
Emory University

MATH 211 - Advanced Calculus (Multivariable)

Learning Notes

Jiuru Lyu

June 18, 2025

Contents

1 Vectors and Geometry of Space 3

1.1 Three Dimensional Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Equations of Lines and Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Cylinders and Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Vector Functions 23

2.1 Vector Functions and Space Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Derivative and Intergral of Vector Functions . . . . . . . . . . . . . . . . . . . . 25

3 Partial Derivative 28

3.1 Function of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Limit and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Tangent Plane and Linear Approximation . . . . . . . . . . . . . . . . . . . . . . 33

3.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Directional Derivatives and Gradient . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Maximum and Minimum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Lagrange Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



CONTENTS CONTENTS

4 Multiple Integrals 48

4.1 Double Integral Over Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Double Integral Over General Region . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Changing Variables in Double Integrals . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Double Integral in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Changing Variables in Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Applications of Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Multiple Integral – Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Vector Calculus 77

5.1 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 The Fundamental Theorem of Line Integral . . . . . . . . . . . . . . . . . . . . . 84

5.4 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Curl and Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2



1 VECTORS AND GEOMETRY OF SPACE

1 Vectors and Geometry of Space

1.1 Three Dimensional Coordinate System

Definition 1.1.1 (Coordinate System). A coordinate system is a system that uses coordinate

of a point to uniquely determine the position of the point in the space or plane.

The Cartesian coordinate system is defined in different dimensions.

Definition 1.1.2 (One Dimensional Cartesian System). One Dimensional Cartesian System

is a straight line with a fixed point as the origin and positive and negative directions.

Remark. The one dimensional cartesian system is the number line:

− +O

Any point in the one dimensional Cartesian system corresponds to a number ∈ R and any

number ∈ R has a location on the line. The two dimensional Cartesian system is the regular

coordinate system.

III

III IV

x− axis

y − axis

P (a, b)

O x = a

y = b

The three dimensional Cartesian system includes three perpendicular axes.

y

z

O

x

Definition 1.1.3 (Octant). A Octant is one of the eight divisions of the three dimensional co-

ordinate system.

Definition 1.1.4 (Hyperplane). The hyperplane of y = 2 is given as below:
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1 VECTORS AND GEOMETRY OF SPACE 1.1 Three Dimensional Coordinate System

y

z

O

x

y = 2

Specially:

y

z

O

x
xy plane : z = 0

xz plane : y = 0
yz plane : x = 0

Definition 1.1.5 (Points in the Three Dimensional System). P (a, b, c) indicates the intersec-

tion of the three hyperplanes: x = a, y = b, and z = c.

y

z

O

x

P (a, b, c)

(a, b, 0)

a

b

c

For spaces in the higher dimension, we understand them via the Cartesian product.

Definition 1.1.6 (Cartesian Product).

R× R× · · ·× R = {(x1, · · · , xn) | xi ∈ R∀i = 1, · · · , n}

is the set of all n-tuples of real numbers and is denoted by Rn.

Example 1.1.1. (3, 4, 5) ∈ R3 is 3 dimensional. (3, 4, 5, 6) ∈ R4 is 4 dimensional.
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1 VECTORS AND GEOMETRY OF SPACE 1.1 Three Dimensional Coordinate System

Example 1.1.2. Which point(s) (x, y, z) satisfies the equations

x2 + y2 = 1 and x = 3?

Answer.

y

z

O

x

z = 3

Those points form a circle in the hyperplane of z = 3 centered at the point (0, 0, 3) with a

radius of 1.

□

Theorem 1.1.1 (Distance Formula in Three Dimension). For given pointsP1(x1, y1, z1) andP2(x2, y2, z2),

the distance between them is denoted by |P1P2| and is defined by

|P1P2| =


(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

Theorem 1.1.2 (Equation of a Sphere). An equation of a sphere with a center of (a, b, c) and a

radius of r is defined as

(x− a)2 + (y − b)2 + (z − c)2 = r2.

Example 1.1.3. What is the region in R3 represented by the inequalities

1 ≤ x2 + y2 + z2 ≤ 4 and z ≤ 0?

Answer.

y
z

O

x

The region is the difference between the half spheres (the lower half of the sphere) centered

at (0, 0, 0) with a radius of 1 and 2.

□
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1 VECTORS AND GEOMETRY OF SPACE 1.2 Vectors

1.2 Vectors

Definition 1.2.1 (Vectors). Vectors are used to indicate a quantity that has both magnitude

and direction.

Tail of the vector (Initial Point)

Tip of the vector (Terminal Point)

1. Vectors are denoted as v.

2. Magnitude

Definition 1.2.2 (Magnitude). A vector is a line segment, of which the magnitude of

vector denoted by |v| is the length of it and the arrow points the direction of the vector.

Vectors are operated in a different way:

1. Addition of Vectors:

(a) The triangle law:

v

u

v + u

(b) The parallelogram law:

v

u v + u

2. Scalar Multiplications:

v

−v

1
2
v
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1 VECTORS AND GEOMETRY OF SPACE 1.2 Vectors

Definition 1.2.3 (Scalar Multiplication). If c ∈ R and v is a vector, then cv is in the same

direction of v if c > 0 and in the opposite direction if c < 0.

Theorem 1.2.1. The magnitude of cv:

|cv| = c|v|.

3. Differences of Vectors:

v

−v

uu− v

u− v

The difference of vectors u and v is denoted by u− v and is defined by

u− v = u+ (−v)

4. Properties of vectors:

Suppose a, b, c are vectors in Vn and c and d are scalars (Those properties can be proven

geometrically):

(a) a+ b = b+ a

(b) a+ (b+ c) = (a+ b) + c

(c) a+ 0 = a

(d) a+ (−a) = 0

(e) c(a+ b) = ca+ cb

(f) (c+ d)a = ca+ da

(g) (cd)a = c(da)

(h) 1 · a = a

We can link the coordinate system and vectors together:

1. Definition 1.2.4 (Components of Vectors). We will denote vector v as

v = 〈a1, a2〉,

where a1 and a2 are called the components of v.

7



1 VECTORS AND GEOMETRY OF SPACE 1.2 Vectors

(0, 0)

(a1, a2)

v

2. In the three dimension:

v = 〈a1, a2, a3〉

(0, 0, 0)

(a1, a2, a3)

v

x

y

z

3. Definition 1.2.5. If A(x1, y1, z1) as the tail of vector v and B(x2, y2, z2) as the tip of vector

v, then
−→
AB = 〈x2 − x1, y2 − y1, z2 − z1〉

|−→AB| =


(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

4. Theorem 1.2.2. If v = 〈a, b, c〉 and u = 〈a′, b′, c′〉, then

u+ v = 〈a′ + a, b′ + b, c′ + c〉

u− v = 〈a′ − a, b′ − b, c′ − c〉

αu = 〈αa′, αb′, αc′〉, where α is a scalar.

Definition 1.2.6 (Standard Basis Vectors). In 2-D, î = 〈1, 0〉 and ĵ = 〈0, 1〉; and in 3-D, î =

〈1, 0, 0〉, ĵ = 〈0, 1, 0〉, and k̂ = 〈0, 0, 1〉 are called the standard basis vectors.

Remark. Any vectors in 2D and 3D can be written as

v = 〈a, b, c〉 = âi + b̂j + ck̂.
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1 VECTORS AND GEOMETRY OF SPACE 1.2 Vectors

Definition 1.2.7 (Unit Vector). A unit vectoris a vector of magnitude of 1.

Example 1.2.1.

|̂i| = |̂j| = |k̂| = 1 are unit vectors.

Theorem 1.2.3. To find a unit vector in the direction of any vector v, we use
1

|v|
v. The length

of vector
v

|v| is 1 and its direction is the same as v.

Example 1.2.2. If the vectors in the figure satisfy |u| = |v| = 1, and u+ v + w = 0, find |w|.

u

v

w

Answer.

Decompose the vectors:

u

v
w x

y

uy

vy

ux

vx

We then have

cos 45◦ =
|ux|
u

=⇒ |ux| = |u| cos 45◦;

sin 45◦ =
|uy|
u

=⇒ |uy| = |u| sin 45◦;

∴ u = 〈|ux|, |uy〉 = −|ux |̂i + |uy |̂j

= −
√
2

2
|u|̂i +

√
2

2
ĵ

=

√
2

2
|u|(−̂i + ĵ)

Similarly,

v =

√
2

2
|v|(−̂i − ĵ).
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1 VECTORS AND GEOMETRY OF SPACE 1.3 Dot Product

We know u+ v + w = 0:

∴ w +

√
2

2
|u|(−̂i + ĵ) +

√
2

2
|v|(−̂i − ĵ) = 0

We know |u| = |v| = 1:

∴ w +

√
2

2
(−̂i + ĵ) +

√
2

2
(−̂i − ĵ) = 0

w +

√
2

2
(−̂i + ĵ − î − ĵ) = 0

w =
√
2̂i

∴ w = 〈
√
2, 0〉 =⇒ |w| =

√
2.

□

1.3 Dot Product

Definition 1.3.1 (Dot Product). If u = 〈x1, y1, z1〉 and v = 〈x2, y2, z2〉, then the dot product of

u and v is defined as
u · v = 〈x1, y1, z1〉 · 〈x2, y2, z2〉

= x1x2 + y1y1 + z1z2

Remark. The dot product of two vectors returns a scalar.

Example 1.3.1. Let u = î + 2̂j − 3k̂ and v = 2̂j − k̂. Find u · v.

Answer.

u · v = 〈1, 2,−3〉 · 〈0, 2,−1〉

= (1)(0) + (2)(2) + (−3)(−1) = 7.

□

Properties of the dot product:

1. a · b = b · a

2. a · (v + c) = ab+ ac

3. m(a · b) = (ma) · b = a · (mb) = (a · b)m

4. î · î = ĵ · ĵ = k̂ · k̂ = 1

î · ĵ = ĵ · k̂ = k̂ · î = 0
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1 VECTORS AND GEOMETRY OF SPACE 1.3 Dot Product

Theorem 1.3.1.

u · u = |u|2.

Theorem 1.3.2. If θ is the angle between u and v, then

u · v = |u| · |v| cos θ .

Extension.

cos θ =
u · v
|u||v|

Extension.

θ = 90◦ ⇐⇒ u · v = 0.

Definition 1.3.2 (Projections). We use Projab to denote the projection of b on a.

θ θ

a a

b
b

Projab Projab

From the diagrams,

cos θ =
|Projab|

|b|
=⇒ |Projab = |b| cos θ .

We know that
a · b = |a||b| cos θ

∴ a · b
|a| = |b| cos θ

∴ |Projab| =
a · b
|a| , which is a scalar.

|Projab| is called the scalar projection of b on a.

Projab = |Projab| ·
a

|a|
unit vector

=
a · b
|a| · a

|a| =
a · b
|a|2 · a

Projab is called projection of b on a and is a vector.

Example 1.3.2. Find the scalar projection and vector projection of vector u = 〈1, 1, 2〉 onto

v = 〈−2, 3, 1〉.
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1 VECTORS AND GEOMETRY OF SPACE 1.4 Cross Product

Answer.

Projvu =
u · v
|v|2 · v ; |Projvu| =

u · v
|v|

We need |v| =
√
4 + 9 + 1 =

√
14 and u · v = (1)(−2) + (1)(3) + (2)(1) = 3

∴ |Projvu| =
3√
14

Projvu =
3

14
· v =

3

14
· 〈−2, 3, 1〉 =


−3

7
,
9

14
,
3

14


.

□

1.4 Cross Product

Definition 1.4.1 (Cross Product). The cross product of u and v is denoted by u × v and is a

vector that is perpendicular to both u and v. If u = 〈x1, y1, z1〉 and v = 〈x2, y2, z2〉, then

u× v =



î ĵ k̂

x1 y1 z1

x2 y2 z2


= y1z2̂i + x2z1̂j + x1y2k̂ − x2y1k̂ − y2z1̂i − x1z2̂j

= (y1z2 − y2z1)̂i + (z1x2 − z2x1)̂j + (x1y2 − x2y1)k̂

Example 1.4.1. Prove u× v is perpendicular to both u and v.

Proof.

u · (u× v) = 〈x1, y1, z1〉 · 〈y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y1〉

= x1y1z2 − xzy2z1 + x2y1z1 − x1y1z2 + x1y2z1 − x2y1z1 = 0

∴ u× v ⊥ u

Similarly, v · (u× v) = 0 =⇒ u× v ⊥ v.



Theorem 1.4.1. If θ is the angle between vectors u and v, then

|u× v| = |u||v| sin θ.

Proof.

12



1 VECTORS AND GEOMETRY OF SPACE 1.4 Cross Product

|u× v|2 = (y1z2 − y2z1)
2 + (z1x2 − z2x1)

2 + (x1y2 − x2y1)
2

= (x2
1 + y21 + z21)(x

2
2 + y22 + z22)− (x1x2 + y1y2 + z1z2)

2

= |u|2|v|2 − (u · v)2

= |u|2|v|2 − |u|2|v|2 cos2 θ

= |u|2|v|2(1− cos2 θ)

= |u|2|v|2 sin2 θ

∴ |u× v| = |u||v|| sin θ|.



Definition 1.4.2 (Parallel). If two vectors, u and v, are parallel to each other,

u = cv,

where c is a scalar.

Theorem 1.4.2. For two vectors u and v, u× v = 0 iff u and v are parallel to each other.

Theorem 1.4.3. The length of the cross product, |u × v|, is the area of the parallelogram de-

termined by the vectors u and v.

A = |u× v|

u

v

Theorem 1.4.4.

î × ĵ = k̂; ĵ × k̂ = î; k̂ × î = ĵ

ĵ × î = −k̂; k̂ × ĵ = −̂i; î × k̂ = −̂j

Properties of cross product (a, b, and c are vectors, and c is a scalar):

1. a× b = −b× a

2. (ca)× b = c(a× b) = a× (cb)

3. a× (b+ c) = a× b+ a× c

4. (a+ b)× c = a× c+ b× c

5. a · (b× c) = (a× b) · c

13



1 VECTORS AND GEOMETRY OF SPACE 1.5 Equations of Lines and Planes

6. a× (b× c) = (a · c)b− (a · b)c

Definition 1.4.3 (Triple Product). The scalar triple product is defined by

a · (b× c).

