IB Mathematics Analysis and Approaches HL

Jiuru Lyu

May 18, 2022

Contents

1	Nun	Number and Algebra 3					
	1.1	Sequences and Series	3				
	1.2	Exponents and Logarithms	4				
	1.3	Proof	5				
	1.4	Counting and Binomial Theorem	7				
	1.5	Partial Fraction	10				
	1.6	Complex Number	11				
		1.6.1 Introduction	11				
		1.6.2 Argand Diagram	12				
		1.6.3 Complex Number in Other Forms	14				
		1.6.4 Power of Complex Number	14				
		1.6.5 Polynomial Function with Complex Roots	16				
		1.6.6 Root of Complex Numbers	16				
2	Functions 17						
	2.1	Foundations of Functions	17				
	2.2	Quadratic Functions	20				
	2.3		21				
	2.4		22				
	2.5		26				
	2.6		28				
3	Trigonometry and Geometry 30						
	3.1	Trigonometry	30				
		3.1.1 Radian	30				
		3.1.2 Solution of Triangle	30				
			32				
		3.1.4 Trigonometric Identity	34				
		3.1.5 Trigonometric Functions and Transformation	36				
		-	40				
			41				
	3.2	-	43				

		3.2.1 Introduction to Vectors	3					
		3.2.2 Scalar Product and Its Properties	6					
		3.2.3 Vector Equation of a Line	8					
		3.2.4 Vector Product and Properties	1					
		3.2.5 Vector Equation of a Plane	4					
		3.2.6 Lines, Planes, and Angles	6					
4	Statistics and Probability 59							
	4.1	An Introduction to Statistics	9					
	4.2	Linear Correlation of Bivariate Data	2					
	4.3	Probability and Expected Outcomes	3					
	4.4	Probability Calculations	4					
	4.5	Discrete Random Variables	5					
	4.6	The Binomial Distribution	6					
	4.7	The Normal Distribution and Curve	7					
	4.8	Probability Density Function (PDF) 6	9					
	4.9	The Bayes' Theorem	0					
5	Calculus 72							
	5.1	Limits	2					
	5.2	Differentiation and Derivatives	4					
	5.3	Applications of Derivatives	6					
	5.4	Implicit Differentiation	7					
	5.5	Related Rate of Change	9					
	5.6	More Limits - L'Hopital's Rule	9					
	5.7	Indefinite Integration	0					
	5.8	Approximating the Area Under a Curve	2					
	5.9	Volumes of Revolution	3					
	5.10	Differential Equation	4					
	5.11	Maclaurin Series	0					

1 Number and Algebra

1.1 Sequences and Series

- Terms: *u*₁, *u*₂, *u*₃...
 Position: *n* Sum: *S*
- 2. Arithmetic Sequence/Arithmetic Progression (AP):
 - Recursive formula: $u_{n+1} = u_n + d$, d is the common difference.
 - Explicit formula: $u_n = u_1 + d(n-1)$
 - Summation: $S_n = \frac{n}{2} [2u_1 + d(n-1)]$

Proof 1.1.1 Let $u_1, u_2, u_3, ..., u_n$ be an arithmetic sequence with *d* as common difference. Then, $S_n = u_1 + u_2 + u_3 + ... + u_n = u_1 + (u_1 + d) + (u_1 + 2d) + ... + (u_1 + (n-1)d)$ Also, $S_n = [u_1 + (n-1)d] + ... + (u_1 + d) + u_1$. Add two expressions together:

$$2S_n = [2u_1 + (n-1)d]n$$

$$\therefore S_n = \frac{n}{2}[2u_1 + (n-1)d].$$

3. Geometric Sequence

- Recursive formula: $u_{n+1} = r \cdot u_n$, *r* is the common ratio.
- Explicit formula: $u_n = u_1 \cdot r^{n-1}$
- •

$$r = \frac{u_2}{u_1} = \frac{u_3}{u_2} = \frac{u_4}{u_3} = \dots$$

• Summation: $S_n = \frac{u_1(r^n-1)}{r-1}$

Proof 1.1.2 Let $u_1, u_2, u_3, ..., u_n$ be a geometric sequence with r as common ratio. $S_n = u_1 + u_2 + u_3 + ... + u_n = u_1 + (u_1 \cdot r) + (u_1 \cdot r^2) + ... + (u_1 \cdot r^{n-1})$ Then, $rS_n = (u_1 \cdot r) + (u_1 \cdot r^2) + ... + (u_1 \cdot r^n)$. Subtract the first expression from the second:

$$rS_n - S_n = u_1 \cdot r^n - u_1 \Rightarrow (r-1)S_n = u_1(r^n - 1)$$
$$\therefore S_n = \frac{u_1(r^n - 1)}{r - 1}$$

- If r > 1, the sequence is an exponential growth.
 If 0 < r < 1, the sequence has an exponential decay.
- When r > 1, series approaches ∞.
 When -1 < r < 1, or |r| < 1, the series converges:

$$S_{\infty} = \frac{u_1}{1-r}, |r| < 1$$

1.2 Exponents and Logarithms

- 1. $a^m \cdot a^n = a^{m+n}$ $a^m \div a^n = a^{m-n}$ $(a^m)^n = a^{mn}$
- 2. $x^0 = 1$ $(x^0 = x^{1-1} = \frac{x^1}{x^1} = 1)$ $x^{-m} = \frac{1}{x^m}$ $x^{\frac{1}{n}} = \sqrt[n]{x} (x^{\frac{m}{n}} = (\sqrt[n]{x})^m)$
- 3. If a = b, then $a^n = b^n$ If m = n, then $a^m = a^n$ For $a^b = 1$: $a = 1, b \in \mathbb{R}$; $a \neq 1, b = 0$; OR a = -1, b = 2n
- 4. When solving exponential equations, convert them to the same base.
- 5. Division Theorem.

Theorem 1.2.1 If $a^x = b^y$ given a > 0 and b > 0, then $a = b^{\frac{y}{x}}$.

Proof 1.2.1

$$a^{x} = b^{y}$$
$$(a^{x})^{\frac{1}{x}} = (b^{y})^{\frac{1}{x}} \Rightarrow a = b^{\frac{y}{x}}$$

- 6. $a = b^x \Leftrightarrow x = \log_b a$, where $a, b \in \mathbb{R}^+$ and $b \neq 1$.
- 7. Logarithmic rules:
 - $\log_a x + \log_a y = \log_a(xy)$

Proof 1.2.2 Let $\log_a x = p$, $\log_a y = q$. $\Rightarrow a^p = x, a^q = y$. Then, $x \cdot y = a^p \cdot a^q = a^{p+q}$.

$$\therefore \log_a(xy) = p + q = \log_a x + \log_a y.$$

• $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$

Proof 1.2.3 Let $\log_a x = p$, $\log_a y = q$. $\Rightarrow a^p = x, a^q = y$. Then, $\frac{x}{y} = \frac{a^p}{a^q} = a^{p-q}$.

$$\therefore \log_a\left(\frac{x}{y}\right) = p - q = \log_a x - \log_a y$$

- $\log_a x^n = n \log_a x$
- $\log_a 1 = 0$
- $\log_a a = 1$

- $-\log_a x = \log_a \frac{1}{x}$
- $\log_a x = \frac{\log_b x}{\log_b a}$
- $\log_a b = \frac{1}{\log_b a}$

1.3 Proof

1. Direct proof:

Example 1.3.1 Show that the sum of two even numbers is always even.

Let *m* and *n* be two even positive integers. m = 2p, n = 2q, where *p* and $q \in \mathbb{Z}^+$. Then, m + n = 2p + 2q = 2(p + q), which is an even number.

Example 1.3.2 Show that $(x + \frac{a}{2})^2 - (\frac{a}{2})^2 \equiv x^2 + ax$.

LHS =
$$x^2 + \frac{a^4}{4} + ax - \frac{a^4}{4} = x^2 + ax =$$
RHS.

Equations "=": only true from some values. Identities " \equiv ": true for all values.

Example 1.3.3 Prove that if the sum of the digits of a four-digit number is divisible by 3, then the four-digit number is also divisible by 3.

Example 1.3.4 Let *n* be a 4-digit number: n = 1000a + 100b + 10c + d, where $0 \le a, b, c, d \le 9$, and $a \ne 0$.

It is given that $a + b + c + d = 3k, k \in \mathbb{Z}$:

$$n = 1000a + 100b + 10c + d + 3k - a - b - c - d$$

= 999a + 99b + 9c + 3k
= 3(333a + 33b + 3c + k)

Since $(333a+33b+3c+k) \in \mathbb{Z}$, it implies that *n* is divisible by 3.

2. Proof by Contradiction:

Example 1.3.5 Prove the statement: If the integer *n* is odd, then n^2 is also odd.

Let, if possible, n^2 is even and n is odd.

Then, $n^2 = 2k$, $k \in \mathbb{Z} \Rightarrow n \times n = 2k$, which indicates the product of two odd number is even, and which is not true.

Hence, there is a contradiction.

 \therefore Our assumption is wrong, and thus given that *n* is odd, n^2 is also odd.

Example 1.3.6 Show that $\sqrt{2}$ is irrational.

Let us assume, if possible, that $\sqrt{2}$ is rational: $\sqrt{2} = \frac{p}{q}$, where $p, q \in \mathbb{Z}$, and p, q have no common factors, $q \neq 0$. $\therefore 2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2$ (1). $\therefore p^2$ is even, and thus p is also even.

As p is an even number, we can write: $p = 2k, k \in \mathbb{Z}$. $\Rightarrow : p^2 = (2k)^2 = 4k^2$ (2).

From (1) and (2): $4k^2 = 2q^2 \Rightarrow q^2 = 2k^2 \Rightarrow q^2$ is even, and thus q is also an even number.

But since p and q have no common factors, they cannot have "2" as a common factor. Hence, we have arrived at a contradiction.

 \therefore Our assumption is incorrect, and $\sqrt{2}$ is irrational.

Definition 1.3.1 A number is **rational** if it can be written as $\frac{p}{q}$, where $p, q \in \mathbb{Z}$, and $q \neq 0$.

Example 1.3.7 Prove that there is no $x \in \mathbb{R}$ **such that** $\frac{1}{x-2} = 1 - x$ Assume there is a real number x such that $\frac{1}{x-2} = 1 - x$. $\therefore (1-x)(x-2) = 1 \Rightarrow x^2 - 3x + 3 = 0$ Solving the equation, we get $x = \frac{3 \pm \sqrt{9-12}}{2}$, which $\notin \mathbb{R}$ \therefore We arrived at a contradiction, and our assumption is incorrect. There is no $x \in \mathbb{R}$ such that $\frac{1}{x-2} = 1 - x$

3. Proof by Mathematical Induction

Definition 1.3.2 Principle of Mathematical Induction (PMI):

Suppose P_n is a proposition which is defined for every integer $n \ge a$, $a \in \mathbb{Z}$. If P_a is true, and if P_{k+1} is true whenever P_k is true, then P_n is true $\forall n \ge a$.

Example 1.3.8 Prove that $4^n + 2$ is divisible by 3 for $n \in \mathbb{Z}$, $n \ge 0$, by using PMI. For n = 0, LHS = $4^0 + 2 = 1 + 2 = 3$, which is divisible by 3. $\therefore P_0$ (OR denoted as P(0)) is true.

Assume that P_k is true: i.e., $4^k + 2$ is divisible by $3. \Rightarrow 4^k + 2 = 3A$, $A \in \mathbb{Z}^+ \Rightarrow 4^k = 3A - 2$. Consider P_{k+1} :

$$4^{k+1} + 2 = 4^{k} \cdot 4^{1} + 2$$

= (3A - 2) \cdot 4 + 2
= 12A - 6
= 3(4A - 2).

 $\therefore 4A - 2$ is an integer as $A \in \mathbb{Z}^+$, $4^{k+1} + 2$ is divisible by 3 whenever $4^k + 2$ is divisible by 3. Since P_0 is true, and P_{k+1} is true whenever Pk is true, P_n is true $\forall n \in \mathbb{Z}, n \ge 0$.

Example 1.3.9 A sequence is defined by $u_{n+1} = 2u_n + 1 \quad \forall n \in \mathbb{Z}^+$. **Prove that** $u_n = 2^n - 1$. For n = 1, $u_1 = 2^1 - 1 = 1 \Rightarrow \therefore P_1$ is true. Let P_k be true: $u_k = 2^k - 1$ for some $k \in \mathbb{Z}^+$. Consider P_{k+1} :

$$u_{k+1} = 2u_k + 1$$

= 2(2^k - 1) + 1
= 2^{k+1} - 1.

Since P_1 is true, and P_{k+1} is true whenever P_k is true, P_n is true $\forall n \in \mathbb{Z}^+$.

Example 1.3.10 Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, \forall n \in \mathbb{Z}^+$. For n = 1, LHS = $1^2 = 1$, RHS = $\frac{1(1+1)(2+1)}{6} = 1$ \therefore LHS = RHS \Rightarrow P_1 is true.

Assume that P_k is true, $k \in \mathbb{Z}^+$: $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$. Consider P_{k+1} :

$$LHS = 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$$

= $\frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$
= $\frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$
= $\frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$
= $\frac{(k+1)(2k^{2} + 7k + 6)}{6}$
= $\frac{(k+1)(k+2)(2k+3)}{6}$
= $\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}$ = RHS.

Thus, P_{k+1} is true whenever P_k is true.

Since P_1 is true, and P_{k+1} is true whenever P_k is true, P_n is true $\forall n \in \mathbb{Z}^+$.

Example 1.3.11 Prove that if $x \neq 1$, the $\prod_{i=1}^{n} (1+x^{2^{i-1}}) = (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}}) = \frac{1-x^{2^n}}{1-x}$. For n = 1, LHS = 1+x, RHS = $\frac{1-x^{2^1}}{1-x} = \frac{1-x^2}{1-x} = 1+x$. $\Rightarrow \therefore$ LHS = RHS, P_1 is true. Assume that P_k is true: $(1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{k-1}}) = \frac{1-x^{2^k}}{1-x}$. Consider P_{k+1} : LHS = $(1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{k-1}})(1+x^{2^k})$ $= \frac{1-x^{2^k}}{1-x}(1+x^{2^k})$ $= \frac{1+x^{2^k}-x^{2^k}+(x^{2^k})^2}{1-x}$

$$= \frac{1 - x^{2^{k} \cdot 2}}{1 - x}$$

= $\frac{1 - x^{2^{k+1}}}{1 - x}$ = RHS.

Since P_1 is true, and P_{k+1} is true whenever P_k is true, P_n is true $\forall n \in \mathbb{Z}^+$.

1.4 Counting and Binomial Theorem

- 1. Choose r from n: $\binom{n}{r} =_n C_r$
 - $\binom{n}{m} = \binom{n}{n-m}$
 - $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
 - Factorial notation: $n! = n(n-1)(n-2)\cdots 2\cdot 1$ e.g. $\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5\times 4\times 3!}{3!\times 2} = 5\times 2 = 10.$

Example 1.4.1 Write $\frac{(n!)^2}{(n-1)!(n-2)!}$ without using factorial notation.

$$(n!)^2 = n! \times n! = n(n-1)! \times n(n-1)(n-2)!$$

$$\therefore \frac{(n!)^2}{(n-1)!(n-2)!} = \frac{n(n-1)! \times n(n-1)(n-2)!}{(n-1)!(n-2)!} = n \cdot n(n-1) = n^3 - n^2.$$

- 2. The number of ways of arranging n distinct objects in a row is n!.
- 3. The number of permutations of r objects out of n distinct objects is given by

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

- 4. In permutations, the order matters. In combinations, the order does not matter.
- 5. The Binomial Theorem:

Theorem 1.4.1

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + b^n, \ n \in \mathbb{N}$$
$$= \sum_{r=0}^n \binom{n}{r}a^{n-r}b^r$$

Example 1.4.2 Find $(2x+3)^4$.

$$(2x+3)^4 = (2x)^4 + \binom{4}{1}(2x)^3(3)^1 + \binom{4}{2}(2x)^2(3)^2 + \binom{4}{3}(2x)(3)^3 + 3^4$$

= 16x⁴ + 96x³ + 216x² + 216x + 81

Example 1.4.3 Find the term independent of x in the expansion of $\left(x - \frac{2}{x^2}\right)^{12}$. General term: $\binom{12}{r}x^{12-r}\left(-\frac{2}{x^2}\right)^r$ Thus, the general expression for $x: x^{12-r-2r} = x^{12-3r}$ When 12 - 3r = 0, the term is independent of x: $12 - 3r = 0 \Rightarrow r = 4$.

$$\therefore \binom{12}{4} x^{12-4} \left(-\frac{2}{x^2}\right)^4 = 7920$$

1. The independent term should not involve x in it since the independent term does not vary as x varies. (constant term)

2. The coefficient should not include *x* as well.

Example 1.4.4 Find the coefficient of x^3y^2 **in the expansion of** $(2x + y) \left(x + \frac{y}{x}\right)^5$. Assume $2x \cdot A$ and $y \cdot B$ will yield the term x^3y^2 . $\Rightarrow A = x^2y^2$, $B = x^3y$. General term: $\binom{5}{r}x^{5-r}(\frac{y}{x})^r = \binom{5}{r}x^{5-2r}y^r$. When r = 2, $5 - 2r = 1 \neq 2 \Rightarrow x^2y^2$ is not possible. When r = 1, $5 - 2r = 3 \Rightarrow x^3y$ is possible.

$$\therefore \text{Coefficient} = \begin{pmatrix} 5\\1 \end{pmatrix} = 5.$$

Example 1.4.5 Find the coefficient of x^2 in the expansion of $(1-2x)(1-4x)^7$. Assume $1 \cdot A = x^2$, $-2x \cdot B = x^2$, $\Rightarrow A = x^2$, B = x. General term: $\binom{7}{r}(-4x)^{7-r}(1)^r$ When 7-r=2, r=5: $\binom{7}{5}(-4x)^2(1)^5 = 336x^2$. $\Rightarrow 1 \cdot 336x^2 = 336x^2$ When 7-r=1, r=6: $\binom{7}{6}(-4x)^1(1)^6 = -28x$. $\Rightarrow (-2x) \cdot (-28x) = 56x^2$

 \therefore Coefficient = 336 + 56 = 392.

