} p^{X_i}(1-p)^{1-X_i} p^{C-\sum_{i=1}^{n-1} X_i} (1-p)^{\binom{1-C+\sum_{i=1}^{n-1} X_i}{r}} (1-p)^{\binom{1-C+\sum_{i=1}^{n-1} X_i}{r}}}$$

$$= \frac{\binom{n-1}{p(\hat{p} = C)} p^{C}(1-p)^{n-C}}{\binom{n}{C}} p^{C}(1-p)^{n-C}}$$

$$= \frac{p^{C}(1-p)^{n-C}}{\binom{n}{C}} p^{C}(1-p)^{n-C}} = \frac{1}{\binom{n}{C}} \bot p \Rightarrow \text{ sufficient}}$$

$$\boxed{Case II} \text{ Suppose } \sum_{i=1}^{n} X_i \neq C. \text{ Then,}}$$

$$\frac{P(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^{n} X_i = C)}{P(\hat{p} = C)} = 0 \perp p \implies \text{ sufficient}}$$

Theorem 1.7.3 Factorization Property

 $\widehat{\theta}$ is sufficient if and only if the likelihood can be factorized as

$$\mathbf{L}(\theta) = \underbrace{g(\theta_e; \theta)}_{\theta_e = h(y_1, \dots, y_n) \& \theta} \cdot \underbrace{u(y_1, \dots, y_n)}_{\amalg \theta}.$$

1.8 Consistency

Definition 1.8.1 (Consistency). An estimator $\hat{\theta}_n = h(W_1, \dots, W_n)$ is said to be *consistent* if it converges to θ in probability; i.e., for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P} \left(\left| \widehat{\theta}_n - \theta \right| < \varepsilon \right) = 1.$$

Remark 1.13 1. Consistency is an asymptotical property (defined in a large sample limit).

2. $n = \text{sample size. } \left| \widehat{\theta}_n - \theta \right|$ is the distance between estimator and true θ .

Lemma 1.2 Markov Inequality: Suppose $X \ge 0$ is a random variable and a > 0 is a constant. Then,

$$\mathbf{P}(X \ge a) \le \frac{\mathbf{E}(X)}{a}.$$

Remark 1.14 Markov inequality is good for determining extreme values. If E(X) is small, then it is very unlikely that X will take some extremely large numbers.

Theorem 1.8.3 Chebyshev Inequality

Let *W* be some random variable with finite mean μ and variance σ^2 . Then, for any $\varepsilon > 0$, we have

$$\mathbf{P}(|W-\mu|<\varepsilon) \le 1 - \frac{\sigma^2}{\varepsilon^2}$$

or, equivalently,

$$\mathbf{P}(|W-\mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}.$$

Proof 1. Consider the random variable $|W - \mu|$. Then, by Markov Inequality,

$$\mathbf{P}(|X - \mu| \ge \varepsilon) = \mathbf{P}(|X - \mu|^2 \ge \varepsilon^2)$$
$$= \mathbf{P}((X - \mu)^2 \ge \varepsilon^2) \le \frac{\mathbf{E}[(X - \mu)^2]}{\varepsilon^2} = \frac{\sigma^2}{\varepsilon^2}$$

Corollary 1.4 : The sample mean $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n W_i$ is a consistent estimator for $\mathbf{E}(W) = \mu$, provided that the population W has finite mean μ and variance σ^2 . **Proposition 1.5 :** If $\hat{\theta}_n$ is an unbiased estimator of θ , then $\hat{\theta}_n$ is consistent if

$$\lim_{n \to \infty} \mathbf{Var}\Big(\widehat{\theta}_n\Big) = 0.$$

Proof 2. Suppose $\hat{\theta}_n$ is an unbiased estimator of θ . Then, $\mathbf{E}(\hat{\theta}_n) = \theta$. So, by Chebyshev Inequality, we have

$$\mathbf{P}\Big(\Big|\widehat{ heta}_n heta\Big| \ge arepsilon\Big) = \mathbf{P}\Big(\Big|\widehat{ heta}_n - \mathbf{E}\Big(\widehat{ heta}_n\Big)\Big| \ge arepsilon\Big) \le rac{\mathbf{E}\Big[\Big(\widehat{ heta}_n - \mathbf{E}\Big(\widehat{ heta}_n\Big)\Big)^2\Big]}{arepsilon^2} = rac{\mathbf{Var}\Big(\widehat{ heta}_n\Big)}{arepsilon^2}.$$

If we have $\operatorname{Var}\left(\widehat{\theta}_n\right) \to 0$ when $n \to \infty$, then

$$\lim_{n \to \infty} \mathbf{P}\Big(\Big|\widehat{\theta}_n - \theta\Big| \ge \varepsilon\Big) \le \lim_{n \to \infty} \frac{\mathbf{Var}\Big(\widehat{\theta}_n\Big)}{\varepsilon^2} = \frac{0}{\varepsilon} = 0.$$

Therefore, it must be that $\lim_{n\to\infty} \mathbf{P}(|\hat{\theta}_n - \theta| \ge \varepsilon) = 0$ as probability cannot take negative values. Hence,

$$\lim_{n \to \infty} \mathbf{P} \left(\left| \widehat{\theta}_n - \theta \right| < \varepsilon \right) = \lim_{n \to \infty} \left(1 - \mathbf{P} \left(\left| \widehat{\theta}_n - \theta \right| \ge \varepsilon \right) \right)$$
$$= 1 - \lim_{n \to \infty} \mathbf{P} \left(\left| \widehat{\theta}_n - \theta \right| \ge \varepsilon \right)$$
$$= 1 - 0 = 1.$$

Then, by definition, $\hat{\theta}_n$ is consistent.

1.9 Bayesian Estimator

Theorem 1.9.1 Bayes' Rule

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(B \mid A)\mathbf{P}(A)}{\mathbf{P}(B \mid A)\mathbf{P}(A) + \mathbf{P}(B \mid A^{C})\mathbf{P}(A^{C})}.$$
$$\mathbf{P}(A \mid B^{C}) = 1 - \mathbf{P}(A \mid B) = \frac{\mathbf{P}(B^{C} \mid A)\mathbf{P}(A)}{\mathbf{P}(B^{C} \mid A)\mathbf{P}(A) + \mathbf{P}(B^{C} \mid A^{C})\mathbf{P}(A^{C})}.$$

Rationale Let *W* be an estimator dependent on a parameter θ .