Theorem 1.4.5. |a · (b×c)| denotes the volume of the parallelepiped determined by a, b, and

c.

Proof.

The area of the base is given by

A = |b× c|

To find the volume, we need to know the height h:

h = |a|| cos θ|

∴ V = Ah = |b× c||a|| cos θ| = a · (b× c)

u · v = |u||v| cos θ



c

b

a

b× c

θh



1.5 Equations of Lines and Planes

Theorem 1.5.1 (Equation of Lines in 2D). If we have a pointP (x0, y0) and a direction (slope/θ/another

point on the line), we have the equation of the line:

Given





slope = m

P (x0, y0)
=⇒ The equation of the line: y − y0 = m(x− x0).

14



1 VECTORS AND GEOMETRY OF SPACE 1.5 Equations of Lines and Planes

P (x0, y0)

θ

Definition 1.5.1 (Directional Vector). If v is a directional vector of line L,

a = tv,

where a is any vector determined by two points on the line.

Definition 1.5.2 (Vector Equations of Lines in 3D). Let
−−→
P0P = a =⇒ a = 〈x−x0, y−y0, z−z0〉

P0(x0, y0, z0)

P (x, y, z)

−→r0

r

L

From the diagram, we also have

r0 + a = r.

As a = tv,

r = r0 + tv,

which is the vector equation of line L.

Theorem 1.5.2. If L is a line with point P (x0, y0, z0) on it and paralleled to a direction vector

v = 〈a, b, c〉, we have

〈x, y, z〉 = 〈x0, y0, z0〉+ t〈a, b, c〉,

where t is a parameter and the equation is called the vector equation of line L.

Extension (Parametric Equation of L). From 〈x, y, z〉 = 〈x0, y0, z0〉+ t〈a, b, c〉, we have






x = x0 + ta

y = y0 + tb

z = z0 + tc

15



1 VECTORS AND GEOMETRY OF SPACE 1.5 Equations of Lines and Planes

This system of equations is called the parametric equation of L.

Extension (Symmetric Equation of L). From the parametric equation of L, we can derive

t: 




x = x0 + ta =⇒ t = x−x0

a

y = y0 + tb =⇒ t = y−y0
b

z = z0 + tc =⇒ t = z−z0
c

As t should be equal:
x− x0

a
=

y − y0
b

=
z − z0

c
,

which is called the symmetric equation of the line with point P (x0, y0, z0) and a directional

vector v = 〈a, b, c〉.

Remark (Three Forms of Equation of a Line). For line L in 3D, P0(x0, y0, z0) is on L and

v = 〈a, b, c〉 is a directional vector of L.

1. The vector form:

〈x, y, z〉 = 〈x0 + ta, y0 + tb, z0 + tc〉

2. The parametric form: 




x = x0 + ta

y = y0 + tb

z = z0 + tc

3. The symmetric form:
x− x0

a
=

y − y0
b

=
z − z0

c

Example 1.5.1. Find the parametric and symmetric equations of the line L passing through

the points (−8, 1, 4) and (3,−2, 4).

Answer.

Let’s set P0 to be (−8, 1, 4) and P1 to be (3,−2, 4). So we can find the directional vector

v =
−−→
P0P1 = 〈3− (−8), −2− 1, 4− 4〉 = 〈11,−3, 0〉.

∴ The parametric equation of L: 




x = −8 + 11t

y = 1− 3t

z = 4 + (0)t

,

16



1 VECTORS AND GEOMETRY OF SPACE 1.5 Equations of Lines and Planes

and the symmetric equation of L is

x+ 8

11
=

y − 1

−3
, z = 4.

□

Relationships of two lines in 3D:

1. Parallel: directional vectors of the two lines are parallel to each other.

2. Intersect: the two lines share one common point

3. Skewed: the two lines are neither parallel nor intersecting.

Example 1.5.2. Let

L1 :
x− 2

1
=

y − 3

−2
=

z − 1

−3
and L2 :

x− 3

1
=

y + 4

3
=

z − 2

−7
.

Find the relationship between L1 and L2.

Answer.

v1 = 〈1,−2,−3〉; v2 = 〈1, 3,−7〉

Because v1 and v2 are not parallel to each other, L1 and L2 are not parallel to each other.

∴ L1 and L2 can only be intersecting or skewed.

To further discuss the relationship between L1 and L2, form parametric equations:

L1 :






x = 2 + t

y = 3− 2t

z = 1− 3t

L2 :






x = 3 + s

y = −4 + 3s

z = 2− 7s

If we can find a set of solutions t and s that satisfy the following system of equations, the two

lines have point in common and thus is intersecting:






2 + t = 3 + s

3− 2t = −4 + 3s

1− 3t = 2− 7s

=⇒






t− s = 1 ①

2t+ 3s = 7 ②

3t− 7s = −1 ③

From ①:

t = s+ 1 ④

17



1 VECTORS AND GEOMETRY OF SPACE 1.5 Equations of Lines and Planes

Substitute ② with ④:

2(s+ 1) + 3s = 7

2s+ 2 + 3s = 7 ⇒ 4s = 5 ⇒ s = 1

∴ t = s+ 1 = 1 + 1 = 2

Substitute s = 1 and t = 2 to ③:

LHS = 2(3)− 7(1) = 6− 7 = −1 = RHS.

Hence,





t = 2

s = 1
satisfy all three equations. Substitute t = 2 to L1:

x = 2 + 2 = 4, y = 3− 2(2) = −1, z = 1− 3(2) = −5.

∴ The two lines intersect at (4,−1,−5).

□

Theorem 1.5.3 (Line Segment that Connectsr0 andrr).

r(t) = (1− t)r0 + tr1, 1 ≤ t ≤ 1.

The vector equation gives a line segment the joins the tip ofr0 to the tip ofr1.

Definition 1.5.3 (Normal Vector). A normal vector is the vector perpendicular to the plane

and is often denoted as n.

Theorem 1.5.4 (Vector Equation of a Plane). As n ⊥ Π, n ⊥ −−→
P0P

−−→
P0P = r −r0

∴ n · (r −r0) = 0

n ·r − n ·r0 = 0 ⇒ n ·r = n ·r0,

which is called the vector equation of a plane.
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1 VECTORS AND GEOMETRY OF SPACE 1.5 Equations of Lines and Planes

P0(x0, y0, z0)

P (x, y, z)

r0
r

n = 〈a, b, c〉

Plane(Π)

Extension (Scalar Equation of a Plane). From n · (r −r0) = 0: As n = 〈a, b, c〉 andr −r0 =

〈x− x0, y − y0, z − z0〉, we have

〈a, b, c〉 · 〈x− x0, y − y0, z − z0〉 = 0;

∴ a(x− x0) + b(y − y0) + c(z − z0) = 0,

which is the scalar equation of plane Π with point P0(x0, y0, z0) on it and a normal vector

n = 〈a, b, c〉.

Extension (Linear Equation of a Plane). From a(x− x0) + b(y − y0) + c(z − z0) = 0:

ax+ by + cz − (ax0 + by0 + cz0) = 0

Take d = −(ax0 + by0 + cz0):

ax+ by + cz + d = 0,

which is called the linear equation of plane Π with point P0(x0, y0, z0) on it and a normal

vector n = 〈a, b, c〉.

Remark (Equations of a Plane). If point P0(x0, y0, z0) is on the plane Π and a normal vec-

tor of Π is n = 〈a, b, c〉:

1. The vector equation:

n ·r = n ·r0

2. The scalar equation:

a(x− x0) + b(y − y0) + c(z − z0) = 0

3. The linear equation:

ax+ by + cz + d = 0,

where d = −(ax0 + by0 + cz0) = −〈a, b, c〉 · 〈x0, y0, z0〉
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1 VECTORS AND GEOMETRY OF SPACE 1.5 Equations of Lines and Planes

Example 1.5.3. Find an equation of the plane crossing through the pointsP (1, 3, 2), Q(3,−1, 6),

and R(5, 2, 0).

Answer.

Find the normal vector using the following equation:

n =
−→
PQ×−→

PR

−→
PQ = 〈3− 1,−1− 3, 6− 2〉 = 〈2,−4, 4〉
−→
PR = 〈5− 1, 2− 3, 0− 2〉 = 〈4,−1,−2〉

∴ n =
−→
PQ×−→

PR =



î ĵ k̂

2 −4 4

4 −1 −2


= 12̂i + 20̂j + 14k̂.

∴ n = 〈12, 20, 14〉, P (1, 3, 2)

∴ d = −〈12, 20, 14〉 · 〈1, 3, 2〉 = −(12 + 60 + 28) = −100.

∴ Linear Equation of Π : 12x+ 20y + 14z − 100 = 0 =⇒ 6x+ 10y + 7z − 50 = 0.

□

Theorem 1.5.5 (Relationship Between Two Planes). If n1 is a normal vector of plane Π1, and

n2 is a normal vector of plane Π2 , then the angle between the two planes is given by

θ = cos−1


n1 · n2

|n1||n2|


.

i.e., the angle between the planes is the angle between the normal vectors.

Theorem 1.5.6 (Distance from a Point to a Plane). Distance of the pointP (x1, y1, z1) from the

plane ax+ by + cz + d = 0:

D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
(1)

OR

D =
b · n
|n| , (2)

where n is the normal vector.

Example 1.5.4. Find the distance between the parallel planes:

Π1 : 10x+ 2y − 2z = 5 and Π2 : 5x+ y − z = 1.

Answer.
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1 VECTORS AND GEOMETRY OF SPACE 1.6 Cylinders and Quadric Surfaces

Assume point P (x1, y1, z1) is on plane Π1:

10x1 + 2y1 − 2z1 = 5

∴ 5x1 + y1 − z1 =
5

2

Applying formula 1: n = 〈a, b, c〉 = 〈5, 1,−1〉, d = −1:

∴ D =
|5x1 + y1 − z1 + d|√

a2 + b2 + c2
=

|5
2
− 1|

√
26 + 1 + 1

=
3/2√
27

=
3

2
√
27


=

√
3

6


.

□

Extension. Find the distance between two parallel planes:

Π1 : ax+ by + cz + d = 0 and Π2 : ax+ by + cz + d′ = 0.

Let point P (x1, y1, z1) on Π1:

ax1 + by1 + cz1 + d = 0

Apply formula 1:

D =
|ax1 + by1 + cz1 + d′|√

a2 + b2 + c2
=

−d+ d′√
a2 + b2 + c2

.

1.6 Cylinders and Quadric Surfaces

Definition 1.6.1 (Cylinders). A cylinder is a surface that consists of all lines (called rulings)

that are parallel to a given line and pass through a given plane curve.

Definition 1.6.2 (Quadric Surfaces). A quadric surface is the graph of a second-degree equa-

tion in three variables x, y, and z. The most general such equation is

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gz +Hy + Iz + J = 0,

where A,B,C, · · · , J are constants, but by translation and rotation it can be brought into one

of the standard forms:

Ax2 +By2 + Cz2 + J = 0 or Ax2 +By2 + Iz = 0.

Remark. Graphs of Quadric Surfaces (Refer to Page 877 of the Book):

1. Ellipsoid:
x2

a2
+

y2

b2
+

z2

c2
= 1
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1 VECTORS AND GEOMETRY OF SPACE 1.6 Cylinders and Quadric Surfaces

All traces are ellipses.

If a = b = c, the ellipsoid is a sphere.

2. Elliptic Paraboloid:
z

c
=

x2

a2
+

y2

b2

Horizontal traces are ellipses. Vertical traces are parabolas.

The variable raised to the first power indicates the axis of the paraboloid.

3. Hyperbolic Paraboloid:
z

c
=

x2

a2
− y2

b2

Horizontal traces are hyperbolas. Vertical traces are parabolas.

4. Cone:
z2

c2
=

x2

a2
+

y2

b2

Horizontal traces are ellipses.

Vertical traces in the planes x = k and y = k are hyperbolas if k ∕= 0 but are pairs of lines

if k = 0.

5. Hyperboloid of One Sheet:
x2

a2
+

y2

b2
− z2

c2
= 1

Horizontal traces are ellipses. Vertical traces are hyperbolas.

The axis of symmetry corresponds to the variable whose coefficient is negative.

6. Hyperboloid of Two Sheets:

−x2

a2
− y2

b2
+

z2

c2
= 1

Horizontal traces in z = k are ellipses if k > c or k < −c. Vertical traces are hyperbolas.

The two minus sign indicate two sheets.
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2 VECTOR FUNCTIONS

2 Vector Functions

2.1 Vector Functions and Space Curves

Definition 2.1.1 (Component Functions). f(t), g(t), h(t) are real valued function and are called

component functions ofr(t). We write

r(t) = 〈f(t), g(t), h(t)〉 = f(t)̂i + g(t)̂j + h(t)k̂.

Definition 2.1.2 (Limit of Vector Functions). To find the limit of a vector function, we check

its component functions. That is

lim
t→a

r(t) =

lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)


Definition 2.1.3 (Continuity of Vector Functions). A vector functionr(t) is continuous if

lim
t→a

r(t) = r(a).

Example 2.1.1. 1. Find the domain of

r(t) =

ln(t+ 1),

t√
9− t2

, 2t


Answer.

• Domain of ln(t+ 1): D1Lt+ 1 > 0, t > −1

• Domain of
t√

9− t2
: D2 : 9− t2 > 0, −3 < t < 3

• Domain of 2t : D3 : R
Find the intersection of domains of component functions:

D1 ∩D2 ∩D3 : −1 < t < 3 (t ∈ (−1, 3))

□

2. Find lim
t→0

r(t).