6. AHL - Extension of Binomial Theorem:

Theorem 1.4.2

$$(a+b)^{n} = a^{n} \left(1 + \frac{b}{a}\right)^{n}$$

= $a^{n} (1+n \cdot \frac{b}{a} + \frac{n(n-1)}{2!} \left(\frac{b}{a}\right)^{2} + \frac{n(n-1)(n-2)}{3!} \left(\frac{b}{a}\right)^{3} + \cdots), n \in \mathbb{Q}, \left|\frac{b}{a}\right| < 1$

Example 1.4.6 Expand $\sqrt{1+2x}$ $(|x| < \frac{1}{2})$ and $\frac{2}{1-3x}$ $(|x| < \frac{1}{3})$ up to x^3 term.

$$(1+2x)^{\frac{1}{2}} = 1 + \frac{1}{2}(2x) + \frac{1}{2}\left(\frac{1}{2}-1\right)\frac{(2x)^2}{2!} + \frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)\frac{(2x)^3}{3!} + \cdots$$
$$= 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3 + \cdots$$

$$2(1-3x)^{-1} = 2(1-(-3x)-(-1-1)\frac{(-3x)^2}{2!}-(-1-1)(-1-2)\frac{(-3x)^3}{3!}+\cdots$$

= 2(1+3x+x^2+27x^3+\cdots)
= 2+6x+18x^2+54x^3+\cdots.

Example 1.4.7 Write the first three terms in the expansion of $(2+x)^{-3}$.

$$(2+x)^{-3} = 2^{-3} \left(1 + \frac{x}{2}\right)^{-3}$$

= $\frac{1}{8} \left(1 + (-3)\frac{x}{2} + (-3)(-3-1)\frac{2^2}{2 \cdot 2!} + \cdots\right)$
= $\frac{1}{8} \left(1 - \frac{3}{2}x + \frac{12}{4}x^2 + \cdots\right)$
= $\frac{1}{8} - \frac{3}{16}x + \frac{3}{8}x^2 + \cdots$

Example 1.4.8 Find square root of 24 correct to 5 decimal places, using the binomial theorem.

$$24^{\frac{1}{2}} = (25-1)^{\frac{1}{2}} = 25^{\frac{1}{2}} \left(1 - \frac{1}{25}\right)^{\frac{1}{2}}$$

= $5 \left(1 + \left(\frac{1}{2}\right) \left(-\frac{1}{25}\right) + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2!} \left(-\frac{1}{25}\right)^2 + \frac{\frac{1}{2\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)}}{3!} \left(-\frac{1}{25}\right)^3 + \cdots\right)$
= $5 \left(1 - \frac{1}{50} - \frac{1}{5000} - \frac{1}{250000} + \cdots\right)$
= $5(1 - 0.02 - 0.0002 - 0.000004)$
= 4.89898 (5 *d.p.*).

1.5 Partial Fraction

- 1. Proper fractions: The degree of the numerator is less than the degree of the denominator.
- 2. Partial fraction: A method to separate one complex fraction into two or simpler fractions.

Example 1.5.1 Find the partial fraction of $\frac{3x}{(x-1)(x+2)}$. Let $\frac{3x}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$. $\therefore 3x \equiv A(x+2) + B(x-1)$.

When x = 1, $3 = 3A \Rightarrow A = 1$. When x = -2, $-6 = -3B \Rightarrow B = 2$.

$$\therefore \frac{3x}{(x-1)(x+2)} \equiv \frac{1}{x-1} + \frac{2}{x+2}.$$

Example 1.5.2 Find the partial fraction of $\frac{2x+5}{(x-2)(x+1)}$. Let $\frac{2x+5}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$.

$$\therefore 2x + 5 \equiv A(x+1) + B(x-2).$$

When x = 2, $9 = 3A \Rightarrow A = 3$. When x = -1, $3 = -3B \Rightarrow B = -1$.

$$\therefore \frac{2x+5}{(x-2)(x+1)} \equiv \frac{3}{x-2} - \frac{1}{x+1}.$$

Example 1.5.3 Find the partial fraction of $\frac{34-12x}{3x^2-10x-8}$. As $\frac{34-12x}{3x^2-10x-8} = \frac{34-12x}{(3x+2)(x-4)}$, let $\frac{34-12x}{(3x+2)(x-4)} = \frac{A}{3x+2} + \frac{B}{x-4}$. $\therefore 34 - 12x \equiv A(x-4) + B(3x+2)$.

When x = 4, $-14 = 14A \Rightarrow B = -1$.

When $x = -\frac{2}{3}$, $42 = -\frac{14}{3}A \Rightarrow A = -9$.

$$\therefore \frac{34 - 12x}{(3x + 2)(x - 4)} \equiv -\frac{9}{3x + 2} - \frac{1}{x - 4}.$$

1.6 Complex Number

1.6.1 Introduction

1. Complex Number:

Definition 1.6.1 Complex Numbers are numbers in the form of a + bi, where $i^2 = -1$.

- *a* is called the **real part**, denoted as Re(a+bi) = a.
- *b* is called the **imaginary part**, denoted as Im(a+bi) = b.

a + bi is called the Cartesian form of complex number.

- 2. Basic Calculations of Complex Number:
 - Define $z_1 = a + bi$ and $z_2 = c + di$:

$$z_1 \pm z_2 = (a \pm c) + (b \pm d)\mathbf{i}.$$

• Define $z_1 = a + bi$ and $z_2 = c + di$:

$$z_1 z_2 = (ac - bd) + (ad + bc)\mathbf{i}.$$

Proof 1.6.1

$$z_1 z_2 = (a+b\mathbf{i})(c+d\mathbf{i})$$

= $ac + (ad+bc)\mathbf{i} + bd\mathbf{i}^2$ [$\mathbf{i}^2 = -1$]
= $(ac-bd) + (ad+bc)\mathbf{i}$.

• Conjugate complex number:

Definition 1.6.2 We call a - bi as the **conjugate** of z = a + bi, denoted as $z^* = a - bi$. **Theorem 1.6.1** Define $z_1 = a + bi$, and z^* is the conjugate of z_1 . Then,

$$z_1 z^* = a^2 + b^2$$
.

Proof 1.6.2 By definition, $z^* = a - bi$. Thus,

$$z_1 z^* = (a + bi)(a - bi)$$
$$= a^2 - (bi)^2$$
$$= a^2 + b^2.$$

• Define $z_1 = a + bi$ and $z_2 = c + di$:

$$\frac{z_1}{z_2} = \frac{ac+bd}{c^2+d^2} - \frac{bc-ad}{c^2+d^2}i.$$

Proof 1.6.3

$$\frac{z_1}{z_2} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)}$$
$$= \frac{(ac+bd) - (bc-ad)i}{c^2+d^2}$$
$$= \frac{ac+bd}{c^2+d^2} - \frac{bc-ad}{c^2+d^2}i.$$

Example 1.6.1 Find $z \in \mathbb{C}$ that satisfies the equation $\frac{z+2}{1-i} = \frac{z-3i}{2+i}$.

$$(z+2)(2+i) = (z-3i)(1-i)$$

$$z(2+i)+4+2i = z(1-i)-3i+(3i)^{2}$$

$$z(2+i-1+i) = -3i-3-4-2i$$

$$z(1+2i) = -7-5i$$

$$z = \frac{-7-5i}{1+2i} = -\frac{17}{5} + \frac{9}{5}i.$$

3. If s = a + bi and t = c + di, then:

$$\operatorname{Re}(s) + \operatorname{Re}(t) = \operatorname{Re}(s+t)$$
; and $\operatorname{Im}(i \cdot s) = \operatorname{Re}(s)$.

1.6.2 Argand Diagram

1. The Complex Plane:

z = a + bi can be represented on a complex plane with real coordinate *a* and imaginary coordinate *b*. It can also be denoted as z(a,b).

• Modulus of a complex number:

$$|z| = \sqrt{a^2 + b^2}.$$

• Argument of a complex number:

$$\operatorname{Arg}(z) = \arctan\left(\frac{b}{a}\right)(+k\pi) \to \arctan x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

*When determine a complex number, first draw it on the plane to show which quadrant it is in.

The range of argument is $[0, 2\pi]$ or $[-\pi, \pi]$.

• Use modulus and argument to express a complex number:

$$a = |z| \cdot \cos \theta;$$
$$b = |z| \cdot \sin \theta.$$

2. If z = a + bi and |z| = 1, then $z^* = z^{-1}$.

Proof 1.6.4

$$\therefore |z| = 1$$

$$\therefore \sqrt{a^2 + b^2} = 1$$

$$\therefore a^2 + b^2 = 1$$

Method 1

•

RHS =
$$z^{-1} = \frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)}$$

= $\frac{a-bi}{a^2+b^2} = a-bi$
= $z^* = LHS$.
 $z \cdot z^* = (a+bi)(a-bi)$
= a^2+b^2
= $|z|^2 = 1$
 $\therefore z^* = z^{-1}$

- 3. When $|z| \neq 1$, $z^* = \frac{|z|^2}{z}$, and $z^{-1} = \frac{z^*}{|z|^2}$.
- 4. Properties of modulus and arguments: For complex number *s* and $t \in \mathbb{C}$:

$$|st| = |s||t|$$

$$\left|\frac{s}{t}\right| = \frac{|s|}{|t|}$$

$$\operatorname{Arg}(st) = \operatorname{Arg}(s) + \operatorname{Arg}(t) + 2k\pi$$

$$\operatorname{Arg}\left(\frac{s}{t}\right) = \operatorname{Arg}(s) - \operatorname{Arg}(t) + 2k\pi$$

1.6.3 Complex Number in Other Forms

•

1. The Polar Form (Modulus-Argument Form):

$$z = r(\cos\theta + i\sin\theta) = r\mathrm{cis}\theta$$

Proof 1.6.5 According to the Argand Diagram:

$$z = x + yi = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta).$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$

- 2. de Movrie's Theorem:
 - By Maclaurin Series:

$$e^{i\theta} = \operatorname{cis}\theta = \cos\theta + i\sin\theta.$$

• Exponential form of complex number:

$$z = re^{i\theta} = rcis\theta.$$

- Cartesian Form: Addition and Subtraction Modulus-Argument Form: Multiply and Division Exponential Form: Exponents and Roots
- 4. Since $\operatorname{cis}\theta = \operatorname{cis}(\theta + 2k\pi)$,

$$re^{i\theta} = re^{i(\theta + 2k\pi)}$$
.

Example 1.6.2 Find $e^{i\frac{17\pi}{12}}$ in the form of Cartesian.

$$e^{i\frac{17\pi}{12}} = e^{i\left(\frac{7\pi}{6} + \frac{\pi}{4}\right)} = e^{i\frac{7\pi}{6}} \cdot e^{i\frac{\pi}{4}}$$
$$= \operatorname{cis}\left(\frac{7\pi}{6}\right) \cdot \operatorname{cis}\left(\frac{\pi}{4}\right)$$
$$= \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = \frac{\sqrt{2} - \sqrt{6}}{4} - \frac{\sqrt{2} + \sqrt{6}}{4}i$$

1.6.4 Power of Complex Number

1. For a complex number $z = re^{i\theta}$,

$$z^n = r^n e^{in\theta}.$$

Example 1.6.3 Find $(3\cos\frac{2\pi}{3} - 3i\sin\frac{\pi}{3})^3$

$$\left(3\cos\frac{2\pi}{3} - 3i\sin\frac{\pi}{3}\right)^3 = \left(-3\cos\frac{\pi}{3} - 3i\sin\frac{\pi}{3}\right)^3$$
$$= \left(-3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right)^3$$
$$= (-3)^3(e^{i\frac{\pi}{3}})^3$$
$$= -27e^{i\pi}$$
$$= -27(-1) = 27.$$

Key learnings:

1. z = 3 is only the fundamental root of equation $z^3 = 27$. In \mathbb{C} , there are other two complex roots that satisfy the equation.

2. In \mathbb{C} , $\sqrt{4} = \pm 2 = 2 + 0 \cdot i$ or $-2 + 0 \cdot i$.

Example 1.6.4 Given a complex number $\omega \neq 1$ is one of the solutions of $z^3 = 1$. a. Prove $\omega^2 + \omega + 1 = 0$; b. Calculate $\omega^{2019} + \omega^{2020} + \omega^{2021} + \omega^{2022}$.

(a) Approach A

$$\therefore \omega^{3} = 1$$

$$\therefore \omega^{3} - 1 = 0 \Rightarrow (\omega - 1)(\omega^{2} + \omega + 1) = 0$$

$$\therefore \omega \neq 1$$

$$\therefore \omega^{2} + \omega + 1 = 0.$$

Approach B $\omega^2 + \omega + 1 = 0$ is a geometric sequence, $u_1 = 1$, $r = \omega$:

$$S_3 = \frac{u_1(1-r^3)}{1-r} = \frac{1-\omega^3}{1-\omega} = \frac{0}{1-\omega} = 0.$$

(b)

$$\omega^{2019} + \omega^{2020} + \omega^{2021} + \omega^{2022} = \omega^{2019} \times (1 + \omega + \omega^2 + \omega^3)$$

= $\omega^{2019}(0+1) = \omega^{2019}$
= $(\omega^3)^{673} = 1.$

Example 1.6.5 Find:

a. 1^i ; b. $\ln(-1)$; c. $\ln(-c)$, where c is a constant.

(a)

$$1 = e^{i2\pi} \Rightarrow 1^{i} = (e^{i2\pi})^{i} = e^{-2\pi}. \quad (1^{i} = e^{-2k\pi}, k \in \mathbb{Z})$$

(b)

$$-1 = e^{\mathrm{i}\pi} \Rightarrow \ln(-1) = \ln\left(e^{\mathrm{i}\pi}\right) = \mathrm{i}\pi.$$

(c)

$$\ln(-c) = \ln[(-1) \cdot c] = \ln(-1) + \ln(c) = \ln(c) + i\pi.$$

1.6.5 Polynomial Function with Complex Roots

1. Conjugate Pair Theorem:

Theorem 1.6.2 If z is a complex root of P(x), then the conjugate of $z(z^*)$ is also a complex root of P(x). (P(x) should be a polynomial with rational coefficients.)

2. Properties of Conjugate.

• $(s\pm t)^* = s^* \pm t^*$ • $(st)^* = s^* t^*$ • $\left(\frac{s}{t}\right)^* = \frac{s^*}{t^*}$

1.6.6 Root of Complex Numbers

1. The Root of Unity:

Theorem 1.6.3 For any complex equation $\omega^n = 1$, there are *n* distinct roots:

$$1 = e^{\mathrm{i}(0+2k\pi)} = \omega^n, \ k \in \mathbb{Z} \quad \Rightarrow \quad \omega = e^{\mathrm{i}\frac{2k\pi}{n}}, \ k \in \mathbb{Z}.$$

Example 1.6.6 Solve $z^3 = 8$.

$$z^{3} = 8 \cdot 1 = 8e^{i(0+2k\pi)} \implies z = 2e^{i\frac{2k\pi}{3}}, k \in \mathbb{Z}$$
$$k = 0: z = 2$$
$$k = 1: z = 2e^{i\frac{2\pi}{3}} = 2\operatorname{cis}\left(\frac{2\pi}{3}\right) = -1 + \sqrt{3}i$$
$$k = 2: z = 2e^{i\frac{4\pi}{3}} = 2\operatorname{cis}\left(\frac{4\pi}{3}\right) = -1 - \sqrt{3}i$$

2. Property of $cis\theta$:

$$\operatorname{cis}(-\theta) = \cos\theta - \mathrm{i}\sin\theta$$

Proof 1.6.6

$$\cos \theta - i \sin \theta = \cos(-\theta) + i \sin(-\theta)$$
$$= \operatorname{cis}(-\theta).$$

2 Functions

2.1 Foundations of Functions

1. Relations and functions:

Definition 2.1.1 A relation *R* is a set of ordered pairs (x, y) such that $x \in A$, $y \in B$, and sets *A*, *B* are not empty.

Definition 2.1.2 A function *f* is a relation in which every *x*-value has a unique *y*-value.

2. Domain and Range:

Definition 2.1.3 Domain is the set of *x*-values.

Definition 2.1.4 Range is the set of *y*-values.

- Domain and Range should be in interval notation.
 - (a) Using intervals to express the inequalities

Example 2.1.1

[3,4] means $3 \le x < 4$

(b) If the interval will be joint, we use \cup to join the interval.