1. Frequentists view θ as a parameter whose exact value to be estimated (θ is fixed).

2. Bayesians view θ is the value of a random variable Θ . (θ *is uncertain and has its known parameter distribution*).

Data Generation The following procedure generates data with an additional layer of randomness.

- 1. θ is sampled from a distribution.
- 2. Under this θ , we sample the data.

Definition 1.9.2 (Prior distribution, Posterior distribution). Our prior knowledge on Θ is called the *prior distribution*: $p_{\Theta}(\theta)$. The conditional distribution of the data given the parameter is the *likelihood*: $p(X \mid \Theta)$. Then, the Bayes' Rule will be

$$f_W(x) = \int_H f_{W,\Theta}(w,\theta) \, \mathrm{d}\theta \quad \text{for } \theta \in H$$
$$= \int_H f_W(w \mid \Theta = \theta) f_{\Theta}(\theta) \, \mathrm{d}\theta.$$

Further, let $A = f_W(w) = \int_H f_W(w \mid \Theta = \theta) f_{\Theta}(\theta) d\theta$. Then, A normalizes likelihood×prior:

$$1 = \int \frac{f_W(w \mid \Theta = \theta) f_{\Theta}(\theta)}{A} \, \mathrm{d}\theta.$$

So,

 $g_{\Theta}(\theta \mid W = w) = \text{constant} \cdot f_W(w \mid \Theta = \theta) f_{\Theta}(\theta)$ or posterior \propto likelihood \times prior.

Example 1.9.4 A call center. Let X =number of calls coming into the center. Then we know that $X \sim \text{Poisson}(\lambda)$. This particular call center believes that Λ is distributed with pdf

$$p_{\Lambda}(8) = 0.25$$
 and $p_{\Lambda}(10) = 0.75$.

The call center believes that the number of calls coming into the center has recently changed, so they pick an hour and observe that X = 7 calls come in.

Solution 1.

We want to find: $\mathbf{P}(\Lambda = 8 \mid X = 7)$ and $\mathbf{P}(\Lambda = 10 \mid X = 7)$. By Bayes' Rule:

$$\mathbf{P}(\Lambda = 8 \mid X = 7) = \frac{\mathbf{P}(X = 7 \mid \Lambda = 8)\mathbf{P}(\Lambda = 8)}{\mathbf{P}(X = 7)}$$
$$= \frac{\mathbf{P}(X = 7 \mid \Lambda = 8)\mathbf{P}(\Lambda = 8)}{\mathbf{P}(X = 7 \mid \Lambda = 8)\mathbf{P}(\Lambda = 8) + \mathbf{P}(X = 7 \mid \Lambda = 10)\mathbf{P}(\Lambda = 10)}$$
$$= \frac{e^{-8}\left(\frac{8^{7}}{7!}\right)(0.25)}{e^{-8}\left(\frac{8^{7}}{7!}\right)(0.25) + e^{-10}\left(\frac{10^{7}}{7!}\right)(0.75)} \approx 0.66$$

Then, $\mathbf{P}(\Lambda = 10 \mid X = 7) = 1 - \mathbf{P}(\Lambda = 8 \mid X = 7) = 1 - 0.66 = 0.34$. Or, alternatively, we can use the Bayes' Rule again.

Table 1: Convention of Picking a Prior Distribution

Parameter	Prior Distribution
Bernoulli(p)	Beta
Binomial(p)	Beta
$Poisson(\lambda)$	Gamma
Exponential(λ)	Gamma
$Normal(\mu)$	Normal
$\operatorname{Normal}(\sigma^2)$	Inverse Gamma

Remark 1.15 When we have no prior knowledge on the belief, we choose a uniform distribution.

Example 1.9.5 Consider an unfair coin Θ (a random variable indicating the probability of getting head). Flip the coin *n* times, X = number of heads. Find the posterior distribution. *Solution 2.*

By the Bayes' rule,

$$f_{\Theta|X}(\theta \mid X = x) = \frac{f_{\Theta}(\theta)\mathbf{P}(X = k \mid \theta)}{\mathbf{P}(X = k)}$$

We know $\theta \in [0, 1]$, so $\Theta \sim \text{Uniform}[0, 1]$ and $f_{\Theta}(\theta) = 1$. So,

$$f_{\Theta|X}(\theta \mid X = x) = \frac{1 \cdot \binom{n}{k} \cdot \theta^k (1 - \theta)^{n-k}}{\mathbf{P}(X = k)} = \underbrace{\frac{1 \cdot \binom{n}{k}}{\mathbf{P}(X = k)}}_{\text{constant}} \theta^k (1 - \theta)^{n-k}$$

Definition 1.9.6 (Beta Distribution). For a distribution $Beta(\alpha, \beta)$, the pdf is given by

$$f_Y(y;\alpha,\beta) = \frac{y^{\alpha-1}(1-y)^{\beta-1}}{\mathbf{B}(\alpha,\beta)} \quad \text{for } y \in [0,1] \text{ and } \alpha, \beta > 0,$$

where

$$\mathbf{B}(\alpha,\beta) \coloneqq \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} \, \mathrm{d}y = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \quad \alpha,\beta > 0.$$

The expectation of $X \sim \text{Beta}(\alpha, beta)$ is given by

$$\mathbf{E}(X) = \frac{\alpha}{\alpha + \beta}$$

Disregarding the constant, $\theta^k (1 - \theta)^{n-k}$ is part of the Beta distribution with $\alpha = k + 1$ and $\beta = n - k + 1$. So, $\Theta \sim \text{Beta}(k+1, n-k+1)$. To form a distribution, the constant must, therefore, be

$$\begin{aligned} \frac{\binom{n}{k}}{\mathbf{P}(X=k)} &= \frac{1}{\mathbf{B}(k+1,n-k+1)} = \frac{\Gamma(k+1+n-k+1)}{\Gamma(k+1)\Gamma(n-k+1)} \\ &= \frac{\Gamma(n+2)}{\Gamma(k+1)\Gamma(n-k+1)} \\ &= \frac{(n+1)!}{k!(n-k)!} \end{aligned} \qquad If \ n \in \mathbb{N}, \ then \ \Gamma(n) = (n-1)! \end{aligned}$$

Note that $\text{Beta}(\alpha = 1, \beta = 1) = \text{Unform}(0, 1)$. So, in this example,

 $\mathbf{Beta}(1,1) \xrightarrow{\mathbf{Data}} \mathbf{Beta}(k+1, n-k+1).$

Moreover, $\mathbf{E}(\Theta) = \frac{k+1}{k+1+n-k+1} = \frac{k+1}{n+2}$.