Answer.
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2 VECTOR FUNCTIONS 2.1 Vector Functions and Space Curves

lim
t→0

r(t) =

lim
t→0

ln(t+ 1), lim
t→0

t√
9− t2

, lim
t→0

2t


=

ln(1),

0√
9
, 20



= 〈0, 0, 1〉 = k̂

□

Example 2.1.2.

lim
t→1


t2 − t

t− 1
î + sin πt̂j + cos 2πtk̂



= lim
t→1


t(t− 1)

t− 1
î + sin πt̂j + cos 2πtk̂



= lim
t→1

t̂i + lim
t→1

sin πt̂j + lim
t→1

cos 2πtk̂

=̂i + sin π̂j + cos 2πk̂

=̂i + k̂

Definition 2.1.4 (Graphs of Vector Functions). For a vector function r(t) = f(t)̂i + g(t)̂j +

h(t)k̂, the graph of it, curve C, is defined by the moving tip of the vectors yielded from the

vector function.

P (f(t0), g(t0), h(t0))

P ′ (f(t1), g(t1), h(t1))

C

x

y

z

r(t0) = 〈f(t0), g(t0), h(t0)〉

Definition 2.1.5 (Space Curve). If f , g, h, are continuous real-valued functions on an interval

I, then the set C of all points (x, y, z) in space s.t.

x = f(t) y = g(t) z = h(t), wheret ∈ I

is called a space curve.
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2 VECTOR FUNCTIONS 2.2 Derivative and Intergral of Vector Functions

Definition 2.1.6 (Parametric Equation). The system of equations






x = f(t)

y = g(y)

z = h(t)

is called a para-

metric equation of C and t is called the parameter.

2.2 Derivative and Intergral of Vector Functions

Limits, continuity, derivative, and integrals of vector functions follow rules similar to those of

scalar functions.

Definition 2.2.1 (Derivative of Vector Functions).

dr
dt

= lim
h→0

=
r(t+ h)−r(t)

h
,

dr
dt

orr′(t) is the derivative ofr(t) is the limit on the right hand side exists.

Extension. Ifr(t) = f(t)̂i + g(t)̂j + h(t)k̂, then

r′(t) = f ′(t)̂i + g′(t)̂j + h′(t)k̂.

Remark (Higher Order Derivatives). Higher order derivatives
d(n)r
dt(n)

can be defined simi-

larly.

Theorem 2.2.1 (Graphic Interpretation of Derivative). When h → 0, the vector

r(t+ h)−r(t)
h

becomes r(t) and therefore, r′(t) approaches to a vector that lies on the tangent line. r′(t) is

called the tangent vector, and

T =
r′(t)

|r′(t)|

is called the unit tangent vector.

Example 2.2.1. Find parametric equations of the tangent line to the vector function r(t) =

〈2 cos t, sin t, t〉 at point

0, 1,

π

2


.

Answer.

When t =
π

2
, 2 cos

π

2
= 0, sin

π

2
= 1.

∴

0, 1,

π

2


is on the space curve ofr(t).
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2 VECTOR FUNCTIONS 2.2 Derivative and Intergral of Vector Functions

Find
r′(t) = 〈(2 cos t)′, (sin t)′, t′〉

= 〈−2 sin t, cos t, 1〉

When t =
π

2
,

r′
π
2


=


−2 sin

π
2


, cos

π
2


, 1

= 〈−2, 0, 1〉

∴ d of tangent line = 〈−2, 0, 1〉

∴ Line:

0, 1,

π

2


+ 〈−2, 0, 1〉t =


−2t, 1,

π

2
+ t



□

Example 2.2.2. Ifr(t) = (t3 + 2t)̂i − 3e−2t̂j + 2 sin 5tk̂. Find
dr
dt

,


dr
dt

 ,
d2r
dt2

,


d2r
dt2

 .

Answer.

dr
dt

= 〈3t2 + 2, 6e−2t, 10 cos 5t〉

d2r
dt2

= 〈6t, −12e−2t, −50 sin 5t〉

When t = 0:

r′(0) = 〈2, 6, 10〉; r′′(0) = 〈0, −12, 0〉

∴ |r′(0)| =
√
4 + 36 + 100 =

√
140(= 2

√
70); |r′′(0)| =

√
144 = 12.

□

Theorem 2.2.2 (Properties of Differentiation).

d

dt
[r1(t) +r2(t)] =

d

dt
[r1(t)] +

d

dt
[r2(t)]

d

dt
[αr(t)] = α

d

dt
[r(t)]

d

dt
[f(t)r(t)] = f ′(t)r(t) + f(t)r′(t)

d

dt
[r1(t) ·r2(t)] = r′1(t) ·r2(t) +r1(t) ·r′2(t)

d

dt
[r1(t)×r2(t)] = r′1(t)×r2(t) +r1(t)×r′2(t)

Example 2.2.3. Show that if a curve lies on a sphere with center at the origin, then r′(t) is

perpendicular tor(t) for any t.

Answer.
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2 VECTOR FUNCTIONS 2.2 Derivative and Intergral of Vector Functions

Letr(t) lies on a sphere, with center at the origin, and radius R = c:

∴ r(t) = 〈x(t), y(t), z(t)〉 and x2(t) + y2(t) + z2(t) = c2

x2(t) + y2(t) + z2(t) = |r(t)|2 = r(t) ·r(t)

∴ r(t) ·r(t) = c2

Take derivative of the both sides of the euqation

d

dt
[r(t) ·r(t)] = d

dt
(c2)

∴ r′(t) ·r(t) +r(t) ·r′(t) = 0 =⇒ 2r′(t) ·r(t) = 0

∴ r′(t) ·r(t) = 0 =⇒ r′(t) ⊥ r(t).

□

Definition 2.2.2 (Definite Integral of a Vector Function). The definite integral of a continu-

ous vector functionr(t) can be defined as

 b

a

r(t)dt =
 b

a

f(t)dt̂i +
 b

a

g(t)dt̂j +
 b

a

h(t)dtk̂,

ifr(t) =

f(t), g(t), h(t)


.

Example 2.2.4.

 1

0


1

t+ 1
î +

1

t2 + 1
ĵ +

t

t2 + 1
k̂

dt =

 1

0

1

t+ 1
dt̂i +

 1

0

1

t2 + 1
dt̂j +

 1

0

t

t2 + 1
dtk̂

=


1

t+ 1

1

0

î +


1

t2 + 1

1

0

ĵ +


t

t2 + 1

1

0

k̂

= ln(2)̂i +
π

4
ĵ +

1

1
(ln(2))k̂
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3 PARTIAL DERIVATIVE

3 Partial Derivative

3.1 Function of Several Variables

Definition 3.1.1 (Multivariable Functions). A function of f of n variables is a function that

takes any n-tuple (x1, · · · , xn) in the set D to a number in R, where

D =


(x1, · · · , xn)|xi ∈ R and f is defined in (x1, · · · , xn)



Example 3.1.1. f(x, y) =


x2 + y2 − 4: f :
R2 −→ R
(x, y) −→ a number like r

Domain of f : all (x, y) ∈ R s.t. x2 + y2 − 4 ≥ 0. (i.e., Everything exclude the circle centered

at the origin with a radius of 2.)

Definition 3.1.2 (Graphs of a Two-Variable Function). The graph of a two-variable function

with domain D is the set of all points (x, y, z) ∈ R3 s.t. z = f(x, y) and (x, y) ∈ D.

Definition 3.1.3 (Vector Functions).

r :
R −→ Vn

t −→ 〈f(t), g(t), h(t), · · · 〉
,

where Vn is a set of all vectors with n components, and t is a parameter.

Remark. We will only work with V3, i.e.,r :
R −→ V3

t −→ 〈f(t), g(t), h(t)〉
.

Theorem 3.1.1. A multivariable function creates a surface in the space. if two surfaces inter-

sect each other, then the intersection identifies a curve.

Example 3.1.2. Find a vector function r(t) that represents the curve of intersection of two

surfaces

z =


x2 + y2 and z = 3 + y.

Answer.

Solve the system of equation





x =


x2 + y2

z = 3 + y
.
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3 PARTIAL DERIVATIVE 3.2 Limit and Continuity

Hence, 
x2 + y2 = 3 + y

x2 + y2 = (3 + y)2 = y2 + 6y + 9

x2 = 6y + 9

y =
x2 − 9

6

∴ z =3 + y =
x2 + 0

6

Let x = t:

r(t) = 〈x, t, z〉 =

t,

t2 − 9

6
,
t2 + 9

6



□

Example 3.1.3. Do the same for surfaces

z = 3x2 + y2 and y = 5x2

Answer.

Solve the system of equations





z = 3x2 + y2

y = 5x2
.

∴ 5x2 = 3x2 + y2 =⇒ z = 3x2 + (5x2)2 = 3x2 + 25x4

Let x = t:

r(t) = 〈x, t, z〉 =

t, 5t2, 3t2 + 25t4



□

Definition 3.1.4 (Level Curves). The level curve of a two variable function z = f(x, y) is a

curve f(x, y) = k (in the xy-plane). That means all values of x and y that have the same value

z = k.

Theorem 3.1.2 (Application of Level Curve). Given that a point (a, b) is on the level curve of

f(x, y) for k = c, then we know f(a, b) = c.

3.2 Limit and Continuity

Definition 3.2.1 (Limit). For two variable function z = f(x, y), we check limit when (x, y) →
(a, b). Therefore, we can make (x, y) closer to a(b) from infinitely many directions. Therefore,

lim
(x,y)→(a,b)

f(x, y) = L

if in all directions that (x, y) approaches to (a, b), we have f(x, y) → L.
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3 PARTIAL DERIVATIVE 3.2 Limit and Continuity

Definition 3.2.2 (Precise Definition of Limit). ∀ given ε > 0, ∃ associated δ > 0s.t. if (x, y) ∈
D and d((x, y), (a, b)) < δ =⇒ d(f(x, y), L) < ε, where d((x, y), (a, b)) is the distance between

(x, y) and (a, b) and is calculated by


(x− a)2 + (y − b)2.

Example 3.2.1. Consider function f(x, y) =
xy

x2 + y2
, and identify if it is has a limit at (0, 0) or

not.

Answer.

In the direction of x-axis (y = 0), we have f(x, y) =
x · 0

x2 + 02
= 0 and lim

(x,y)→(0,0)
f(, y) = 0

along the x-axis.

In the direction of y-axis (x = 0), we have f(x, y) = 0., and lim
(x,y)→(0,0)

f(x, y) = 0 along the

y-axis.

If y = x, f(x, y) = f(x, x) =
x2

x2 + x2
=

1

2
, and lim

(x,y)→(0,0)
f(x, y) =

1

2
along the line y = x.

□

Example 3.2.2. Find lim
(x,y)→(0,0)

x2y

x2 + y2
.

Answer.

By looking at the graph of the function, we think it has a limit at (0, 0). This is not enough,

and later we will be able to say that limit exists by converting it to polar coordinate.

Let y = mx:

f(x, y) = f(x,mx) =
x2 ·mx

x2 + (mx)2
=

x3m

x2(1 +m2)
=

m

1 +m2
x

∴ lim
(x,y)→(0,0)

f(x, y) = 0 along the line of y = mx.

□

Example 3.2.3.

lim
(x,y)→(0,0)

xy2

x2 + y2
= 0

lim
(x,y)→(0,0)

x2y

x2 + y4
= 0

lim
(x,y)→(0,0)

3x3y

x4 + y4
D.N.E.



check





x = 0

y = x





Definition 3.2.3 (Continuity). Functions of two-variables is continues at (a, b) if

lim
(x,y)→(a,b)

= f(a, b).
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3 PARTIAL DERIVATIVE 3.3 Partial Derivatives

Example 3.2.4. Find lim
(x,y)→(1,2)

(x2y3 − x3y2 + 3x+ 2y).

Answer.

As x2y3 − x3y2 + 3x+ 2y is a polynomial and continuous everywhere, so

lim
(x,y)→(1,2)

(x2y3 − x3y2 + 3x+ 2y) = (1)2(2)3 − (1)3(2)2 + 3(1) + 2(2) = 1.

□

Example 3.2.5. f(x, y) =
x2y

x2 + y2
is not continuous at (0, 0), but

g(x, y) =






x2y

x2 + y2
(x, y) ∕= (0, 0)

0 (x, y) = (0, 0)

is continuous at (0, 0).

3.3 Partial Derivatives

In two-variable functions, we will have partial derivatives fx (derivative with respect to x) and

fy (derivative with respect to y).

Definition 3.3.1 (Partial Derivative). If f(x, y) is a two variable function, then its partial deriva-

tives are fx and fy and is defined as

∂f

∂x
= fx(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

∂f

∂y
= fy(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

Example 3.3.1. Let f(x, y) = x3 + x2y3 − 2y and find fx(2, 1) and fy(2, 1)

Answer.

Find fx(x, y): keep y constant.

fx(x, y) = 3x2 + 2xy3

∴ fx(2, 1) = 3(2)2 + 2(2)(1)3 = 16

Find fy(x, y): keep x constant.

fy(x, y) = 3x2y2 − 2

∴ fy(2, 1) = 3(2)2(1)2 − 2 = 10

□
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3 PARTIAL DERIVATIVE 3.3 Partial Derivatives

Example 3.3.2. Let f(x, y) = 4− x2 − 2y2. Find fx(1, 1) and interpret the values.

Answer.

Slope of tangent line:
∂z

∂x

z − 1 = (−2)(x− 1) ⇒ z = −2x+ 3

y = 1

z

x

f(1, 1) = 4− 1− 2 = 1 =⇒ A(1, 1, 1) lies on f(x, y).
∂f

∂x
= −2x =⇒ ∂f

∂x
(1, 1) = −2

Let’s consider y = 1:

The plane y = 1 will intersect with f(x, y) at a liner(t).

Solver(t) :





z = 4− x2 − 2y2

y = 1

⇒ z = 4− x2 − 2 = 2− x2

∴ r(t) = 〈t, 1, 2− t2〉, r′(t) = 〈1, 0,−2t〉

At point A(1, 1, 1), t = 1.