Example 2.1.2

$$3 < x < 4 \text{ or } x \ge 5 \implies]3,4[\cup[5,+\infty[$$

Example 2.1.3 Find the interval notation for the domain of $f(x) = \frac{1}{2}$.

$$x \in \left] - \infty, 0 \right[\cup \left] 0, + \infty \right[\text{ OR } x \in \mathbb{R} \setminus 0 \right]$$

Note: \setminus means "exclude."

- Since the *y*-values (outputs) depend on the *x*-values (inputs), *y* is the **dependent variable**, and *x* is the **independent variable**.
- The independent variable *x* is also called the **argument** of the function.
- 3. Vertical Line test:
 - To test whether a relation is a function.
 - Since every x has one and only one value of y, there should be only one intersects.
- 4. Inverse of a function:

Definition 2.1.5 $f^{-1}(x)$ is the **inverse function** of f(x).

Example 2.1.4 $f(1) = 3 \Rightarrow f^{-1}(3) = 1; f(x) = x + 5 \Rightarrow f^{-1}(x) = x - 5$

- In inverse function, the input becomes the output, the output becomes the input.
- In inverse function, the domain becomes the range, the range becomes the domain.

Example 2.1.5 (a) Find the inverse function of $y = \frac{x+2}{3}$.

$$3y = x + 2 \Rightarrow x = 3y - 2$$
$$f^{-1}(x) = 3x - 2$$

(b) Find the inverse function of $f(x) = \frac{x}{x+1}$.

$$y = \frac{x}{x+1} \Rightarrow xy + y = x \Rightarrow xy + x = y$$
$$\therefore y(x-1) = -x \Rightarrow y = -\frac{x}{x-1}$$

(c) Find the inverse of $\{.(4,2), (0,2), (-2,2)\}$

Inverse:
$$\{(2,4), (2,0), (2,-2)\}$$

• By restricting the domain, we can find $f^{-1}(x)$ of f(x), if the direct inverse of f(x) is not a function.

Example 2.1.6 Horizontal line test: The largest domain we can find $f^{-1}(x)$ is $x \le 0$ or x > 0.

5. Composite Functions:

Definition 2.1.6 We use $(g \circ h)(x)$ or g(h(x)) to represent composite functions.

Example 2.1.7 Given $f: x \mapsto 3x - 6$, $g: x \mapsto \frac{1}{3}x + 2$. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$(f \circ g)(x) = f(g(x)) = 3(\frac{1}{3}x + 2) - 6 = x.$$
$$(g \circ f)(x) = g(f(x)) = \frac{1}{3}(3x - 6) + 2 = x.$$

When f and g are inverse functions:

$$(f \circ g)(x)(x) = x = (g \circ f)(x).$$

6. f(x) and $f^{-1}(x)$ are symmetrical to y = x since $D_f = R_{f^{-1}}$, $R_f = D_{f^{-1}}$. That is, if f(x) passes through (a,b), $f^{-1}(x)$ passes through (b,a).

2.2 Quadratic Functions

1. The Standard Form:

$$y = ax^2 + bx + c,$$

where *a* is the coefficient of x^2 , *b* is the coefficient of x, and *c* is the constant or *y*-intercept. $a,b,c \neq 0$.

• Zeros of the function (*x*-intercepts):

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

where $\Delta = b^2 - 4ac$ is the discriminant of the function.

• Equation of the line of symmetry & *x*-coordinate of the vertex

$$x = -\frac{b}{2a}.$$

• Vieta's Formula:

Theorem 2.2.1 Assume x_1 , x_2 are two roots for equation $ax^2 + bx + c = 0$ ($a \neq 0$), then

$$x_1 + x_2 = -\frac{b}{a};$$
$$x_1 \cdot x_2 = \frac{c}{a}.$$

- When a > 0, the parabola opens upwards.
 When a < 0, the parabola opens downwards.
- 2. Completion of square:

$$x^{2} + px + \left(\frac{p}{2}\right)^{2} - \left(\frac{p}{2}\right)^{2} = \left(x + \frac{p}{2}\right)^{2} - \left(\frac{p}{2}\right)^{2}.$$

3. The Vertex Form:

 $y = a(x-h)^2 + k$, where (h,k) is the vertex.

Example 2.2.1 Given that $f(x) = ax^2 + bx + c$, find the axis of symmetry and vertex.

$$f(x) = a\left(x^2 + \frac{b}{a}x\right) + c$$

= $a\left[x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2\right] + c - \frac{b^2}{4a}$
= $a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$.
 \therefore axis of symmetry: $x = -\frac{b}{2a}$
vertex: $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$.

2.3 Higher Order Polynomial Functions

1. Factor Theorem:

Theorem 2.3.1 If (x-a) is a factor of a polynomial P(x), then x = a must be a root for $P(x) \Rightarrow P(a) = 0$.

Proof 2.3.1 Assume the quotient when P(x) is divided by (x - a) is Q(x), then $P(x) = Q(x) \cdot (x - a)$. Then, $P(a) = Q(a) \cdot (a - a) = 0$.

2. Long division: solving polynomial equation.

Example 2.3.1 For a cubic function, $P(x) = 2x^3 + bx^2 + cx + d$, P(1) = P(2) = P(3) = 2. What is P(0)? Since P(1) = P(2) = P(3) = 2, Q(1) = Q(2) = Q(3) = 0, where Q(x) = P(x) - 2. Thus, Q(x) = 2(x-1)(x-2)(x-3).

∴
$$P(x) = Q(2) + 2 = 2(x - 1)(x - 2)(x - 3) + 2.$$

$$\therefore P(0) = 2(-1)(-2)(-3) + 2 = -10.$$

3. Remainder Theorem:

Theorem 2.3.2 When a polynomial P(x) is divided by (ax-b), the remainder *R* of this division must be

$$P\left(\frac{b}{a}\right).$$

Proof 2.3.2 Assume the quotient is Q(x), and the reminder is *R*:

$$P(x) = (ax - b)Q(x) + R.$$
$$P\left(\frac{b}{a}\right) = 0 \cdot Q(X) + R = R.$$

4. Roots of Cubic Functions:

Theorem 2.3.3 For a cubic function $f(x) = ax^3 + bx^2 + cx + d$, given the roots of it are α , β , and γ . Then,

$$\begin{cases} \alpha + \beta + \gamma = -\frac{b}{a} \Rightarrow \sum \alpha = -\frac{b}{a} \\ \alpha \beta + \alpha \gamma + \beta \gamma = \frac{c}{a} \Rightarrow \sum \alpha \beta = \frac{c}{a} \\ \alpha \beta \gamma = -\frac{d}{a} \Rightarrow \sum \alpha \beta \gamma = -\frac{d}{a} \end{cases}$$

Proof 2.3.3 Since α , β , γ are roots of f(x),

$$f(x) = a(x - \alpha)(x - \beta)(x - \gamma).$$

So $a(x - \alpha)(x - \beta)(x - \gamma) = ax^3 + bx^2 + cx + d$,
i.e., $ax^3 - a(\alpha + \beta + \gamma)x^2 + a(\alpha\beta + \alpha\gamma + \beta\gamma)x - a\alpha\beta\gamma = ax^3 + bx^2 + cx + d$.
 $\Rightarrow \alpha + \beta + \gamma = -\frac{b}{a}, \alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}, \alpha\beta\gamma = -\frac{d}{a}.$

Theorem 2.3.4

$$\sum \alpha = -\frac{b}{a}, \ \sum \alpha \beta = \frac{c}{a}, \ \sum \alpha \beta \gamma = -\frac{d}{a}, \ \sum \alpha \beta \gamma \delta = \frac{e}{a}.$$

2.4 Rational Functions

- 1. Reciprocal Functions: $f(x) = \frac{1}{x}$.
 - Domain: $x \in \mathbb{R}, x \neq 0$
 - As x increases, $\frac{1}{x}$ decreases $\Rightarrow x \to \infty, \frac{1}{x} \to 0$.
 - Range: $y \in \mathbb{R}, y \neq 0$
 - **Asymptotes**: x = 0, y = 0.
 - Axis of symmetry: y = x, y = -x.
 - Self-inversing function: have axis of symmetry y = x.

$$f(x) = f^{-1}(x).$$

2. $y = \frac{a}{bx+c}$

- Vertical asymptotes (V.A.): bx + c = 0
- Horizontal asymptotes (H.A.): y = 0

Example 2.4.1 Draw the diagram of $y = \frac{5}{3x-1}$. *x*-intercept: $0 = \frac{5}{3x-1} \Rightarrow$ no solution, no intercept. H.A.: y = 0

3.
$$y = \frac{ax+b}{cx+d}$$

• V.A.:
$$cx + d = 0$$

• H.A.:
$$y = \frac{a}{c}$$

4.
$$y = \frac{ax+b}{cx^2+dx+e}$$

• V.A.: $cx^2 + dx + e = 0$
• H.A.: As $x \to \pm \infty$, $\frac{ax}{cx^2} \to 0$, $y = 0$
• Intercepts: $\left(0, \frac{e}{c}\right), \left(-\frac{e}{d}, 0\right)$

Example 2.4.2 Draw the diagram of $y = \frac{2x-6}{x^2-3x-4}$. Intercept: $\left(0,\frac{3}{2}\right)$, (3,0) H.A.: y = 0V.A.: x = -1, x = 4

Example 2.4.4 Draw the diagram of $y = \frac{x-6}{x^2+2x+3}$. Intercept: (6,0), (0,-2) When $x \to \infty$, f(x) is positive. When $x \to -\infty$, f(x) is negative.

$$5. \ y = \frac{ax^2 + bx + c}{dx + e}$$

- V.A.: dx + e = 0
- **Oblique Asymptote**: Quotient of $(ax^2 + bx + c)$ divided by (dx + e).
- Intercepts: $\left(0, \frac{c}{e}\right), ax^2 + bx + c = 0$

Example 2.4.5 Draw the diagram of $y = \frac{x^2 + 3x + 2}{x - 2}$. Intercept: (0, -1), (-1,0), (-2,0) V.A.: x = 2O.A.: y = x + 5 (Use long division)

Example 2.4.6 Draw the diagram of $y = \frac{x^2 - x - 2}{x - 1}$. Intercept: (0,2), (2,0), (-1,0) V.A.: x = 1O.A.: y = x (Use long division)

- 6. When the function has asymptotes:
 - Denominator = 0;
 - $\log_a 0$ (argument of a logarithm is 0)

2.5 Transformation of Functions

1. Translation:

- f(x+n) means translate f(x) *n* units to the left.
- f(x-n) means translate f(x) n units to the right.
- f(x) + n means translate f(x) n units upwards.
- f(x) n means translate f(x) n units downwards.
- 2. Use translation vector to represent translation:

A vector $\begin{pmatrix} a \\ b \end{pmatrix}$ means a units in the horizontal axis and b units in the vertical axis.

Example 2.5.1 A translation vector $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$ means f(x+2)+3, 2 units to the left and 3 units upwards.

3. **Reflections**:

- f(-x) reflects in the *y*-axis.
- -f(x) reflects in the *x*-axis.

- $f^{-1}(x)$ reflects in the y = x.
- -f(-x) reflects in the origin.
- 4. Stretches:
 - f(qx) is a horizontal stretch of a scale factor of $\frac{1}{a}$.
 - pf(x) is a vertical stretch of a scale factor of p.
- 5. When a graph is transforming, the points shift but the connection remains.
- 6. Sequence of transformation:
 - Do the horizontal translation before the horizontal stretch.
 - The vertical translation is always after the vertical stretch.
 - Vertical stretch \rightarrow Reflection \rightarrow Horizontal translation \rightarrow Horizontal stretch \rightarrow Vertical translation

7. Modulus Function

• |f(x)|: Fold everything below *x*-axis above *x*-axis.

Example 2.5.2

• f(|x|): Reflect everything on the right of y-axis to the left. Since |x| must be positive, $|x| = |-x| \Rightarrow f(-x) = f(x)$, which is an even function.

Example 2.5.3

- 8. Reciprocal of f(x)
 - Table of Summary:

f(x)	$g(x) = \frac{1}{x}$
f(a) = 0	Line $x = a$ is vertical asymptote
Line $x = a$ is vertical asymptote	g(a) = 0
$f(x) \to \infty$	g(x) ightarrow 0
f(x) ightarrow 0	$g(x) ightarrow \infty$
Line $y = b$ is horizontal asymptote	Line $y = \frac{1}{b}$ is horizontal asymptote
f(x) = a	$g(x) = \frac{1}{a}$

• When f(x) increases, g(x) decreases.

2.6 Exponential and Logarithmic Functions

- 1. Exponential functions:
 - $f(x) = a^x$, a > 1 (increasing) and 0 < a < 1 (decreasing).

• $f(x) = a^x$ and $g(x) = \left(\frac{1}{a}\right)^x$ are symmetric to the y-axis.

Proof 2.6.1

$$g(x) = \left(\frac{1}{a}\right)^x = (a^{-1})^x = a^{-x} = f(-x).$$

- Domain: $x \in \mathbb{R}$, Range: y > 0
- Common point: (0,1); common H.A.: y = 0

• Graph:

- 2. Logarithmic functions:
 - $f(x) = \log_a x = g^{-1}(x), g(x) = a^x$.
 - Common point: (1,0); common V.A.: x = 0.
 - $f(x) = \log_a x$ and $g(x) = \log_{\frac{1}{a}} x$ are symmetric to the *x*-axis.

Proof 2.6.2

$$\log_{\frac{1}{a}} x = \frac{\log_a x}{\log_{\frac{1}{a}} a} = \frac{\log_a x}{-1} = -\log_a x,$$

$$\therefore g(x) = \log_{\frac{1}{a}} x = -\log_a x = -f(x).$$

- When a > 1, increasing function; when 0 < a < 1, decreasing function.
- Domain: x > 0, Range: $y \in \mathbb{R}$
- Graph:

- 3. Solving logarithmic equations.
- 4. Solving exponential equations: take logarithm on both sides.

3 Trigonometry and Geometry

3.1 Trigonometry

3.1.1 Radian

1. Radian as the unit of angle:

•

$$\pi$$
 rad = 180°

- rad can be omitted. i.e., $\widehat{A} = 1$ means angle A is 1 radian.
- Unit conversion:

degree
$$\times \frac{\pi}{180^{\circ}}$$
 = radian; radian $\times \frac{180^{\circ}}{\pi}$ = degree.

2. Arc:

• The **circumference** (perimeter) is $2\pi r$.

- If the angle of the arc is θ (in radian), the length of $\operatorname{arc}(l) = r \cdot \theta$.
- The area of a sector:

$$A=\frac{1}{2}r^2\theta.$$

• The area of a segment:

$$A = \frac{1}{2}r^2(\theta - \sin\theta).$$

(Proof: the area of the triangle according to the sine rule is $\frac{1}{2}ab\sin C$)

3.1.2 Solution of Triangle

1. Define sine, cosine, and tangent:

Definition 3.1.1

$$\sin A = \frac{a}{c}, \ \sin B = \frac{b}{c};$$
$$\cos A = \frac{b}{c}, \ \cos B = \frac{a}{c};$$
$$\tan A = \frac{a}{b}, \ \tan B = \frac{b}{a}.$$

2. The Sine Rule:

Theorem 3.1.1

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

- The bigger the angle, the longer the side.
- Area of a triangle:

$$A = \frac{1}{2}ab\sin C.$$

3. The Cosine Rule:

Theorem 3.1.2

$$b^{2} + c^{2} - a^{2} = 2bc \cdot \cos A;$$

 $a^{2} + c^{2} - b^{2} = 2ac \cdot \cos B;$
 $a^{2} + b^{2} - c^{2} = 2ab \cdot \cos C.$

4. Inverse Trigonometric Functions:

Definition 3.1.2

$$\sin^{-1}\theta = \arcsin\theta;$$

$$\cos^{-1}\theta = \arccos\theta;$$

$$\tan^{-1}\theta = \arctan\theta.$$

5. Ambiguity of Sine Rule:

$$\sin\theta = \sin(180^\circ - \theta) \text{ OR } \sin\theta = \sin(\pi - \theta).$$

6. Angle of Elevation and Depression:

Definition 3.1.3 • **Angle of Elevation** is the angle "up" from horizontal.

- Angle of Depression is the angle "down" from horizontal.
- 7. Bearing:
 - Bearing is a way of describing direction.
 - All bearings are measured clockwise from the North direction.

• Bearing of *A* from *B*: construct at *B*. N.B.: Bearing of *A* from *B* is different from bearing of *B* from *A*.

3.1.3 Definition of Trigonometric Function

- 1. Unit Circle:
 - Center at (0,0) with a radius of 1.