Example 1.9.7 Let X_1, \ldots, X_n be a random sample form $\text{Bernoulli}(\theta)$: $p_X(k;\theta) = \theta^k (1 - \theta)^{1-k}$ for k = 0, 1. Let $X = \sum_{i=1}^n X_i$. Then, X follows $\text{Binomial}(n, \theta)$. Consider the prior distribution $\Theta \sim \text{Beta}(r, s)$, i.e., $f_{\Theta}(\theta) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}\theta^{r-1}(1-\theta)^{s-1}$ for $\theta \in [0, 1]$. Then, the posterior distribution is

$$\Theta \mid X \sim \operatorname{Beta}(r+k, s+n-k).$$

Proof 3. Note that

$$f_{\Theta|X}(\theta \mid X = x) = \frac{p_X(X = k \mid \theta) f_{\Theta}(\theta)}{\int_0^1 p_X(X = k \mid \theta) f_{\Theta}(\theta) \, \mathrm{d}\theta}$$
$$= \frac{\binom{n}{k} \theta^k (1 - \theta)^{n-k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \theta^{r-1} (1 - \theta)^{s-1}}{\int_0^1 \binom{n}{k} \theta^k (1 - \theta)^{n-k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \theta^{r-1} (1 - \theta)^{s-1} \, \mathrm{d}\theta}$$
$$= \frac{\binom{n}{k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \theta^{k+r-1} (1 - \theta)^{n-k+s-1}}{\binom{n}{k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \int_0^1 \theta^{k+r-1} (1 - \theta)^{n-k+s-1} \, \mathrm{d}\theta}$$

Note that $\theta^{k+r-1}(1-\theta)^{n-k+s-1}$ is part of Beta(k+r,n-k+s). So,

$$\begin{split} 1 &= \int_0^1 \frac{\Gamma(k+r+n-k+s)}{\Gamma(k+r)\Gamma(n-k+s)} \theta^{k+r-1} (1-\theta)^{n-k+s-1} \,\mathrm{d}\theta \\ 1 &= \frac{\Gamma(r+n+s)}{\Gamma(k+r)\Gamma(n-k+s)} \int_0^1 \theta^{k+r-1} (1-\theta)^{n-k+s-1} \,\mathrm{d}\theta \\ \int_0^1 \theta^{k+r-1} (1-\theta)^{n-k+s-1} \,\mathrm{d}\theta &= \frac{\Gamma(k+r)\Gamma(n-k+s)}{\Gamma(r+n+s)}. \end{split}$$

Therefore,

$$f_{\Theta|X}(\theta \mid X = x) = \frac{\theta^{k+r-1}(1-\theta)^{n-k+s-1}}{\frac{\Gamma(k+r)\Gamma(n-k+s)}{\Gamma(r+n+s)}} = \frac{\Gamma(r+n+s)}{\Gamma(k+r)\Gamma(n-k+s)}\theta^{k+r-1}(1-\theta)^{n-k+s-1}.$$

This is exactly a Beta distribution with parameter $\alpha = k + r$ and $\beta = n - k + s$.

Definition 1.9.8 (Conjugate Prior). If the posterior distributions $p(\Theta \mid X)$ are in the sample probability distribution family as the prior probability distribution $p(\Theta)$, the prior and posterior are called *conjugate distributions* and the prior is called a *conjugate prior* for the

likelihood function.

Remark 1.16 Common Conjugate Priors

- Beta distributions are conjugate priors for Bernoulli, Binomial, Negative binomial, and Geometric likelihood.
- Gamma distributions are conjugate priors for Poisson and Exponential likelihood

Definition 1.9.9 (Bayesian Point Estimation). Given the posterior $f_{\Theta|W}(\theta \mid W = w)$, how can one calculate the appropriate point estimate θ_e ?

Definition 1.9.10 (Loss Function). Let θ_e be an estimate for θ based on a statistic W. The *loss function* associated with θ_e is denoted $\mathbf{L}(\theta_e, \theta)$, where $\mathbf{L}(\theta_e, \theta) \ge 0$ and $\mathbf{L}(\theta, \theta) = 0$.

- The lost function is $\mathbf{E}\left[\mathbf{L}(\widehat{\theta}, \theta)\right]$.
- The MSE, mean square error, is $\mathbf{E}\left[\left(\widehat{\theta}-\theta\right)^2\right]$.
 - 1. If we have not data, then notice that

$$\mathbf{E}\left[(\theta-c)^2\right] = \mathbf{E}\left(\theta^2\right) + \mathbf{E}\left(c^2\right) - 2c\mathbf{E}(\theta)$$

is minimized at $c = \mathbf{E}(\theta)$. Therefore,

$$\min \mathbf{E}\left[(\theta - \widehat{\theta})^2\right] = \mathbf{E}\left[(\theta - \mathbf{E}(\theta))\right]^2 = \mathbf{Var}(\theta).$$

So, $\widehat{\theta}^* = \mathbf{E}(\theta)$, the prior expectation.

2. If we have data X = x, then

$$\min \mathbf{E}\Big[(\theta - \widehat{\theta})^2 \mid X = x\Big] \implies \widehat{\theta}^* = \mathbf{E}[\theta \mid X = x].$$

This $\hat{\theta}^*$ is called the posterior expectation.

Theorem 1.9.11 Squared-Loss Bayesian Estimation

Step 1. Solve the posterior distribution.

Step 2. Calculate the posterior expectation.

Generally, if we know the posterior pdf $f_{\Theta}(\theta \mid X = x)$, the point estimate is

$$\mathbf{E}[\theta \mid X = x] = \int_{\Theta} \theta f_{\Theta}(\theta \mid X = x) \, \mathrm{d}\theta.$$

Theorem 1.9.12

Let $f_{\Theta}(\theta \mid W = w)$ be the posterior distribution of the random variable Θ .

- If L(θ_e, θ) = |θ_e − θ|, then the Bayesian point estimate for θ is the median of the posterior distribution f_Θ(θ | W = w);
- If $\mathbf{L}(\theta_e, \theta) = (\theta_e \theta)^2$, then the Bayesian point estimate for θ is the mean of the posterior distribution $f_{\Theta}(\theta \mid W = w)$.