∴ r′(1) = 〈1, 0,−2〉, which is a directional vector of the tangent line.

∴ Tangent line:

L : x = 1 + t, y = 1, z = 1− 2t

□

Definition 3.3.2 (Higher Order Partial Derivative).

∂2f

∂x∂x
=

∂

∂x


∂f

∂x



∂2f

∂y∂y
=

∂

∂y


∂f

∂y



∂2f

∂x∂y
=

∂

∂x


∂f

∂y
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3 PARTIAL DERIVATIVE 3.4 Tangent Plane and Linear Approximation

∂2f

∂y∂x
=

∂

∂y


∂f

∂x



Theorem 3.3.1 (Clairaut’s Theorem). If f is continuous on a disk D, then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Definition 3.3.3 (Functions With More Than Two Variables). If U = f(x1, · · · , xn), its partial

derivative with respect to xi is

∂f

∂yi
= lim

h→0

f(xa, · · · , xi + h, · · · , xn)− f(x1, · · · , xn)

h

=
∂U

∂xi

3.4 Tangent Plane and Linear Approximation

Theorem 3.4.1 (Tangent Plane). If f has continuous partial derivatives, an equation of the

tangent plane to the surface z = f(x, y) at the point (x0, y0, z0) is

z − z0 =
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0).

Example 3.4.1. Find the tangent plane of f(x, y) = 2x2 + y2 at (1, 1, 3).

Answer.

∂f

∂x
= 4x

∂f

∂y
= 2y

∴ ∂f

∂x
(1, 1) = 4

∂f

∂y
(1, 1) = 2

∴ Tangent plane at (1, 1, 3):

Π : z − 3 = 4(x− 1) + 2(y − 3).

□

Definition 3.4.1 (Linearization and Linear Approximation). Similar to single variable calcu-

lus, we can approximate the value of a function at a point using the tangent line:

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is the linearization of f(x, y) at point (a, b):

f(x, y) ≈ L(x, y)
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3 PARTIAL DERIVATIVE 3.4 Tangent Plane and Linear Approximation

is called the linear approximation or the tangent plane approximation of f at (a, b).

Definition 3.4.2 (Differentiable Functions). A differentiable function is a function that the

linear approximation is a good approximation when (x, y) are very close to (a, b).

Theorem 3.4.2 (A sufficient condition for differentiability). If partial derivative
∂f

∂x
and

∂f

∂y
exists near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Example 3.4.2. Show that function f(x, y) =

√
x

y
is differentiable at (16, 5) and use it to ap-

proximate

√
16.02

4.96
.

Answer.

f(16, 5) =

√
16

5
=

4

5
;

∂f

∂x
=

1

2y
√
x
;

∂f

∂y
= −

√
x

y2
.

∴ ∂f

∂x


(16,5)

=
1

2(5)
√
16

=
1

40
;

∂f

∂y


(16,5)

= −
√
16

25
= − 4

25
.

As
∂f

∂x
and

∂f

∂y
exists and is continuous at (x, y) = (16, 5), f(x, y) is differentiable at (16, 5).

Then, the approximation is

f(x, y) ≈ f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)

At a = 16 and b = 5: √
x

y
≈ 4

5
+

1

40
(x− 16) +


− 4

25


(y − 5)

=
4

5
+

1

40
x− 2

5
− 4

25
y +

4

5

=
1

40
− 4

25
y +

6

5
.

Therefore,

√
16.02

4.96
≈ 1

40
(16.02)− 4

25
(4.96) +

6

5
≈ 0.807.

□

Definition 3.4.3 (Differentials).

∆z = ∆f = f(a+∆x, b+∆y)− f(a, b)

dz = fx(a, b)dx+ fy(a, b)dy

Extension (Differentials in Higher Dimensions). Let U = f(x1, x2, · · · , xn), we have

dU = fx1(a1, · · · , an)dx1 + fx2(a1, · · · , an)dx2 + · · ·+ fxn(a1, · · · , an)dxn
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3 PARTIAL DERIVATIVE 3.5 The Chain Rule

∆U = ∆f = f(x1 +∆x1, x2 +∆x2, · · · , xn +∆xn)− f(xa, · · · , xn)

3.5 The Chain Rule

Theorem 3.5.1 (The Multivariable Chain Rule). Let U be a differentiabel function of n vari-

ables x1, · · · , xn, and each xi for i = 1, · · · , n is a differentiable function of t1, · · · , tm. Then, we

have
∂U

∂ti
=

∂U

∂x1

∂x1

∂ti
+

∂U

∂x2

∂x2

∂ti
+ · · ·+ ∂U

∂xn

∂xn

∂ti

Example 3.5.1. Let U = x4y + y2z3 and x = rset, y = rs2e−t, and z = r2s sin(t). Find thee value

of
∂U

∂s
when r = 2, s = 1, t = 0.

Answer.

From the multivariable china rule, we know

∂U

∂s
=

∂U

∂x

∂x

∂s
+

∂U

∂y

∂y

∂s
+

∂U

∂z

∂z

∂s

∂U

∂x
= 4x3y;

∂U

∂x
= x4 + 2yz3;

∂U

∂x
= 3y2z2;

∂x

∂s
= ret;

∂y

∂s
= 2rse−t;

∂x

∂s
= r2 sin t.

∴ ∂U

∂s
= (4x3y)(ret) + (x4 + 2yz3)(2rse−t) + (3y2z2)(r2 sin t)

When r = 2, s = 1, t = 0, we have

x = 2, y = 2, z = 0.

∴ ∂U

∂s


(r,s,t)=(2,1,0)

= (4(2)3(2))(2) + (24)(2 · 2) + 0 = 128 + 64 = 192.

□

Example 3.5.2. If z = f(x, y)has continuous second order partial derivatives and x = r2+s2

and y = 2rs. Find
∂z

∂r
and

∂2z

∂r2
.

Answer.

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r

Since
∂

∂r
= 2r;

∂y

∂r
= 2s

∴ ∂z

∂r
= 2r

∂z

∂x
+ 2s

∂z

∂y
.
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∂2z

∂r2
=

∂

∂r


∂z

∂r


=

∂

∂r


2r

∂z

∂x
+ 2s

∂z

∂y



= 2
∂

∂r


r
∂z

∂x


+ 2

∂

∂r


s
∂z

∂y



= 2


∂

∂r
(r) · ∂z

∂x
+ r

∂

∂r


∂z

∂x


+ 2


∂

∂r
(s) · ∂z

∂y
+ s

∂

∂r


∂z

∂y



Notice that
∂z

∂x
and

∂z

∂y
are functions dependent on x and y, so to find their partial derivatives

with respect to r, we need to apply multivariable chain rule again:

∂

∂r


∂z

∂x


=

∂

∂x


∂z

∂x


· ∂x
∂r

+
∂

∂y


∂z

∂x


· ∂y
∂r

=
∂2z

∂x2

∂x

∂r
+

∂2z

∂y∂x

∂y

∂r

∂

∂r


∂z

∂y


=

∂

∂x


∂z

∂y


· ∂x
∂r

+
∂

∂y


∂z

∂y


· ∂y
∂r

=
∂2z

∂x∂y

∂x

∂r
+

∂2z

∂y2
∂y

∂r

∴ ∂2z

∂r2
= 2

∂z

∂x
+ 2r


∂2z

∂x2

∂x

∂r
+

∂2z

∂y∂x

∂y

∂r


+ 2s


∂2z

∂x∂y

∂x

∂r
+

∂2z

∂y2
∂y

∂r



□

Theorem 3.5.2 (Implicit Differentiation). If we have two-variable function like F (x, y) = 0,

where y depends on x, we use the multivariable chain rule to differential the both sides of

F (x, y):
∂F

∂x
· dx

dx
1

+
∂F

∂y
· dy
dx

= 0

∂F

∂x
= −∂F

∂y
· dy
dx

∴ dy

dx
= −∂F/∂x

∂F/∂y
= −Fx

Fy

Example 3.5.3. Find y′ if x3 + y3 = 6xy

Answer.

Method1 Applying the formula:

Fx = 3x2 − 6y

Fy = 3y2 − 6x

∴ dy

dx
= −Fx

Fy

= −3x2 − 6y

3y2 − 6x
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Medthod2 Find derivatives of the both sides:

x3 + y3 − 6xy = 0

3x2 + 3y2
dy

dx
− 6y − 6x

dy

dx
= 0

(3y2 − 6x)
dy

dx
= 6y − 3x2

dy

dx
=

6y − 3x2

3y2 − 6x

□

Theorem 3.5.3 (Multivariable Implicit Differentiation). If z = f(x, y), consider a function

F (x, y, z) = F (x, y, f(x, y))

Then, by the multivariable chain rule, we differentiate both sides of F (x, y, f(x, y)) = 0:

∂F

∂x

dx

dx
1

+
∂F

∂z

∂z

∂x
= 0 =⇒ ∂z

∂x
= −∂F/∂x

∂F/∂z

Similarly, we have
∂F

∂y

dy

dy
1

+
∂F

∂z

∂z

∂y
= 0 =⇒ ∂z

∂y
= −∂F/∂y

∂F/∂z

Example 3.5.4. Find
∂z

∂x
and

∂z

∂y
if x3 + y3 + z3 + 6xyz = 1.

Answer.

In order to find
∂z

∂x
, differentiate both sides with respect to x:

3x2 + 3z2
∂z

∂x
+ 6yz + 6xy

∂z

∂x
= 0

(3z2 + 6xy)
∂z

∂x
= −(3x2 + 6yz)

∂z

∂x
= −3x2 + 6yz

3z2 + 6xy


= −x2 + 2yz

z2 + 2xy
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In order to find
∂z

∂y
, differentiate both sides with respect to y:

3y2 + 3z2
∂z

∂y
+ 6xz + 6xy

∂z

∂y
= 0

(3z2 + 6xy)
∂z

∂y
= −(3y2 + 6xz)

∂z

∂y
= −3y2 + 6xz

3z2 + 6xy


= −y2 + 2xz

z2 + 2xy



□

3.6 Directional Derivatives and Gradient

To formally study directional derivatives, we start from the ideas of it. We want to study the

change of z = f(x, y) in the direction of the unit vector u = 〈a, b〉 = âi + ĵ. (
√
a2 + b2 = 1). We

intersect surface z = f(x, y) with plane Π that passes through the point P (x0, y0, z0) vertically

and in the direction of vector u = 〈a, b〉.

∆z

h

u

P (x0, y0, z0)

Q(x, y, z)

P ′ Q′

Plane Π

So, we have
∆z

h
=

z − z0
h

=
f(x0 + h, y0 + h)− f(x0, y0)

h

Definition 3.6.1 (Directional Derivative). The directional derivative of f at (x0, y0) in the di-

rection of a vector u = 〈a, b〉 is defined as

Duf(x0y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h

if the limit exists.
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Now, let g(h) = f(x0 + ha, y0 + hb), then we have

Duf(x0, y0) = lim
h→0

g(h)− g(0)

h
= g′(0)

To find g′(h), we use the multivariable chain rule:

g′(h) =
∂g

∂x
· dx
dh

+
∂g

∂y
· dy
dh

where





x = x0 + ha

y = y0 + hb
.

From





x = x0 + ha

y = y0 + hb
, we have

∂x

∂h
= a and

∂y

∂h
= b.

∴ g′(h) =
∂g

∂x
· a+ ∂g

∂y
· b

= a · ∂f
∂x

+ b · ∂f
∂y


g(h) is in fact f(x, y)



When h → 0,

g′(0) = a · fx(x0, y0) + b · fy(x0, y0)

∴ Duf(x0, y0) = a · fx(a0, y0) + b · fy(x0, y0)

= 〈a, b〉 · 〈fx(a0, y0), fy(x0, y0)〉

Theorem 3.6.1 (Directional Derivative in Dot Product).

Duf(x0, y0) = u · 〈fx(x0, y0), fy(x0, y0)〉 = u ·∇f(x0, y0)

Definition 3.6.2 (Gradient Vector). A gradient vector of f is a vector function defined as

∇f(x, y) =
∂f

∂x
î +

∂f

∂y
ĵ.

The notation “∇” is called nabla.

Extension. If f is a function as f(x1, · · · , xn), then

∇f = 〈fx1 , fx2 , fx3 · · · , fxn〉.

Theorem 3.6.2 (Properties of Gradient). From the dot product definition of directional vec-

tor, we know that

Duf = ∇f · u.
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Then, if θ is the angle between ∇f and u, we have

Duf = |∇f ||u| cos θ.

Thus,

maxDuf = |∇f ||u| when θ = 0

(or, the vector u is in the direction of ∇f .) Since u is a unit vector, |u| = 1. So when u is in the

same direction of ∇f , we have

maxDuf = |∇f |.

On the other hand, if u and ∇f are in the opposite direction, we have θ = π and cos θ =

cos(π) = −1.

∴ minDuf = |∇f ||u| cos θ = −|∇f |

Extension. If u is a unit vector and u = 〈a, b〉 and f has continuous second partial deriva-

tives, then

D2
uf = fxxa+ 2fxyab+ fyyb.

Example 3.6.1. If f(x, y) = xey, then

1. Find the rate of change of f at the point P (2, 0) in the direction from P to Q


1

2
, 2


.

Answer.

∂f

∂x
= ey;

∂f

∂y
= xey;

−→
PQ =


1

2
− 2, 2− 0


=


−3

2
, 2


;


−→
PQ

 =


9

4
+ 4 =

5

2

∴ u =


−3

2
· 2
5
, 2 · 2

5


=


−3

5
,
4

5


; ∇f = 〈ey, xey〉 .

Therefore,

Duf = ∇f · u = 〈ey, xey〉 ·

−3

5
,
4

5


= −3

5
ey +

4

5
xey.

At point P (2, 0),

Duf(2, 0) = −3

5
e0 +

4

5
· 2 · e0 = −3

5
+

8

5
= 1.

