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1 ESTIMATION

1 Estimation

1.1 Introduction

Definition 1.1.1 (Model). A model is a distribution with certain parameters.

Example 1.1.2 The normal distribution: N(µ, σ2).

Definition 1.1.3 (Population). The population is all the objects in the experiment.

Definition 1.1.4 (Data, Sample, and Random Sample). Data refers to observed value from

sample. The sample is a subset of the population. A random sample is a sequence of inde-

pendent, identical (i.i.d.) random variables.

Definition 1.1.5 (Statistics). Statistics refers to a function of the random sample.

Example 1.1.6 The sample mean is a function of the sample:

Y =
1

n
(Y1 + · · ·+ Yn).

Example 1.1.7 Central Limit Theorem

We randomly toss n = 200 fair coins on the table. Calculate, using the central limit

theorem, the probability that at least 110 coins have turned on the same side.

X =
X1 + · · ·+X200

200

CLT∼ N
(
µ, σ2

)
,

where

µ = E
(
X
)
=

200∑
i=1

E(Xi)

200
,

σ2 = Var
(
X
)
= Var

(
X1 + · · ·+X200

200

)
=

200∑
i=1

Var(Xi)

2002
.

Definition 1.1.8 (Statistical Inference). The process of statistical inference is defined to be

the process of using data from a sample to gain information about the population.
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1 ESTIMATION 1.2 The Method of Maximum Likelihood and the Method of Moments

Example 1.1.9 Goals in statistical inference

1. Definition 1.1.10 (Estimation). To obtain values of the parameters from the data.

2. Definition 1.1.11 (Hypothesis Testing). To test a conjecture about the parameters.

3. Definition 1.1.12 (Goodness of Fit). How well does the data fit a given distribution.

4. Linear Regression

1.2 The Method of Maximum Likelihood and the Method of Moments

Example 1.2.1 Given an unfair coin, or p-coin, such that

X =

1 head with probability p,

0 tail with probability 1− p.

How can we determine the value p?

Solution 1.

1. Try to flip the coin several times, say, three times. Suppose we get HHT.

2. Draw a conclusion from the experiment.

Key idea: The choice of the parameter p should be the value that maximizes the proba-

bility of the sample.

P(X1 = 1, X2 = 1, X3 = 0) = P(X1 = 1)P(X2 = 1)P(X3 = 0) = p2(1− p) := f(p).

Solving the optimization problem max
p>0

f(p), we find it is most likely that p =
2

3
. This

method is called the likelihood maximization method. □

Definition 1.2.2 (Likelihood Function). For a random sample of size n from the discrete (or

continuous) pdf pX(k; θ) (or fY (y; θ)), the likelihood function, L(θ), is the product of the pdf

evaluated at Xi = ki (or Yi = yi). That is,

L(θ) :=
n∏

i=1

pX(ki; θ) or L(θ) :=
n∏

i=1

fY (yi; θ).
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1 ESTIMATION 1.2 The Method of Maximum Likelihood and the Method of Moments

Definition 1.2.3 (Maximum Likelihood Estimate). Let L(θ) be as defined in Definition 1.2.2.

If θe is a value of the parameter such that L(θe) ≥ L(θ) for all possible values of θ, then we call

θe the maximum likelihood estimate for θ.

Theorem 1.2.4 The Method of Maximum Likelihood

Given random samples X1, . . . , XN and a density function pX(x) (or fX(x)), then we have

the likelihood function defined as

L(θ) = pX(X; θ) = P(X1, X2, . . . , XN)

= P(X1)P(X2) · · ·P(XN) [independent]

=
N∏
i=1

pX(Xi; θ) [identical]

Then, the maximum likelihood estimate for θ is given by

θ∗ = argmax
θ

L(θ),

where

L
(
argmax

θ
L(θ)

)
= L∗(θ) = max

θ
L(θ).

Example 1.2.5 Consider the Poisson distribution X = 0, 1, . . . , with λ > 0. Then, the pdf is

given by

pX(k, λ) = e−λλ
k

k!
, k = 0, 1, . . .

Given data k1, . . . , kn, we have the likelihood function

L(λ) =
n∏

i=1

pX(X = k;λ) =
n∏

i=1

e−λλ
ki

ki!
= e−nλ λ

∑
ki

k1! · · · kn!

Then, to find the maximum likelihood estimate of λ, we need to max
λ

L(λ). That is to solve

∂L(λ)

∂λ
= 0 and

∂2L(λ)

∂λ2
< 0.

Example 1.2.6 Waiting Time.

Consider the exponential distribution fY (y) = λe−λy for y ≥ 0. Find the MLE λe of λ.

Solution 2.

4



1 ESTIMATION 1.2 The Method of Maximum Likelihood and the Method of Moments

The likelihood function of the exponential distribution is given by

L(λ) =
n∏

i=1

λe−λyi = λn exp

(
−λ

n∑
i=1

yi

)
.

Now, define

ℓ(λ) = lnL(λ) = n lnλ− λ
n∑

i=1

yi.

To optimize ℓ(λ), we compute

d

dλ
ℓ(λ) =

n

λ
−

n∑
i=1

yi
set
= 0

So,
n

λ
=

n∑
i=1

yi =⇒ λe =
n

n∑
i=1

yi

=:
1

y
,

where y is the sample mean. □

Example 1.2.7 Given the exponential distribution fY (y) = λe−λy for y ≥ 0. Find the MLE

of λ2.

Solution 3.

Define τ = λ2. Then, λ =
√
τ , and so

fY (y) =
√
τe−

√
τy, y ≥ 0.

Then, the likelihood function becomes

L(τ) =
n∏

i=1

fY (y) = τ
n
2 exp

(
−
√
τ

n∑
i=1

yi

)
.

Similarly, after maximization, we find

τe =
1

(y)2
.

□
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1 ESTIMATION 1.2 The Method of Maximum Likelihood and the Method of Moments

Theorem 1.2.8 Invariant Property for MLE

Suppose λe is the MLE of λ. Define τ := h(λ). Then, τe = h(λe).

Proof 4. In this proof, we will prove the case when h is a one-to-one function. The case of

h being a many-to-one function is beyond the scope of this course.

Suppose h(·) is a one-to-one function. Then, λ = h−1(τ) is well-defined. Then,

max
λ

L(λ; y1, . . . , yn) = max
τ

L
(
h−1(τ); y1, . . . , yn

)
= max

τ
L(τ ; y1, . . . , yn).

■

Example 1.2.9 Waiting Time with an unknown Threshold.

Let λ = 1 in exponential but there is an unknown threshold θ, that, is fY (y) = e−(y−θ)

for y ≥ θ, θ > 0.

Solution 5.

Note that the likelihood function is given by

L(θ; y1, . . . , yn) =
n∏

i=1

fY (y1) = exp

(
−

n∑
i=1

(yi − θ)

)
, yi ≥ θ, θ > 0

= exp

(
−

n∑
i=1

(yi − θ)

)
· 1[yi≥0, θ>0],

where

1x∈A =

1 if x ∈ A

0 if x /∈ A.

Using order statistics,

L(θ) = exp

(
−

n∑
i=1

(yi − θ)

)
· 1[y(n)≥y(n−1)≥···≥y(1)≥θ, θ>0]

= exp

(
−

n∑
i=1

yi + nθ

)
1[y(n)≥···≥y(1)≥θ, θ>0].

So, we know θ ≤ y(1) = ymin.

To maximize the likelihood function, we want to maximize −
∑

yi + nθ. That is, to

maximize θ, as θ ≤ ymin, it must be that θmax = ymin. Therefore, the MLE is θ∗ = ymin. □
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1 ESTIMATION 1.2 The Method of Maximum Likelihood and the Method of Moments

Example 1.2.10 Suppose Y1, . . . , Yn ∼ Uniform[0, a]. That is, fY (y; a) =
1

a
for y ∈ [0, a]. Find

MLE ae of a.

Solution 6.

Note that

fY (y; a) =
1

a
· 1{y∈[0,a]}

=
1

a
· 1{0≤y(1)≤···≤y(n)≤a} where y(1) = min yi and y(n) = max yi

Then,

L(a) =
1

an
1{0≤y(1)≤···≤y(n)≤a}

To maximize L(a), we want to minimize an. Since a ≥ y(n), it must be that ae = y(n). Here,

we call ae = y(n) an estimate, and âMLE = Y(n) an estimator. □

Example 1.2.11 MLE that Does Not Esist

Suppose fY (y; a) =
1

a
, y ∈ [0, a). Find the MLE.

Solution 7.

The likelihood function is the same:

L(a) =
1

an
1{0≤y(1)≤···≤y(n)<a}.

However, since [0, a) is not a closed set, the optimization problem max
a∈[0,a)

L(a) does not have

a solution. Hence, the estimate does not exist. □

Remark 1.1 MLE may not be unique all the time.

Example 1.2.12 Multiple MLE Values

Suppose X1, . . . , Xn ∼ Uniform
[
a− 1

2
, a+

1

2

]
, where fX(x; a) = 1, x ∈

[
a− 1

2
, a+

1

2

]
.

Find the MLE.

Solution 8.

In the indicator function notation, we can rewrite the pdf to be

fX(x; a) = 1{a− 1
2
≤x≤a+ 1

2} = 1{a− 1
2
≤x(1)≤···≤x(n)≤a+ 1

2}.
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1 ESTIMATION 1.2 The Method of Maximum Likelihood and the Method of Moments

So, the likelihood function will be

L(a) =
n∏

i=1

fx(xi; a) =

1, a ∈
[
x(n) −

1

2
, x(1) +

1

2

]
0, otherwise.

So, the L(a) will be maximized whenever a ∈
[
x(n) −

1

2
, x(1) +

1

2

]
. Therefore, MLE can be

any value in the range
[
x(n) −

1

2
, x(1) +

1

2

]
. Say,

ae = x(n) −
1

2
or ae = x(1) −

1

2
or ae =

x(n) − 1
2
+ x(1) +

1
2

2
=

x(n) + x(1)

2
.