2 Inference Based on Normal

2.1 Sample Variance and Chi-Square Distribution

Recall that if $Y \sim \text{Normal}(\mu, \sigma^2)$, we have MLEs defined as

$$\widehat{\mu} = \overline{Y} \text{ and } \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2.$$

If σ is known, we can do the interval estimation:

$$Z \coloneqq \frac{\overline{Y} - \mathbf{E}(\overline{Y})}{\sqrt{\mathbf{Var}(\overline{Y})}} \sim N(0, 1).$$

However, what if we don't know σ ? We will have to estimate it with a sample variance.

Definition 2.1.1 (Sample Variance). To estimate σ^2 , we define the following unbiased *sample variance*:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}.$$

Remark 2.1 We often compute S^2 using the fact that

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 \quad i.e., S^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} y_i^2 - n\overline{y}^2 \right]$$

Definition 2.1.2 (Chi-Squared Distribution). Suppose $W_k \sim \chi^2(k)$, the *chi-squared distribution with degree of freedom* k. Then,

$$W_k = Z_1^2 + Z_2^2 + \dots + Z_k^2$$
, where $Z_i \stackrel{i.i.d.}{\sim} N(0,1)$.

k is called the *degree of freedom* of the chi-squared distribution and is denoted as df = k.

Theorem 2.1.3 Chi-Squared Distribution and Gamma Distribution $\chi^2(1)$ is equivalent to Gamma $\left(\frac{1}{2}, \frac{1}{2}\right)$. Hence, $\chi^2(n)$ is equivalent to Gamma $\left(\frac{n}{2}, \frac{1}{2}\right)$.

Proof 1. Recall: For $Y_1 \sim \text{Gamma}(n, \lambda)$ and $Y_2 \sim \text{Gamma}(m, \lambda)$, we have the following sum rule

$$Y_1 + Y_2 \sim \text{Gamma}(n+m,\lambda).$$

Then, as $Z_1^2 \sim \chi^2(1) = \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)$, we have

$$Z_1^2 + Z_2^2 + \dots + Z_n^2 \sim \chi^2(n) = \text{Gamma}\left(\frac{1}{2} + \dots + \frac{1}{2}, \frac{1}{2}\right) = \text{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)$$

Theorem 2.1.4 Expectation and Variance of $\chi^2(n)$ If $W_n \sim \chi^2(n)$, then F

$$\mathbb{E}(W_n) = n = df$$
 and $\operatorname{Var}(W_n) = 2n$

Proof 2. For $Y \sim \text{Gamma}(n, \lambda)$, $\mathbf{E}(Y) = \frac{n}{\lambda}$ and $\text{Var}(Y) = \frac{n}{\lambda^2}$. As $W_n \sim \chi^2(n) = \text{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)$, we have E

$$\mathcal{L}(W_n) = \frac{n/2}{1/2} = n$$
 and $\mathbf{Var}(W_n) = \frac{n/2}{1/4} = 2n.$

Theorem 2.1.5

Consider a random sample Y_1, \ldots, Y_n drawn from N(0, 1). Let S^2 be the sample variance and \overline{Y} be the sample mean. Then,

• S^2 and \overline{Y} are independent;

•
$$\frac{(n-1)}{\sigma^2}S^2 \sim \chi^2(n-1)$$

Remark 2.2 We can think of the second bullet point as the following rationale: knowing \overline{Y} , we only need (n-1) data, and we can calculate Y_n from \overline{Y} and Y_1, \ldots, Y_{n-1} . This explains why the chi-squared distribution is of df = n - 1.

Proof 3.(informally)

1. We will prove the case when n = 2.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}. \text{ If } n = 2, \overline{Y} = \frac{Y_{1} + Y_{2}}{2}, \text{ then}$$

$$S^{2} = (Y_{1} - \overline{Y})^{2} + (Y_{2} - \overline{Y})^{2}$$

$$= \left(Y_{1} - \frac{Y_{1} + Y_{2}}{2}\right)^{2} + \left(Y_{2} - \frac{Y_{1} + Y_{2}}{2}\right)$$

$$= \left(\frac{Y_{1} - Y_{2}}{2}\right)^{2} + \left(\frac{Y_{2} - Y_{1}}{2}\right)^{2}$$

$$= \frac{1}{2}(Y_{1} - Y_{2})^{2}.$$

Claim. Recall that if X_1 and X_2 are independent, then

$$\mathbf{E}(X_1 X_2) = \mathbf{E}(X_1) \mathbf{E}(X_2). \tag{1}$$

The backward implication is not true in general, but specially for normal distributions. That is, if (1) holds and X_1 , X_2 normal are normal, then $X_1 \perp \perp X_2$.

As $Y_1 - Y_2$ and $Y_1 + Y_2$ are both normal distributed, to show they are independent of each other, we only need to show that

$$\mathbf{E}[(Y_1 - Y_2)(Y_1 + Y_2)] = \mathbf{E}(Y_1 - Y_2)\mathbf{E}(Y_1 + Y_2).$$

The detailed proof is omitted, but the equality holds.

2. Show that
$$\frac{(n-1)}{\sigma^2}S^2 \sim \chi^2_{n-1}$$
. Note that $Y_i \sim N(\mu, \sigma)$. Then,
 $\frac{Y_i - \mu}{\sigma} \sim N(0, 1)$ and $\frac{\overline{Y} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$.

So,

$$\frac{(Y_i - \mu)^2}{\sigma^2} \sim \chi_1^2 \implies \frac{\sum_{i=1}^n (Y_i - \mu)^2}{\sigma^2} \sim \chi_n^2 \quad \text{and} \quad \frac{(\overline{Y} - \mu)^2}{\sigma^2/n} \sim \chi_1^2.$$

Claim. If $U_1 \sim \chi^2(m)$ and $U_2 \sim \chi^2(n)$ with $U_1 \perp U_2$, then $U_1 + U_2 \sim \chi^2(m+n)$ by the summation rule of Gamma.

Therefore, by the Claim, we have

2.2 Inference on μ and σ

Definition 2.2.1 (Sampling Distribution). The *sampling distributions* are defined as the distributions of functions of random sample of given size.