□

2. In what direction does f have the maximum rate of change? What is this maximum rate

of change?

Answer.
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∇f(2, 0) = 〈e0, 2e0〉 = 〈1, 2〉

Hence, in direction ∇f = 〈1, 2〉, f has the maximum rate of change. The maximum rate

of change is |∇f(2, 0)| =
√
5.

□

Theorem 3.6.3 (Gradient and Tangent Plane). The equation of the tangent plane for the sur-

face z = f(x, y) at the point P (x0, y0, z0) = is given by:

∇f · 〈x− x0, y − y0, z − z0〉 = 0

or (for implicit functions)

∂f

∂x
(x− x0) +

∂f

∂y
(y − y0) +

∂f

∂z
(z − z0) = 0.

The normal line of the plane is given by

x− x0

fx(x0, y0, z0)
=

y − y0
fy(x0, y0, z0)

=
z − z0

fz(x0, y0, z0)
.

Remark (Gradient and Multivariable Chain Rule). If F (x, y, z) = k and x, y, z are depen-

dent of t, then we differentiate both sides with respect to t to get:

∂F

∂x
· dx
dt

+
∂F

∂y
· dy
dt

+
∂F

∂z
· dz
dt

= 0


∂F

∂x
,
∂F

∂y
,
∂F

∂z


dx

dt
,
dy

dt
,
dz

dt


= 0

∇F ·

dx

dt
,
dy

dt
,
dz

dt


= 0

Theorem 3.6.4 (Graphical Interpretation of Gradient Vector). In general, the gradient vec-

tor at P , ∇F (x0, y0, z0) is perpendicular to the tangent vectorr′(t0) to any curve C that passes

through the point P on the surface S. Similar properties hold on level curves.

3.7 Maximum and Minimum Values

Definition 3.7.1 (Local Maximum and Local Minimum). A function f(x, y) has a local max-

imum at point (a, b) if ∀(x, y) near point (a, b), we have f(x, y) ≤ f(a, b). The function f(x, y)

has a local minimum at point (a, b) if ∀(x, y) near point (x, y), we have f(x, y) ≥ f(a, b).

Remark. “near point (a, b)” refers to a disk centered at (a, b).
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Definition 3.7.2 (Absolute Maximum and Absolute Minimum). If the equalities f(x, y) ≤ f(a, b)

and f(x, y) ≥ f(a, b) holds for any (x, y) in the domain of f(x, y), then we call them absolute

maximum or absolute minimum.

Theorem 3.7.1. If f has local maximum or minimum at (a, b), and the first order partial deriva-

tives of f exist at (a, b), then fx(a, b) and fy(a, b) are equal to 0. In other words,

∇f(a, b) = 0.

Corollary 3.1. As a result of Theorem 3.7.1, the equation of the tangent plane at (a, b) is

z −
z0  

f(a, b) =

0  
fx(a, b)(x− a) +

0  
fy(a, b)(y − b)

z − z0 = 0.

In other words, the tangent plane is horizontal.

Definition 3.7.3 (Critical Points). A point (a, b) is called the critical point if fx(a, b) = 0 and

fy(a, b) = 0 or if one of the partial derivatives does not exist.

Remark. At a critical point, we may have maximum or minimum or neither (saddle point).

Definition 3.7.4 (Determinant). The determinant (∆ or D) is defined as

D = det


fxx fxy

fyx fyy



= fxxfyy − fxyfyx

= fxxfyy − (fxy)
2.

Theorem 3.7.2 (Second Derivative Test). Let (a, b)be a critical point and second partial deriva-

tives of f (i.e., fxx, fxy, fyx, fyy) are continuous on a disk centered at (a, b). Then

1. If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

2. If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

3. If D < 0, then f(a, b) is not a local maximum or local minimum, and it is called a saddle

point.

Remark. At saddle points, the tangent plane will intersect with the surface of f .

Example 3.7.1. For function f(x, y) = 4 + x3 + y3 − 3xy. Check it f(x, y) has local maximum,

local minimum, and saddle points.
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Answer.

∂f

∂x
= 3x3 − 3y;

∂f

∂y
= 3y2 − 3x

Solve





fx = 0

fy = 0
⇒





3x2 − 3y = 0 ①

3y2 − 3x = 0 ②
.

From ①: y = x2.

Substitute y = x2 to ②:

3

x2
2 − 3x = 0

x4 − x = 0

x(x3 − 1) = 0 =⇒ x = 0 or x = 1

∴ y = 02 = 0 or y = 12 = 1

∴





x = 0

y = 0
or





x = 1

y = 1

i.e., Critical points are at (0, 0) and (1, 1).

Find D:

D = det


fxx fxy

fyx fyy


=


6x −3

−3 6y


= 36xy − 9.

Apply the second derivative test:

1. D(0, 0) = −9 < 0 =⇒ (0, 0) is a saddle point.

2. D(1, 1) = 36− 9 = 27 > 0 and
∂2f

∂x2
= 6(1) > 0 =⇒ (1, 1) is a local minimum.

□

Theorem 3.7.3 (Extreme Value Theorem, EVT). We are expanding the Extreme Value Theo-

rem from a single variable version to a multivariable version:

1. Single Variable Version: any continuous function on a closed interval I has a maximum

or minimum value in that interval I.

2. Multivariable Version: For a multivariable function f(x1, · · · , xn)on a closed and bounded

region D in Rn. f has both maximum and minimum values in that region.

Definition 3.7.5 (Bounded Region). D is bounded if there exists some ball

x2
1 + x2

2 + · · ·+ x2
n ≤ R2
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that contains D.

Definition 3.7.6 (Closed Region). Closed region D is a region that includes the boundaries.

Example 3.7.2 (Bounded and Closed Region). The following are examples of closed and bounded

regions.

x

y

Closed and Bounded

x

y

x

y

x

y
Bounded but not Closed

Closed but not Bounded

not Closed and not Bounded

Example 3.7.3. Find the extreme values of the function f(x, y) = x2+2y2−x2y on the following

region:

(−4, 0) (4, 0)

(0, 4)
y

xBoundary 1

Boundary 2

Answer.

We can write the region D as the following set:

D =

(x, y) | x2 + y2 ≤ 6, y ≥ 0


.

Step 1 Find the critical points of the function that are inside the boundary (interior to the

boundary).

f(x, y) = x2 + 2y2 − x2y ⇒ ∇f(x, y) =


∂f

∂x
,
∂f

∂y


= 〈2x− 2xy, 4y − x2〉.

Set ∇f(x, y) = 0 :





2x− 2xy = 0 ①

4y − x2 = 0 ②.

From ②: y =
x2

4
. Substitute this result into ①:

2x− 2x · x
2

4
= 0

2x− 1

2
x3 = 0 ⇒ x


2− 1

2
x2


= 0
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∴





x = 0

y = 0
or





x2 = 4

y = 1

⇒





x = 0

y = 0
or





x = 2

y = 1
or





x = −2

y = 1

All the points (0, 0), (2, 1), and (−2, 1) are inside the boundary.

Step 2 Check the boundaries for maximum and minimum.

Check Boundary 1: x2 + y2 = 16, 0 ≤ y ≤ 4.

f(x, y) = x2 + 2y2 − x2y = 16 + y2 − (16− y2)y

= 16 + y2 − 16y + y3

f(y) = y3 + y2 − 16y + 16 → one variable function

f ′(y) = 3y2 + 2y − 16 = 0 y = −8

3
, y = 2.

Since 0 ≤ y ≤ 4, y = 2.

When y = 2, x = ±
√
16− 4 = ±2

√
3.

f(y) = 23 + 22 − 16(2) + 16 = 8 + 4− 32 + 16 = −4

When y = 4, x = 0.

f(x, y) = 16 + 16− 64 + 64 = 32

When y = 0, x = ±4.

f(x, y) = 16 → (not a extreme value)

Hence, we have −4 ≤ f(x, y) ≤ 32 on Boundary 1.

Check boundary 2: −4 ≤ x ≤ 4, y = 0.

f(x, y) = x2 + 2y2 − x2y = x2

Since 0 ≤ x2 ≤ 16, 0 ≤ f(x, y) ≤ 16.

Step 3 List all the points and values:
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3 PARTIAL DERIVATIVE 3.8 Lagrange Multiplier

Point Value

(0, 0) f(0, 0) = 0

(2, 1) f(2, 1) = 2

(−2, 1) f(−2, 1) = 2

(2
√
3, 2) f(2

√
3, 2) = −4

(−2
√
3, 2) f(−2

√
3, 2) = −4

(0, 4) f(0, 4) = 32

Hence, minimum occurs at (2
√
3, 2) and (−2

√
3, 2), and the function value is −4 at

minimum. The maximum occurs at (0, 4), and the function value is 32 at maximum.

□

3.8 Lagrange Multiplier

Definition 3.8.1 (Optimization). Find minimum or maximum values of a function subject to

constrains.

Remark. The constrains can be an equality or an inequality.

Definition 3.8.2 (Objective Function). The function f we are working with is called the ob-

jective function or cost function.

Definition 3.8.3 (Linear and Non-Linear Optimization). If the objective function is linear, the

process is called linear programming or linear optimization. If the objective function is not

linear, the process if called non-linear optimization.

Theorem 3.8.1 (Lagrange Multiplier). The minimum or maximum value of f(x1, · · · , xn) sub-

ject to the condition g(x1, · · · , xn) = k, where f and g are differentiable, occur when the gra-

dient vectors, ∇f and ∇g, are parallel. That is,

∇f(x1, · · · , xn) = λ∇g(x1, · · · , xn)

for some λ.

Extension (Lagrange Multiplier with Multiple Constrains). If we have two constrains g(x1, · · · , xn) =

k and h(x1, · · · , xn) = m, then the minimum or maximum value of f(x1, · · · , xn) occurs at

∇f(x1, · · · , xn) = λ∇g(x1, · · · , xn) + µ∇h(x1, · · · , xn)

for some λ and µ.
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3 PARTIAL DERIVATIVE 3.8 Lagrange Multiplier

Example 3.8.1. Maximize f(x, y) = xy on the curve x2 + y2 = 4.

Answer.

In this example, f(x, y) = xy, g(x, y) = x2 + y2, and k = 4. Then,

∇f(x, y) = 〈y, x〉 ∇g(x, y) = 〈2x, 2y〉.

Attempt to solve ∇f(x, y) = λ∇g(x, y) :

〈y, x〉 = λ〈2x, 2y〉.

So, we have





y = 2λx ①

x = 2λy ②

Substitute ① into ② we have x = 2λ(2λx), or x = 4λ2x.

Divide x on both sides of the equation, we have 4λ2 = 1 or λ2 =
1

4
. Hence, λ = ±1

2
.

λ =
1

2
: y = 2


1

2


= x

Substitute y = x into x2 + y2 = 4: 2x2 = 4, or x2 = 2. So x = ±
√
2.

Hence, critical points when λ =
1

2
:
√

2,
√
2


or

−
√
2,−

√
2


.

The values of function are f
√

2,
√
2

=

√
2 ·

√
2 = 2 and f


−
√
2,−

√
2

=


−
√
2

(−

√
2).

λ = −1

2
: y = 2


−1

2


x = −x.

Substitute y = −x int x2 + y2 = 4 : 2x2 = 4 and x = ±
√
2.

Hence, critical points are
√

2,−
√
2


and

−
√
2,
√
2

.

The respective values of the function are f
√

2,−
√
2

= −2 and f


−
√
2,
√
2

= −2.

Hence, the maximum occurs at
√

2,
√
2


and

−
√
2,−

√
2

, with the maximum value of 2.

and the minimum occurs at
√

2,−
√
2


and

−
√
2,
√
2

, with the minimum value of −2.

□

Extension (Lagrange Multiplier with an Inequality Constrain). If we are having an inequal-

ity constrain, we need to check if any critical points of ∇f = 0 satisfies the inequality, if so,

the critical points from ∇f = 0 will be the maximum or minimum point for this optimization.

If we do not have any critical points of ∇f = 0, critical points calculated from the Lagrange

Multiplier will be the maximum or minimum point for the optimization.
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4 MULTIPLE INTEGRALS

4 Multiple Integrals

4.1 Double Integral Over Rectangles

Definition 4.1.1 (Double Integral). Suppose f(x, y) is a two-variable function, then the dou-

ble integral of it over rectangles is defined by



R

f(x, y) dA = lim
m,n→∞

m

j=1

n

i=1

f(x∗
ij, y

∗
ij)∆A

if the limit exists.

Theorem 4.1.1. If f(x, y) ≥ 0, then the volume V of the solid that lies above the rectangle R

and below the surface z = f(x, y) is

V =



R

f(x, y) dA

Example 4.1.1. Approximate the volume of f(x, y) = x2y when R = [0, 2]×[0, 1]. Use midpoint

approximation and m = n = 2.

Answer.

We can compute the following (x, y) points that are used for the approximation:

(x11, y11) =


1

2
,
1

4


(x12, y12) =


1

2
,
3

4


(x21, y21) =


3

2
,
1

4


(x22, y22) =


3

2
,
3

4



We can also compute the value of ∆A :

∆A = ∆x ·∆y = 1× 1

2
=

1

2
.

Hence, we can approximate the volume:

V ≈ ∆A


f(x11, y11) + f(x12, y12) + f(x21, y21) + f(x22, y22)



=
1

2


f


1

2
,
1

4


+ f


1

2
,
3

4


+ f


3

2
,
1

4


+ f


3

2
,
3

4



=
1

2


1

2

2

·

1

4


+


1

2

2

·

3

4


+


3

2

2

·

1

4


+


3

2

2

·

3

4



=
1

2


1

4
+

9

4



=
10

8
=

5

4
.
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4 MULTIPLE INTEGRALS 4.1 Double Integral Over Rectangles

□

Theorem 4.1.2 (Calculating Double Integrals). In order to compute the double integral on

R = [a, b]× [c, d]: 

R

f(x, y) dA

1. First, we hold x fixed and find the integral

A(x) =

 d

c

f(x, y) dy

The result is an expression on x is called the integration with respect to y.