□

Theorem 1.2.13 MLE for Multiple Parameters

In general, we have the likelihood function L(θ), where θ = (θ1, . . . , θp). To find the MLE,

we need
∂L(θ)

∂θi
= 0 i = 1, . . . , p,

and the Hessian matrix

(
∂2L(θ)

∂θi∂θj

)
i,j=1,...,p

:=


∂2L(θ)

∂θ21
· · · ∂2L(θ)

∂θ1∂θp
...

. . .
...

∂2L(θ)

∂θp∂θ1
· · · ∂2L(θ)

∂θ2p


should be negative dfinite.

Example 1.2.14 MLE for Multiple Parameters: Normal Distribution

Suppose Y1, . . . , Yn ∼ N(µ, σ). Then,

fYi
(u;µ, σ) =

1√
2πσ

e−(yi−µ)2/(2σ2).

Find the MLE for µ and σ.

Solution 9.
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1 ESTIMATION 1.2 The Method of Maximum Likelihood and the Method of Moments

The likelihood function will be

L(µ, σ) =
n∏

i=1

1√
2πσ

e−(yi−µ)2/(2σ2).

Then, we define

ℓ(µ, σ) = lnL(µ, σ) = −n

2
ln 2π − n

2
lnσ2 − 1

2

(
σ2
)−

1
n∑

i=1

(yi − µ)2.

Set 
∂ℓ(µ, σ)

∂µ
= 0 ①

∂ℓ(µ, σ)

∂σ
= 0 ②

From ①, we have

1

σ2

n∑
i=1

(y1 − µ) = 0

n∑
i=1

yi = nµ =⇒ µe =

∑
yi

n
= y

From ②, by the invariant property of MLE, we instead set

∂ℓ(µ, σ)

∂σ2
= 0

−n

2
· 1

σ2
+

1

2

(
1

σ2

)2 n∑
i=1

(yi − µ)2 = 0

1

2σ2

(
−n+

1

σ2

n∑
i=1

(yi − µ)2
)

= 0

−nσ2 +
n∑

i=1

(yi − µ)2 = 0 (µe = y)

n∑
i=1

(yi − y)2 = nσ2

σ2
e =

1

n

n∑
i=1

(yi − y)2 =⇒ σe =

√√√√ 1

n

n∑
i=1

(yi − y)2

□
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1 ESTIMATION 1.3 The Method of Moment

1.3 The Method of Moment

Definition 1.3.1 (Moment Generating Function). The Moment Generating Function (MGF) is

defined as

MX(t) = E
[
etX
]
,

and it uniquely determines a probability distribution.

Definition 1.3.2 (Moment). The k-th order moment of X is E
[
Xk
]
.

Example 1.3.3Meaning of Different Moments

• E[X]: location of a distribution

• E[X2] = Var(X)− E[X]2: width of a distribution

• E[X3]: skewness – positively skewed / negatively skewed

• E[X4]: kurtosis / tailedness – speed decaying to 0.

Example 1.3.4 Moment Estimate: Moments of Population and Sample

Population Sample, X1, . . . , Xn

E[X] = µ µ̂ = X =
X1 + · · ·+Xn

n

E[X2] = µ2 + σ2 µ̂2 + σ̂2 =
X2

1 + · · ·+X2
n

n
...

...

E
[
Xk
] Xk

1 + · · ·+Xk
n

n

Rationale: The population moments should be close to the sample moments.

Example 1.3.5

• Consider N(µ, σ2), where σ is given. Estimate µ.

By the method of moment estimate, we have µe = X.

• Consider N(µ, σ2). Estimate µ and σ.

We have µe = X and µ2
e + σ2

e =
X2

1 + · · ·+X2
n

n
.
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1 ESTIMATION 1.3 The Method of Moment

• Consider N(θ, σ2). Given E(X4) = 3σ4, estimate µ and σ.

We have µe = X, µ2
e + σ2

e =
X2

1 + · · ·+X2
n

n
, and 3σ4 =

X4
1 + · · ·+X4

n

n
. We have three

equations but only two unknowns, then a solution is not guaranteed. So, we need

some restrictions on this method (see Remark 1.2).

Theorem 1.3.6 Method of Moments Estimates

For a random sample of size n from the discrete (or continuous) population/pdf

pX(k; θ1, . . . , θs) (or fY (y; θ1, . . . , θs)), solutions to the system

E(Y ) =
1

n

n∑
i=1

yi

...

E(Y s) =
1

n

n∑
i=1

ysi

which are denoted by θ1e, . . . , θse, are called the method of moments estimates of

θ1, . . . , θs.

Remark 1.2 To estimate k parameters with the method of moments estimates, we will only

match the first k orders of moments.

Example 1.3.7 Consider the Gamma distribution:

fY (y; r, λ) =
λr

Γ(r)
yr−1e−λy for y ≥ 0.

Given E(Y ) =
r

λ
and E(Y 2) =

r

λ2
+

r2

λ2
. Estimate r and λ.

Solution 1.

E(Y ) =
r

λ
=⇒ re

λe

=
y1 + · · ·+ yn

n
= y ①

E
(
Y 2
)
=

r

λ2
+

r2

λ2
=⇒ re

λ2
e

+
r2e
λ2
e

=
y21 + · · ·+ y2n

n
②

Substitute ① into ②, we have

y

λe

+ (y)2 =
1

n

n∑
i=1

y2i =⇒ λe =
y

1
n

∑
y2i − y2

③

11



1 ESTIMATION 1.4 Interval Estimation

Substitute ③ into ①, we have

re = yλe =
y2

1
n

∑
y2i − y2

.

□

Remark 1.3 The sample variance is defined as

1

n

n∑
i=1

(yi − y)2 =
1

n

n∑
i=1

(
y2i − 2yiy + y2

)
=

1

n

n∑
i=1

y2i − 2y ·
∑

yi
n

+
1

n
· ny2

=
1

n

n∑
i=1

y2i − 2y2 + y2 y =

∑
yi

n

=
1

n

n∑
i=1

y2i − y2.

So, in Example 1.3.7, if we define σ̂2 to be the sample variance, we can further simply our esti-

mate as follows:

λe =
y

σ̂2
, re =

y2

σ̂2
.

1.4 Interval Estimation

Example 1.4.1 Estimate µ, where X ∼ N(µ, 1).

We take some samples and compute their sample means:

X
1
=

x1 + · · ·+ xn

n
,X

2
=

x̃1 + · · ·+ x̃n

n
, · · ·

Finding the distribution of X, we can find an interval
[
θ̂L, θ̂U

]
such that

P
(
θ̂L ≤ X ≤ θ̂U

)
= 1− α.

Remark 1.4 By using the variance of the estimator, one can construct an interval such that

with a high probability that the interval contains the unknown parameter.
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1 ESTIMATION 1.4 Interval Estimation

Definition 1.4.2 (Confidence Interval). The interval,
[
θ̂L, θ̂U

]
is called the confidence interval,

and the high probability is 1− α, where α is given.

Remark 1.5 Take α = 5%, then
[
θ̂L, θ̂U

]
is the 95% confidence interval of µ. It does not mean

that µ has 95% chance to be in
[
θ̂L, θ̂U

]
. However, if we construct 1000 such intervals, 950 of them

will contain µ.

Example 1.4.3 A random sample of size 4, (Y1 = 6.5, Y2 = 9.2, Y3 = 9.9, Y4 = 12.4), from a

normal population:

fY (y;µ) =
1√

2π0.8
e
−
1

2

(y − µ

0.8

)2

∼ N(µ, σ2 = 0.64).

Both MLE and MME give µe = y = 9.5. The estimator µ̂ = Y follows normal distribution.

Construct 95%-confidence interval for µ.

Solution 1.

E
(
Y
)
= µ and Var

(
Y
)
=

σ2

n
=

0.64

4
. By the Central Limit Theorem, Y approximately

follow N

(
µ,

σ2

n

)
. So,

Y − µ√
σ2

n

∼ N(0, 1). Then,

P

z1 ≤
Y − µ√

σ2

n

≤ z2

 = 0.95 =⇒ P

(
Y − z2

√
σ2

n
≤ µ ≤ Y − z1

√
σ2

n

)
= 0.95

There are infinite many ways to construct a confidence interval by selecting different z1
and z2. However, since we don’t have any prior knowledge on µ, it is good for us to choose

z1 and z2 symmetrically. Moreover, symmetric z1 and z2 will yield a smaller interval. We

know the symmetric z1, z2 pair will be z1 = −1.96 and z2 = 1.96. Therefore,

P

(
Y − 1.96

√
0.64

4
≤ µ ≤ Y + 1.96

√
0.64

4

)
= 0.95.

Then, 95% confidence interval is [9.5− 1.96× 0.4, 9.5 + 1.96× 0.4]. □

Theorem 1.4.4 Confidence Interval

In general, for a normal population with σ known, the 100(1−α)% two-sided confidence

interval for µ is (
y − zα/2

σ√
n
, y + zα/2

σ√
n

)

13



1 ESTIMATION 1.4 Interval Estimation

Theorem 1.4.5 Variation of Confidence Interval

• One-sided interval: (
y − zα

σ√
n
, y

)
or
(
y, y + zα

σ√
n

)

• σ is unknown and sample size is small: z-score → t-score.

• σ is unknown and sample size is large: z-score by CLT.

• Non Gaussian population but sample size is large: z-score by CLT.

Theorem 1.4.6

Let k be the number of successes in n independent trials, where n is large and p =

P(success) is unknown. An approximate 100(1 − α)% confidence interval for p is the

set of numbers (
k

n
− zα/2

√
(k/n)(1− k/n)

n
,
k

n
+ zα/2

√
(k/n)(1− k/n)

n

)
.