Aim: Determine distributions for the following statistics:

Statistics	Distribution
(Sample Variance) $S^2 \coloneqq \frac{1}{n-1} \sum_{n=1}^n (Y_1 - \overline{Y})^2$	Chi-square distribution
$T := \frac{\overline{Y} - \mu}{S/\sqrt{n}}$	Student t distribution
$\left. rac{S_1^2}{\sigma_1^2} \middle/ rac{S_2^2}{\sigma_2^2} ight.$	F distribution

Definition 2.2.2 (The Test Statistic). The test statistic is defined as

$$T \coloneqq \frac{\overline{Y} - \mu}{S/\sqrt{n}},$$

with $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$. Definition 2.2.3 (Student *t*-Ratio). Consider

- $Z \coloneqq \frac{\sqrt{\mu}}{\sigma} (\overline{Y} \mu) \sim N(0, 1)$
- $V \sim \chi_n^2$
- $Z \perp \!\!\!\perp V$

Then, we define the *student* t-*ratio* with n degrees of freedom as

$$T_n \coloneqq \frac{Z}{\sqrt{V/n}}.$$

Note that $Z \sim N(0, 1)$ and $\sqrt{V/n} \sim \sqrt{\frac{\chi_n^2}{n}}$.

Theorem 2.2.4 Distribution of $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$ Consider $Y_1, \ldots, Y_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$. Let S^2 to be the sample variance. Then, $\frac{\overline{Y} - \mu}{\overline{X} - \mu} \sim T_{n-1}$.

T F

$$\frac{Y-\mu}{S/\sqrt{n}} \sim T_{n-1}$$

Proof 1. Note that

$$\frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \tag{2}$$

and

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
(3)

Then, consider

$$\begin{split} \frac{\overline{Y} - \mu}{S/\sqrt{n}} &= \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S} = \frac{\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}} \\ &= \frac{\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}} \cdot \frac{1}{\sqrt{n-1}}} \\ &= \frac{\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)}{\sqrt{\frac{(n-1)S^2/\sigma^2}{n-1}} \sim \chi_{n-1}^2} \\ &\sim T_{n-1}. \end{split}$$
Theorem 2.2.5 Connection Between N(0, 1) **and** t

T distribution is flatter/more spread out than $\mathcal{N}(0,1).$ It has heavier tails.

Proof 2. Note that

•
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$$
 is an unbiased estimator of σ^2 .

• S_n^2 is a consistent estimator of σ^2 .

So, $\operatorname{Var}(S_n^2) \to 0$ as $n \to \infty$. This implies that the difference between T and N(0,1) is significant when n is small.

Theorem 2.2.6 Inference on μ

If σ^2 is known, we inference μ using $Z = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}$. We use *z*-score and z_{α} table to construct the $100(1 - \alpha)\%$ CI as $\left(\overline{y} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \overline{y} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$. Alternatively, if σ^2 is unknown, we use $T_{n-1} = \frac{\overline{Y} - \mu}{S/\sqrt{n}}$. We apply t_{n-1} score and $t_{\alpha,n-1}$ table to construct a similar CI.

Theorem 2.2.7 Inference on σ

A two-sided $100(1 - \alpha)\%$ CI on σ will be given by

$$\left(\sqrt{\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}}\right).$$

Proof 3. Note that

$$X_n \coloneqq \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

Then,

$$\mathbf{P}(x_a \le X_n \le x_b) = 100(1-\alpha)\%.$$

To construct a two-sided CI, since chi-square distribution is not symmetric, we can choose the two points that have the same density value (this will ensure a short CI). However, this method is very numerically expensive. To save computational cost, we will still choose the two points that covers the $\alpha/2\%$ and $(1 - \alpha/2)\%$ distribution. It is also known as to find $\chi^2_{\alpha/2,n-1}$ from the

 χ^2 table. Hence,

$$\mathbf{P}(\chi^{2}_{\alpha/2,n-1} \le X_{n} \le \chi^{2}_{1-\alpha/2,n-1}) = 100(1-\alpha)\%$$
$$\mathbf{P}(\chi^{2}_{\alpha/2,n-1} \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi^{2}_{1-\alpha/2,n-1}) = 100(1-\alpha)\%$$
$$\implies \frac{(n-1)S^{2}}{\chi^{2}_{1-\alpha/2,n-1}} \le \sigma^{2} \le \frac{(n-1)S^{2}}{\chi^{2}_{\alpha/2,n-1}}$$

So, $100(1-\alpha)\%$ CI of σ^2 is

$$\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}},\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}\right)$$

and a $100(1-\alpha)\%$ CI of σ is

$$\left(\sqrt{\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}}\right).$$

3 Hypothesis Testing

3.1 Decision Rules

Definition 3.1.1 (Hypotheses). We define

- H_0 : null hypothesis (status quo), and
- *H*₁: alternative hypothesis

where H_0 and H_1 are such that

- H_0 and H_1 are disjoint sets
- H_0 always include an equal sign.

Example 3.1.2 We have a breath analyzer for DUI test. Do we need to calibrate the breath analyzer? Collect 30 samples whose alcohol level are known as 12.6. Measurements from the breath analyzer is $Y_1, \ldots, Y_{30} \stackrel{i.i.d.}{\sim} N(\mu, \sigma = 0.4)$. Set up a hypothesis testing.

Solution 1.

If $\mu_0 = 12.6$ m then the breath analyzer is accurate. So,

- $H_0: \mu_0 = 12.6$, and
- $H_1: \mu_0 \neq 12.6.$

Assume H_0 is true, then $\mathbf{P}\left(\left|\frac{\overline{Y}-\mu_0}{\sigma/\sqrt{n}}\right| > m \left|H_0\right)$ should be small. i.e.,

$$\mathbf{P}\left(\left|\frac{\overline{Y}-\mu_0}{\sigma/\sqrt{n}}\right| > m \left| H_0: \mu_0 = 12.6 \right) \le \alpha \stackrel{\text{set}}{=} 0.05,$$

where α is called the *significance level*. Then,

$$\mathbf{P}\left(\left|\frac{\overline{Y} - 12.6}{0.4/\sqrt{30}}\right| > 1.96 \left| H_0 : \overline{Y} \sim N(12.6, 0.4) \right) = 0.05, \ (m = z_{\alpha/2} = 1.96)$$

Simply, we get

$$\mathbf{P}(\left|\overline{Y} - 12.6\right| \ge 0.14) = 0.05.$$

So, if $\overline{Y} \ge 12.74$ or $\overline{Y} \le 12.46$, we will *reject* H_0 . If $\overline{Y} \in [12.46, 12.74]$, we will *tail to reject* H_0 (or, data is not sufficient to reject H_0).