2. Then, we find the integral

V =

 b

a

A(x) dx =

 b

a

 d

c

f(x, y) dy


dx

 b

a

 d

c

f(x, y) dydx

Theorem 4.1.3 (Fubini’s Theorem). Suppose f is a continuous function of x and y on the

rectangle R = {(a, y) | a ≤ x ≤ b, c ≤ y ≤ d}. Then,



R

f(x, y) dA =

 b

a

 d

c

f(x, y) dydx =

 d

c

 b

a

f(x, y) dxdy.

Example 4.1.2. Evaluate
 3

0

 2

1

x2y dydx.

Answer.

 3

0

 2

1

x2y dydx =

 3

0


1

2
x2y2

2

1

dx

=

 3

0


1

2
(4)x2 − 1

2
x2


dx

=

 3

0

3

2
x2 dx

=


1

3
· 3
2
x3

3

0

=
1

2
(27) =

27

2

□

Example 4.1.3. Evaluate the double integral



R

y sin(xy) dA, where R = [1, 2]× [0, π].
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4 MULTIPLE INTEGRALS 4.1 Double Integral Over Rectangles

Answer.

From the Fubini’s Theorem,



R

y sin(xy) dA =

 2

1

 π

0

y sin(xy) dydx =

 π

0

 2

1

y sin(xy) dxdy

Let u = xy, then
du

dx
= y, which is du = ydx.

∴
 π

0

 2

1

y sin xy dxdy =

 π

0

 2y

y

sin(u) dudy

=

 π

0

[− cos(u)]2yy dy

= −
 π

0

cos(2y)− sin(y) dy

= −

1

2
sin(2y)− sin(y)

π

0

= −

1

2


sin(2π)− sin(0)


−


sin(π)− sin(0)



= 0

□

Theorem 4.1.4. For a double integral f(x, y) = g(x) · h(x) on the rectangle R = [a, b]× [c, d],



R

g(x) · h(x) dA =

 b

a

g(x) dx ·
 d

c

h(x) dy

Example 4.1.4. Evaluate the double integral



R

sin(x) cos(y) dA, where R =

0,

π

2


×


0,

π

2



Answer.

By the Fubini’s Theorem,



R

sin(x) cos(y) dA =

 π/2

0

sin(x) dx ·
 π/2

0

cos(y) dy

=

− cos x

π/2
0

·

sin(y)

π/2
0

=

− cos

π
2


+ cos(0))


·

sin

π
2


− sin(0)



= (1)(1) = 1

□
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4 MULTIPLE INTEGRALS 4.2 Double Integral Over General Region

Definition 4.1.2 (Average Value). In two-variable functions, then the average value of f on

the rectangle R = [a, b]× [c, d], fave is given by

fave =



R

f(x, y) dA

A(R)
or



R

f(x, y) dA = A(R) · fave.

4.2 Double Integral Over General Region

Definition 4.2.1 (Double Integral Over a General Region). Furthering the definition of dou-

ble integral over a rectangle, we use the notation


D

f(x, y) dA to represent a double integral

of f(x, y) over a general region D.

Theorem 4.2.1 (Two Fundamental Types of Region D). Here, we discuss two fundamental types

of region D, which includes one variable to be dependent on the other.

1. D = {(x, y) | a < x < b, g(x) ≤ y ≤ f(x)}

a b x

y

D
y = f(x)

y = g(x)



D

f(x, y) dA =

 f(x)

g(x)

 b

a

f(x, y) dxdy

2. D = {(x, y) | f(y) ≤ x ≤ g(y), c < y < d}

c

d

x

y

D

x = f(y)

x = g(y)



D

f(x, y) dA =

 g(y)

f(y)

 d

c

f(x, y) dydx

Example 4.2.1. Find


D

x+2y dA, where D is the region bounded by y = 2x2 and y = x2 +1.
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4 MULTIPLE INTEGRALS 4.2 Double Integral Over General Region

x

y

D

y = 2x2

y = x2 + 1

x = 1x = −1

Answer.



D

f(x, y) dA =

 1

−1

 x2+1

2x2

x+ 2y dydx =

 1

−1


xy + y2

x2+1

2x2
dx

=

 1

−1

x

x2 + 1


+

x2 + 1

2 − x

2x2


−


2x2

2
dx

∴


D

x+ 2y dA =

 1

−1

x

x2 + 1


+

x2 + 1

2 − x

2x2


−


2x2

2
dx

=

 1

−1

−3x4 − x3 + 2x2 + x+ 1 dx

=


−3

5
x5 − 1

4
x4 +

2

3
x3 +

1

2
x2 + x

1

−1

= −3

5
− 1

4
+

2

3
+

1

2
+ 1−


3

5
− 1

4
− 2

3
+

1

2
− 1



= −6

5
+

4

3
+ 2

=
32

15

□

Theorem 4.2.2. 

D

1 dA = A(D) = Area of D.

Example 4.2.2. Sketch the region D in the xy-plane bounded by y2 = 2x and y = x. Find the

area of D.

Answer.
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4 MULTIPLE INTEGRALS 4.2 Double Integral Over General Region

(0, 0)

(2, 2)

x

y

y2 = 2x

y = x

D

Area of D =



D

1 dA =



D

1 dydx

=

 2

0

 √
2x

x

1 dydx

=

 2

0

(
√
2x− x) dx

=

√
2
2

3
x

3
2 − 1

2
x2

2

0

=


2
√
2

3

√
2
3

− 1

2
(4)− 0



=
8

3
− 2 =

2

3

□

Example 4.2.3. Given
 3

0

 √
4−y

1

x+ y dxdy.

(a) Sketch the region.

Answer.

x =
√
4− y

(1, 3)

(2, 0)
x(y = 0)

y

y = 3

x = 1

D

□
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4 MULTIPLE INTEGRALS 4.2 Double Integral Over General Region

(b) Interchange the order.

Answer.

 3

0

 √
4−y

1

x+ y dxdy =

 2

1

 4−x2

0

x+ d dydx

□

(c) Evaluate the integral.

Answer.

 2

1

 4−x2

0

x+ y dydx =

 2

1


xy +

1

2
y2
4−x2

0

dx

=

 2

1


x(4− x2) +

1

2


4− x2

2

dx

=

 2

1


4x− x3 +

1

2


16 + x4 − 8x2


dx

=

 2

1

1

2
x4 − x3 − 4x2 + 4x+ 8 dx

=


1

2
· 1
5
x5 − 1

4
x4 − 4 · 1

3
x3 + 4 · 1

2
x2 + 8x

2

1

=
1

10


25 − 1


− 1

4


24 − 1


− 4

3


23 − 1


+ 2


22 − 1


+ 8(2− 1)

=
31

10
− 15

4
− 28

3
+ 6 + 8

=
241

60

□

Theorem 4.2.3. Properties of Double Integral:

1. 

D


f(x, y) + g(x, y)


dA =



D

f(x, y) dA+



D

g(x, y) dA

2. 

D

cf(x, y) dA = c



D

f(x, y) dA

3. If D = D1 +D2, then



D

f(x, y) dA =



D1

f(x, y) dA+



D2

f(x, y) dA
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4 MULTIPLE INTEGRALS 4.3 Changing Variables in Double Integrals

4. If f(x, y) ≥ g(x, y), then 

D

f(x, y) dA ≥


D

g(x, y) dA

5. If m ≤ f(x, y) ≤ M and A(D) is the area of the region D, then

m · A(D) ≤


D

f(x, y) dA ≤ M · A(D).

Example 4.2.4. Estimate the integral


D

esinx cos y dA, where D is a disk centered at origin

with a radius of 2.

Answer.

Since −1 ≤ sin x ≤ 1 and −1 ≤ cos y ≤ 1, we have

−1 ≤ sin x cos y ≤ 1.

Therefore,

e−1 ≤ esinx cos y ≤ e1.



D

e1 dA ≤


D

esinx cos y dA ≤


D

e1 dA.

Recall that 

D

1 dA = Area of the disk = 22π = 4π.



D

e−1 dA = e−1



D

1 dA =
4π

4
and



D

e1 dA = 4eπ.

4π

e
≤



D

esinx cos y dA ≤ 4eπ.

□

4.3 Changing Variables in Double Integrals

Theorem 4.3.1 (Transformation of Double Integral).



R

F (x, y) dxdy =



R′
F

f(u, v), g(u, v)


∂(x, y)

∂(u, v)

 dudv,

where x = f(u, v) and y = g(u, v). R′ is the region in uv-plane which R is mapped under the

trandofrmation T =





x = f(u, v)

y = g(u, v)
.
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4 MULTIPLE INTEGRALS 4.3 Changing Variables in Double Integrals

Definition 4.3.1 (Jacobian). The Jacobian of transformation T =





x = f(u, v)

y = g(u, v)
is

∂(x, y)

∂(u, v)
=



∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v



=
∂x

∂u
· ∂y
∂v

− ∂y

∂u
· ∂x
∂v

.

Example 4.3.1. If u = x2 − y2 and v = 2xy. Find
∂(x, y)

∂(u, v)
in terms of u and v.

Answer.

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

=
1

ux vx

uy vy



=
1

2x 2y

−2y 2x



=
1

4x2 + 4y2

u = x2 − y2, v = 2xy

Note that: 
x2 − y2

2
=


x2 + y2

2 − (2xy)2

u2 =

x2 + y2

2 − v2


x2 + y2

2
= u2 + v2

x2 + y2 = ±
√
u2 + v2

Therefore,
∂(x, y)

∂(u, v)
=

1

±4
√
u2 + v2

□

Theorem 4.3.2 (Absolute Value of Jacobian). In fact, the absolute value of Jacobian
∂(x, y)

∂(u, v)
is

the ratio between corresponding area elements in the xy-plane and the uv-plane.

dA = dxdy =


∂(x, y)

∂(u, v)

 dudv

Example 4.3.2. Find the area of the finite plane region bounded by the four parabolas:

y = x2, y = 2x2, x = y2, x = 3y2

Answer.
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4 MULTIPLE INTEGRALS 4.3 Changing Variables in Double Integrals

x

y

D

y = 2x2
y = x2

x = y2

x = 3y2

From





y = x2

y = 2x2
, we know






y
x2 = 1

y
x2 = 2

. Let u =
y

x2
:





u = 1

u = 2
.

Similarly, let v =
x

y2
, then





v = 1

v = 3
.

So, the region D is transformed to a rectangle in the uv-plane.

Let u =
y

x2
and v =

x

y2
, where 1 ≤ u ≤ 2 and 1 ≤ v ≤ 3.



D

dA =



R


∂(x, y)

∂(u, v)

 dudv

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

=
1

∂u

∂x

∂v

∂x

∂u

∂y

∂v

∂y



=
1



−2y

x3

1

x2

1

y2
−2x

y3



=
1

4

x2y2
− 1

x2y2

=
x2y2

3
.

Note that uv =
y

x2
· x

y2
=

1

xy
, so u2v2 =

1

x2y2
. Hence,

∂(x, y)

∂(u, v)
=

1

3u2v2
.

Therefore,



D

dA =

 3

1

 2

1

1

3u2v2
dudv =

1

3

 3

1

 2

1

1

u2v2
dudv

=
1

3

 3

1


− 1

uv2

2

1

dv

=
1

3

 3

1


− 1

2v2


dv

= −1

6

 3

1

1

v2
dv = −1

6


−1

v

3

1

= −1

6


−1 +

1

3


=

1

9

□
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4 MULTIPLE INTEGRALS 4.4 Double Integral in Polar Coordinates

4.4 Double Integral in Polar Coordinates

Theorem 4.4.1 (Double Integral in Polar Coordinates). In polar coordinates, x2+y2 = r, x =

r cos θ, y = r sin θ. Therefore,



R

F (x, y) dA =



R

F (x, y) dxdy =



R′
F

r cos θ, r sin θ


∂(x, y)

∂(r, θ)

 drdθ.

Since

∂(x, y)

∂(r, θ)
=


xr yr

xθ yθ

 =


cos θ sin θ

−r sin θ r cos θ

 = r cos2 θ + r sin2 θ = r(cos2 θ + sin2 θ) = r,

we have 

R

F (x, y) dxdy =



R′
F

r cos θ, r sin θ


r drdθ.

Example 4.4.1. Evaluate


D

y2

x2
dA, where D is the region limited to

0 ≤ a ≤ x2 + y2 ≤ b y = 0, x = y, x, y > 0.

Answer.

I =



D

y2

x2
dA =

 π/4

0

 b

a

tan2 θ · r drdθ

=

 π/4

0


tan2 θ

r2

2

b

a

dθ

=

 π/4

0

tan2 θ
b2 − a2

2
dθ

=
b2 − a2

2


tan θ − θ

π/4
0

=
b2 − a2

2


1− π

4


.

Remark. To evaluate


tan2 θ dθ =


sin2 θ

cos2 θ
dθ, we apply sin2 θ = 1− cos2 θ :


sin2 θ

cos2 θ
dθ =


1− cos2 θ

cos2 θ
dθ =


1

cos2 θ
dθ −


dθ = tan θ − θ + C.

□

Example 4.4.2. Show I =

 ∞

−∞
e−x2

dx =
√
π.

Answer.
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4 MULTIPLE INTEGRALS 4.5 Triple Integrals

We try to find I2 =

 ∞

−∞
e−x2

dx

2

=

 ∞

−∞
e−x2

dx ·
 ∞

−∞
e−x2

dx Further, we have

I2 =

 ∞

−∞
e−x2

dx ·
 ∞

−∞
e−y2 dy =

 ∞

−∞

 ∞

−∞
e−x2 · e−y2 dxdy =

 ∞

−∞

 ∞

−∞
e−(x2+y2) dxdy

Then, we change it to the polar coordinate:

I2 =

 2π

0

 ∞

0

e−r2r drdθ = 2π

 ∞

0

e−r2r dr

= 2π


−1

2
e−r2

∞

0

= −π


lim
t→∞

1

et2
− e0



= π(0− 1) = π.