- If an angel θ opens in a counterclockwise direction, then θ is positive.
 If an angle θ opens in a clockwise direction, then θ is negative.
- In the diagram, $\theta = \theta + 2k\pi$, $k \in \mathbb{Z}$.

$$\sin \theta = \frac{PN}{OP} = \frac{y}{1} = y;$$
$$\cos \theta = \frac{ON}{OP} = \frac{x}{1} = x;$$
$$\tan \theta = \frac{PN}{ON} = \frac{y}{x} = \frac{\sin \theta}{\cos \theta};$$

• In Q_1 and Q_2 , sin θ will be positive. In Q_1 and Q_4 , cos θ will be positive. In Q_1 and Q_3 , tan θ will be positive. \Rightarrow CAST:

2. Special Angles:

•

$$\tan 0^{\circ} = \frac{\sin 0^{\circ}}{\cos 0^{\circ}} = 0$$
$$\sin 0^{\circ} = 0 = \cos 90^{\circ}$$
$$\sin 30^{\circ} = \frac{1}{2} = \cos 60^{\circ}$$
$$\tan 30^{\circ} = \frac{\sin 30^{\circ}}{\cos 30^{\circ}} = \frac{\sqrt{3}}{3}$$
$$\sin 45^{\circ} = \frac{\sqrt{2}}{2} = \cos 45^{\circ}$$
$$\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = 1$$
$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} = \cos 30^{\circ}$$
$$\tan 90^{\circ} = 1 = \cos 0^{\circ}$$
$$\tan 90^{\circ} = \frac{\sin 90^{\circ}}{\cos 90^{\circ}} = \infty$$

- 3. Relative Acute Angles (RAA):
 - Acute angle is the angle with *x*-axis.
 - The absolute value of angles have the same acute angle is the same.

Example 3.1.1 (a) 30° , 150° , 210° , 330° have the same acute angle. $\therefore |\sin 30^{\circ}| = |\sin 150^{\circ}| = |\sin 210^{\circ}| = |\sin 330^{\circ}|$.

(b)

 $\tan 220^{\circ} = \tan 40^{\circ}; \cos 215^{\circ} = -\cos 35^{\circ}$

3.1.4 Trigonometric Identity

1. Pythagorean's Identity:

$$\sin^2\theta + \cos^2\theta \equiv 1.$$

Proof 3.1.1

$$a^{2} + b^{2} = c^{2} \Rightarrow \frac{a^{2}}{c^{2}} + \frac{b^{2}}{c^{2}} = 1$$
$$\Rightarrow \sin^{2}\theta + \cos^{2}\theta = 1.$$

2. Definition of Tangent:

$$\tan \theta = \frac{\sin \theta}{\cos \theta};$$
$$\cot \theta = \frac{1}{\tan \theta};$$
$$\sec \theta = \frac{1}{\cos \theta};$$
$$\csc \theta = \frac{1}{\sin \theta}.$$

3. Extended Pythagorean's Identity:

$$\tan^2 \theta + 1 = \sec^2 \theta;$$
$$\cot^2 \theta + 1 = \csc^2 \theta.$$

Proof 3.1.2

$$\sin^2 \theta + \cos^2 \theta = 1 \Rightarrow \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} \Rightarrow \tan^2 + 1 = \sec^2 \theta;$$
$$\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta} \Rightarrow \cot^2 \theta + 1 = \csc^2 \theta.$$

N.B.: a reflex angle is an angle bigger than 180° , smaller than 360° .

- 4. Compound Angle Formula:
 - $\cos(A+B) = \cos A \cos B \sin A \sin B;$ $\cos(A-B) = \cos A \cos B + \sin A \sin B;$ $\sin(A+B) = \sin A \cos B + \cos A \sin B;$ $\sin(A-B) = \sin A \cos B - \cos A \sin B;$

Example 3.1.2 Find the exact value of $\cos \frac{\pi}{12}$.

$$\cos\frac{\pi}{12} = \cos\frac{\pi}{4} - \frac{\pi}{6}$$

= $\cos\frac{\pi}{4}\cos\frac{\pi}{6} + \sin\frac{\pi}{4}\sin\frac{\pi}{6}$
= $\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}.$
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$

Proof 3.1.3

$$\tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$
$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}}$$
$$= \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$
$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}.$$

- 5. In the linear function y = mx + b, $m = \tan \theta$, where θ is the angle between the line and the positive *x*-axis.
- 6. Double Angle Formula:

$$\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta;$$

$$\sin (2\theta) = 2\sin \theta \cos \theta;$$

$$\tan (2\theta) = \frac{2\tan \theta}{1 - \tan^2 \theta}.$$

7. Proving Identities.

3.1.5 Trigonometric Functions and Transformation

1. Sine: Odd function: $\sin(-x) = -\sin x$.

T(Period) =
$$2\pi$$
;

Base line = 0;
Amplitude =
$$\left|\frac{y_{\text{max}} - y_{\text{min}}}{2}\right| = 1;$$

Range: $\sin x \in [-1, 1];$

Domain: $x \in \mathbb{R}$.
2. Cosine: Even function: $\cos(-x) = \cos x$.

T(Period) = 2π ; Base line = 0; Amplitude = $\left|\frac{y_{\text{max}} - y_{\text{min}}}{2}\right| = 1$; Range: $\cos x \in [-1, 1]$;

Domain: $x \in \mathbb{R}$.

3. Tangent:

T(Period) = π ;

No amplitude(A);

V.A.:
$$x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z};$$

Range:
$$\tan x \in \mathbb{R}$$
;
Domain: $x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$.

4. Transformation of Sine and Cosine:

$$y = A \sin(\omega(x - \varphi)) + h.$$

- Horizontal stretch with the scale factor of $\frac{1}{\omega}$. \Rightarrow changes $T = \frac{2\pi}{\omega}$.
- Horizontal translate to the right φ units. \Rightarrow changes the initial point to $(\varphi, 0)$.
- Vertical stretch with a scale factor of A. \Rightarrow changes the amplitude= |A|.
- Vertical translation of *h* units upwards. \Rightarrow changes the equilibrium position y = h.
- Range of $y = A \sin(\omega(x \varphi)) + h$: $y \in [h A, h + A]$.

$$y = A\cos(\omega(x-\varphi)) + h$$

- Horizontal stretch with the scale factor of $\frac{1}{\omega}$. \Rightarrow changes $T = \frac{2\pi}{\omega}$.
- Horizontal translate to the right φ units. \Rightarrow changes the initial point to $(\varphi, 1)$.
- Vertical stretch with a scale factor of A. \Rightarrow changes the amplitude= |A|, initial point (φ, A) .
- Vertical translation of *h* units upwards. \Rightarrow changes the equilibrium position y = h, initial point $(\varphi, A + h)$.
- 5. Cotangent:

V.A.: $x = k\pi$

Period: π Pass through $\left(\frac{\pi}{2} + k\pi, 0\right)$

6. Cosecant:

Domain: $x \neq k\pi$ Range: $y \in]-\infty, -1[\cup]1, +\infty[$

Domain: $x \neq \frac{\pi}{2} + k\pi$ Range: $y \in]-\infty, -1[\cup]1, +\infty[$

- 8. When drawing the graph of secx and $\csc x$, draw cosx and $\sin x$ first.
- 9. Conversion between sine and cosine:

•

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
$$\cos\left(\frac{\pi}{2} + x\right) = \cos\left[\pi - \left(\frac{\pi}{2} - x\right)\right] = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x$$
$$\sin\left(\frac{\pi}{2} + x\right) = \sin\left[\pi - \left(\frac{\pi}{2} - x\right)\right] = \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

3.1.6 Solving Trigonometric Functions

- 1. Solving Trigonometric Functions in Paper 1:
 - Values of special angles
 - From relative acute angles and CAST rule
 - Modification of period
 - Check the solution with domain

Example 3.1.3 Solve for $\cos x = \frac{\sqrt{3}}{2}$ **for** $0 < x < 3\pi$ **.**

Consider $x \in [0, 2\pi]$

$$x=\frac{\pi}{6},\frac{11\pi}{6}.$$

In the domain of $x \in [0, 3\pi]$,

Another solution is
$$\frac{13\pi}{6}$$
.

2. Transformed Trigonometric Equations:

Example 3.1.4 Solve $6\sin\left(2\left(x-\frac{\pi}{6}\right)\right) - 2 = 1, \ \frac{\pi}{6} < x < 2\pi.$

$$\sin\left(2\left(x-\frac{\pi}{6}\right)\right) = \frac{1}{2}.$$
Let $t = 2\left(x-\frac{\pi}{6}\right)$:
 $\therefore \frac{\pi}{6} < x < 2\pi,$

 $\therefore 0 < 2\left(x-\frac{\pi}{6}\right) < \frac{11\pi}{3}, \ 0 < t < \frac{11\pi}{3}.$

$$\sin t = \frac{1}{2} \Rightarrow t = \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}, \ \frac{17\pi}{6};$$

$$\Rightarrow x = \frac{\pi}{4}, \ \frac{7\pi}{12}, \ \frac{5\pi}{4}, \ \frac{19\pi}{12}.$$

- 3. Solving Trigonometric Functions in Paper 2:
 - Change mode to RADIAN.

- Plot the functions.
- Adjust the window.
- Calculate the intersects.
- Repeat step 4 if necessary.

3.1.7 Inverse Trigonometric Functions

1. Inverse Trigonometric Function:

•	$y = \arcsin x$
•	$y = \arccos x$
•	$y = \arctan x$
•	$\operatorname{arcsec} x = \operatorname{arccos} \left(\frac{1}{x}\right)$
•	$\operatorname{arccsc} x = \operatorname{arcsin} \left(\frac{1}{x}\right)$
•	$\operatorname{arccot} x = \arctan\left(\frac{1}{x}\right)$

- 2. One-to-one Function:
 - In order for functions to have the inverse function, it must be so-called **one-to-one** function (bijection).
 - One *x* value to one (and only one) *y* value. One *y* value to one (and only one) *x* value.
- 3. Domain and range for arcsin*x*:

- Domain: $x \in [-1, 1]$ (Range sin $x \in [-1, 1]$).
- Range: $\operatorname{arcsin} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (Domain $\operatorname{sin} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$).
- 4. Domain and range for arccos*x*:

- Domain: $x \in [-1, 1]$.
- Range: $\arccos x \in [0, \pi]$.
- 5. Domain and range for arctan*x*:

- Domain: $x \in \mathbb{R}$
- Range: $y \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$

3.2 Vectors

3.2.1 Introduction to Vectors

1. Vector:

Definition 3.2.1 A vector is a quantity with a direction and magnitude. It is noted as \vec{a} .

- 2. Components of a vector:
 - 2-D:

Example 3.2.1 The vector $\vec{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ means 3 units in the horizontal direction and 2 units in the vertical direction.

• 3D:

3. Magnitude/Modulus of vector:

• 2D:

For
$$\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, $|\vec{a}| = \sqrt{x^2 + y^2}$.

• 3D:

For
$$\vec{b} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $\left| \vec{b} \right| = \sqrt{x^2 + y^2 + z^2}$.

- 4. **Unit Vector**: A vector of length 1:
 - \vec{i} : unit vector on the *x*-axis.
 - \vec{j} : unit vector on the *y*-axis.
 - \vec{k} : unit vector on the *z*-axis.

- 5. Sum of vectors:
 - **Position vector**: A vector that has an initial point at the origin.

Example 3.2.2

$$\vec{a} = \begin{pmatrix} 3\\2 \end{pmatrix}$$
$$\vec{a} = 3\vec{i} + 2\vec{j}.$$

6. Multiplication of vectors by a scalar: Let $\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix}$ and *n* be a scalar:

$$n\vec{a} = n \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} nx \\ ny \end{pmatrix}.$$

 $n\vec{a}$ and \vec{a} are in the same direction \Rightarrow parallel.

7. Subtracting a vector:

Let
$$\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix}, \vec{b} = \begin{pmatrix} m \\ n \end{pmatrix}.$$

 $\vec{a} - \vec{b} = \begin{pmatrix} x - m \\ y - n \end{pmatrix}$

Proof 3.2.1

$$-\vec{b} = (-1)\vec{b} = \begin{pmatrix} -m\\ -n \end{pmatrix}$$
$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = \begin{pmatrix} x - m\\ y - n \end{pmatrix}.$$

- 8. Zero vector: $\vec{0}$.
- 9. Collinear points: three points, A, B, and C, are said to be collinear if $\vec{AB} = t\vec{AC}$.

$$A \qquad B \qquad C$$

10. Find a unit vector parallel to $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$.

- Find the value $|\vec{u}|$.
- Then, the unit vector parallel to \vec{u} is

$$\vec{v} = \frac{\vec{u}}{|\vec{u}|}.$$

11. Vectors and unit circle:

 θ is the angle with the horizontal axis. The unit vector \vec{v} , in the same direction as \vec{u} is:

$$\vec{v} = \cos\theta \cdot \vec{i} + \sin\theta \cdot \vec{j}$$
$$\vec{v} = \frac{1}{|\vec{u}|} \cdot \vec{u} \implies \vec{u} = |\vec{u}| \cdot \vec{v} = |\vec{u}| \cos\theta \cdot \vec{i} + |\vec{u}| \sin\theta \cdot \vec{j}$$
$$= |\vec{u}| \left(\cos\theta \cdot \vec{i} + \sin\theta \cdot \vec{j}\right).$$

3.2.2 Scalar Product and Its Properties

- 1. The scalar product of two vectors is a real number (scalar).
 - The algebraic definition: For $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, $\vec{a} \cdot \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1 b_1 + a_2 b_2.$

The scalar product is also called the dot product.

• The geometric definition: For \vec{a} and \vec{b} ,

 $\vec{a} \cdot \vec{b} = |\vec{a}| \left| \vec{b} \right| \cos \theta$, θ is the angle between the two vectors.

Proof 3.2.2 By cosine rule:

$$\left|\vec{b} - \vec{a}\right|^2 = |\vec{a}|^2 + \left|\vec{b}\right|^2 - 2|\vec{a}|\left|\vec{b}\right|\cos\theta$$
$$\left|\vec{b}\right|^2 - 2\vec{a}\vec{b} + |\vec{a}|^2 = |\vec{a}|^2 + \left|\vec{b}\right|^2 - 2|\vec{a}|\left|\vec{b}\right|\cos\theta$$
$$\therefore \vec{a} \cdot \vec{b} = |\vec{a}|\left|\vec{b}\right|\cos\theta.$$

• Combining the two definitions:

$$\cos \theta = \frac{a_1 b_1 + a_2 b_2}{\sqrt{\left(a_1^2 + a_2^2\right) \left(b_1^2 + b_2^2\right)}}$$

2. 3-D vectors:
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

$$\cos \theta = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{\left(a_1^2 + a_2^2 + a_3^2\right)\left(b_1^2 + b_2^2 + b_3^2\right)}}$$

- 3. Properties of scalar product:
 - If $\vec{a} \cdot \vec{b} = 0 \Rightarrow \begin{cases} \vec{a} = 0 \\ \vec{b} = 0 \\ \vec{a} \text{ and } \vec{b} \text{ are perpendicular (orthogonal)} \Rightarrow \theta = \frac{\pi}{2} \end{cases}$
 - If \vec{a} and \vec{b} are collinear,

$$\vec{a}\cdot\vec{b}=\pm\left|\vec{a}\right|\left|\vec{b}\right|.$$

Proof 3.2.3 Angel between \vec{a} and \vec{b} is 0°. $\cos 0^{\circ} = 1 \Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$ for \vec{a} , \vec{b} at the same direction. OR $\vec{a} \cdot \vec{b} = -|\vec{a}| |\vec{b}|$ for \vec{a} and \vec{b} at opposite directions.

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$

Proof 3.2.4

$$\vec{a} \cdot \vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = a_1^2 + a_2^2 = |\vec{a}|^2 .$$
$$\vec{a} \cdot \left(\vec{b} + \vec{c}\right) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} .$$
$$\lambda \left(\vec{a} \cdot \vec{b}\right) = (\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot \left(\lambda \vec{b}\right) .$$

3.2.3 Vector Equation of a Line

1. There is only one line that passes through two distinct points.

Theorem 3.2.1 In the coordinate plane, the equation can be found as: For $A(x_1, y_1)$ and $B(x_2, y_2)$, the line passes through *A*, *B* is given by

$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1.$$

2. Slope, *y*-intercept form: y = mx + k, where *m* is the slope, and *k* is the *y*-intercept. It can be rearranged to ax + by = c; $a, b, c \in \mathbb{R}$, where *a* and *b* cannot be equal to 0 at the same time.

- 3. Vector form of a line:
 - For every point P(x, y) that lies on the line *AB*, the vector \overrightarrow{AP} must be collinear or parallel to \overrightarrow{AB} : $\overrightarrow{AP} = k\overrightarrow{AB}$, $k \in \mathbb{R}$.

- (a) The vector \overrightarrow{AB} is called a **direction vector** of the line. All the vectors that are parallel to \overrightarrow{AB} can also define the same line.
- (b) Assume $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OP} = \vec{p}$, \overrightarrow{AB} is the direction vector \vec{d} . Then, $\overrightarrow{AP} = \vec{p} \vec{a} = k\overrightarrow{AB} = k\vec{d}$

$$\vec{p} = \vec{a} + k\vec{d}, \ k \in \mathbb{R}.$$

• Vector equation of a line:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} + k \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}, \ k \in \mathbb{R}.$$

• Parametric form:

$$\begin{cases} x = x_1 + kd_1 \\ y = y_1 + kd_2 \end{cases}, \ k \in \mathbb{R}.$$

• Cartesian form:

$$\frac{x-x_1}{d_1} = \frac{y-y_1}{d_2}.$$

Proof 3.2.5

$$\begin{cases} x = x_1 + kd_1 \\ y = y_1 + kd_2 \end{cases} \Rightarrow \begin{cases} k = \frac{x - x_1}{d_1} \\ k = \frac{y - y_1}{d_2} \end{cases}$$

(a) Cartesian form can be further rearranged to slope-intercept form

$$\frac{x - x_1}{d_1} = \frac{y - y_1}{d_2}$$
$$\frac{d_2}{d_1} (x - x_1) = y - y_1$$
$$y = \frac{d_2}{d_1} (x - x_1) + y_1,$$

where $\frac{d_2}{d_1}$ is the slope.