Definition 1.4.7 (Margin of Error). The margin of error, denoted by d, is the quantity

d = zα/2

√
(k/n)(1− k/n)

n
.

Remark 1.6 Stating the sample mean and the margin of error is equivalent to stating the con-

fidence interval. Note that C. I. = p̂± d.

Theorem 1.4.8 Estimate Margin of Error

When p is close to
1

2
, then d ≈ dm =

zα/2
2
√
n

, which is equivalent to σn ≈ 1

2
√
n

. However, if

p is away from
1

2
, d and dm are very different.

Remark 1.7 Theorem 1.4.8 gives aconservative estimation of the margin of error, which is dm.

Proposition 1.9 : Given d, we can estimate the sample size.

Proof 2.

d = zα/2

√
p̂(1− p̂)

n
=⇒ n ≈ p̂(1− p̂)/

(
d

zα/2

)2

.

However, since n is unknown, p̂ is also unknown. We, therefore, need information on the

actual p to conclude an estimation of the sample size.

14



1 ESTIMATION 1.5 Properties of Estimation

• If p is known,

n =
p(1− p)(

d
zα/2

)2 .
• If p is unknown. Let f(p) = p(1 − p). f will be maximized when p = 0.5. So, f(p) =

p(1− p) ≤ 0.25. Then,

n ≤ 0.25(
d

zα/2

)2 .
Since we are conservative, take n =

1
4
z2α/2
d2

=
z2α/2
4d2

. This estimation is a conservative

estimation of the sample size.

■

1.5 Properties of Estimation

The main question is that estimators are not unique in general. How do we choose a good

estimator?

Definition 1.5.1 (Unbiasedness). Given a random sample of size n when whose population

distribution depends on an unknown parameter θ. Let θ̂ be an estimator of θ. Then,

• θ̂ is called unbiased if E(θ̂) = θ.

• θ̂ is called asymptotically unbiased if lim
n→∞

E(θ̂) = θ.

• If θ is biased, then the bias is given by the quantity B(θ̂) = E(θ̂)− θ.

Example 1.5.2 Consider the exponential distribution: fY (y;λ) = λe−λy for y ≥ 0. Deter-

mine if the estimator λ̂ =
1

Y
is biased or not.

Hint: nY =
n∑

i=1

Yi ∼ Gamma(n, λ).

Solution 1.

Recall that E[g(x)] =
∫
x

g(x)fX(x) dx. Define X =
n∑

i=1

Yi ∼ Gamma(n, λ). Also, recall

the following facts:

Γ(n) = (n− 1)! = (n− 1)Γ(n− 1)

and the integration over any probability density function will yield a result of 1 by defini-

tion.

15



1 ESTIMATION 1.5 Properties of Estimation

Then,

E(λ̂) = E

(
1

Y

)
= E

(
n∑
Yi

)
= nE

(
1∑
Yi

)
= nE

(
1

X

)
= n

∫
x

1

x
· λn

Γ(n)
xn−1e−λx dx

= n

∫
x

λn

(n− 1)!
xn−2e−λx dx

=
nλ

(n− 1)

∫
x

λn−1

Γ(n− 1)
xn−2e−λx dx︸ ︷︷ ︸

=1

=
n

n− 1
λ.

Therefore, E(λ̂) ̸= λ, and so λ̂ is biased. However, note that

lim
n→∞

E(λ̂) = lim
n→∞

n

n− 1
λ = λ.

By definition, then λ̂ is asymptotically unbiased. □

Example 1.5.3 Consider the exponential distribution f(y; θ) =
1

θ
e−y/θ for y ≥ 0. Then,

θ̂ = Y is unbiased.

Remark 1.8 Suppose {X1, . . . , Xn} are i.i.d. random variables, and E(Xi) = µ for i = 1, . . . , n .

Then, X, the sample mean, is always an unbiased estimator:

E(X) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) =
1

n
· n · µ = µ.

Theorem 1.5.4 Sample Variance is Biased

Suppose {X1, . . . , Xn} are i.i.d. random variables, and E(Xi) = µ, Var(Xi) = σ2 for

i = 1, . . . , n. Then, the sample variance σ̂2 =
1

n

n∑
i=1

(
Xi −X

)2
is biased.

16



1 ESTIMATION 1.5 Properties of Estimation

Proof 2. Note that

E(σ̂2) = E

(
1

n

n∑
i=1

(Xi −X)2

)

= E

(
1

n

n∑
i=1

(
Xi − µ+ µ−X

)2)

=
1

n

n∑
i=1

E
[
(Xi − µ)2 +

(
µ−X

)2
+ 2(Xi − µ)(µ−X)

]

=
1

n

n∑
i=1

E(Xi − µ)2︸ ︷︷ ︸
Var(Xi)

+E
(
µ−X

)2
+ 2E

[
(µ−X)(Xi − µ)

]∣∣∣∣ Hint:
1

n

n∑
i=1

(Xi − µ) =
1

n

n∑
i=1

Xi −
1

n

n∑
i=1

µ = X − µ

=
1

n

n∑
i=1

Var(Xi) +
1

n
· nE

(
µ−X

)2
+ 2E

[
(µ−X)

1

n

n∑
i=1

(Xi − µ)

]

=
1

n

n∑
i=1

σ2 + E
(
µ−X

)2
+ 2E

[
(µ−X)(X − µ)

]
=

1

n
· n · σ2 + E

(
µ−X

)2 − 2E
[
(µ−X)2

]
= σ2 − E

(
µ−X

)2
= σ2 − E

(
X − µ

)2︸ ︷︷ ︸
=Var(X)

= σ2 − σ2

n
=

n− 1

n
σ2 ̸= σ2

Therefore, σ̂2 is not an unbiased estimator. ■

Theorem 1.5.5 Adjusted Sample Variance is Unbiased

With the same set up in Theorem 1.5.4, define the adjusted sample variance to be

S2 =
n

n− 1
σ̂2 =

1

n− 1

n∑
i=1

(
Xi −X

)2
.

Then, S2 is an unbiased estimator of σ2.

Definition 1.5.6 (Decision Theory). Minimize the error of an estimator (sample statistics)

relative to the true parameter (population parameter) using a loss function.

17



1 ESTIMATION 1.6 Best Unbiased Estimator

Definition 1.5.7 (Mean Squared Error). The mean squared error (MSE) is defined by

MSE(θ̂) = E
[
(θ̂ − θ)2

]
Theorem 1.5.8 Decomposition of MSE

Generally,

MSE(θ) = Var(θ̂) +B
(
θ̂
)2

If θ̂ is unbiased, MSE(θ̂) = Var(θ̂). Var(θ) measures the precision of the estimator.

Proof 3. Note that we will the following:

MSE(θ̂) = E
[
(θ̂ − θ)2

]
= E(θ̂2 + θ2 − 2θ̂θ)

= E(θ̂)− 2θE(θ̂) + θ2

= E(θ̂2)− E(θ̂)2︸ ︷︷ ︸+E(θ̂)2 − 2θE(θ̂) + θ2︸ ︷︷ ︸
= Var(θ̂) +

[
E(θ̂)− θ

]2
= Var(θ) +B(θ̂)2

If θ̂ is unbiased, B(θ̂) = 0, and so MSE(θ̂) = Var(θ̂). ■

Definition 1.5.9 (Efficiency). Let θ̂1 and θ̂2 be two unbiased estimators for a parameter θ. If

we have Var(θ̂1) < Var(θ̂2), then we say that θ̂1 is more efficient than θ̂2. The relative efficiency

of θ̂1 with respect to θ̂2 is the ratio
Var(θ̂2)

Var(θ̂1)
.

1.6 Best Unbiased Estimator

Definition 1.6.1 (Best/Minimum-Variance Estimator). Let Θ be the set of all estimators θ̂

that are unbiased for the parameter θ. We way that θ̂∗ is a best or minimum-variance estimator

(MVE) if θ̂∗ ∈ Θ and Var(θ̂∗) ≤ Var(θ̂) ∀ θ̂ ∈ Θ.

Definition 1.6.2 (Fisher’s Information). The Fisher’s information of a continuous random

variable Y with pdf fY (y; θ) is defined as

I(θ) = E

[(
∂ ln fY (y; θ)

∂θ

)2
]
= −E

[
∂2

∂θ2
ln fY (y; θ)

]
.

Remark 1.9 The Fisher’s information measures the amount of information that a sample Y

contains about the unknown parameter θ. If I(θ) is big, then the curvature of fY (y; θ) is big, and

18



1 ESTIMATION 1.6 Best Unbiased Estimator

thus it is more likely that we can find a region where θ̂ is concentrated.

Extension 1.1 (Joint Fisher’s Information) Suppose Y1, . . . , Yn are continuous i.i.d. random vari-

ables, each has a Fisher’s information of I(θ). Then,

E

[(
∂

∂θ
ln fY1,...,Yn(y1, . . . , yn; θ)

)2
]
= nI(θ).

Theorem 1.6.3 Properties of Fisher’s Information

Define the Fisher’s Score Function
∂

∂θ
ln fY (y; θ). Then,

EY

[
∂

∂θ
ln fY (y; θ)

]
= 0.

Proof 1. Note that by chain rule, we have

EY

[
∂

∂θ
ln fY (y; θ)

]
=

∫
Y

(
∂

∂θ
ln fY (y; θ)

)
fY (y; θ) dy

=

∫
Y

1

fY (y; θ)

(
∂

∂θ
fY (y; θ)

)
fY (y; θ) dy

=

∫
Y

∂

∂θ
fY (y; θ) dy

=
∂

∂θ

∫
Y

fY (y; θ) dy =
∂

∂θ
(1) = 0.

■

Corollary 1.4 :

I(θ) = Var

(
∂

∂θ
ln fY (y; θ)

)
.