□

4.5 Triple Integrals

Definition 4.5.1 (Triple Integral). Find a bounded function f(x, y, z) defined on a rectangu-

lar box, B :






x1 ≤ x ≤ x2

y1 ≤ y ≤ y2

z1 ≤ z ≤ z2

, then, the triple integral on that box in defined as



B

f(x, y, z) dV = lim
n,m,l→∞

n

k=1

m

j=1

l

i=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆x∆y∆z  

∆V

if the limit exists.

Theorem 4.5.1 (Fubini’s Theorem for Triple Integral). If f(x, yz) is continuous over a box B,

where B is defined by B = {(x, y, z) | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2}, then



B

f(x, y, z) dV =

 z2

z1

 y2

y1

 x2

x1

f(x, y, z) dxdydz.

Theorem 4.5.2. 

B

dV = V (B) = Volume of the box B

In more general cases,



E

dV = V (E) = Volume of a more general bounded region E,
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where E is a general bounded region.

Theorem 4.5.3 (Volume of a Sphere).

V (Sphere)


E

dV =
4

3
πa3, where E is bounded by x2 + y2 + z2 ≤ a

Example 4.5.1. Evaluate


E

2 + x− sin z dV, where E is bounded by x2 + y2 + z2 ≤ a

Answer.

x and sin z are odd functions, so integrals of them are 0 on a symmetric region.

Note that E, by definition, is sphere centered at origion, with a radius of a, which is a

symmetric region, so we have



E

x dV =



E

sin z dV = 0.

Plugging into the integral, we will have



E

2 + x− sin z dV =



E

2 dV +



E

x dV +



E

sin z dV =



E

2 dV =
8

3
πa3.

□

Example 4.5.2. Evaluate


B

xyz2 dV,whereB = {(x, y, z) | 0 ≤ x ≤ 1,−1 ≤ y ≤ 2, 0 ≤ z ≤ 3}.
Answer.



B

xyz2 dV =

 3

0

 2

−1

 1

0

xyz2 dxdydz

=

 3

0

 2

−1


1

2
x2yz2

1

0

dydz

=

 3

0

 2

−1

1

2
yz2 dydz

=

 3

0


1

4
y2z2

2

−1

dz

=

 3

0

1

4
(4)z2 − 1

4
z2 dz

=


1

3
z3 − 1

12
z3
3

0

=
1

3
(27)− 1

12
(27) = 9− 9

4
=

27

4

□
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4 MULTIPLE INTEGRALS 4.5 Triple Integrals

Theorem 4.5.4 (Triple Integral Over a General Region). If we can write z = u(x, y) as func-

tion of x and y, then we can change the triple integral into double integral. The following

diagram shows this case.



E

f(x, y, z) dV =



D

 u2(x,y)

u1(x,y)

f(x, y, z) dz


dA

=

 b

a

 g2

g1

 u2

u1

f(x, y, z) dzdxdy, g(y) = x

OR =

 d

c

 h2

h1

 u2

u1

f(x, y, z) dzdydx, h(x) = y

y

z

x

General Region E

D

z = u2(x, y)

z = u1(x, y)

Example 4.5.3. Evaluate


E

z dV, where E is the solid tetrahedron bounded by the follow-

ing planes:

x = 0; y = 0; z = 0; x+ y + z = 1.

y

z

x
(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Answer.
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E

z dV =



D

 1−x−y

0

z dz


dA

=

 1

0

 1−x

0

 1−x−y

0

z dzdydx

=

 1

0

 1−x

0


d
1

2
z2
1−x−y

0

dydx

=

 1

0

 1−x

0

1

2
(1− x− y)2 dydx

=
1

2

 1

0

 1−x

0

1 + x2 + y2 − 2x− 2y + 2xy dydx

=
1

2

 1

0


y + x2y +

1

3
y3 − 2xy − 2

2
y2 +

2

2
xy2

1−x

0

dx

=
1

2

 1

0

(1− x) + x2(1− x) +
1

3
(1− x)3 − 2x(1− x)− (1− x)2 + x(1− x)2 dx

=
1

2

 1

0


1− x+ x2 − x3 +

1

3
(1− x)3 − 2x+ 2x2 − 1 + 2x− x2 + x− 2x2 + x3


dx

=
1

2

 1

0

1

3
(1− x3 + 3x2 − 3x) dx

=
1

6


x− 1

4
x4 +

3

3
x3 − 3

2
x2

1

0

=
1

6


1− 1

4
+ 1− 3

2


=

1

6


1

4


=

1

24
.

□

Extension. Similarly, we can have other types of triple integrals over the general region:



E

f(x, y, z) dV =



D

 u1(y,z)

u1(y,z)

f(x, y, z) dx


dA



E

f(x, y, z) dV =



D

 u1(x,z)

u1(x,z)

f(x, y, z) dy


dA

Example 4.5.4. Evaluate


E

√
x2 + z2 dV, where E is the region bounded by y = x2+ z2 and

y = 4.
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y

z

x

z =


y − x2

z = −


y − x2

y = 4

Answer.

x

z

D

x2 + z2 = 4



E

√
x2 + z2 dV =



D

 4

x2+z2

√
x2 + z2 dy


dA

=



D


(4− x2 − z2)

√
x2 + z2


dA

Now, change to polar coordinate: r2 = x2 + z2, 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π. So,



E

√
x2 + z2 dV =



D′
(4− r2)

√
r2 · r drdθ =

 2π

0

 2

0

4r2 − r4 drdθ

= 2π


4

3
r3 − 1

5
r5
2

0

= 2π


4

3
(8)− 32

5


=

128

15
π

□

Example 4.5.5. Given
 1

0

 1

√
x

 1−y

0

f(x, y, z) dzdydx. Rewrite the triple integral using other

five orders.

x

y

z

1

1
1

(1, 1, 0)

y =
√
x z = 1− y
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Answer.

① Change to dzdxdy:



E

f(x, y, z) dV =

 1

0

 y2

0

 1−y

0

f(x, y, z) dzdxdy

② Change to dxdydz:



E

f(x, y, z) dV =



D

 y2

0

f(x, y, z) dx


dA

=

 1

0

 1−y

0

 y2

0

f(x, y, z) dxdzdy

③ Change to dxdydz: From z = 1− y, we have y = 1− z. So,



E

f(x, y, z) dV =

 1

0

 1−z

0

 y2

0

f(x, y, z) dxdydz

④ Change to dydzdx:



E

f(x, y, z) dV =



D

 1−z

√
x

f(x, y, z) dy


dA

=

 1

0

 1−
√
x

0

 1−z

√
x

f(x, y, z) dydzdx

⑤ Change to dydxdz: Since z = 1−
√
x, we have

√
x = 1− z, or x = (1− z)2:



E

f(x, y, z) dV =

 1

0

 (1−z)2

0

 1−z

√
x

f(x, y, z) dydxdz

□

Remark. One application of triple integral is to find volume of a region.

Example 4.5.6. Find the volume of the region bounded by the following planes:

x+ 2y + z = 2, x = 2y, x = 0, z = 0.
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x

y

z

2

2

1

x = 2y


1,

1

2
, 0



x+ 2y + z = 2

x+ 2y = 2

Answer.

From x+ 2y + x = 2, we know that z = 2− x− 2y. So we have

V =



E

1 dV =



D

 2−x−2y

0

1 dz


dA

=

 1

0

 (2−x)/2

x/2

 2−x−2y

0

1 dzdydx

=

 1

0

 (2−x)/2

x/2

(2− x− 2y) dydx

=

 1

0


(2− x)y − y2

(2−x)/2

x/2
dx

=

 1

0


(2− x)(1− x)− 1

4
x2 − 1 + x+

1

4
x2


dx

=

 1

0

(x2 − 2x+ 1) dx

=


1

3
x3 − x2 + x

1

0

=
1

3
− 1 + 1 =

1

3

□
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4.6 Changing Variables in Triple Integrals

Theorem 4.6.1 (Change of Variables in Triple Integrals). Consider the transformation T =




x = f(u, v, w)

y = g(u, v, w)

z = h(u, v, w)

. We have dV = dxdydz =


∂(x, y, z)

∂(u, v, w)

dudvdw, where

∂(x, y, z)

∂(u, v, w)
=



∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

∂x

∂w

∂y

∂w

∂z

∂w



.

Then, we have



E

f(x, y, z)dxdydz =



E′
g(u, v, w)


∂(x, y, z)

∂(u, v, w)

dudvdw.

Remark. The determinant of triangular and diagonal matrices is the product of the ele-

ments on the main diagonal. Suppose matrix A and B are defined as follows:

A =




a d e

0 b f

0 0 c



 B =




a 0 0

0 b 0

0 0 c



 .

Then det(A) = det(B) = abc.

Example 4.6.1. Find the volume of ellipsoid is given by E :
x2

a2
+

y2

b2
+

z2

c2
≤ 1

Answer.

Consider the transformation: x = au, y = bv, z = cw.

Then,

E ′ :
(au)2

a2
+

(bv)2

b2
+

(cw)2

c2
≤ 1

u2 + v2 + w2 ≤ 1


∂(x, y, z)

∂(u, v, w)

 =



a 0 0

0 a 0

0 0 c


= abc.
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So, 

E

1 dV =



E′
abc dV = abc× V (ball with radius = 1) = abc


4

3
π


.

□

Remark. In 3D, there are two alternatives to Cartesian coordinate system: Cylindrical co-

ordinate system and spherical coordinate system.

Definition 4.6.1 (Cylindrical Coordinate System). Uses polar coordinate in the xy-plane while

retaining the Cartesian z coordinate for measuring vertical distance.

x

y

z

θ r

(r cos θ, r sin θ, 0)

P (r cos θ, r sin θ, z)

z

In Cylindrical Coordinate system, x = r cos θ, y = r sin θ, and z = z. So,


∂(x, y, z)

∂(r, θ, z

 =



cos θ sin θ 0

−r sin θ r cos θ 0

0 0 0


= r.

So,

dV = rdrdθdz.

Theorem 4.6.2 (Change Triple Integrals to Cylindrical Coordinate System).



E

f(x, y, z) dV =

 z=u2(x,y)

z=u1(x,y)

 θ=β

θ=α

 r=h2(θ)

r=h1(θ)

f(r cos θ, r sin θ, z)rdrdθdz.

Example 4.6.2. Evaluate I =



E

x2 + y2 dV over the first octant region bounded by the

cylinders x2 + y2 = 1 and x2 + y2 = 4 and planes z = 0, z = 1, x = 0, and y = x.

Answer.

x

y

z

y = x
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Change to Cylindrical Coordinate System: r2 = x2 + y2., where 1 ≤ r ≤ 2,
π

4
≤ θ ≤ π

2
, 0 ≤ z ≤

1. Then,

I =

 1

0

 π/2

π/4

 2

1

r2 · r drdθdz

= (1− 0)
π
2
− π

4

24

4
− 14

4


=

15

16
π

□

Example 4.6.3. Evaluate
 2

−2

 √
4−x2

−
√
4−x2

 2

√
x2+y2

(x2 + y2) dzdydx.

Answer.

Change to Cylindrical Coordinate system: r2 = x2 + y2. So, r ≤ z ≤ 2.

Since −
√
4− x2 ≤ y ≤

√
4− x2, so 0 ≤ y2 ≤ 4− x2

That is, 0 ≤ y2 + x2 ≤ 4, or 0 ≤ r2 ≤ 4.

So, 0 ≤ r ≤ 2.

 2

−2

 √
4−x2

−
√
4−x2

 2

√
x2+y2

(x2 + y2) dzdydx =

 π

0

 2

0

 2

r

r2 · r dzdrdθ

= (2π)

 2

0

r3(2− r) dr

= (2π)

 2

0

2r3 − r4 dr

= (2π)


1

2
r4 − 1

5
r5
2

0

= (2π)


8− 32

5


=

16

5
π

□

Definition 4.6.2 (Spherical Coordinate System). Here we define ρ is the distance from the

origin to P , ϕ is the angle between the line OP and the positive z-axis (0 ≤ ϕ ≤ π), and θ

is the angle between OP ′ (the projection of OP onto the xy-plane) and the positive x-axis

(0 ≤ θ ≤ 2π). So a point P (ρ, θ,ϕ) is represented in the following graph.

x

y

z

ϕ ρ

θ

P (ρ, θ,ϕ)
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Using trigonometric identities, we know z = ρ cos(ϕ) andOP ′ = ρ sin(ϕ).Then, x = ρ sin(ϕ)cos(θ)

and y = ρ sin(ϕ) sin(θ). Also, applying the formula, we know
∂(x, y, z)

∂(ρ, θ,ϕ)
= ρ2 sin(ϕ). Therefore,



E

f(x, y, z) dV =

 d

c

 β

α

 b

a

f

ρ sin(ϕ) cos(θ), ρ sin(ϕ) sin(θ), ρ cos(ϕ)


ρ2 sin(ϕ)dρdθdϕ,

where a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d.

Example 4.6.4. Evaluate


E

e(x
2+y2+z2)

3/2

dV, where E = {(x, y, z) | x2 + y2 + z2 ≤ 1}.
Answer.

Change to spherical coordinate: ρ2 = x2 + y2 + z2.



E

e(x
2+y2+z2)

3/2

dV =



E′
e(ρ

2)3/2ρ2 sin(ϕ) dρdθdϕ

=



E′
eρ

3

ρ2 sin(ϕ) dρdθdϕ

=

 π

0

 2π

0

 1

0

ρ2eρ
3

sin(ϕ) dρdθdϕ

=

 π

0

sin(ϕ) dϕ

 2π

0

dθ

 1

0

ρ2eρ
3

dρ.

Let u = ρ3, then du = 3ρ2dρ. So,


ρ2eρ
3

dρ =
1

3


eu du =

1

3
eu =

1

3
eρ

3

.