(b) Another way of interpretation:

$$\begin{split} \overrightarrow{AP} &= k\overrightarrow{AB} \Rightarrow \overrightarrow{p} - \overrightarrow{a} = k\left(\overrightarrow{b} - \overrightarrow{a}\right) \\ \overrightarrow{p} &= (1 - k)\overrightarrow{a} + k\overrightarrow{b}, \ k \in \mathbb{R}. \\ \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = (1 - k)\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + k\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \ k \in \mathbb{R}. \\ \Rightarrow \begin{cases} x = (1 - k)x_1 + kx_2 = x_1 + k(x_2 - x_1) \\ y = (1 - k)y_1 + ky_2 = y_1 + k(y_2 - y_1) \end{cases}, \ k \in \mathbb{R}. \\ \Rightarrow \begin{cases} k = \frac{x - x_1}{x_2 - x_1} \\ y = y_1 + k(y_2 - y_1) \\ \Rightarrow y = y_1 + \frac{x - x_1}{x_2 - x_1}(y_2 - y_1) \\ = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1. \end{split}$$

- 4. Orthogonal / Perpendicular vector of a line.
 - There is one and only one line in the plane that is perpendicular to a given line at a particular point on that line.
 - Normal Vector:

Definition 3.2.2 A **normal vector** is perpendicular or **orthogonal** to any vector on the lines.

i.e.,
$$\vec{n} \cdot \vec{AP} = 0$$
.

Theorem 3.2.2

$$\vec{n} \cdot (\vec{p} - \vec{a}) = 0 \implies \vec{n} \cdot \vec{p} = \vec{n} \cdot \vec{a}.$$

• If the direction vector $\vec{d} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$, then one possible normal vector would be $\vec{n} = \begin{pmatrix} d_2 \\ -d_1 \end{pmatrix}$ or any other vectors parallel to it.

• The vector form:

$$\begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} d_2 \\ -d_1 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdot \begin{pmatrix} d_2 \\ -d_1 \end{pmatrix}$$
$$\Rightarrow xd_2 - yd_1 = x_1d_2 - y_1d_1$$
$$(x - x_1)d_2 = yd_1 - y_1d_1$$
$$\therefore y = \frac{d_2}{d_1}(x - x_1) + y_1.$$

5. Direction vectors:

•

- Parallel lines have collinear direction vectors.
- **Perpendicular lines** have **orthogonal** direction vectors, such that the scalar product is equal to 0.
- 6. Vector equation of lines in 3-D spaces:

$$\vec{r} = \vec{a} + \lambda \vec{d}, \ \lambda \in \mathbb{R}.$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}.$

• The parametric form:

$$\begin{cases} x = a_1 + \lambda d_1 \\ y = a_2 + \lambda d_2 \\ z = a_3 + \lambda d_3 \end{cases}, \ \lambda \in \mathbb{R}.$$

• The Cartesian form:

$$\frac{x-a_1}{d_1} = \frac{y-a_2}{d_2} = \frac{z-a_3}{d_3}.$$

- 7. Two lines:
 - 2-D spaces: two distinctive lines can either be parallel or they can intersect.
 - 3-D spaces:
 - (a) Lines are parallel.
 - (b) Lines intersect at one common points.
 - (c) Lines are **skewed** (do not intersect and are not parallel).

3.2.4 Vector Product and Properties

- 1. The vector product is an operation that takes two vectors and results in another vector.
 - Definition

Definition 3.2.3 Given the two vectors and their components, $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, then the **vector product** is given by:

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

- The vector product of two vectors is another vector that is perpendicular to both vectors.
- Magnitude of the vector product:

Theorem 3.2.3 The magnitude of the vector product is given by the formula

$$\left|\vec{a}\times\vec{b}\right| = \left|\vec{a}\right|\cdot\left|\vec{b}\right|\cdot\sin\theta,$$

where θ is the angle between those two vectors. If $\vec{a} \times \vec{b} = 0$, then \vec{a} and \vec{b} are parallel/collinear.

• The geometrical definition of cross product (vector product):

Theorem 3.2.4 Given two vectors \vec{a} and \vec{b} , then the vector product is given by

$$\vec{a} \times \vec{b} = \left(|\vec{a}| \left| \vec{b} \right| \sin \theta \right) \hat{n},$$

where \hat{n} is the unit vector whose direction is given by the right-hand screw rule to both \vec{a} and \vec{b} and the vectors \vec{a} , \vec{b} , and \hat{n} follows the right-hand rule.

- Geometrical meaning of the magnitude of the vector product: It is equal to the area of the parallelogram enclosed by those two vectors.
- 2. Properties of the vector product:

$$\vec{a} \times \vec{b} = -\left(\vec{b} \times \vec{a}\right)$$

$$\left(\vec{a} \times \vec{b}\right) \times \vec{c} = \vec{a} \times \left(\vec{b} \times \vec{c}\right)$$

$$\lambda \left(\vec{a} \times \vec{b}\right) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times \left(\lambda \vec{b}\right), \ \lambda \in \mathbb{R}$$

$$\left(\vec{a} + \vec{b}\right) \times \vec{c} = (\vec{a} \times \vec{c}) + \left(\vec{b} \times \vec{c}\right).$$

- 3. Mixed product:
 - An operation with three vectors \vec{a} , \vec{b} , and \vec{c} combining both the vector and scalar product is called a **mixed product**:

$$\left(\vec{a}\times\vec{b}\right)\cdot\vec{c}.$$

• Given
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, and $\vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$, the mixed product is given by:
 $\begin{pmatrix} \vec{a} \times \vec{b} \end{pmatrix} \cdot \vec{c} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$
 $= a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_1b_3c_2 - a_2b_1c_3 - a_3b_2c_1$

• Geometric meaning of mixed products:

The volume of a parallelepiped formed by three non-coplanar vectors, \vec{a} , \vec{b} , and \vec{c} is given by:

$$V = \left| \left(\dot{a} \times b \right) \cdot \dot{c} \right|.$$

Proof 3.2.6

 $V = \text{Base} \times h$

Base=magnitude of cross product of \vec{a} and \vec{b} . = perpendicular projection of \vec{c} to $\vec{a} \times \vec{b}$.

$$\therefore V = \text{Base} \times h = \left| \vec{a} \times \vec{b} \right| \cdot |\vec{c}| \cdot |\cos \theta| = \left| \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right|$$

- Three or more vectors are said to be coplanar if they lie in the same plane.
- Using mixed product to find the volume of a triangular pyramid:

$$V = \frac{1}{6} \left| \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right|.$$

Proof 3.2.7 Since the base is not a parallelogram but a triangle, that is half an area of the parallelogram, we multiply $\frac{1}{2}$ in front of the expression of the cross product.

$$\text{Base} = \frac{1}{2} \left| \vec{a} \times \vec{b} \right|$$

The volume of a pyramid is $\frac{1}{3}$ of the product of the base and the height.

$$\therefore V = \frac{1}{3} \text{Base} \cdot h = \frac{1}{3} \cdot \frac{1}{2} \left| \vec{a} \times \vec{b} \right| \left| \vec{c} \right| \left| \cos \theta \right| = \frac{1}{6} \left| \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right|$$

4. Proving vector product using matrix.

Proof 3.2.8 Let
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$. Convert into a 3×3 matrix: $\begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$.
Find the determinant: $\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{i}(a_2b_3 - a_3b_2) - \vec{j}(a_1b_3 - a_3b_1) + \vec{k}(a_1b_2 - a_2b_1)$

$$\Rightarrow \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

3.2.5 Vector Equation of a Plane

- 1. A plane is uniquely determined by three points (or a line and a point outside the line). \rightarrow A plane can also be determined by two intersecting lines and a point outside the lines.
- 2. Vector equation of a plane:

$$ec{r}=ec{a}+\lambdaec{d_1}+\muec{d_2},\ \lambda,\mu\in\mathbb{R}.$$

where \vec{d}_1 and \vec{d}_2 are direction vectors, and \vec{a} is the position vector.

- 3. The scalar product form:
 - Normal vector is a vector that is perpendicular to every line in the plane.

- All planes with the same normal vector are parallel to each other.
- If *R* is any other point on the plane, then \overrightarrow{AR} lies in the plane, and it is perpendicular to the normal vector \vec{n} .

Theorem 3.2.5

$$\overrightarrow{AR} \cdot \overrightarrow{n} = 0 \Rightarrow (\overrightarrow{r} - \overrightarrow{a}) \cdot \overrightarrow{n} = 0$$

$$\therefore \vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$$

where \vec{a} is the position vector, and \vec{n} is the normal vector.

4. The Cartesian equation of a plane:

$$n_1 x + n_2 y + n_3 z = d$$
, where $n = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$, $d = \vec{a} \cdot \vec{n}$.

Proof 3.2.9

$$\vec{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}, \ d = \vec{a} \cdot \vec{n}, \ \vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

The scalar product form converts to:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = \vec{a} \cdot \vec{n}$$
$$\Rightarrow n_1 x + n_2 y + n_3 z = d.$$

5. A plane with the vector equation
$$\vec{r} = \vec{a} + \lambda \vec{d_1} + \mu \vec{d_2}$$
 has a normal vector $\vec{n} = \vec{d_1} \times \vec{d_2}$.

3.2.6 Lines, Planes, and Angles

- 1. Angles and intersections between lines and planes:
 - When a line intersects a plane, the angle between them is defined as the smallest possible angle that the line makes with any of the lines in the plane.

- (a) \overrightarrow{AR} : the direction vector of the line, \overrightarrow{d} .
- (b) Point *P* is the projection of point *R* onto the plane. \overrightarrow{AP} is the shadow of \overrightarrow{AR} on the plane.
- (c) \overrightarrow{PR} is in the direction of \overrightarrow{n} since it is perpendicular to the plane.
- (d) φ is the angle between \vec{n} and \vec{d} .
- (e)

$$\theta = 90^{\circ} - \varphi, \cos \varphi = \frac{\left| \vec{n} \cdot \vec{d} \right|}{\left| \vec{n} \right| \left| \vec{d} \right|}$$

- A line that is not parallel to a plane intersects a plane at one point. The coordinates of this point of intersection satisfies both the equation of the line and the equation of the plane.
- 2. Relationship of two planes:

- Two planes can either intersect at a line or they can be parallel.
- When two planes are parallel, their normal vectors are collinear; otherwise they intersect at a line.
- 3. Angles between two planes:

•

• The angle between two planes is the angle between their normal vectors.

- 4. Two non-parallel planes intersect along a line. The equation of this line is formed by treating the Cartesian equation of two planes as simultaneous equations and finding the general solution.
- 5. Distance between a point and a plane.
 - The distance, *d*, between a point $P(x_0, y_0, z_0)$, and a plane with equation Ax + By + Cz = Dwhere $\vec{n} = A\vec{i} + B\vec{j} + C\vec{k}$, is given by:

$$d = \frac{|Ax_0 + By_0 + Cz_0 - D|}{\sqrt{A^2 + B^2 + C^2}}.$$

• Proof:

Proof 3.2.10 Let Q(x, y, z) be any point on the plane Π .

The distance, d, is the projection of the distance of point P to the plane on the normal vector, \vec{n} .

$$d = \left| \overrightarrow{QP} \right| \cdot \left| \cos \theta \right| = \left| \overrightarrow{QP} \right| \cdot \frac{\overrightarrow{QP} \cdot \overrightarrow{n}}{\left| \overrightarrow{QP} \right| \cdot \left| \overrightarrow{n} \right|}$$
$$= \frac{\overrightarrow{QP} \cdot \overrightarrow{n}}{\left| \overrightarrow{n} \right|} = \frac{\left| \langle A, B, C \rangle \cdot \langle (x_0 - x), (y_0 - y), (z_0 - z) \rangle \right|}{\sqrt{A^2 + B^2 + C^2}}$$
$$= \frac{\left| Ax_0 + By_0 + Cz_0 - (Ax + By + Cz) \right|}{\sqrt{A^2 + B^2 + C^2}}$$
$$= \frac{Ax_0 + Bx_0 + Cz_0 - D}{\sqrt{A^2 + B^2 + C^2}}$$

6. Intersection of three points:

Unique solution Infinitely many solutions	No solutions (inconsistent system)			
	No normals parallel	Two normals parallel	Three normals parallel	
Three planes intersect at a point	Three planes intersect along a line	Three planes form a prism	One plane cutting two parallel planes	Three parallel planes

- The plane intersect:
 - (a) At a point: the system of equations will have a unique solution.
 - (b) Alone a line: the system of equations will have infinitely many solutions
- The systems of equations have no solutions:
 - (a) No normals are parallel (the planes from a prism)
 - (b) 2 normals are parallel or three normal are parallel (the planes are parallel)

4 Statistics and Probability

4.1 An Introduction to Statistics

- 1. Statistical inferences: when the sample data is well chosen and described, an analysis will allow us to draw conclusions about the population based on this sample.
 - **Discrete data** is data that can be counted; it gives the number of times something occurs or the number of items that exists.
 - **Continuous data** is data that is measured; however, the values of the actual data cannot be determined exactly, and the data may be limited to a range.
- 2. Reliability and Bias.
- 3. Data Sampling (Sampling Methods):
 - Simple: Achieving randomness by a simple, completely random process.
 - Convenience: Choosing a sample based on how easy it is to find the data.
 - **Systematic**: If data is listed, selecting a random starting point and then choosing the rest of the sample at a consistent interval in the list.
 - **Quota**: Choosing a sample that is only comprised of members of the population that fit certain characteristics.
 - **Satisfied**: Choosing a random sample in a way that the population of certain characteristics matches the proportion of those characteristics in the population.
- 4. Grouped Data:
 - Key terms: intervals/classes, frequency distribution table, frequency diagram.
 - Frequency diagram of discrete data:

• Frequency diagram of continuous data - Histogram

• Cumulative frequency table and cumulative frequency graph:

- For data grouped into intervals or classes, we can identify:
 - (a) Mid-interval values
 - (b) Interval width
 - (c) Lower interval boundaries
 - (d) Higher interval boundaries
 - (e) Modal class: the class with the highest frequency
- 5. Quartiles:
 - Minimum: the lowest value
 - Q_1 : the 25th percentile
 - Median (Q_2) : the 50th percentile

- Q_3 : the 75th percentile
- Maximum: the highest value
- ٠

Interquartile Range (IQR) = $Q_3 - Q_1$.

• Box-and-whisker plots: \rightarrow spread of data:

- 6. Normal distribution, negatively skewed, and positively skewed:
- 7. Normal distribution: mean = mode = median
- 8. Positively skewed: median < mean
- 9. Negatively skewed: median > mean
- 10. Outliers:

Ourlier
$$\langle Q_1 - 1.5IQR$$

OR Outlier $\rangle Q_3 + 1.5IQR$.

- 11. Measuring central tendency:
 - **Definition 4.1.1 Mode**: the value with the greatest frequency.
 - **Definition 4.1.2** Median(*m*): the middle value when the data is arranged in order.
 - **Definition 4.1.3** Mean(μ): the arithmetic mean, the sum of the numerical data divided by the number of data points.

$$\mu = \frac{\sum_{i=1}^n x_i}{n}.$$

- 12. Measures of dispersion:
 - **Definition 4.1.4** Range:

Range =
$$x_{\max} - x_{\min}$$
.

• **Definition 4.1.5** Interquartile Range (IQR):

$$IQR = Q_3 - Q_1.$$

• **Definition 4.1.6** Variance σ^2 and standard deviation σ :

$$\sigma^2 = \frac{\sum_{i=1}^k f_i (x_i - \mu)^2}{n} = \frac{\sum_{i=1}^k f_i x_i^2}{n} - \mu^2$$
$$\sigma = \sqrt{\sigma^2}$$

Proof 4.1.1

$$\sigma^{2} = \frac{\sum_{i=1}^{k} f_{i} (x_{i} - \mu)^{2}}{n} = \frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n} - 2\mu \frac{\sum_{i=1}^{k} f_{i} x_{i}}{n} + \mu^{2} \frac{\sum_{i=1}^{k} f_{i}}{n}$$
$$= \frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n} - 2\mu^{2} + \mu^{2}$$
$$= \frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n} - \mu^{2}$$

4.2 Linear Correlation of Bivariate Data

- 1. Scatter Plot
- 2. Linear correlation:
 - **Positive linear correlation**: the line as a general upward trend.
 - Negative correlation.
 - Quadratic trend
 - Exponential trend
- 3. Estimate a line of best fit:

Theorem 4.2.1 The line must pass through the mean point of the data set $(\overline{x}, \overline{y})$, where \overline{x} is the mean of x and \overline{y} is the mean of y.