Proof 2. By definition, we have

Var

(
∂

∂θ
ln fY (y; θ)

)
= E

[(
∂

∂θ
ln fY (y; θ)

)2
]
−

E

(
∂

∂θ
ln fY (y; θ)

)
︸ ︷︷ ︸
=0, by Theorem 1.6.3.


2

= E

[(
∂

∂θ
ln fY (y; θ)

)2
]

= I(θ).

■

19



1 ESTIMATION 1.6 Best Unbiased Estimator

Theorem 1.6.5 Cramér-Rao Inequality

Under regular condition, let Y1, . . . , Yn be a random sample of sizen form the continuous

population pdf fY (y; θ). Let θ̂ = θ̂(Y1, . . . , Yn) be any unbiased estimator for θ. Then,

Var(θ̂) ≥ 1

nI(θ)
.

Remark 1.10 A similar statement holds for the discrete case pX(k; θ).

Definition 1.6.6 (Efficiency of Unbiased Estimator). An unbiased estimator θ̂ is efficient if

Var(θ̂) is equal to the Cramér-Rao lower bound. That is, Var(θ̂) = (nI(θ))−1. Such an estimator

is the MVE defined in Definition 1.6.1. The efficiency of an unbiased estimator θ̂ is defined to

be the quantity (
nI(θ)Var(θ̂)

)−1

.

Example 1.6.7 Suppose X ∼ Bernoulli(p). Is p̂ = X efficient?

Solution 3.

Note that we have the following

fX(x; p) = px(1− p)1−x, x = 0, 1

ln fX(x; p) = x ln p+ (1− x) ln(1− p)

∂

∂p
ln fX(x; p) =

x

p
− 1− x

1− p

∂2

∂p2
ln fX(x; p) = − x

p2
− 1− x

(1− p)2

Therefore, the Fisher’s information can be computed by

I(p) = −E

[
∂2

∂p2
ln fX(x; p)

]
= −E

[
− x

p2
− 1− x

(1− p)2

]
= E

[
x

p2

]
+ E

[
1− x

(1− p)2

]
=

E(x)

p2
+

1− E(x)

(1− p)2

=
p

p2
+

1− p

(1− p)2
=

1

p
+

1

1− p
=

1

p(1− p)
.

Note that

Var(X) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
1

n
Var(Xi) =

1

n
· p(1− p).
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1 ESTIMATION 1.7 Sufficiency

So, we have

Var(X) =
p(1− p)

n
=

1

n
(

1
p(1−p)

) =
1

nI(p)
.

Therefore, p̂ is efficient. □

Example 1.6.8 Suppose X ∼ N(µ, σ2), with σ2 is known. What is I(µ)?

Solution 4.

Note that
d2

dµ2
ln fX(x;µ) = − 1

σ2
.

Then,

I(µ) = −E

[
d2

dµ2
ln fX(x;µ)

]
= −E

[
− 1

σ2

]
=

1

σ2
.

□

1.7 Sufficiency

Remark 1.11 Use Likelihood Function to Define Fisher’s Information

• We can define the score function as
∂ lnL(Y1, . . . , yn; θ)

∂θ
= 0 =⇒ MLE.

• E

[
∂ lnL(Y ; θ)

∂θ

]
= 0

• I(θ) = E

[(
∂ lnL(Y ; θ)

∂θ

)2
]
= −EY

[
∂2 lnL(Y ; θ)

∂θ2

]

• −EY

[
∂2 lnL(Y1, . . . , Yn; θ)

∂θ2

]
= nI(θ).

Proof 1.

−EY

[
∂2 lnL(Y1, . . . , Yn; θ)

∂θ2

]
= −EY

[
∂2

∂θ2
lnL(Y1, . . . , Ym; θ)

]
= −EY

[
∂2

∂θ2
ln

(
n∏

i=1

fY (Yi; θ)

)]

= −EY

[
∂2

∂θ2

n∑
i=1

fY (yi; θ)

]
=

n∑
i=1

(
−EY

[
∂2

∂θ2
fY (yi; θ)

])
= nI(θ)

■
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1 ESTIMATION 1.7 Sufficiency

• θ̂MLE
n→∞−−−→ N

(
θ,

1

I(θ)

)
. Note that

1

I(θ)
is the C-R lower bound. We see that θ̂MLE is asymp-

totically efficient.

Remark 1.12 (Sufficiency Intuition) Sufficiency tells us how much information can we get out

of the data.

Rationale Let θ̂ be an estimator to the unknown parameter θ. Does θ̂ contain all information

about θ? e.g., The data itself is a sufficient estimator.

Definition 1.7.1 (Sufficiency). Let (X1, . . . , Xn) be a random sample of size n from a continu-

ous population with an unknown parameter θ. We call θ is sufficient if

fY1,...,Yn|θ̂

(
Y1, . . . , Yn | θ̂ = θe

)
= b(y1, . . . , yn),

where b(y1, . . . , yn) is independent of θ (⊥⊥ θ). Also, θ̂ = h(Y1, . . . , Yn) and θe = h(y1, . . . , yn). In

this case, θ̂ contains all the information about θ from {y1, . . . , yn}.

Example 1.7.2

• Toss a coin 5 times and get 3 heads. Estimate p = probability of H.

Solution 2.

P

(
HHHTT | pe =

3

5

)
=

1(
3

5

) ⊥⊥ p =⇒ sufficient

□

• A random sample of size n from Bernoulli(p). Check the sufficiency of p =
n∑

i=1

Xi.

Solution 3.

Suppose the random sample is {X1, . . . , Xn}. Then, consider

P(X1 = x1, . . . , Xn = xn,

n∑
i=1

Xi = C | p̂ = C) =

P(X1 = x1, . . . , Xn = xn,
n∑

i=1

Xi = C)

P(p̂ = C)
.

What new information can
n∑

i=1

Xi = C tell us? Xn = C −
n−1∑
i=1

Xi.
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1 ESTIMATION 1.7 Sufficiency

Note that P(p̂ = C) = P

(
n∑

i=1

Xi = C

)
. Since the summation of Bernoulli(p) random

variables is a Binomial(n, p) random variable, we have P(p̂ = C) =

(
n

C

)
pC(1−p)n−C .

Case I Suppose
n∑

i=1

Xi = C. Then,

P(X1 = x1, . . . , Xn = xn,
n∑

i=1

Xi = C)

P(p̂ = C)

=

(
n−1∏
i=1

)
pXi(1− p)1−Xip

C−

n−1∑
i=1

Xi

(1− p)

1−C+

n−1∑
i=1

Xi


(
n

C

)
pC(1− p)n−C

=
p

n−1∑
i=1

Xi + C −
n−1∑
i=1

Xi

(1− p)

(n−1)−

n−1∑
i=1

Xi + 1− C +
n−1∑
i=1

Xi(
n

C

)
pC(1− p)n−C

=
pC(1− p)n−C(
n

C

)
pC(1− p)n−C

=
1(
n

C

) ⊥⊥ p =⇒ sufficient

Case II Suppose
n∑

i=1

Xi ̸= C. Then,

P(X1 = x1, . . . , Xn = xn,

n∑
i=1

Xi = C)

P(p̂ = C)
=

0

P(p̂ = C)
= 0 ⊥⊥ p =⇒ sufficient

□
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1 ESTIMATION 1.8 Consistency

Theorem 1.7.3 Factorization Property

θ̂ is sufficient if and only if the likelihood can be factorized as

L(θ) = g(θe; θ)︸ ︷︷ ︸
θe=h(y1,...,yn) & θ

·u(y1, . . . , yn)︸ ︷︷ ︸
⊥⊥θ

.

1.8 Consistency

Definition 1.8.1 (Consistency). An estimator θ̂n = h(W1, . . . ,Wn) is said to be consistent if it

converges to θ in probability; i.e., for any ε > 0,

lim
n→∞

P
(∣∣∣θ̂n − θ

∣∣∣ < ε
)
= 1.

Remark 1.13 1. Consistency is an asymptotical property (defined in a large sample limit).

2. n= sample size.
∣∣∣θ̂n − θ

∣∣∣ is the distance between estimator and true θ.

Lemma 1.2 Markov Inequality: Suppose X ≥ 0 is a random variable and a > 0 is a constant.

Then,

P(X ≥ a) ≤ E(X)

a
.

Remark 1.14 Markov inequality is good for determining extreme values. If E(X) is small, then

it is very unlikely that X will take some extremely large numbers.

Theorem 1.8.3 Chebyshev Inequality

Let W be some random variable with finite mean µ and variance σ2. Then, for any ε > 0,

we have

P(|W − µ| < ε) ≤ 1− σ2

ε2

or, equivalently,

P(|W − µ| ≥ ε) ≤ σ2

ε2
.

Proof 1. Consider the random variable |W − µ|. Then, by Markov Inequality,

P(|X − µ| ≥ ε) = P
(
|X − µ|2 ≥ ε2

)
= P

(
(X − µ)2 ≥ ε2

)
≤ E[(X − µ)2]

ε2
=

σ2

ε2

■
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1 ESTIMATION 1.9 Bayesian Estimator

Corollary 1.4 : The sample mean µ̂n =
1

n

n∑
i=1

Wi is a consistent estimator for E(W ) = µ,

provided that the population W has finite mean µ and variance σ2.

Proposition 1.5 : If θ̂n is an unbiased estimator of θ, then θ̂n is consistent if

lim
n→∞

Var
(
θ̂n

)
= 0.

Proof 2. Suppose θ̂n is an unbiased estimator of θ. Then, E
(
θ̂n

)
= θ. So, by Chebyshev

Inequality, we have

P
(∣∣∣θ̂nθ∣∣∣ ≥ ε

)
= P

(∣∣∣θ̂n − E
(
θ̂n

)∣∣∣ ≥ ε
)
≤

E

[(
θ̂n − E

(
θ̂n

))2]
ε2

=
Var

(
θ̂n

)
ε2

.