Definition 3.1.3 (Test Statistic). Any function of the observed data whose numerical value dictates whether H_0 is accepted or rejected.

Definition 3.1.4 (Critical Region/Rejection Region/*C***).** The set of values for the test statistic that result in the null hypothesis being rejected.

Definition 3.1.5 (Critical Value). The particular point in *C* that separates the rejection region from the acceptance region.

Definition 3.1.6 (Level of Significance/ α **).** The probability that the test statistic lies in the critical region *C* under *H*₀.

Remark 3.1 (Different Alternative Hypotheses) For the same $H_0 : \theta = \theta_0$, we have multiple different alternative hypotheses:

$$H_1: \begin{cases} \theta \neq \theta_0 \implies \mathbf{P}(z \neq [c_1, c_2] \mid H_0) = \alpha \qquad z \in [c_1, c_2] \\ \theta < \theta_0 \implies \mathbf{P}(z < c \mid H_0) = \alpha \qquad z \ge c \\ \theta > \theta_0 \implies \mathbf{P}(z > c \mid H_0) = \alpha \qquad z \le c \end{cases}$$

Definition 3.1.8 (Simple/Composite Hypothesis). Simple hypothesis is any hypothesis which

specifies the population distribution completely. *Composite hypothesis* is any hypothesis which does not specify the population distribution completely.

Example 3.1.9 Suppose $H_0: \mu = 120$ and $H_1: \mu > 120$. Let Y_1, \ldots, Y_n be samples. Suppose $\sigma = 12, n = 50, \overline{y} = 125.2$. Set up a hypothesis testing at significance level of $\alpha = 0.05$.

Solution 2. Define test statistics: $\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}$. Then, under H_0 ,

$$Z\coloneqq \frac{\overline{Y}-120}{12/\sqrt{50}}\sim N(0,1).$$

So,

$$z_{\text{obs}} = \frac{\overline{y} - 120}{12/\sqrt{50}} = \frac{125.2 - 120}{12/\sqrt{50}} = 3.06.$$

The *p*-value is given by

$$\mathbf{P}(Z \ge 3.06) \approx 0.001 < \alpha \implies \text{reject } H_0$$

Theorem 3.1.10 Summary: Testing					
	Proportion	Mean		Variance	
		σ^2 known	σ^2 unknown	Variance	
Distribution	Binomial (n, p)	$Normal(\mu, \sigma^2)$	$N(\mu, \sigma^2)$	χ^2_n	
Test Statistics	$\frac{k - np}{\sqrt{np(1 - p)}}$	$Z \coloneqq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$	$T_{n-1} \coloneqq \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$\frac{(n-1)S^2}{\sigma^2}$	

3.2 Types of Errors

Definition 3.2.1 (Type I and Type II Errors). *Type I Error* is $P(reject H_0 | H_0 is true) = \alpha$. *Type II Error* is given by $P(fail to reject H_0 | H_1 is true) = \beta$.

Remark 3.2 (Possible Situations of Type I Error) If \overline{Y}_{obs} falls into the rejection region:

- \overline{Y} does not follow the distribution in H_0
- \overline{Y} happens to take the extreme/unlikely values even when \overline{Y} follows the distribution in H_0 .

Decision/Truth	H_0	H_1
H_0	No Errors	β , Type II Error
H_1	α , Type I Error	No Errors

Example 3.2.2 Example 3.1.2 Revisit. Calculate β , probability of type II error occurs. Rethat $Y \sim N(\mu, \sigma^2 = 0.16), H_0 : \mu = 12.6, H_1 : \mu = \mu_1$. Solution 1.	ecall
$\mathbf{P}(\text{Type II Error}) = \mathbf{P}(\text{fail to reject } H_0 \mid H_1 \text{ is true})$	
$= \mathbf{P} \left(\left \frac{\overline{Y} - \mu_0}{\sigma / \sqrt{n}} \right < z_{\alpha/2} \mid \mu_1 \right)$	
$= \mathbf{P} \left(\mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \overline{Y} \le \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \mid \mu_1 \right)$	
$= \mathbf{P}\left(\mu_0 - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \le \overline{Y} \le \mu_0 + z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \mid \overline{Y} \sim N\left(\mu_1, \frac{\sigma^2}{n}\right)\right)$	
$= \mathbf{P}\left(-z_{\alpha/2} + \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} \le \frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} \le z_{\alpha/2} + \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} \mid H_1\right)$	
$\beta(\mu_1) \coloneqq \Phi\left(z_{\alpha/2} + \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}}\right) - \Phi\left(-z_{\alpha/2} + \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}}\right),$	
where $\Phi(z) := \mathbf{P}(Z \le z)$.	

Definition 3.2.3 (*p***-Hacking).** Post-hoc adjustment on data or on the tests. For example, after seeing the data,

- Adjust the side of the a one-sided test,
- Collect more data until *H*₀ is rejected. When sample size *n* increases, CI becomes narrower, and thus the rejection region is wider.
- Adjust the significance level.

3.3 Two-Sample Inferences

Theorem 3.3.1 Test Statistics

Suppose $X_1, \ldots, X_n \sim N(\mu_X, \sigma_X^2)$ and $Y_1, \ldots, Y_m \sim N(\mu_Y, \sigma_Y^2)$. Assume that $\sigma_X = \sigma_Y = \sigma$ and \overline{X} and \overline{Y} be the sample mean, respectively. Then

$$\frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)}{\sqrt{\left(\frac{1}{n} + \frac{1}{m}\right)\left(\sum_{i=1}^n \left(X_i - \overline{X}\right)^2 + \sum_{i=1}^m \left(Y_i - \overline{Y}\right)^2\right) / (m+n-2)}} \sim T_{m+n-2}$$

Proof 1. Note that, by CLT,

$$Z \coloneqq \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0, 1).$$

Further, since

$$\frac{\displaystyle\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}{\sigma^{2}}\sim\chi^{2}_{n-1}\quad\text{and}\quad\frac{\displaystyle\sum_{i=1}^{m}(Y_{i}-\overline{Y})^{2}}{\sigma^{2}}\sim\chi^{2}_{m-1},$$

we know

$$V \coloneqq \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2 + \sum_{i=1}^{m} (Y_i - \overline{Y})^2}{\sigma^2} \sim \chi^2_{m+n-2}$$