- 4. Pearson's correlation coefficient (*r*):
 - Range: $-1 \le r \le 1$
 - (a) r = -1: perfect negative linear correlation
 - (b) r = 1: perfect positive linear correlation
 - (c) r = 0: no linear correlation
 - (d) $0.7 < |r| \le 1$: strong linear correlation
 - (e) $0.3 < |r| \le 0.7$: weak to moderate linear correlation
 - Formula:

$$r = \frac{\sum (x - \overline{x}) (y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$
$$r = \frac{\sum xy - n\overline{x} \, \overline{y}}{\sqrt{\sum x^2 - n\overline{x}^2} \sqrt{\sum y^2 - b\overline{y}^2}}$$

- 5. Prediction using the least square linear regression:
 - The dangers of extrapolation.
 - We cannot always reliably make a prediction of x from a value of y, using a y on x line.

4.3 **Probability and Expected Outcomes**

- 1. **Definition 4.3.1 Random Events**: although we don't know the exact result in advance, we do know the set of all possible results.
 - The set of all possible results is called the sample space (U).
 - The number of all possible outcomes that make up the sample space is denoted as n(U).
 - Any subset of a sample space is called an **event**. The event consists of one or more outcomes.
 - Each time an experiment is repeated, it is considered a trial of the experiment.
- 2. **Experimental probability** (relative frequency) is found by repeating an experiment a number of times and counting the number of times that particular outcome occurs.
- 3. **Definition 4.3.2 Mutually exclusive**: two events that do not share any outcomes \rightarrow They cannot occur together.
- 4. **Definition 4.3.3 Theoretical probability**: When running an experiment for *N* trials that results in an event A occurring n(A) times, the probability of *A* happening, P(A) is

$$\mathbf{P}(A) = \lim_{N \to \infty} \frac{n(A)}{N}.$$

If an experiment has equally likely outcomes, the probability of event A occurring is defined as

$$P(A) = \frac{n(A)}{n(U)} = \frac{\text{Number of outcomes in which A occurs}}{\text{Total number of outcomes in the sample space}}.$$

5. Axioms:

Axiom 4.3.1 For any event *A*,

$$0 \leq \mathbf{P}(A) \leq 1.$$

Axiom 4.3.2 The probability of nothing (*o*) occurring is zero:

$$\mathbf{P}(o) = \mathbf{0}.$$

The probability of one of all the outcomes in the sample space occurring is one:

$$\mathbf{P}(U) = 1.$$

Axiom 4.3.3 If *A* and *B* are $\in U$ and are mutually exclusive, then the probability of either *A* or *B* happening is

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B).$$

Axiom 4.3.4 If P(A') is the probability of event A not happening,

$$\mathbf{P}(A') = 1 - \mathbf{P}(A),$$

where P(A) is the probability of event A occurring.

6. **Definition 4.3.4** Expectation: The formula for expected number of members of group *A* in a sample of size *n* is

 $n\mathbf{P}(A)$.

If choosing *n* from the population, nP(A) gives an approximation of how many of them would be members of group *A*.

4.4 Probability Calculations

1. **Definition 4.4.1** A **Venn diagram** is a model illustrating two or more sets of data using overlapping circles to show elements of each set.

• **Definition 4.4.2** The probability of event *A* and *B* occurring at the same time:

 $\mathbf{P}(A \cap B)$

• **Definition 4.4.3** The probability of event *A* or *B* occurring (*A* union *B*):

 $P(A \cup B)$

- Theorem 4.4.1 If $P(A \cup B) = \emptyset$, then A and B are mutually exclusive.
- 2. The tree diagram
- 3. Theorem 4.4.2 The probability of a union:

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B).$$

Proof 4.4.1

$$n(A \cup B) = n(A) + n(B) - n(A \cap B),$$

$$P(A \cup B) = \frac{n(A \cup B)}{n(U)} = \frac{n(A) + n(B) - n(A \cap B)}{n(U)}$$

$$= P(A) + P(B) - P(A \cap B).$$

- 4. Conditional probability:
 - Conditional probability shrinks the sample space and, therefore, increases the probability of an event occurring, unless the given information renders the event impossible.
 - Theorem 4.4.3

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)},$$

where P(A|B) is read as probability of event A occurring, given event B occurring.

Proof 4.4.2 If we know that B has occurred, the sample space now contains all the elements of B but no more. Now, we select events from the sample space that falls in A:

$$P(A|B) = \frac{n(A \cap B)}{n(B)}$$
$$= \frac{\frac{n(A \cap B)}{n(U)}}{\frac{n(B)}{n(U)}} = \frac{P(A \cap B)}{P(B)}.$$

- 5. The probability of independent events:
 - **Definition 4.4.4** *A* and *B* are **independent events** if the occurrence of *A* has no effect on the probability of *B* occurring.

$$P(B|A) = P(B)$$
 OR $P(A|B) = P(A)$.

• Theorem 4.4.4 A and B are independent if and only if

 $\mathbf{P}(A \cap B) = \mathbf{P}(A) \times \mathbf{P}(B).$

6. Theorem 4.4.5 Probability of union when A and Bare mutually exclusive:

 $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B).$

4.5 Discrete Random Variables

- 1. **Definition 4.5.1** If a random variable can take exactly *N* values, each of which corresponds to a unique outcome in the sample space of an experiment, then this variable is a **discrete random** variable.
 - The probability that x takes on any of the N values is written as P(X = x)
 - A **probability distribution** is a combination of the sample space of a random experiment with the probabilities of each of the events in the sample space.
 - PDF: probability distribution function
 - Axiom 4.5.1 For each value $\{x_i\}$ of the random variable X, we have that

$$0\leq \mathbf{P}(X=x_i)\leq 1.$$

• Axiom 4.5.2 As X may take on any of the N values of the sample space, the sum of the probabilities of each of them as an outcome of the experiment must equal one:

$$\sum_{i=1}^{N} P(X = x_i) = P(X = x_1) + P(X = x_2) + P(X = x_3) + \dots + P(X = x_N) = 1.$$

• **Definition 4.5.2 Well-defined probability distribution**: a probability distribution that satisfies both

$$\begin{cases} 0 \le \mathbf{P}(X = x_i) \le 1\\ \sum_{i=1}^{N} \mathbf{P}(X = x_i) = 1 \end{cases}$$

- 2. Calculating expected value:
 - **Definition 4.5.3** The **expected value** (expected mean) is the value you would expect to obtain on average if you performed an experiment many times.
 - The expected value of a random variable *X* with a probability distribution function P(X = x) is written as E(X) or μ .
 - Formula:

$$E(X) = \mu = \sum_{i=1}^{N} x_i P(X = x_i)$$

= $x_1 P(X = x_1) + x_2 P(X = x_2) + x_3 P(X = x_3) + \dots + x_N P(X = x_N)$

• Application: fairness of a game A fair game is perfectly balanced so that the expected mean pay-out is 0 for both players.

4.6 The Binomial Distribution

- 1. The binomial distribution discrete the probability distribution of different outcomes of repeated binary events.
 - Since there are only two outcomes, we use *p* to represent the probability of success, meaning the probability that the event we are looking for occurs.
 - We use $X \sim$ to denote a random variable X that is distributed in a certain way.
 - X ~ B(n, p) represents the binomial distribution, where *mathrmB* stands for binomial, n represents the number of trials in the binomial experiment, and p is the probability of success.
 - The probability of failure is q:

$$q = 1 - p$$
.

• **Theorem 4.6.1** Expected value of a binomial distribution:

$$\mathbf{E}(X)=np.$$

• Theorem 4.6.2 Variance of a binomial distribution:

$$\operatorname{Var}(X) = np(1-p) = npq$$

2. Probabilities within the binomial distribution:

Theorem 4.6.3 A random variable that is binomially distributed and takes on the value of the number of success in *n* trials is written as $X \sim B(n, p)$, where *p* is the probability of success in one trial. Then, the probability that *X* takes on an actual value of *x* successes is given by:

$$X \sim \mathbf{B}(n,p) \Rightarrow \mathbf{P}(X=x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, 2, 3, \cdots, n.$$

- 3. Finding binomial probabilities using GDC:
 - **Binomial PDF** returns a specific value of P(X = x)
 - Binomial CDP (cumulative distribution function) gives the value of

$$P(0 \le X \le upper bound).$$

• Theorem 4.6.4

$$P(a \le X \le b) = P(0 \le X \le b) - P(0 \le X \le a - 1).$$

4.7 The Normal Distribution and Curve

- 1. The normal (bell) curve:
 - The normal distribution is modeled graphically with a normal curve:

- The normal curve always has its highest point in the center, and that point is the mean (μ), median, and mode.
- The axis is often labeled using the standard deviation σ .
- The normal distribution deals with continuous random variables.
- 2. Expressing the normal distribution algebraically:
 - Normal distribution is denoted as

$$X \sim \mathrm{N}(\mu, \sigma^2),$$

where N means normal distribution, μ is the mean, and σ is the standard deviation.

- Normal probability density function:
 - (a) A probability density function is the equation of a curve that has the probabilities as the area underneath.
 - (b) **Definition 4.7.1** For $X \sim N(\mu, \sigma^2)$,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \text{ where } -\infty < x < \infty.$$
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx = 1.$$

- 3. Calculating normal distributed probabilities with GDC:
 - Normal PDF and Normal CDF.
 - Inverse Normal Function.
- 4. Standard Normal Distribution:
 - Transform $X \sim N(\mu, \sigma^2)$ into $Z \sim N(0, 1)$:

• Z-score:

$$z=\frac{x-\mu}{\sigma}.$$

• Finding probabilities with z-scores:

(a)

$$P(-1 < z < 1) \approx 0.68$$

 $P(-2 < z < 2) \approx 0.95$
 $P(-3 < z < 3) \approx 0.997$

(b) Normal CDP on GDC

• Using z-score to find μ and σ .

4.8 **Probability Density Function (PDF)**

1. For a continuous random variable X with probability density function f(x), it holds

 $\begin{cases} f(x) \ge 0 & \text{i.e., the function is non-negative} \\ \int_{-\infty}^{\infty} f(x) dx = 1 & \text{i.e., the total area under the curve is 1} \end{cases}$

2. The probability that X takes values between a and b is

$$\mathbf{P}(a \le X \le b) = \int_{a}^{b} f(x) \mathrm{d}x$$

N.B.: $P(a \le X \le b) = P(a < X < b)$ because P(X = a) = 0.

3. The mean μ , or the expected value E(X), is defined by

$$\mu = \mathbf{E}(x) = \int_{-\infty}^{\infty} x f(x) \mathrm{d}x.$$

4. The Variance Var(X) is defined by

$$\operatorname{Var}(X) = \operatorname{E}(X - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \mathrm{d}x.$$

An equivalent and more practical definition is

$$\operatorname{Var}(X) = E(X^2) - \mu^2$$
, where $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$.

- 5. Mode: the value of x where f(x) has its maximum.
- 6. Median: The value of *m* where $P(X \le m) = 0.5$

Example 4.8.1

Let
$$f(x) = \begin{cases} f_1(x), a \le x \le b \\ f_2(x), b < x \le c \end{cases}$$
, we check $\int_a^b f_1(x) dx = A$:

(a) If A > 0.5, the median $m \in [a, b]$, solve

$$\int_a^m f_1(x) \mathrm{d}x = 0.5.$$

(b) If A < 0.5, the median $m \in [b, c]$, solve

$$\int_m^c f_2(x) \mathrm{d}x = 0.5$$

- 7. Quartiles:
 - The lower quartile Q_1 is defined by $P(X \le Q_1) = 0.25$, i.e., solve

$$\int_{-\infty}^{Q_1} f(x) \mathrm{d}x = 0.25.$$

• The upper quartile Q_3 is defined by $P(X \le Q_3) = 0.75$, i.e., solve

$$\int_{-\infty}^{Q_3} f(x) \mathrm{d}x = 0.75.$$

8. The effects of linear transformations on the random variable *X*:

•
$$E(aX+b) = aE(X) + b.$$
•
$$Var(aX+b) = a^{2}Var(X).$$

4.9 The Bayes' Theorem

1. Bayes' Theorem:

Theorem 4.9.1 Bayes' Theorem

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A)\mathbf{P}(B|A)}{\mathbf{P}(B)}.$$

Proof 4.9.1

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(A|B)P(B)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \Rightarrow P(B \cap A) = P(B|A)P(A)$$

$$\therefore P(A \cap B) = P(B \cap B),$$

$$\therefore P(A|B)P(B) = P(B|A)P(A).$$

$$\therefore P(A|B) = \frac{P(A)P(B|A)}{P(B)}.$$

2. Other versions of the Bayes' theorem:

$$\mathbf{P}(B) = \mathbf{P}(A \cap B) + \mathbf{P}(A' \cap B) = \mathbf{P}(A)\mathbf{P}(B|A) + \mathbf{P}(A')\mathbf{P}(B|A').$$

• Substitute P(*B*):

•

$$P(A|B) = \frac{P(B|A)P(A)}{P(A)P(B|A) + P(A')P(B|A')};$$
$$P(B|A) = \frac{P(A|B)P(B)}{P(B)P(A|B) + P(B')P(A|B')}.$$

3. Bayes' theorem for three events:

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$$

= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3).
$$\therefore P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)}$$

= $\frac{P(A_i)P(B|A_i)}{P(A_i)P(B|A_i) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3)}.$

5 Calculus

5.1 Limits

1. Limit

Example 5.1.1

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

when x is approaching to 1 (it never equals to 1), the value $\frac{x^2-1}{x-1}$ is approaching to 2.

• Left-hand and Right-hand Limit

Example 5.1.2 The left-hand limit of $\frac{x^2-1}{x-1}$ when $x \to 1$ is

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2.$$

The right-hand limit of $\frac{x^2-1}{x-1}$ when $x \to 1$ is

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2.$$

• Only when the left-hand limit and the right-hand limit exist and are the same at the point x = a, we say the limit of f(x) exists on x = a.

i.e.,
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = c \implies \lim_{x \to a} f(x) = c, c \text{ is a constant} \in \mathbb{R}$$

Otherwise, the limit does not exist on x = a (OR DNE.).

Example 5.1.3 Does $\lim_{x\to 0} \frac{1}{x}$ **exist? How about** $\lim_{x\to\infty} \frac{1}{x}$ **?**
$$-\lim_{x\to 0} \frac{1}{x} \text{ does not exist.}$$

$$::\lim_{x\to 0^+} \frac{1}{x} = +\infty, \lim_{x\to 0^-} \frac{1}{x} = -\infty$$

$$::\lim_{x\to 0^+} \frac{1}{x} \neq \lim_{x\to 0^-} \frac{1}{x} \Rightarrow \text{DNE.}$$

$$:\lim_{x\to +\infty} \frac{1}{x} \neq \lim_{x\to -\infty} \frac{1}{x} \Rightarrow \text{DNE.}$$

$$::\lim_{x\to +\infty} \frac{1}{x} = 0, \lim_{x\to -\infty} \frac{1}{x} = 0$$

$$::\lim_{x\to +\infty} \frac{1}{x} = \lim_{x\to -\infty} \frac{1}{x} \Rightarrow \text{Limit exists.}$$

Definition 5.1.1 Horizontal Asymptote (H.A.):

$$y = \lim_{x \to \infty} f(x) = c$$

• Limit at ∞:

$$\lim_{x\to+\infty}f(x)=\lim_{x\to-\infty}f(x)=c \ \Rightarrow \ \lim_{x\to\infty}f(x)=c.$$

Note: $+\infty$ and $-\infty$ are not exact values; they should be regarded as a concept.

- Limits do not have to equal to the function value. Limit and the function value do not have relationships.
- Generally speaking, if $a \in D_f$, $\lim_{x \to a} f(x) = f(a)$.
- 2. For a rational function $f(x) = \frac{P(x)}{Q(x)}$ where $P(x) = a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m$, and $Q(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m$:
 - $\lim_{x \to a} f(x) = f(a)$ as long as $Q(a) \neq 0$.

•
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} \Rightarrow$$
 H.A.
(a) If $m = n$, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{a_0}{b_0} = \frac{a_0}{b_0}$.

- (b) If m > n, $\lim_{x \to \infty} f(x)$ DNE. (c) If m < n, $\lim_{x \to \infty} f(x) = 0$.
- 3. Continuity and Discontinuity

Definition 5.1.2 Continuity: If the graph of the function does not have any breaks or holes within a certain interval, then the function is continuous within that interval.

Theorem 5.1.1 If $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$, then the function f is continuous at x = a.

5.2 Differentiation and Derivatives

1. Gradient of Secant:

Slope
$$m = \frac{f(x + \Delta x) - f(x)}{x + \Delta x - x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Definition 5.2.1 Derivative of a function:

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 is the derivative of a function, denoted as $\frac{dy}{dx}$ or $f'(x)$.

• The graphic meaning of derivative is the gradient of tangent of the function.

Example 5.2.1 By definition, find the derivative of $f(x) = x^2 + 1$ and hence find the gradient of the tangent line when x = 3.

$$f'(x) = \lim_{x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{x \to 0} \frac{\left[(x + \Delta x)^2 + 1 \right] - (x^2 + 1)}{\Delta x}$$
$$= \lim_{x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 + 1 - x^2 - 1}{\Delta x}$$
$$= \lim_{x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$
$$= \lim_{x \to 0} (2x + \Delta x)$$
$$= 2x.$$

At x = 3, $f'(3) = 2 \times 3 = 6$. The gradient is 6.

2. Derivative of x^n

Theorem 5.2.1 If $f(x) = x^n$, then

$$f'(x) = nx^{n-1}$$
, for any $n \in \mathbb{R}$.

Note: The derivative of any constant is 0.