If we have Var
(
θ̂n

)
→ 0 when n → ∞, then

lim
n→∞

P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)
≤ lim

n→∞

Var
(
θ̂n

)
ε2

=
0

ε
= 0.

Therefore, it must be that lim
n→∞

P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)
= 0 as probability cannot take negative values.

Hence,

lim
n→∞

P
(∣∣∣θ̂n − θ

∣∣∣ < ε
)
= lim

n→∞

(
1−P

(∣∣∣θ̂n − θ
∣∣∣ ≥ ε

))
= 1− lim

n→∞
P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)

= 1− 0 = 1.

Then, by definition, θ̂n is consistent. ■

1.9 Bayesian Estimator

Theorem 1.9.1 Bayes’ Rule

P(A | B) =
P(B | A)P(A)

P(B | A)P(A) +P(B | AC)P(AC)
.

P(A | BC) = 1−P(A | B) =
P(BC | A)P(A)

P(BC | A)P(A) +P(BC | AC)P(AC)
.

Rationale Let W be an estimator dependent on a parameter θ.

1. Frequentists view θ as a parameter whose exact value to be estimated (θ is fixed).
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1 ESTIMATION 1.9 Bayesian Estimator

2. Bayesians view θ is the value of a random variable Θ. (θ is uncertain and has its

known parameter distribution).

Data Generation The following procedure generates data with an additional layer of ran-

domness.

1. θ is sampled from a distribution.

2. Under this θ, we sample the data.

Definition 1.9.2 (Prior distribution, Posterior distribution). Our prior knowledge on Θ is

called the prior distribution: pΘ(θ). The conditional distribution of the data given the param-

eter is the likelihood: p(X | Θ). Then, the Bayes’ Rule will be

P(Θ | X)︸ ︷︷ ︸
posterior distribution given the observation

=

likelihood︷ ︸︸ ︷
P(X | Θ) ·

prior distribution︷ ︸︸ ︷
P(Θ)

P(X)︸ ︷︷ ︸
margin distirbution of data

Theorem 1.9.3 Bayesian Estimator

gΘ(θ | W = w) =



pW (w | Θ = θ)pΘ(θ)

pW (w)
if W and Θ are discrete

fW (w | Θ = θ)fΘ(θ)

fW (w)
if W and Θ are constinuous,

where

fW (x) =

∫
H

fW,Θ(w, θ) dθ for θ ∈ H

=

∫
H

fW (w | Θ = θ)fΘ(θ) dθ.

Further, letA = fW (w) =

∫
H

fW (w | Θ = θ)fΘ(θ) dθ. Then, Anormalizes likelihood×prior:

1 =

∫
fW (w | Θ = θ)fΘ(θ)

A
dθ.

So,

gΘ(θ | W = w) = constant · fW (w | Θ = θ)fΘ(θ) or posterior ∝ likelihood× prior.
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1 ESTIMATION 1.9 Bayesian Estimator

Example 1.9.4 A call center. Let X =number of calls coming into the center. Then we

know that X ∼ Poisson(λ). This particular call center believes that Λ is distributed with

pdf

pΛ(8) = 0.25 and pΛ(10) = 0.75.

The call center believes that the number of calls coming into the center has recently

changed, so they pick an hour and observe that X = 7 calls come in.

Solution 1.

We want to find: P(Λ = 8 | X = 7) and P(Λ = 10 | X = 7). By Bayes’ Rule:

P(Λ = 8 | X = 7) =
P(X = 7 | Λ = 8)P(Λ = 8)

P(X = 7)

=
P(X = 7 | Λ = 8)P(Λ = 8)

P(X = 7 | Λ = 8)P(Λ = 8) +P(X = 7 | Λ = 10)P(Λ = 10)

=

e−8

(
87

7!

)
(0.25)

e−8

(
87

7!

)
(0.25) + e−10

(
107

7!

)
(0.75)

≈ 0.66

Then, P(Λ = 10 | X = 7) = 1 − P(Λ = 8 | X = 7) = 1 − 0.66 = 0.34. Or, alternatively, we

can use the Bayes’ Rule again. □

Table 1: Convention of Picking a Prior Distribution

Parameter Prior Distribution
Bernoulli(p) Beta
Binomial(p) Beta
Poisson(λ) Gamma

Exponential(λ) Gamma
Normal(µ) Normal
Normal(σ2) Inverse Gamma

Remark 1.15 When we have no prior knowledge on the belief, we choose a uniform distribu-

tion.

Example 1.9.5 Consider an unfair coin Θ (a random variable indicating the probability of

getting head). Flip the coin n times, X = number of heads. Find the posterior distribution.

Solution 2.
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1 ESTIMATION 1.9 Bayesian Estimator

By the Bayes’ rule,

fΘ|X(θ | X = x) =
fΘ(θ)P(X = k | θ)

P(X = k)
.

We know θ ∈ [0, 1], so Θ ∼ Uniform[0, 1] and fΘ(θ) = 1. So,

fΘ|X(θ | X = x) =

1 ·
(
n

k

)
· θk(1− θ)n−k

P(X = k)
=

1 ·
(
n

k

)
P(X = k)︸ ︷︷ ︸

constant

θk(1− θ)n−k

Definition 1.9.6 (Beta Distribution). For a distribution Beta(α, β), the pdf is given by

fY (y;α, β) =
yα−1(1− y)β−1

B(α, β)
for y ∈ [0, 1] and α, β > 0,

where

B(α, β) :=

∫ 1

0

yα−1(1− y)β−1 dy =
Γ(α)Γ(β)

Γ(α + β)
, α, β > 0.

The expectation of X ∼ Beta(α, beta) is given by

E(X) =
α

α + β
.

Disregarding the constant, θk(1 − θ)n−k is part of the Beta distribution with α = k + 1

and β = n−k+1. So, Θ ∼ Beta(k+1, n−k+1). To form a distribution, the constant must,

therefore, be(
n

k

)
P(X = k)

=
1

B(k + 1, n− k + 1)
=

Γ(k + 1 + n− k + 1)

Γ(k + 1)Γ(n− k + 1)

=
Γ(n+ 2)

Γ(k + 1)Γ(n− k + 1)

=
(n+ 1)!

k!(n− k)!
If n ∈ N, then Γ(n) = (n− 1)!

Note that Beta(α = 1, β = 1) = Unform(0, 1). So, in this example,

Beta(1, 1) Data−−−→ Beta(k + 1, n− k + 1).

Moreover, E(Θ) =
k + 1

k + 1 + n− k + 1
=

k + 1

n+ 2
. □
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1 ESTIMATION 1.9 Bayesian Estimator

Example 1.9.7 Let X1, . . . , Xn be a random sample form Bernoulli(θ): pX(k; θ) = θk(1 −

θ)1−k for k = 0, 1. Let X =
n∑

i=1

Xi. Then, X follows Binomial(n, θ). Consider the prior

distribution Θ ∼ Beta(r, s), i.e., fΘ(θ) =
Γ(r + s)

Γ(r)Γ(s)
θr−1(1 − θ)s−1 for θ ∈ [0, 1]. Then, the

posterior distribution is

Θ | X ∼ Beta(r + k, s+ n− k).

Proof 3. Note that

fΘ|X(θ | X = x) =
pX(X = k | θ)fΘ(θ)∫ 1

0

pX(X = k | θ)fΘ(θ) dθ

=

(
n

k

)
θk(1− θ)n−k Γ(r + s)

Γ(r)Γ(s)
θr−1(1− θ)s−1∫ 1

0

(
n

k

)
θk(1− θ)n−k Γ(r + s)

Γ(r)Γ(s)
θr−1(1− θ)s−1 dθ

=

(
n

k

)
Γ(r + s)

Γ(r)Γ(s)
θk+r−1(1− θ)n−k+s−1(

n

k

)
Γ(r + s)

Γ(r)Γ(s)

∫ 1

0

θk+r−1(1− θ)n−k+s−1 dθ

Note that θk+r−1(1− θ)n−k+s−1 is part of Beta(k + r, n− k + s). So,

1 =

∫ 1

0

Γ(k + r + n− k + s)

Γ(k + r)Γ(n− k + s)
θk+r−1(1− θ)n−k+s−1 dθ

1 =
Γ(r + n+ s)

Γ(k + r)Γ(n− k + s)

∫ 1

0

θk+r−1(1− θ)n−k+s−1 dθ∫ 1

0

θk+r−1(1− θ)n−k+s−1 dθ =
Γ(k + r)Γ(n− k + s)

Γ(r + n+ s)
.

Therefore,

fΘ|X(θ | X = x) =
θk+r−1(1− θ)n−k+s−1

Γ(k + r)Γ(n− k + s)

Γ(r + n+ s)

=
Γ(r + n+ s)

Γ(k + r)Γ(n− k + s)
θk+r−1(1− θ)n−k+s−1.

This is exactly a Beta distribution with parameter α = k + r and β = n− k + s. ■

Definition 1.9.8 (Conjugate Prior). If the posterior distributions p(Θ | X) are in the sam-

ple probability distribution family as the prior probability distribution p(Θ), the prior and

posterior are called conjugate distributions and the prior is called a conjugate prior for the

29



1 ESTIMATION 1.9 Bayesian Estimator

likelihood function.

Remark 1.16 Common Conjugate Priors

• Beta distributions are conjugate priors for Bernoulli, Binomial, Negative binomial, and

Geometric likelihood.

• Gamma distributions are conjugate priors for Poisson and Exponential likelihood

Definition 1.9.9 (Bayesian Point Estimation). Given the posterior fΘ|W (θ | W = w), how can

one calculate the appropriate point estimate θe?

Definition 1.9.10 (Loss Function). Let θe be an estimate for θ based on a statistic W . The loss

function associated with θe is denoted L(θe, θ), where L(θe, θ) ≥ 0 and L(θ, θ) = 0.