Therefore,

$$T = \frac{Z}{\sqrt{V/(m+n-2)}}$$

Theorem 3.3.2 Hypothesis Testing

Suppose $H_0: \mu_X = \mu_Y$ and $H_1: \mu_X \neq \mu_Y$. Under H_0 ($\mu_X = \mu_Y$), the test statistics

$$t = \frac{\overline{X} - \overline{Y}}{\sqrt{\left(\frac{1}{n} + \frac{1}{m}\right)S_p^2}} \sim T_{m+n-2},$$

where

$$S_p^2 := \frac{\sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{i=1}^m (Y_i - \overline{Y})^2}{m + n - 2}.$$

Example 3.3.3 Let X = # of successes in *n*-trials and Y = # of successes in *m* trials, then $X \sim \text{Binomial}(n, p_X)$ and $Y \sim \text{Binomial}(m, p_Y)$. We want to test $H_0 : p_X = p_y$ versus a valid H_1 such as $p_X \neq p_Y$. If *n* and *m* are large enough, then by the CLT, we have

$$\frac{X}{n} \sim N(p_X, p_x(1-p_X)/n)$$
 and $\frac{Y}{m} \sim N(p_Y, p_Y(1-p_Y)/m).$

This is not quite the two sample *t*-test because there are only two parameter. But, under $H_0: p_x = p_y = p$:

$$\frac{X}{n} - \frac{Y}{m} \sim N\left(0, \left(\frac{1}{n} + \frac{1}{m}\right)p(1-p).\right)$$

So, define

$$Z \coloneqq \frac{\frac{X}{n} - \frac{Y}{m}}{\sqrt{\left(\frac{1}{n} + \frac{1}{m}\right)p(1-p)}} \sim N(0, 1).$$

We can then estimate p with $\hat{p} = \frac{X+Y}{n+m}$, which gives us

$$Z \coloneqq \frac{\frac{X}{n} - \frac{Y}{m}}{\sqrt{\left(\frac{1}{n} + \frac{1}{m}\right)\widehat{p}(1 - \widehat{p})}} \sim N(0, 1) \quad \text{as } n, m \to \infty$$

4 Regression Analysis

4.1 Introduction to Regression

Theorem 4.1.1 How to fit a Regression Model

- 1. Plot data (x_i, y_i)
- 2. Find a line y = ax + b
- 3. Draw inference on a, b, and $y \mid x$.

To find a best fit line, let's minimize the discripency:

$$\min_{a,b} y_i - (ax_i + b).$$

Mean Squared Error Note that we want to solve

$$\min_{a,b} \mathbf{E} \big[(Y_i - aX_i - b)^2 \big].$$

The solutions are given by

$$a^* = \arg\min_a \mathbf{E} \left[(Y_i - aX_i - b)^2 \right]$$
 and $b^* = \arg\min_b \mathbf{E} \left[(Y_i - aX_i - b)^2 \right].$

A **Probability View** Since (x, y) is a pair of random variables, we simply the situation by placing all of the uncertainty on the y_i 's and assume that the x_i 's are controlled by the experimenter. Recall that for any two random variables X and Y, the conditional expectation of Y on X, namely

$$f(x) = \mathbf{E}[Y \mid X = x]$$

minimizes the mean squared error

$$\mathbf{E}\big[(Y - f(X))^2\big]$$

- Difficulties: The regression curve $Y = \mathbf{E}[Y \mid x]$ is complicated and hard to obtain.
- Compromise: Assume that f(x) = a + bx (i.e., the first order approximation).

A Statistics View Let $\mathbf{L}(a, b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2$. For the *least square method*, we choose a and b so that we minimize \mathbf{L} . That is, $\frac{\partial \mathbf{L}}{\partial b} = \frac{\partial \mathbf{L}}{\partial a} = 0$. By solving, we

find that

$$a^* = \frac{\sum_{i=1}^n x_i y_i - n\overline{x}\overline{y}}{\sum_{i=1}^n x_i^2 - n\overline{x}^2} \quad \text{and} \quad b = \overline{y} - a\overline{x}.$$

Theorem 4.1.2 Rationale

The following statements are equivalent:

- $\mathbf{Cov}(X, Y) \neq 0.$
- ∃ b₀, b₁ ∈ ℝ s.t. E[(Y − b₀ − b₁X)²] < E[(Y − μ_Y)²]
 ∃ b₁ ∈ ℝ s.t. Var(Y − b₁X) < Var(Y).

Definition 4.1.3 (Regression). Suppose (X_i, Y_i) is a pair of random variable. The regression is defined as

$$Y_i = f(X_i) + \varepsilon_i$$
, where $\mathbf{E}(\varepsilon_i) = 0$.

Remark 4.1 If $\mathbf{E}(\varepsilon_i) \neq 0$ and suppose $\mathbf{E}(\varepsilon_i) = a$. Then, we can fit $Y_i = f(X_i) + a + \mathbf{E}(\varepsilon'_i)$, where $\mathbf{E}(\varepsilon'_i) = 0$.

Suppose $a = f(X_i)$, then we want to solve

$$\min_{a} \mathbf{E} \left[(Y_i - a)^2 \mid X_i = x \right].$$

Define $h(a) = \mathbf{E}[(Y_i - a)^2 | X_i = x] = \mathbf{E}[Y_i^2 | X_i = x] - 2a\mathbf{E}[Y_i | X_i = x] + a^2$, a quadratic function. Then, by the first-order optimality condition, we set

$$\frac{\partial h}{\partial a} = -2\mathbf{E}[Y_i \mid X_1 = x] + 2a = 0,$$

and so

$$a^* = \arg\min_a h(a) = \mathbf{E}[Y_i \mid X_i = x].$$

4.2 Linear Regression Model

Definition 4.2.1 (Linear Regression/Simple Linear Model). Assume $\mathbf{E}[Y_i \mid X_i = x] = \beta_0 + \beta_1 X_i$, so we have

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i,$$

which is the linear regression model (a.k.a simple linear model).