Example 5.2.2

$$f(x) = \frac{1}{x} = x^{-1} \implies f'(x) = (-1)x^{-1-1} = -x^{-2};$$

$$f(x) = \sqrt{x} = x^{\frac{1}{2}} \implies f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}};$$

$$f(x) = c = cx^{0} \implies f'(x) = 0 \times cx^{0-1} = 0.$$

3. Rules of Differentiation:

Name f(x) and g(x) as two functions with derivatives of f'(x) and g'(x), respectively. Then

$$(cf(x))' = cf'(x)$$
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

4. More Derivatives:

$$\begin{array}{c|c} f(x) & f'(x) \\ \hline sin x & cos x \\ cos x & -sin x \\ tan x & sec^2 x \\ ln x & \frac{1}{x} \\ e^x & e^x \end{array}$$

5. Differentiability:

Definition 5.2.2 A function has to be **continuous** and **no sharp turning point** to be **differen-tiable**.

Note: Smooth turning point on the graph is allowed.

6. More Rules of Differentiation:

Theorem 5.2.2 Let f(x) and g(x) be two functions with derivatives of f'(x) and g'(x), respectively.

 $(f(x) \times g(x))' = f'(x)g(x) + f(x)g'(x).$

Theorem 5.2.3 Let f(x) and g(x) be two functions with derivatives of f'(x) and g'(x), respectively.

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

Theorem 5.2.4 For a composite function f(g(x)) or $(f \circ g)(x)$, the derivative will be

$$f'(g(x)) \times g'(x).$$

OR If y = f(u) and u = g(x), then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

7. Higher Order Differentiation:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}, \ f''(x), \ f'''(x), \ f^{(4)}(x), \ f^{(5)}(x), \ \cdots$$

5.3 Applications of Derivatives

1. Equation of Tangent Line: Via the original functions, we could get the tangent point (x_0, y_0) . Then, the expression of the tangent line is

$$y - y_0 = m(x - x_0),$$

where *m* is the derivative.

2. Normal and Tangent Lines:

Definition 5.3.1 Normal is perpendicular to the tangent and passes through the same tangent point.

3. Increasing and Decreasing Function:

Definition 5.3.2 Increasing Function: As *x* is getting larger, *y* is getting larger. i.e.,

$$\frac{\mathrm{d}y}{\mathrm{d}x} > 0.$$

Decreasing Function: As *x* is getting larger, *y* is getting smaller. i.e.,

$$\frac{\mathrm{d}y}{\mathrm{d}x} < 0.$$

4. Local Extrema: $\frac{dy}{dx} = 0$ Stationary point

Global extrema is the maximum and the minimum points of the entire function. f''(x) is used to determine if the local extrema are maxima or minima.

- Minima: f''(x) > 0 Concave up.
- Maxima: f''(x) < 0 Concave down.
- Point of Inflection (the point that is changing from concaving up to concaving down, or vice visa): f''(x) = 0
- 5. With local extrema, *x*-intercepts, *y*-intercepts, concavity, and asymptotes, draw approximate diagrams of a function.

5.4 Implicit Differentiation

- 1. When differentiating something with *y*, multiply $\frac{dy}{dx}$ at the end.
- 2. $(y^2)' = 2y \frac{dy}{dx}$.

Proof 5.4.1 If $u = y^2$, then

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = 2y \cdot \frac{\mathrm{d}y}{\mathrm{d}x}.$$
 [Chain Rule]

Example 5.4.1 Find $\frac{dy}{dx}$ for the circle $x^2 + y^2 = 16$.

$$(x^{2})' + (y^{2})' = (16)' \implies 2x + 2y \frac{dy}{dx} = 0$$

 $\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}.$

Example 5.4.2 Find $\frac{dy}{dx}$ for $e^x + x \sin y = \cos 2y$.

$$(e^{x})' + (x\sin y)' = (\cos 2y)'$$
$$e^{x} + \left(\sin y + x\cos y\frac{dy}{dx}\right) = -2\sin 2y\frac{dy}{dx}$$
$$(-x\cos y - 2\sin 2y)\frac{dy}{dx} = e^{x} + \sin y$$
$$\frac{dy}{dx} = \frac{e^{x} + \sin y}{-x\cos y - 2\sin 2y}.$$

3. Second Order Differentiation of Implicit functions*: Differentiate the first order differentiation.

Example 5.4.3 Find $\frac{d^2y}{dx^2}$ for the circle $x^2 + y^2 = 16$. (From Ex. 4.1: $2x + 2y\frac{dy}{dx} = 0$, $\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}$.)

$$(2x)' + \left(2y\frac{dy}{dx}\right)' = (0)' \Rightarrow 2 + \left((2y)'\frac{dy}{dx} + 2y\left(\frac{dy}{dx}\right)'\right) = 0 \Rightarrow 2 + 2\left(\frac{dy}{dx}\right)^2 + 2y\frac{d^2y}{dx^2} = 0$$
$$\frac{d^2y}{dx^2} = \frac{-2 - 2\left(\frac{dy}{dx}\right)^2}{2y} = \frac{-2 - 2\left(-\frac{x}{y}\right)^2}{2y}.$$

4. Derivative of Inverse Trigonometry Functions

Theorem 5.4.1

$$y = \arcsin x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}}, \ \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right](\cos y > 0).$$

Proof 5.4.2 From $y = \arcsin x$, we get $\sin y = x$. This situation can be illustrated by the figure below:

$$\therefore (\sin y)' = (x)' \Rightarrow \cos y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$$
$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}.$$

Theorem 5.4.2

$$y = \arccos x \implies \frac{dy}{dx} = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1 - x^2}}, \ \arccos x \in [0, \pi] \ (\sin y > 0).$$
$$y = \arctan x \implies \frac{dy}{dx} = \frac{1}{1 + x^2}.$$

Proof 5.4.3 (Hint: Try to visualize a similar diagram as in proof 4.1.) From $y = \arccos x$, we get $\cos y = x$.

$$\therefore (\cos y)' = (x)' \Rightarrow -\sin y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1-x^2}}.$$

From $y = \arctan x$, we get $\tan y = x$.

$$\therefore (\tan y)' = (x)' \Rightarrow \sec^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sec^2 y} = \cos^2 y = \left(\frac{1}{\sqrt{1+x^2}}\right) = \frac{1}{1+x^2}$$

5.5 Related Rate of Change

1. When finding a rate of change of x, we are finding the $\frac{dy}{dx}$.

Example 5.5.1 Area of circle is increasing at a rate of 10π per second. When the radius is 2, what is the rate of change of radius?

Known: $\frac{dA}{dt} = 10\pi$, r = 2. Find: $\frac{dr}{dt}$.

$$A = \pi r^{2} \Rightarrow \frac{dA}{dt} = 2\pi r \frac{dr}{dt} = 10\pi$$
$$\frac{dr}{dt} = \frac{10\pi}{2\pi r} = \frac{5}{r}$$
When $r = 2$, $\frac{dr}{dt} = \frac{5}{2}$.

Example 5.5.2 A spherical balloon is expanding at a rate of 60π per second. How fast is the surface area of the balloon expanding when the radius is 4? Known: $\frac{dV}{dt} = 60\pi$, r = 4. Find $\frac{dA}{dt}$.

$$V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dt} = 3 \cdot \frac{4}{3}\pi r^2 \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}$$
$$\therefore 4\pi r^2 \frac{dr}{dt} = 60\pi \Rightarrow \frac{dr}{dt} = \frac{60\pi}{4\pi r^2} = \frac{15}{r^2}$$
$$A = 4\pi r^2 \Rightarrow \frac{dA}{dt} = 8\pi r \frac{dr}{dt} = 8\pi r \cdot \frac{15}{r^2} = \frac{120\pi}{r}.$$
When $r = 4$, $\frac{dA}{dt} = \frac{120\pi}{4} = 30\pi.$

- 2. Kinematics:
 - Velocity, displacement, and acceleration are vector variables that have a value and a direction.
 - Speed only has a value and no direction. It is a scalar variable. No sign should be reported in the answer.
 - If *s* is the displacement, *v* is the velocity, *a* is the acceleration:

$$\frac{\mathrm{d}s}{\mathrm{d}t} = v; \ \frac{\mathrm{d}v}{\mathrm{d}t} = a.$$

5.6 More Limits - L'Hopital's Rule

Theorem 5.6.1 When the limit is in the **indeterminant form** $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$,

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]_{x \to a} \left[\frac{f'(x)}{g'(x)} \right],$$

where f'(x) and g'(x) are the first derivatives of f(x) and g(x), respectively.

Example 5.6.1

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sec^2 x}{1} = 1$$

5.7 Indefinite Integration

1. Regard Integration as Anti-differentiation:

$$f'(x) = x \implies f(x) = \frac{1}{2}x^2 + C$$
, where *C* is a constant.
 $f'(x) = x^2 \implies f(x) = \frac{1}{3}x^3 + C$, where *C* is a constant.
 $f'(x) = x^n \implies f(x) = \frac{1}{n+1}x^{n+1} + C$, where *C* is a constant.

Definition 5.7.1 Anti-differentiation is also called **indefinite integration**. It is denoted by $\int dx$.

e.g.
$$\int x^n \, \mathrm{d}x = \frac{1}{n+1}x^{n+1} + C.$$

2. General Rules of Integration.

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C$$

$$\int k \, dx = kx + C$$

$$\int kf(x) \, dx = k \int f(x) \, dx$$

$$\int f(x) \pm g(x) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

- 3. $\int f'(x) dx = f(x) + C$. Therefore, if we know the f'(x) and a point on the f(x), which is to determine the constant *C*, then we can deduce the original function f(x).
- 4. More Rules of Integration:

Differentiation	Integration
$(e^x)' = e^x$	$\int e^x \mathrm{d}x = e^x + C$
$(\ln x)' = frac 1x$	$\int \frac{1}{x} \mathrm{d}x = \ln x + C$
$(\sin x)' = \cos x$	$\int \cos x \mathrm{d}x = \sin x + C$
$(\cos x)' = -\sin x$	$\int \sin x \mathrm{d}x = -\cos x + C$
$(\tan x)' = \sec^2 x$	$\int \sec^2 x \mathrm{d}x = \tan x + C$
$(\cot x)' = -\csc^2 x$	$\int \csc^2 x \mathrm{d}x = -\cot x + C$
$(\sec x)' = \sec x \tan x$	$\int \sec x \tan x \mathrm{d}x = \sec x + C$
$(\csc x)' = -\csc x \cot x$	$\int \csc x \cot x \mathrm{d}x = -\csc x + C$

5. Anti-chain Rule in Integration: We must divide the chain rule factor.

Example 5.7.1

$$\int (ax+b)^n dx = \frac{1}{a} \left(\frac{1}{n+1} (ax+b)^{n+1} \right) + C$$
$$\int e^{(ax+b)} dx = \frac{1}{a} e^{ax+b} + C$$
$$\int \frac{1}{(ax+b)} dx = \frac{1}{a} \ln(ax+b) + C$$
$$\int \sin(ax+b) dx = -\frac{1}{a} \cos(ax+b) + C$$
$$\int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b) + C$$

6. Integration Techniques: by Substitution and by Parts:

Theorem 5.7.1 Whenever we have an integration like: $\int g'(x) \times f(g(x)) dx$, we can always assume u = g(x). Therefore, $du = g'(x) \cdot dx$. $()u = g(x) \Rightarrow \frac{du}{dx} = g'(x))$:

$$\int g'(x) \times f(g(x)) \, \mathrm{d}x = \int f(u \, \mathrm{d}u).$$

Theorem 5.7.2 If f(x) and g(x) are two functions, and f'(x) and g'(x) are their derivatives, respectively, integration by parts can be written as following:

$$\int f(x)g'(x) \, \mathrm{d}x = f(x)g(x) - \int f'(x)g(x) \, \mathrm{d}x.$$

Example 5.7.2 Find $\int 2x(x^2+3)^5 dx$. Since $2x = (x^2+3)'$, we consider to use integration by substitution. Assume $u = x^2 + 3$, then $\frac{du}{dx} = (x^2+3)' = 2x \Rightarrow du = 2x \cdot dx$.

$$\therefore \int 2x(x^2+3)^5 \, dx = \int (x^2+3)^5 \cdot (2x \cdot dx)$$
$$= \int u^5 \, du$$
$$= \frac{1}{6}u^6 + C$$
$$= \frac{1}{6}(x^2+3)^6 + C.$$

7. Integration of Inverse Trigonometric Functions:

•

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C$$
$$\int \frac{1}{1+x^2} \, dx = \arctan x + C$$
$$\int \frac{1}{x\sqrt{x^2-1}} \, dx = \operatorname{arcsec} x + C$$

Example 5.7.3 Find $\int \frac{dx}{x^2+4x+5}$

$$\int \frac{dx}{x^2 + 4x + 5} = \frac{dx}{(x+2)^2 + 1}$$
Assume $u = x+2$, $\frac{du}{dx} = 1 \implies du = dx$

$$\therefore \int \frac{dx}{x^2 + 4x + 5} = \frac{du}{u^2 + 1}$$

$$= \arctan u + C$$

$$= \arctan (x+2) + C.$$

5.8 Approximating the Area Under a Curve

1. The definite integral is equal to the limit at infinity of the Riemann sum, and hence gives the exact area under the curve between x = a and x = b. i.e.,

$$\lim_{n\to\infty} = \sum_{i=1}^{n} f(x_i) \Delta x_i = \int_a^b f(x) \, \mathrm{d}x,$$

where a is the lower limit and b is the upper limit.

2. If $f(x) \ge 0 \ \forall x \in [a,b]$, then $\int_a^b f(x) \, dx$ is defined as the shaded area:

This is known as the **Riemann integral**.

3. The Fundamental Theorem of Calculus:

Theorem 5.8.1 For a continuous function f(x) with antiderivative F(x):

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a).$$

This theorem explains the link between differential calculus and the definite integral.

4. Properties of Definite Integrals:

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} d dx = k(b-a), \ (k \text{ is a constant}).$$

$$\int_{a}^{b} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

5. When the function f(x) is negative for $x \in [a,b]$, then the area bounded by the curve, the *x*-axis and the lines x = a and x = b is given by

$$\left|\int_{a}^{b} f(x) \, \mathrm{d}x\right|.$$

- 6. Finding Areas Between Two Functions:
 - Sketch: find the intersections and determine which function is above.
 - Integration.

5.9 Volumes of Revolution

1. The volume of a solid of revolution formed when y = f(x), which is continuous in the interval [a,b], is rotated 2π radians about the *x*-axis is given by

$$V = \pi \int_a^b y^2 \, \mathrm{d}x.$$

2. The volume of a solid of revolution formed when y = f(x), which is continuous in the interval y = c to y = d, is rotated 2π radians about the *y*-axis is given by

$$V = \pi \int_c^d x^2 \, \mathrm{d}y.$$

- 3. Consider a region R between two curves, y = f(x) and y = g(x), from x = a to x = b, when f(x) > g(x).
 - Rotating R about the x-axis generates a solid of revolution S. The criss-section of this

shape looks like a washer whose area is given by:

$$A = \pi (R^2 - r^2) = \pi \left((f(x))^2 - (g(x))^2 \right).$$

So the volume of *S* is given by:

$$V = \int_{a}^{b} A(x) dx$$
$$= \int_{a}^{b} \left((f(x))^{2} - (g(x))^{2} \right) dx$$

• Rotating *R* about the *y*-axis in the interval $c \le y \le d$:

$$V = \pi \int_{c}^{d} \left((x_1)^2 - (x_2)^2 \right) \, \mathrm{d}y,$$

where x_1 and x_2 are expression of x with respect to y of f(x) and g(x).

5.10 Differential Equation

1. Differential Equation:

Definition 5.10.1 A **differential equation** is an equation containing the derivatives of one or more dependent variables with respect to one or more independent variables. Equation that involves the derivatives of one or more functions.

E.g.

y' = 6x + 1 Lagrange notation $3\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - y = 3$ Leibniz notation f'(x) = 6x + 1 Function notation

The independent variable is x, and the dependent variable is y. The solution to a differential equation is a function or a set of functions.

2. Two Types of Differential Equations:

Definition 5.10.2 Ordinary Differential Equations (ODEs): deals with functions of a single variable and ordinary derivatives. **Partial Differential Equations (PDEs)**: deals with multivariable equations and their partial derivatives (with more than one independent variables).

3. Order of Differential Equations:

Definition 5.10.3 The **order of the differential equation** is the highest order derivative in the equation.

4. Linearity of ODEs:

Theorem 5.10.1 A differential equation is said to be linear if:

- All the terms with dependent variables are in first-order.
- The coefficients of all the terms in the dependent variable and its derivatives depend only on the independent variable *x*.
- 5. Linear First-Order ODEs:

Definition 5.10.4

 $\frac{dy}{dx} + a(x)y = b(x)$, where a(x) and b(x) are functions of x.

- 6. Solutions of ODEs:
 - The solution to an ODE is a function or a set of functions.
 - General solution to the differential equation:

For a differential equation of order n, a solution is a function that satisfies the equation on some interval I. The function should have at least its first n derivatives on this interval I.