• The lost function is E
[
L(θ̂, θ)

]
.

• The MSE, mean square error, is E
[(

θ̂ − θ
)2]

.

1. If we have not data, then notice that

E
[
(θ − c)2

]
= E

(
θ2
)
+ E

(
c2
)
− 2cE(θ)

is minimized at c = E(θ). Therefore,

minE
[
(θ − θ̂)2

]
= E[(θ − E(θ))]2 = Var(θ).

So, θ̂∗ = E(θ), the prior expectation.

2. If we have data X = x, then

minE
[
(θ − θ̂)2 | X = x

]
=⇒ θ̂∗ = E[θ | X = x].

This θ̂∗ is called the posterior expectation.

Theorem 1.9.11 Squared-Loss Bayesian Estimation

Step 1. Solve the posterior distribution.

Step 2. Calculate the posterior expectation.

Generally, if we know the posterior pdf fΘ(θ | X = x), the point estimate is

E[θ | X = x] =

∫
Θ

θfΘ(θ | X = x) dθ.
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1 ESTIMATION 1.9 Bayesian Estimator

Theorem 1.9.12

Let fΘ(θ | W = w) be the posterior distribution of the random variable Θ.

• If L(θe, θ) = |θe − θ|, then the Bayesian point estimate for θ is the median of the

posterior distribution fΘ(θ | W = w);

• If L(θe, θ) = (θe − θ)2, then the Bayesian point estimate for θ is the mean of the

posterior distribution fΘ(θ | W = w).
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2 INFERENCE BASED ON NORMAL

2 Inference Based on Normal

2.1 Sample Variance and Chi-Square Distribution

Recall that if Y ∼ Normal(µ, σ2), we have MLEs defined as

µ̂ = Y and σ̂2 =
1

n

n∑
i=1

(
Yi − Y

)2
.

If σ is known, we can do the interval estimation:

Z :=
Y − E(Y )√
Var(Y )

∼ N(0, 1).

However, what if we don’t know σ? We will have to estimate it with a sample variance.

Definition 2.1.1 (Sample Variance). To estimate σ2, we define the following unbiased sample

variance:

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

Remark 2.1 We often compute S2 using the fact that

n∑
i=1

(yi − y)2 =
n∑

i=1

y2i − ny2 i.e., S2 =
1

n− 1

[
n∑

i=1

y2i − ny2

]

Definition 2.1.2 (Chi-Squared Distribution). Suppose Wk ∼ χ2(k), the chi-squared distribu-

tion with degree of freedom k. Then,

Wk = Z2
1 + Z2

2 + · · ·+ Z2
k , where Zi

i.i.d.∼ N(0, 1).

k is called the degree of freedom of the chi-squared distribution and is denoted as df = k.

Theorem 2.1.3 Chi-Squared Distribution and Gamma Distribution

χ2(1) is equivalent to Gamma
(
1

2
,
1

2

)
. Hence, χ2(n) is equivalent to Gamma

(
n

2
,
1

2

)
.

Proof 1. Recall: For Y1 ∼ Gamma(n, λ) and Y2 ∼ Gamma(m,λ), we have the following sum

rule

Y1 + Y2 ∼ Gamma(n+m,λ).
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2 INFERENCE BASED ON NORMAL 2.1 Sample Variance and Chi-Square Distribution

Then, as Z2
1 ∼ χ2(1) = Gamma

(
1

2
,
1

2

)
, we have

Z2
1 + Z2

2 + · · ·+ Z2
n ∼ χ2(n) = Gamma

(
1

2
+ · · ·+ 1

2
,
1

2

)
= Gamma

(
n

2
,
1

2

)
.

■

Theorem 2.1.4 Expectation and Variance of χ2(n)

If Wn ∼ χ2(n), then

E(Wn) = n = df and Var(Wn) = 2n

Proof 2. For Y ∼ Gamma(n, λ), E(Y ) =
n

λ
andVar(Y ) =

n

λ2
. AsWn ∼ χ2(n) = Gamma

(
n

2
,
1

2

)
,

we have

E(Wn) =
n/2

1/2
= n and Var(Wn) =

n/2

1/4
= 2n.

■

Theorem 2.1.5

Consider a random sample Y1, . . . , Yn drawn from N(0, 1). Let S2 be the sample variance

and Y be the sample mean. Then,

• S2 and Y are independent;

•
(n− 1)

σ2
S2 ∼ χ2(n− 1)

Remark 2.2 We can think of the second bullet point as the following rationale: knowing Y , we

only need (n− 1) data, and we can calculate Yn from Y and Y1, . . . , Yn−1. This explains why the

chi-squared distribution is of df = n− 1.

Proof 3.(informally)

1. We will prove the case when n = 2.
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2 INFERENCE BASED ON NORMAL 2.1 Sample Variance and Chi-Square Distribution

S2 =
1

n− 1

∑n
i=1

(
Yi − Y

)2
. If n = 2, Y =

Y1 + Y2

2
, then

S2 =
(
Y1 − Y

)2
+
(
Y2 − Y

)2
=

(
Y1 −

Y1 + Y2

2

)2

+

(
Y2 −

Y1 + Y2

2

)
=

(
Y1 − Y2

2

)2

+

(
Y2 − Y1

2

)2

=
1

2
(Y1 − Y2)

2.

Claim. Recall that if X1 and X2 are independent, then

E(X1X2) = E(X1)E(X2). (1)

The backward implication is not true in general, but specially for normal distributions.

That is, if (1) holds and X1, X2 normal are normal, then X1 ⊥⊥ X2.

As Y1−Y2 and Y1+Y2 are both normal distributed, to show they are independent of each

other, we only need to show that

E[(Y1 − Y2)(Y1 + Y2)] = E(Y1 − Y2)E(Y1 + Y2).

The detailed proof is omitted, but the equality holds.

2. Show that
(n− 1)

σ2
S2 ∼ χ2

n−1. Note that Yi ∼ N(µ, σ). Then,

Yi − µ

σ
∼ N(0, 1) and

Y − µ√
σ2/n

∼ N(0, 1).

So,

(Yi − µ)2

σ2
∼ χ2

1 =⇒

n∑
i=1

(Yi − µ)2

σ2
∼ χ2

n and
(Y − µ)2

σ2/n
∼ χ2

1.

Claim. If U1 ∼ χ2(m) and U2 ∼ χ2(n) with U1 ⊥⊥ U2, then U1 + U2 ∼ χ2(m + n) by the

summation rule of Gamma.
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2 INFERENCE BASED ON NORMAL 2.2 Inference on µ and σ

Therefore, by the Claim, we have

n∑
i=1

(Yi − µ)2

σ2
=

n∑
i=1

(
Yi − Y + Y − µ

)2
σ2

∼

n∑
i=1

(Yi − Y )2 +
n∑

u=1

(Y − µ)2

σ2

=
(n− 1)S2

σ2
+

n∑
i=1

(Y − µ)2

σ2
.

Note that

n∑
i=1

(Yi − µ)2

σ2
∼ χ2

n and

n∑
i=1

(Y − µ)2

σ2
∼ χ2

1. So, it must be that
(n− 1)S2

σ2
∼ χ2

m−1.

■

2.2 Inference on µ and σ

Definition 2.2.1 (Sampling Distribution). The sampling distributions are defined as the dis-

tributions of functions of random sample of given size.

Aim: Determine distributions for the following statistics:

Statistics Distribution

(Sample Variance) S2 :=
1

n− 1

n∑
n=1

(Y1 − Y )2 Chi-square distribution

T :=
Y − µ

S/
√
n

Student t distribution

S2
1

σ2
1

/S2
2

σ2
2

F distribution

Definition 2.2.2 (The Test Statistic). The test statistic is defined as

T :=
Y − µ

S/
√
n
,

with Y =
1

n

n∑
i=1

Yi and S2 =
1

n− 1

n∑
i=1

(
Yi − Y

)2
.

Definition 2.2.3 (Student t-Ratio). Consider
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2 INFERENCE BASED ON NORMAL 2.2 Inference on µ and σ

• Z :=

√
µ

σ
(Y − µ) ∼ N(0, 1)

• V ∼ χ2
n

• Z ⊥⊥ V

Then, we define the student t-ratio with n degrees of freedom as

Tn :=
Z√
V/n

.

Note that Z ∼ N(0, 1) and
√

V/n ∼
√

χ2
n

n
.

Theorem 2.2.4 Distribution of
Y − µ

S/
√
n

Consider Y1, . . . , Yn
i.i.d.∼ N(µ, σ2). Let S2 to be the sample variance. Then,

Y − µ

S/
√
n

∼ Tn−1.

Proof 1. Note that
Y − µ

σ/
√
n

∼ N(0, 1) (2)

and
(n− 1)S2

σ2
∼ χ2

n−1 (3)

Then, consider

Y − µ

S/
√
n

=
Y − µ

σ/
√
n
· σ
S

=

Y − µ

σ/
√
n√

S2

σ2

=

Y − µ

σ/
√
n√

(n− 1)S2

σ2
· 1√

n− 1

=

Y − µ

σ/
√
n

∼ N(0, 1)√
(n− 1)S2/σ2

n− 1
∼ χ2

n−1

S2 ⊥⊥ Y

∼ Tn−1.
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■

Theorem 2.2.5 Connection Between N(0, 1) and t

T distribution is flatter/more spread out than N(0, 1). It has heavier tails.

Proof 2. Note that

• S2
n =

1

n− 1

n∑
i=1

(Yi − Y )2 is an unbiased estimator of σ2.

• S2
n is a consistent estimator of σ2.