How to Find the Best β_0 and β_1 ? Let's consider the mean squared error.

$$\mathbf{MSE}(\beta_0, \beta_1) = \mathbf{E} [(Y - \beta_0 - \beta_1 X)^2].$$

Then, by the first-order optimality condition, we have

$$\frac{\partial \mathbf{MSE}}{\partial \beta_0} = -2\mathbf{E}[Y - \beta_0 - \beta_1 X] \stackrel{\text{set}}{=} 0$$
$$\beta_0^* = \mathbf{E}[Y] - \beta_1 \mathbf{E}[X] \eqqcolon \mu_Y - \beta_1 \mu_X$$

Meanwhile, we have

$$\begin{split} \frac{\partial \mathbf{MSE}}{\partial \beta_1} &= -2\mathbf{E}[X(Y - \beta_0 - \beta_1 X)] \\ &= -2\mathbf{E}[XY] + 2\beta_0 \mathbf{E}[X] + 2\beta_1 \mathbf{E}[X^2] \\ &= -2\mathbf{E}[XY] + 2(\mathbf{E}[Y] - \beta_1 \mathbf{E}[X])\mathbf{E}[X] + 2\beta_1 \mathbf{E}[X^2] \\ &= -2\mathbf{E}[XY] + 2\mathbf{E}[X]\mathbf{E}[Y] - 2\beta_1 \mathbf{E}[X]\mathbf{E}[X] + 2\beta_1 \mathbf{E}[X^2] \\ &= -2\left[\underbrace{(\mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y])}_{\mathbf{Cov}(X,Y)} + \beta_1 \underbrace{(\mathbf{E}[X]^2 - \mathbf{E}[X^2])}_{\mathbf{Var}(X,Y)}\right] \\ &= -2(\mathbf{Cov}(X,Y) + \beta \mathbf{Var}(X)) \\ &\stackrel{\text{set}}{=} 0 \\ &\beta_1^* = \frac{\mathbf{Cov}(X,Y)}{\mathbf{Var}(X)}. \end{split}$$

How to represent the best β_0 and β_1 in terms of X_i and Y_i ? Suppose we have data

$$(X_1, Y_1), \ldots, (X_n, Y_n).$$

Then, theoretically,

$$\beta_0^* = \mu_Y - \beta_1^* \mu_X$$
 and $\beta_1^* = \frac{\mathbf{Cov}(X, Y)}{\mathbf{Var}(X)}.$

To have sample estimate of them, let's define

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i; \quad \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i; \quad S_{XX} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$
$$S_{YY} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n\overline{Y}^2; \quad S_{XY} = \sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y}) = \sum_{i=1}^{n} x_i Y_i - n\overline{x}\overline{Y}$$

Then, the estimate

$$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{x}$$
 and $\widehat{\beta}_1 = \frac{S_{SY}/n}{S_{XX}/n} = \frac{S_{XY}}{S_{XX}}$

are called the Ordinary Least Square (OLS) Estimate.

What is the Error Term, ε_i ? We know that

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i.$$

Assume that $\varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ (That is, ε_i is independent of data). If X_i is given, $\beta_0 + \beta_1 X_i$ is just a constant, and so

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2),$$

where we call Y_i the *response* or *dependent variable* and X_i the *exploratory* or *independent variable*.

Although we know $\varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$, but σ^2 is unknown parameter. What is the MLE of σ^2 ? As $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$, then

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\beta_0-\beta_1 x_i)^2/2\sigma^2}$$

Then, the likelihood function $L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f_Y(y_i)$. Consider

$$\ell(\beta_0, \beta_1, \sigma^2) = \ln \mathbf{L}(\beta_0, \beta_1, \sigma^2) = -\frac{n}{2} \ln (2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 X_i)^2$$

Solving $\frac{\partial \ell}{\partial \sigma} = 0$, we get

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (\underbrace{\underbrace{y_i}^{\text{true data}}_{i=1} - \widehat{\widehat{\beta}_0} - \widehat{\beta}_1 X_i}_{\text{residual}})$$

This is a MLE of multiple parameters.

Summary In the following theorems, we assume that we fit a simple linear model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad \text{with } \varepsilon_i \stackrel{i.i.d.}{=} N(0, \sigma^2).$$

Theorem 4.2.2 OLS Estimate of β_1 and β_0

Let $(x_1, Y_1), \ldots, (x_n, Y_n)$ be a set of points satisfying the linear model $\mathbf{E}[Y \mid x] = \beta_0 + \beta_1 x$ (That is, let Y_1, \ldots, Y_n be independent random variables where $Y_i \sim N(\beta_0, \beta_1 x_i, \sigma^2)$ with x_i are known and β_0 , β_1 , and σ^2 are unknown). The maximum likelihood estimators for β_0 , β_1 , and σ^2 are given by

$$\widehat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n}\right) Y_{i}}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \quad \text{and} \quad \widehat{\beta}_{0} = \frac{\sum_{i=1}^{n} Y_{i} - \widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}}{n} = \overline{Y} - \widehat{\beta}_{1} \overline{x}$$
$$\widehat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1} x_{i}.$$

Theorem 4.2.3 Distributions of \widehat{eta}_0 and \widehat{eta}_1

- $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are both normally distributed.
- $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are unbiased. That is, $\mathbf{E}[\widehat{\beta}_0] = \beta_0$ and $\mathbf{E}[\widehat{\beta}_1] = \beta_1$.
- $\hat{\beta}_1$, \overline{Y} and $\hat{\sigma}^2$ are mutually independent.
- $\frac{n\widehat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-2}$. That is, $\mathbf{E}[\widehat{\sigma}^2] = \frac{n-2}{n}\sigma^2$.

Remark 4.2 The best fit line is a linear way to model the data but some data are nonlinear.

- 1. Polynomial Data $y = b + a_1x + \cdots + a_mx^m$: minimize m + 1 equations to find a_1, \ldots, a_m, b .
- 2. Exponential Data $y = Be^{ax}$: apply linear technique to $(x_i, \ln y_i)$ since $\ln y = \ln B + ax$.
- 3. Log Data $y = Bx^a$: apply linear technique to $(\ln x_i, \ln y_i)$ since $\ln y = \ln B + a \ln x$.

4. If
$$y = \frac{L}{1 + e^{a+bx}}$$
, then $\ln\left(\frac{L-y}{y}\right)$ is linear with x .
5. If $y = \frac{1}{a+bx}$, then $\frac{1}{y}$ is linear with x .
6. If $y = \frac{x}{a+bx}$, then $\frac{1}{y}$ is linear with x .
7. If $y = 1 - e^{-x^{b}/a}$, then $\ln\left(\ln\left(\frac{1}{1-y}\right)\right)$ is linear with $\ln x$