- To find particular solutions, we need to initial conditions for the problem.
 - (a) Initial Value Problem (IVP): where initial values are given to solve the differential equations depending on the order of the ODE. E.g. y(0), t(0), (0, y).
 - (b) Boundary Value Problem: where a certain boundary is given.E.g. (x, y).
- 7. Separable Differential Equations:

Definition 5.10.5 A differential equation $\frac{dy}{dx} = f(x, y)$ is **separable** if it can be expressed as a product of a function in *x* and a function in *y*:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) = g(x)h(y).$$

• Particularly, if $h(x) \neq 0$, the variable can be separated to

$$\frac{dy}{dx} = g(x)h(y) \implies \frac{dy}{h(y)} = g(x) dx$$
$$\int \frac{dy}{h(y)} = \int g(x) dx$$

- Solving differential equations using separation of variables:
 - (a) Separate the variables such that everything involving *y* is on one side and everything involving *x* is on the other side.
 - (b) Integrate both sides and combine the constant of integration on one side of the equation (normally the right side).

Example 5.10.1 Solve for y if $\frac{dy}{dx} = x(1+y)e^x$.

$$\frac{dy}{dx} = x(1+y)e^{x}$$

$$\frac{1}{1+y}dy = xe^{x}dx$$

$$\int \frac{1}{1+y}dy = \int xe^{x} dx$$

$$(= xe^{x} - \int e^{x} dx = xe^{x} - e^{x} \text{ [Integration by Parts]})$$

$$\ln|1+y| = xe^{x} - e^{x} + C$$

$$1+y = e^{xe^{x} - e^{x} + C} = e^{xe^{x} - e^{x}} \cdot e^{C}$$

$$y = Ae^{xe^{x} - e^{x}} - 1 \quad (A = e^{C}).$$

8. The Standard Logistic Equation:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = kn(a-n); \ a,k \in \mathbb{R}.$$

where *t* is the time during which a population grows,

- *n* is the population after time *t*,
- k is the relative growth, and

a is a constant.

9. Homogeneous Differential Equations:

Definition 5.10.6 Differential equations of the form $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$, where y = y(x), are known as **homogeneous differential equations**.

Theorem 5.10.2 Homogeneous differential equations can be solved by using the substitution y = vx, where v is a function of x. The substitution will always reduce the differential equation to a separable differential equation.

Proof 5.10.1 If y = vx, where v is a function of x, then:

$$\frac{dy}{dx} = \frac{dv}{dx}x + v \quad \text{[Product Rule]}$$
$$\therefore \frac{dy}{dx} = f\left(\frac{y}{x}\right),$$
$$\therefore \frac{dv}{dx}x + v = f\left(\frac{y}{x}\right) = f(v)$$
$$\frac{dv}{dx} = \frac{f(v) - v}{x}$$
$$\Rightarrow \frac{1}{f(v) - v} dv = \frac{1}{x} dx$$

Example 5.10.2 Solve for $\frac{dy}{dx} = \frac{x+2y}{x}$, given $y(3) = \frac{3}{2}$.

$$\frac{dy}{dx} = 1 + 2\frac{y}{x} \rightarrow$$
 homogeneous differential equation

Let
$$y = vx$$
, $\frac{dy}{dx} = \frac{dv}{dx}x + v \Rightarrow \frac{dv}{dx}x + v = 1 + 2\frac{y}{x} = 1 + 2v$.

$$\frac{dv}{dx} = \frac{1+v}{x}$$

$$\frac{1}{1+v} dv = \frac{1}{x} dx$$

$$\int \frac{1}{1+v} dv = \int \frac{1}{x} dx$$

$$\ln|1+v| = \ln|x| + C = \ln|Ax|$$

$$1+v = Ax \Rightarrow \frac{y}{x} + 1 = Ax$$

$$y = Ax^2 - x.$$

Substituting $y = \frac{3}{2}$, x = 3: $\frac{3}{2} = A(3)^2 - 3 \Rightarrow A = \frac{1}{2}$

$$\therefore y = \frac{1}{2}x^2 - x.$$

Example 5.10.3 Solve for $\frac{dy}{dx} = \frac{x+y}{x}$.

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \frac{y}{x} \rightarrow$ homogeneous differential equation

Assume
$$v = \frac{y}{x}$$
: $y = vx \Rightarrow \frac{dy}{dx} = \frac{dv}{dx}x + v$.

$$\frac{dy}{dx} = 1 + v = \frac{dv}{dx}x + v$$
$$dv = \frac{1}{x} dx$$
$$\int dv = \int \frac{1}{x} dx$$
$$v = \ln |x| + C = \ln |Ax|$$
$$\frac{y}{x} = \ln |Ax|$$
$$y = x \ln |Ax|.$$

10. Using the Integrating Factor I(x):

Definition 5.10.7

$$I(x) = e^{\int P(x) \, \mathrm{d}x}$$

is the **integrating factor** for $\frac{dy}{dx} + P(x)y = Q(x)$, where P and Q are continuous functions of x on a given interval.

Theorem 5.10.3

$$\frac{dy}{dx} + P(x)y = Q(x)$$

$$I(x)\frac{dy}{dx} + I(x)P(x)y = I(x)Q(x) \text{ [Multiply both sides by } I(x)\text{]}$$

$$\left(\frac{d}{dx}(I(x)y) = I(x)\frac{dy}{dx} + I(x)P(x)y \text{ [Product Rule]}\right)$$

$$\left[(I(x))' = (e^{\int P(x) dx})' = e^{\int P(x) dx} \cdot (\int P(x) dx)' = e^{\int P(x) dx} \cdot P(x) = I(x)P(x)\right]$$

$$\therefore \frac{d}{dx}(I(x)y) = I(x)Q(x)$$

$$\int \frac{d}{dx}(I(x)y) dx = \int I(x)Q(x) dx$$

$$I(x)y = \int I(x)Q(x) dx.$$

Example 5.10.4 Solve $\frac{dy}{dx} + 3x^2y = 6x^2$.

$$\therefore P(x) = 3x^2, \ Q(x) = 6x^2,$$
$$\therefore I(x) = e^{\int P(x) \, dx} = e^{\int 3x^2 \, dx} = e^{x^3}.$$

Multiply both sides by I(x):

$$e^{x^{3}}\frac{dy}{dx} + e^{x^{3}} \cdot 3x^{2}y = e^{x^{3}} \cdot 6x^{2}$$

$$\therefore \frac{d}{dx} \left(e^{x^{3}}y \right) = e^{x^{3}} \cdot 6x^{2}$$

$$\int \frac{d}{dx} \left(e^{x^{3}}y \right) dx = \int e^{x^{3}} \cdot 6x^{2} dx$$

$$\left[\text{Let } x^{3} = u, \ \frac{du}{dx} = 2x^{2}, \ du = 2x^{2} dx \Rightarrow 2 \int e^{u} du = 2e^{u} + C = 2e^{x^{3}} + C \right]$$

$$e^{x^{3}}y = 2e^{x^{3}} + C$$

$$y = 2 + Ce^{-x^{3}}.$$

- 11. Euler's Method:
 - For y = f(x), $y_{n+1} = y_n + hf'(x_0)$, *h* is a constant.

 $y - y_n = f'(x_n)(x - x_n).$

Example 5.10.5 $y = x^2$, $\frac{dy}{dx} = 2x$, h = 0.1

n	x_n	y _n	Actual
0	1	1	1
1	1.1	1.2	1.21
2	1.2	1.42	1.44
3	1.3	1.66	1.69
4	1.4	1.92	1.96
5	1.5	2.2	2.25

- The smaller the *h*, the more accurate the approximation.
- Consider a differential equation of the form $\frac{dy}{dx} = f(x, y)$, given an initial condition. The derivative at any point on the curve $(x_0, y(x_0))$ can be approximated using the gradient of the tangent to the curve at x_0 :

$$y'(x_0) = \frac{y(x_0+h) - y(x_0)}{h}$$

Rearranging the formula, we get:

$$y(x_0+h) = y(x_0) + hy'(x+0).$$

This is the **linearization** or **Euler's method** and becomes more accurate over small increments and as long as the function does not change too rapidly.

• If $\frac{dy}{dx} = f(x_n, y - n)$ and $x_{n+1} = x_n + h$, we have

$$y_{n+1} = y_n + hf(x_n, y_n).$$

5.11 Maclaurin Series

1. The Maclaurin Polynomial:

Definition 5.11.1 If f(x) has *n* derivatives at x = 0, then P(x), the Maclaurin polynomial of degree *n* for f(x) centered at x = 0, is the unique polynomial of degree *n* that satisfies:

$$f(0) = P(0);$$

$$f^{(n)}(0) = P^{(n)}(0);$$

$$a_1 = \frac{f'(0)}{1!}, a_2 = \frac{f''(0)}{2!}, a_3 = \frac{f'''(0)}{3!}, \dots a_n = \frac{f^{(n)}(0)}{n!};$$

$$P_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!}x^k.$$

- 2. Maclaurin polynomials approximate the behavior of functions around a certain interval. The more terms we take, the better the approximation.
- 3. The Maclaurin Series:

Definition 5.11.2 If f(x) has derivatives of all orders throughout an open interval *I* such that $0 \in I$, then the Maclaurin series generated by *f* at x = 0 is:

$$P_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n.$$

A series converges when the sum of them is a constant (a limit can be found).

Example 5.11.1 Find the Maclaurin series for
$$f(x) = \frac{1}{2+x}$$
.

$$f(x) = (2+x)^{-1} \qquad f(0) = 2^{-1} = \frac{1}{2}$$

$$f'(x) = -(2+x)^{-2} \qquad f''(0) = -2(2)^{-2} = -\frac{1}{4}$$

$$f''(0) = 2(2)^{-3} = 2 \times \frac{1}{8}$$

$$f'''(0) = -6(2+x)^{-4} \qquad f'''(0) = -6(2)^{-4} = -6 \times \frac{1}{16}$$

$$f^{(4)}(x) = 24(2+x)^{-5} \qquad f^{(4)}(0) = 24(2)^{-5} = 24 \times \frac{1}{32}$$

$$P(x) = \frac{1}{2} + \frac{-\frac{1}{4}}{1!}x + \frac{2 \times \frac{1}{8}}{2!}x^2 + \frac{-6 \times \frac{1}{16}}{3!}x^3 + \frac{24(2)^{-5} = 24 \times \frac{1}{32}}{4!}x^4 + \cdots$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n+1} (-x)^n.$$

4. The Binomial series is the Maclaurin expansion for $f(x) = (1+x)^p$:

$$(1+x)^p = \sum_{n=0}^p \binom{p}{n} x^n, \ 1 \le n \le p, \ \binom{p}{n} = \frac{p!}{n!(p-n)!} = \frac{p(p-1)(p-2)\cdots(p-(n-1))}{n!}.$$

Example 5.11.2 Use the Binomial series to find the Maclaurin series for $f(x) = \frac{1}{(x+2)^2}$.

$$f(x) = (1+x)^{-2}$$

$$\because \binom{-2}{n} = \frac{-2(-2-1)(-2-2)\cdots(-2-(n-1))}{n!}$$

$$= (-1)^n \frac{2(3)(4)\cdots(n+1)}{n!} = (-1)^n (n+1)$$

$$\therefore P(x) = \sum_{n=0}^{\infty} (-1)^n (n+1) x^n$$

$$= 1 - 2x + 3x^2 - 4x^3 + \dots + (-1)^n (n+1) x^n + \dots$$

Example 5.11.3 Use the Binomial series to find the Maclaurin series for $f(x) = \frac{1}{\sqrt{2-x}}$.

$$f(x) = (2-x)^{-\frac{1}{2}} = (2)^{-\frac{1}{2}} \left(1 - \frac{x}{2}\right)^{-\frac{1}{2}} = \frac{\sqrt{2}}{2} \left(1 - \frac{x}{2}\right)^{-\frac{1}{2}}$$
$$\therefore P(x) = \sum_{n=0}^{\infty} \frac{\sqrt{2}}{2} {-\frac{1}{2} \choose n} \left(1 - \frac{x}{2}\right)^{-\frac{1}{2}} = \frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} {-\frac{1}{2} \choose n} \left(1 - \frac{x}{2}\right)^{-\frac{1}{2}}.$$

- 5. Applications of Maclaurin Series:
 - Approximation of sin, cos, tan,...

Example 5.11.4 Approximate sin 3° using the first four terms of Maclaurin series.

$$3^{\circ} = \frac{\pi}{60}, \text{ For } \sin x, P(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
$$\therefore P\left(\frac{\pi}{60}\right) = x - \frac{\left(\frac{\pi}{60}\right)^3}{3!} + \frac{\left(\frac{\pi}{60}\right)^5}{5!} - \frac{\left(\frac{\pi}{60}\right)^7}{7!} + \cdots \approx 0.052336 \text{ (6 d.p.)}.$$

• More Complicated Functions

Example 5.11.5 Find the Maclaurin series of $f(x) = e^{x^2}$. Let $u = x^2$, $f(x) = e^u$:

$$P(x) = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{u^n}{n!} = \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}.$$

Example 5.11.6 Find the Maclaurin series of $f(x) = \ln \left(\frac{1+x}{1-x}\right)$.

$$\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$$
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$
$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots$$

$$\therefore P(x) = -\frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots - \left(x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots\right)$$
$$= 2(x + \frac{x^3}{3} + \dots)$$
$$= 2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}.$$

Example 5.11.7 Find the Maclaurin series of $f(x) = \frac{x}{(1+x)^2}$.

$$f(x) = x(1+x)^{-2}$$

= $x \sum_{n=0}^{\infty} {\binom{-2}{n}} x^n$
= $\sum_{n=0}^{\infty} {(-1)^n (n+1)} x^{n+1}.$

• Evaluate Limits

Example 5.11.8 Find $\lim_{x\to 0} \frac{1-e^{x^2}}{1-\cos x}$.

$$e^{x^{2}} = 1 + x^{2} + \frac{x^{4}}{2!} + \frac{x^{6}}{3!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$\therefore \lim_{x \to 0} \frac{1 - e^{x^{2}}}{1 - \cos x} = \lim_{x \to 0} \frac{1 - \left(1 + x^{2} + \frac{x^{4}}{2!} + \frac{x^{6}}{3!} + \cdots\right)}{1 - \left(1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots\right)}$$

$$= \lim_{x \to 0} \frac{-x^{2} - \frac{x^{4}}{2!} - \frac{x^{6}}{3!} - \cdots}{\frac{x^{2}}{2!} - \frac{x^{4}}{4!} + \frac{x^{6}}{6!} - \cdots}$$

$$= \lim_{x \to 0} \frac{-x^{2}}{\frac{x^{2}}{2!}}$$

$$= -2.$$

[Consider only the smallest power of *x*, as higher powers will go to zero much quicker.]

• Solve Differential Equations

Example 5.11.9 Use the first six terms of a Maclaurin series to approximate the solution of $y' = y^2 - x$ on an open interval centered at x = 0 if y(0) = 1.

	y(0) = 1
$y' = y^2 - x$	y'(0) = 1
y'' = 2yy' - 1	y''(0) = 2 - 1 = 1
$y''' = 2yy'' + 2(y')^2$	y'''(0) = 2 + 2 = 4
$y^{(4)} = 2yy''' + 6y'y''$	$y^{(4)}(0) = 14$
$y^{(5)} = 2yy^{(4)} + 8y'y''' + 6(y'')^2$	$y^{(5)}(0) = 66$

$$\therefore P(x) = 1 + x + \frac{1}{2}x^2 + \frac{4}{3!}x^3 + \frac{14}{4!}x^4 + \frac{66}{5!}x^5 + \cdots$$

• Binomial Theorem

Theorem 5.11.1 Function $f(x) = (1+x)^p$, $p \in \mathbb{R}$ is equal to its Binomial series using the initial condition y(0) = 1.

Proof 5.11.1

$$f(x) = 1 + px + \frac{p(p-1)}{2!}x^2 + \dots + \frac{p(p-1)\dots(p-n+1)}{n!}x^n + \dots$$

$$\therefore f'(x) = p + p(p-1)x + \frac{p(p-1)(p-2)}{2!}x^2 + \dots$$

$$xf'(x) = px + p(p-1)x^2 + \frac{p(p-1)(p-2)}{2!}x^3 + \dots$$

$$\therefore f'(x) + xf'(x) = p + [p(p-1) + p]x + \left[\frac{p(p-1)}{2!}p(p-1) + \right]x^2 + \dots$$

$$= p + p^2x + \frac{p^2(p-1)}{2!}x^2 + \dots$$

$$= p(1 + px + \frac{p(p-1)}{2!}x^2) + \dots$$

$$= pf(x)$$

$$\therefore f'(x) + xf'(x) = pf(x) \Rightarrow (1+x)f'(x) = pf(x)$$

$$f'(x) - \frac{p}{1+x}f(x) = 0 \Rightarrow P(x) = -\frac{p}{1+x}, Q(x) = 0$$

$$\therefore I(x) = e^{\int -\frac{p}{1+x} dx} = A(1+x)^{-p}$$

$$\therefore \frac{d}{dx}(A(1+x)^{-p}f(x)) = 0 \cdot I(x)$$

$$\int \frac{d}{dx}(A(1+x)^{-p}f(x)) dx = \int 0 dx$$

$$A(1+x)^{-p}f(x) = C$$

$$f(x) = C \cdot A(1+x)^{x-p} = B(1+x)^{x-p} \quad [Let B = C \cdot A.]$$

Let $f(0) = 1 : B = 1$

$$\therefore f(x) = (1+x)^{p}.$$