So, Var(S2
n) → 0 as n → ∞. This implies that the difference between T and N(0, 1) is signifi-

cant when n is small. ■

Theorem 2.2.6 Inference on µ

If σ2 is known, we inference µ using Z =
Y − µ

σ/
√
n

. We use z-score and zα table to construct

the 100(1− α)% CI as
(
y − zα/2

σ√
n
, y + zα/2

σ√
n

)
. Alternatively, if σ2 is unknown, we use

Tn−1 =
Y − µ

S/
√
n

. We apply tn−1 score and tα,n−1 table to construct a similar CI.

Theorem 2.2.7 Inference on σ

A two-sided 100(1− α)% CI on σ will be given by(√
(n− 1)S2

χ2
1−α/2,n−1

,

√
(n− 1)S2

χ2
α/2,n−1

)
.

Proof 3. Note that

Xn :=
(n− 1)S2

σ2
∼ χ2

n−1.

Then,

P(xa ≤ Xn ≤ xb) = 100(1− α)%.

To construct a two-sided CI, since chi-square distribution is not symmetric, we can choose the

two points that have the same density value (this will ensure a short CI). However, this method

is very numerically expensive. To save computational cost, we will still choose the two points

that covers the α/2% and (1− α/2)% distribution. It is also known as to find χ2
α/2,n−1 from the
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2 INFERENCE BASED ON NORMAL 2.2 Inference on µ and σ

χ2 table. Hence,

P(χ2
α/2,n−1 ≤ Xn ≤ χ2

1−α/2,n−1) = 100(1− α)%

P(χ2
α/2,n−1 ≤

(n− 1)S2

σ2
≤ χ2

1−α/2,n−1) = 100(1− α)%

=⇒ (n− 1)S2

χ2
1−α/2,n−1

≤ σ2 ≤(n− 1)S2

χ2
α/2,n−1

So, 100(1− α)% CI of σ2 is (
(n− 1)S2

χ2
1−α/2,n−1

,
(n− 1)S2

χ2
α/2,n−1

)
and a 100(1− α)% CI of σ is (√

(n− 1)S2

χ2
1−α/2,n−1

,

√
(n− 1)S2

χ2
α/2,n−1

)
.

■
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3 HYPOTHESIS TESTING

3 Hypothesis Testing

3.1 Decision Rules

Definition 3.1.1 (Hypotheses). We define

• H0: null hypothesis (status quo), and

• H1: alternative hypothesis

where H0 and H1 are such that

• H0 and H1 are disjoint sets

• H0 always include an equal sign.

Example 3.1.2 We have a breath analyzer for DUI test. Do we need to calibrate the breath

analyzer? Collect 30 samples whose alcohol level are known as 12.6. Measurements from

the breath analyzer is Y1, . . . , Y30
i.i.d.∼ N(µ, σ = 0.4). Set up a hypothesis testing.

Solution 1.

If µ0 = 12.6m then the breath analyzer is accurate. So,

• H0: µ0 = 12.6, and

• H1: µ0 ̸= 12.6.

Assume H0 is true, then P

(∣∣∣∣Y − µ0

σ/
√
n

∣∣∣∣ > m

∣∣∣∣H0

)
should be small. i.e.,

P

(∣∣∣∣Y − µ0

σ/
√
n

∣∣∣∣ > m

∣∣∣∣H0 : µ0 = 12.6

)
≤ α

set
= 0.05,

where α is called the significance level. Then,

P

(∣∣∣∣Y − 12.6

0.4/
√
30

∣∣∣∣ > 1.96

∣∣∣∣H0 : Y ∼ N(12.6, 0.4)

)
= 0.05, (m = zα/2 = 1.96)

Simply, we get

P
(∣∣Y − 12.6

∣∣ ≥ 0.14
)
= 0.05.

So, if Y ≥ 12.74 or Y ≤ 12.46, we will reject H0. If Y ∈ [12.46, 12.74], we will tail to reject H0

(or, data is not sufficient to reject H0). □

Definition 3.1.3 (Test Statistic). Any function of the observed data whose numerical value

dictates whether H0 is accepted or rejected.
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3 HYPOTHESIS TESTING 3.1 Decision Rules

Definition 3.1.4 (Critical Region/Rejection Region/C). The set of values for the test statistic

that result in the null hypothesis being rejected.

(1− α)%

Critical Value

Rejection Region

Definition 3.1.5 (Critical Value). The particular point in C that separates the rejection region

from the acceptance region.

Definition 3.1.6 (Level of Significance/α). The probability that the test statistic lies in the

critical region C under H0.

Theorem 3.1.7 Procedure of Hypothesis Testing

1. Set up the hypotheses: H0, H1

2. Find the test statistics:

Xi
i.i.d.∼ N(µ, σ2), where σ2 is known =⇒ Z :=

X − µ

σ/
√
n
.

3. Determine the decision rule

(1− α)%

Fail to Reject

Reject

Remark 3.1 (Different Alternative Hypotheses) For the same H0 : θ = θ0, we have have mul-

tiple different alternative hypotheses:

H1 :


θ ̸= θ0 =⇒ P(z ̸= [c1, c2] | H0) = α z ∈ [c1, c2]

θ < θ0 =⇒ P(z < c | H0) = α z ≥ c

θ > θ0 =⇒ P(z > c | H0) = α z ≤ c

Definition 3.1.8 (Simple/Composite Hypothesis). Simple hypothesis is any hypothesis which
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3 HYPOTHESIS TESTING 3.2 Types of Errors

specifies the population distribution completely. Composite hypothesis is any hypothesis

which does not specify the population distribution completely.

Example 3.1.9 Suppose H0 : µ = 120 and H1 : µ > 120. Let Y1, . . . , Yn be samples. Suppose

σ = 12, n = 50, y = 125.2. Set up a hypothesis testing at significance level of α = 0.05.

Solution 2.

Define test statistics:
Y − µ

σ/
√
n

. Then, under H0,

Z :=
Y − 120

12/
√
50

∼ N(0, 1).

So,

zobs =
y − 120

12/
√
50

=
125.2− 120

12/
√
50

= 3.06.

The p-value is given by

P(Z ≥ 3.06) ≈ 0.001 < α =⇒ reject H0

□

Theorem 3.1.10 Summary: Testing

Proportion
Mean

Variance
σ2 known σ2 unknown

Distribution Binomial(n, p) Normal(µ, σ2) N(µ, σ2) χ2
n

Test Statistics
k − np√
np(1− p)

Z :=
X − µ

σ/
√
n

∼ N(0, 1) Tn−1 :=
X − µ

S/
√
n

(n− 1)S2

σ2

3.2 Types of Errors

Definition 3.2.1 (Type I and Type II Errors). Type I Error is P(reject H0 | H0 is true) = α. Type

II Error is given by P(fail to reject H0 | H1 is true) = β.

Remark 3.2 (Possible Situations of Type I Error) If Y obs falls into the rejection region:

• Y does not follow the distribution in H0

• Y happens to take the extreme/unlikely values even when Y follows the distribution in H0.
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3 HYPOTHESIS TESTING 3.2 Types of Errors

Decision/Truth H0 H1

H0 No Errors β, Type II Error

H1 α, Type I Error No Errors

Example 3.2.2 Example 3.1.2 Revisit. Calculate β, probability of type II error occurs. Recall

that Y ∼ N(µ, σ2 = 0.16), H0 : µ = 12.6, H1 : µ = µ1.

Solution 1.

P(Type II Error) = P(fail to reject H0 | H1 is true)

= P

(∣∣∣∣Y − µ0

σ/
√
n

∣∣∣∣ < zα/2 | µ1

)
= P

(
µ0 − zα/2

σ√
n
≤ Y ≤ µ0 + zα/2

σ√
n
| µ1

)
= P

(
µ0 − zα/2

σ√
n
≤ Y ≤ µ0 + zα/2

σ√
n
| Y ∼ N

(
µ1,

σ2

n

))
= P

(
−zα/2 +

µ0 − µ1

σ/
√
n

≤ Y − µ1

σ/
√
n

≤ zα/2 +
µ0 − µ1

σ/
√
n

| H1

)
β(µ1) := Φ

(
zα/2 +

µ0 − µ1

σ/
√
n

)
− Φ

(
−zα/2 +

µ0 − µ1

σ/
√
n

)
,

where Φ(z) := P(Z ≤ z). □

Definition 3.2.3 (p-Hacking). Post-hoc adjustment on data or on the tests. For example, after

seeing the data,

• Adjust the side of the a one-sided test,

• Collect more data until H0 is rejected. When sample size n increases, CI becomes nar-

rower, and thus the rejection region is wider.

• Adjust the significance level.
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3 HYPOTHESIS TESTING 3.3 Two-Sample Inferences

3.3 Two-Sample Inferences

Theorem 3.3.1 Test Statistics

Suppose X1, . . . , Xn ∼ N(µX , σ
2
X) and Y1, . . . , Ym ∼ N(µY , σ

2
Y ). Assume that σX = σY = σ

and X and Y be the sample mean, respectively. Then(
X − Y

)
− (µX − µY )√√√√( 1

n
+

1

m

)( n∑
i=1

(
Xi −X

)2
+

m∑
i=1

(
Yi − Y

)2)/
(m+ n− 2)

∼ Tm+n−2

Proof 1. Note that, by CLT,

Z :=
(X − Y )− (µX − µY )√

σ2

(
1

n
+

1

m

) ∼ N(0, 1).

Further, since
n∑

i=1

(Xi −X)2

σ2
∼ χ2

n−1 and

m∑
i=1

(Yi − Y )2

σ2
∼ χ2

m−1,

we know

V :=

n∑
i=1

(Xi −X)2 +
m∑
i=1

(Yi − Y )2

σ2
∼ χ2

m+n−2

Therefore,

T =
Z√

V/(m+ n− 2)

■
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Theorem 3.3.2 Hypothesis Testing

Suppose H0 : µX = µY and H1 : µX ̸= µY . Under H0 (µX = µY ), the test statistics

t =
X − Y√(
1

n
+

1

m

)
S2
p

∼ Tm+n−2,

where

S2
p :=

n∑
i=1

(Xi −X)2 +
m∑
i=1

(Yi − Y )2

m+ n− 2
.

Example 3.3.3 Let X = # of successes in n-trials and Y = # of successes in m trials, then

X ∼ Binomial(n, pX) and Y ∼ Binomial(m, pY ). We want to test H0 : pX = py versus a valid

H1 such as pX ̸= pY . If n and m are large enough, then by the CLT, we have

X

n
∼ N(pX , px(1− pX)/n) and

Y

m
∼ N(pY , pY (1− pY )/m).

This is not quite the two sample t-test because there are only two parameter. But, under

H0 : px = py = p:
X

n
− Y

m
∼ N

(
0,

(
1

n
+

1

m

)
p(1− p).

)
So, define

Z :=

X

n
− Y

m√(
1

n
+

1

m

)
p(1− p)

∼ N(0, 1).

We can then estimate p with p̂ =
X + Y

n+m
, which gives us

Z :=

X

n
− Y

m√(
1

n
+

1

m

)
p̂(1− p̂)

∼ N(0, 1) as n,m → ∞
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4 Regression Analysis

4.1 Introduction to Regression

Theorem 4.1.1 How to fit a Regression Model

1. Plot data (xi, yi)

2. Find a line y = ax+ b

3. Draw inference on a, b, and y | x.

To find a best fit line, let’s minimize the discripency:

min
a,b

yi − (axi + b).

Mean Squared Error Note that we want to solve

min
a,b

E
[
(Yi − aXi − b)2

]
.

The solutions are given by

a∗ = argmin
a

E
[
(Yi − aXi − b)2

]
and b∗ = argmin

b
E
[
(Yi − aXi − b)2

]
.

A Probability View Since (x, y) is a pair of random variables, we simply the situation by plac-

ing all of the uncertainty on the yi’s and assume that the xi’s are controlled by the exper-

imenter. Recall that for any two random variables X and Y , the conditional expectation

of Y on X, namely

f(x) = E[Y | X = x]

minimizes the mean squared error

E
[
(Y − f(X))2

]
• Difficulties: The regression curve Y = E[Y | x] is complicated and hard to obtain.

• Compromise: Assume that f(x) = a+ bx (i.e., the first order approximation).

A Statistics View Let L(a, b) =
n∑

i=1

(yi − (axi + b))2 =
n∑

i=1

(yi − axi − b)2. For the least square

method, we choose a and b so that we minimize L. That is,
∂L

∂b
=

∂L

∂a
= 0. By solving, we
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4 REGRESSION ANALYSIS 4.2 Linear Regression Model

find that

a∗ =

n∑
i=1

xiyi − nxy

n∑
i=1

x2
i − nx2

and b = y − ax.

Theorem 4.1.2 Rationale

The following statements are equivalent:

• Cov(X, Y ) ̸= 0.

• ∃ b0, b1 ∈ R s.t.

E
[
(Y − b0 − b1X)2

]
< E

[
(Y − µY )

2
]

• ∃ b1 ∈ R s.t.Var(Y − b1X) < Var(Y ).

Definition 4.1.3 (Regression). Suppose (Xi, Yi) is a pair of random variable. The regression is

defined as

Yi = f(Xi) + εi, where E(εi) = 0.

Remark 4.1 If E(εi) ̸= 0 and suppose E(εi) = a. Then, we can fit Yi = f(Xi) + a+ E(ε′i), where

E(ε′i) = 0.

Suppose a = f(Xi), then we want to solve

min
a

E
[
(Yi − a)2 | Xi = x

]
.

Define h(a) = E[(Yi − a)2 | Xi = x] = E[Y 2
i | Xi = x] − 2aE[Yi | Xi = x] + a2, a quadratic func-

tion. Then, by the first-order optimality condition, we set

∂h

∂a
= −2E[Yi | X1 = x] + 2a = 0,

and so

a∗ = argmin
a

h(a) = E[Yi | Xi = x].

4.2 Linear Regression Model

Definition 4.2.1 (Linear Regression/Simple Linear Model). Assume E[Yi | Xi = x] = β0 +

β1Xi, so we have

Yi = β0 + β1Xi + εi,

which is the linear regression model (a.k.a simple linear model).
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4 REGRESSION ANALYSIS 4.2 Linear Regression Model

How to Find the Best β0 and β1? Let’s consider the mean squared error.

MSE(β0, β1) = E
[
(Y − β0 − β1X)2

]
.

Then, by the first-order optimality condition, we have

∂MSE

∂β0

= −2E[Y − β0 − β1X]
set
= 0

β∗
0 = E[Y ]− β1E[X] =: µY − β1µX

Meanwhile, we have

∂MSE

∂β1

= −2E[X(Y − β0 − β1X)]

= −2E[XY ] + 2β0E[X] + 2β1E[X
2]

= −2E[XY ] + 2(E[Y ]− β1E[X])E[X] + 2β1E[X
2]

= −2E[XY ] + 2E[X]E[Y ]− 2β1E[X]E[X] + 2β1E[X
2]

= −2

(E[XY ]− E[X]E[Y ])︸ ︷︷ ︸
Cov(X,Y )

+β1

(
E[X]2 − E[X2]

)︸ ︷︷ ︸
Var(X,Y )


= −2(Cov(X, Y ) + βVar(X))

set
= 0

β∗
1 =

Cov(X, Y )

Var(X)
.

How to represent the best β0 and β1 in terms of Xi and Yi? Suppose we have data

(X1, Y1), . . . , (Xn, Yn).

Then, theoretically,

β∗
0 = µY − β∗

1µX and β∗
1 =

Cov(X, Y )

Var(X)
.

To have sample estimate of them, let’s define

x =
1

n

n∑
i=1

xi; Y =
1

n

n∑
i=1

Yi; SXX =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2

SY Y =
n∑

i=1

(Yi − Y )2 =
n∑

i=1

Y 2
i − nY

2
; SXY =

n∑
i=1

(xi − x)(Yi − Y ) =
n∑

i=1

xiYi − nxY
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4 REGRESSION ANALYSIS 4.2 Linear Regression Model

Then, the estimate

β̂0 = Y − β̂1x and β̂1 =
SSY /n

SXX/n
=

SXY

SXX

are called the Ordinary Least Square (OLS) Estimate.

What is the Error Term, εi? We know that

Yi = β0 + β1Xi + εi.

Assume that εi
i.i.d.∼ N(0, σ2) (That is, εi is independent of data). If Xi is given, β0 + β1Xi is

just a constant, and so

Yi ∼ N(β0 + β1Xi, σ
2),

where we call Yi the response or dependent variable and Xi the exploratory or indepen-

dent variable.

Although we know εi
i.i.d.∼ N(0, σ2), but σ2 is unknown parameter. What is the MLE of σ2?

As Yi ∼ N(β0 + β1Xi, σ
2), then

fY (y) =
1√
2πσ2

e−(y−β0−β1xi)
2/2σ2

Then, the likelihood function L(β0, β1, σ
2) =

n∏
i=1

fY (yi). Consider

ℓ(β0, β1, σ
2) = lnL(β0, β1, σ

2) = −n

2
ln
(
2πσ2

)
− 1

2σ2

n∑
i=1

(yi − β0 − β1Xi)
2

Solving
∂ℓ

∂σ
= 0, we get

σ̂2 =
1

n

n∑
i=1

(

true data︷︸︸︷
yi −

ŷi, our model︷ ︸︸ ︷
β̂0 − β̂1Xi︸ ︷︷ ︸

residual

).

This is a MLE of multiple parameters.

Summary In the following theorems, we assume that we fit a simple linear model

Yi = β0 + β1Xi + εi, with εi
i.i.d.
= N(0, σ2).
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4 REGRESSION ANALYSIS 4.2 Linear Regression Model

Theorem 4.2.2 OLS Estimate of β1 and β0

Let (x1, Y1), . . . , (xn, Yn) be a set of points satisfying the linear model E[Y | x] = β0 + β1x

(That is, let Y1, . . . , Yn be independent random variables where Yi ∼ N(β0, β1xi, σ
2) with

xi are known and β0, β1, and σ2 are unknown). The maximum likelihood estimators for

β0, β1, and σ2 are given by

β̂1 =

n

n∑
i=1

xiYi −

(
n∑

i=1

xi

)(
n∑

i=1

)
Yi

n

(
n∑

i=1

x2
i

)
−

(
n∑

i=1

xi

)2 and β̂0 =

n∑
i=1

Yi − β̂1

n∑
i=1

xi

n
= Y − β̂1x

σ̂2 =
1

n

n∑
i=1

(
Yi − Ŷi

)2
, Ŷi = β̂0 + β̂1xi.

Theorem 4.2.3 Distributions of β̂0 and β̂1

• β̂0 and β̂1 are both normally distributed.

• β̂0 and β̂1 are unbiased. That is, E[β̂0] = β0 and E[β̂1] = β1.

• β̂1, Y and σ̂2 are mutually independent.

•
nσ̂2

σ2
∼ χ2

n−2. That is, E[σ̂2] =
n− 2

n
σ2.

Remark 4.2 The best fit line is a linear way to model the data but some data are nonlinear.

1. Polynomial Data y = b+a1x+ · · ·+amx
m: minimize m+1 equations to find a1, . . . , am, b.

2. Exponential Data y = Beax: apply linear technique to (xi, ln yi) since ln y = lnB + ax.

3. Log Data y = Bxa: apply linear technique to (lnxi, ln yi) since ln y = lnB + a lnx.

4. If y =
L

1 + ea+bx
, then ln

(
L− y

y

)
is linear with x.

5. If y =
1

a+ bx
, then

1

y
is linear with x.

6. If y =
x

a+ bx
, then

1

y
is linear with x.

7. If y = 1− e−xb/a, then ln

(
ln

(
1

1− y

))
is linear with lnx
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