So, 

E

e(x
2+y2+z2)

3/2

dV =

− cos(ϕ)

π
0
(2π)


1

3
eρ

3

1

0

= (1 + 1)(2π)


1

3
e− 1

3



=
4

3
π(e− 1).

□

4.7 Applications of Multiple Integrals

Theorem 4.7.1 (Surface Area). The key idea is to use the tangent plane at any point likePij(xi, yj, zk)

to approximate the surface near the point Pij.

Divide region D into small rectangles, Rij. So,

∆A = A(Rij) = ∆x∆y
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Let (xi, yj) be a point on Rij , and its corresponding point on the surface is given by

Pij(xi, yj, f(xi, yj))

The tangent plane to the surface S at point Pij is an approximation of the surface around Pij .

Therefore, ∆Sij ≈ ∆Tij. So,

A(S) ≈
n

i=1

m

j=1

∆Tij

and

A(S) = lim
n,m→∞

n

i=1

m

j=1

∆Tij

To find ∆Tij, we use cross product: A(∆Tij) =
a× b

.

• Slope of a = fx(xi, yj) =
∆z

∆x

=⇒ ∆z = ∆xfx(xi, yj), a = ∆x̂i +∆xfx(xi, yj)k̂.

• Slope of b = fy(xi, yj) =
∆z

∆y

=⇒ ∆z = ∆yfy(xi, yj), b = ∆ŷj +∆yfy(xi, yj)k̂.

So,

a× b =



î ĵ k̂

∆x 0 ∆xfx(xi, yj)

0 ∆y ∆yfy(xi, yj)


= (−fx(xi, yj )̂i − fy(xi, yj )̂j + k̂)∆x∆y

= (−fx(xi, yj )̂i − fy(xi, yj )̂j + k̂)∆A

So,
A(∆Tij) =

a× b


=


f 2
x(xi, yj) + f 2

y (xi, yj) + 1∆A
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4 MULTIPLE INTEGRALS 4.7 Applications of Multiple Integrals

Therefore,

S = lim
n,m→∞

n

i=1

m

j=1

∆Tij

= lim
n,m→∞

n

i=1

m

j=1


f 2
x(xi, yj) + f 2

y (xi, yj) + 1∆A

=



D


f 2
x(x, y) + f 2

y (x, y) + 1 dA

=



D


∂f

∂x

2

+


∂f

∂y

2

+ 1 dA

Example 4.7.1. Find the surface area of the paraboloid z = x2 + y2 that lies under z = 9.

Answer.

S =



D


1 + (2x)2 + (2y)2 dA

=



D


1 + 4x2 + 4y2 dA

Change to polar coordinate: 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π:

S =

 2π

0

 3

0

√
1 + 4r2rdrdθ

= 2π

 3

0

r ·
√
1 + 4r2 dr

Let u = 1 + 4r2, so du = 8r dr. So,


r
√
1 + 4r2 dr =

1

8

 √
u du

=
1

8
· 2
3
u3/2 + C =

1

12
u3/2

Therefore,

S = 2π

 3

0

r ·
√
1 + 4r2 dr

= 2π


1

12


1 + 4r2

3/2
3

0

=
π

6
(37

√
37− 1).

□

Example 4.7.2. Find the area of the part of the plane z = ax+by+c that projects onto a region

in the xy-plane with an area of A.
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Answer.

Area =



D

√
a2 + b2 + 1 dA =

√
a2 + b2 + 1



D

dA

Since


D

dA = A is given,

Area =
√
a2 + b2 + 1(A) = A

√
a2 + b2 + 1.

□

Definition 4.7.1 (Mass from Density Function). Let D be a lamina (a thin plate) made of ma-

terials whose density varies across D. Let ρ(x, y) be the density of D at point (x, y), we define

m(D) =



D

ρ(x, y) dA

as the total mass of D with density function ρ.

Remark. If we change ρ(x, y) to be probability functions, m(D) can be regarded as the

cumulative probability.

Definition 4.7.2 (Center of Mass). The center of mass is denoted by the point (x̄, ȳ) onD such

that if we place a support at that point, the lamina D will have a perfect balance.

Definition 4.7.3 (Moment). We define the moment of the lamina D over the y-axis as



D

xρ(x, y) dA

and the moment of the lamina D over the x-axis as


D

yρ(x, y) dA.

Theorem 4.7.2 (Calculate Center of Mass). We use moment of the lamina to calculate the

center of mass:

x̄ =



D

xρ(x, y) dA

m(D)
; ȳ =



D

yρ(x, y) dA

m(D)
.

Example 4.7.3. The geometric model of a material body is a plane region R bounded by y =

x2 and y =
√
2− x2 on the interval [0, 1]. The density function is ρ(x, y) = xy. Find the center

of mass of R.

Answer.
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We know

m(D) =



D

xy dA =

 1

0

 √
2−x2

x2

xy dydx =
7

24
.

Applying the formula to calculate the center of mass, we get

x̄ =



D

xρ(x, y) dA

m(D)
=

17

105
7

24

and

ȳ =



D

yρ(x, y) dA

m(D)
=

13

120
+

4
√
2

15
7

24

.

□

4.8 Multiple Integral – Practice

Example 4.8.1. If D is the triangle with vertices (−2, 0), (0, 4), and (8, 0), calculate


D

xy2 dA.

Answer.

• Using the order dydx, we have

 0

−2

 2x+4

0

xy2 dydx+

 8

0

 −x/2+4

0

xy2 dydx

It is not easy to calculate the integral as two parts.

• Using the order dxdy, we have

 4

0

 8−2y

−2+y/2

xy2 dxdy =

 4

0


1

2
x2y2

8−2y

−2+y/2

dy

=

 4

0

30y2 − 15y3 +
15

8
y4 dy

=


30y2 − 15y3 +

15

8
y4
4

0

= 640− 960 + 384 = 64.

□

Example 4.8.2. If D is the region bounded by y = x2 and y = 8− x2, calculate


D

x3 dA.

Answer.
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D is a symmetric region about x = 0 and function f(x, y) = x3 is an odd function with

respect to x. Therefore, 

D

x3 dA = 0.

□

Example 4.8.3. Calculate the area of the region bounded by two parabolas y = x2 and x = y2.

Answer.

A(D) =



D

1 dA =

 1

0

 √
x

x2

1 dydx

=

 1

0

√
x− x2 dx

=


2

3
x3/2 − 1

3
x

1

0

=
2

3
− 1

3
=

1

3

□

Example 4.8.4. Let D be the unit disk: x2 + y2 ≤ 1. Calculate


D

(2− x)(3 + y) dA.

Answer.

D is a symmetric region in x and y. So,



D

(2− x)(3 + y) dA =



D

6− 3x+ 2y − xy dA

=



D

6 dA−


D

3x dA

  
=0 (symmetric in x)

+



D

−xy + 2y dA

  
=0 (symmetric in y)

= 6× A(D) = 6π.

□

Example 4.8.5. Find


E

x dV , where E is the tetrahedron bounded by the plane

x = 1, y = 1, z = 1, x+ y + z = 2.

74



4 MULTIPLE INTEGRALS 4.8 Multiple Integral – Practice

x

z

y

x+ z = 2

y + z = 2

Answer.



E

x dV =



D

 1

2−x−y

x dz


dA

=

 1

0

 1

1−x

 1

2−x−y

x dzdydx

=

 1

0

 1

1−x

x(1− 2 + x+ y) dydx

=

 1

0

 1

1−x

x2 + xy − x dydx

=

 1

0

x3 + x2 − 1

2
x3 − x2 dx

=

 1

0

1

2
x3 dx =


1

2
x3

1

0

=
1

8
.

□

Example 4.8.6. Plot the cylindrical coordinate of

4,

π

3
,−3


and find its rectangular coordi-

nates.

Answer.

r = 4, θ =
π

3
, z = −3.

x = r cos θ = 3 · cos
π
3


= 4 · 1

2
= 2

y = r sin θ = 3 · sin
π
3


= 4 ·

√
3

2
= 2

√
3.

Rectangular coordinate: (2, 2
√
3,−3).

□

Example 4.8.7. Find the volume enclosed by the cone z =


x2 + y2 and x2 + y2 + z2 = 2.

Answer.
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Change to cylindrical coordinate: x2 + y2 = r2 and z = z :

0 ≤ r ≤
√
2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1.

So, 

E

dV =

 2π

0

 √
2

0

 1

0

dzdrdθ = 2π(
√
2)(1) = 2

√
2π.

□
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5 VECTOR CALCULUS

5 Vector Calculus

5.1 Vector Fields

Definition 5.1.1 (Vector Field). Let D be a region (or a set) in Rn. A vector field on Rn is a

function F that assigns to each point (x1, · · · , xn) a n-dimensional vector F(x1, · · · , xn).

Example 5.1.1.
F(x, y) = P (x, y)̂i +Q(x, y)̂j,

where P and Q are scalar functions. Sometimes, P and Q are called scalar fields.

F(x, y, z) = P (x, y, z)̂i +Q(x, y, z)̂j +R(x, y, z)k̂,

where P , Q, and R are scalar functions or scalar fields.

Remark. In fact, vector fields can model velocity, magnetic force, fluid motion, and gradi-

ent.

Definition 5.1.2 (Gradient Fields). let f be a scalar function of two (or three) variables on R2

(or R3). Its gradient is a vector field on R2 (or R3) given by

∇f(x, y) =
∂f

∂x
î +

∂f

∂y
ĵ

or

∇f(x, y, z) =
∂f

∂x
î +

∂f

∂y
ĵ +

∂f

∂z
k̂.

Example 5.1.2. Find the gradient vector field of f(x, y) = x2y − y3.

Answer.

∇f(x, y) =
∂f

∂x
î +

∂f

∂y
ĵ = 2xŷi + (x2 − 3y2)̂j

□

Remark. Properties of Gradient Fields

• Gradient vectors are perpendicular to the level curves

• Gradient vectors point in the direction of maximum change in value of the function at a

given point.

• The magnitudes of gradient vectors are a measure of local intensity change at a given

point.
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5.2 Line Integrals

In this section, we define line integral similar to a single integral, but instead of interval, we

integrate over a curve.

Definition 5.2.1 (Line Integral). Let f be defined on a differentiable curve C, where

C =





x(t)

y(t)
, a ≤ t ≤ b.

We choose (x∗
i , y

∗
i ) on sub-arc correspond to t∗i . We calculate

n

i=1

f(x∗
i , yi∗)∆Si.

When n → ∞, we define the line integral of f along curve C as



C

f(x, y) ds = lim
n→∞

n

i=1

f(x∗
i , y

∗
i )∆Si

if the limit exists.

Theorem 5.2.1 (Length of a Curve). The length of a curve C defined by





x(t)

y(t)
is given by

L =

 b

a


dx

dt

2

+


dy

dt

2

dt

Theorem 5.2.2 (Calculating Line Integrals). Applying Theorem 5.2.1, we have



C

f(x, y) ds =

 b

a

f(x, y)


dx

dt

2

+


dy

dt

2

dt

Example 5.2.1. Evaluate


C

2 + x2y ds over the upper half of the unit circle x2 + y2 = 1.

Answer.
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We know C :





x(t) = cos t

y(t) = sin t
, 0 ≤ t ≤ π. So, x′(t) = − sin t and y′(t) = cos t.



C

2 + x2y ds =

 π

0

(2 + x2y)


(− sin t)2 + (cos t)2 dt

=

 π

0

(2 + cos2 t sint) dt

=

2t
π
0
− 1

3


cos3 t

π
0
= 2π − 1

2
(−2) = 2π +

2

3
.

□

Theorem 5.2.3 (Price-weise Smooth Line Integrals). If C is a piece-wise smooth curve de-

fined by C1 + C2 + · · ·+ Cn. Then, the line integral over C is



C

f(x, y) dx =



C1

f(x, y) ds+



C2

f(x, y) ds+ · · ·+


Cn

f(x, y) ds

Theorem 5.2.4 (Vector Representation of a Line Segment). The vector representation of a line

segment starts atr0 and ends atr1 is given by

r(t) = (1− t)r0 + tr1 0 ≤ t ≤ 1.

Definition 5.2.2 (Line Integrals with Respect to x and y).



C

f(x, y) dx = lim
n→∞

n

i=1

f(x∗
i , y

∗
i )∆xi =

 b

a

f(x(t), y(t))x′(t) dt



C

f(x, y) dy = lim
n→∞

n

i=1

f(x∗
i , y

∗
i )∆yi =

 b

a

f(x(t), y(t))y′(t) dt

Theorem 5.2.5.


C

P (x, y) dx+



C

Q(x, y) dy =



C

P (x, y)dx+Q(x, y)dy

Example 5.2.2. Evaluate


C

y2dx+ xdy, where C is

1. A line segment from (−5,−3) to (0, 2)

Answer.

The equation of the line is y + 3 = x+ 5.

Set y + 3 = x+ 5 = t. We get y(t) = t− 3 and x(t) = t− 5.
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So, dy = dt and dx = dt.

From (−5,−3) to (0, 2) : 0 ≤ t ≤ 5.



C

y2dx+ xdy =

 5

0

(t− 3)2dx+ (t− 5)dy

=

 5

0

(t− 3)2dt+ (t− 5)dt

=

 5

0

(t2 + 9− 6t+ t− 5) dt

=

 5

0

t2 − 5t+ 4 dt

=


1

3
t3 − 5

2
t2 + 4t

5

0

= −5

6

□

2. The parabola of x = 4− y2 from (−5,−3) to (0, 2)

Answer.

Let y = t, so x(t) = 4− t2.

So, dy = dt and dx = −2tdt.

Since −3 ≤ y ≤ 2, we know −3 ≤ t ≤ 2. So,



C

y2dx+ xdy =

 2

−3

t2(−2t)dt+ (4− t2)dt

=

 2

−3

−2t3 + 4t− t2dt

=


−1

2
t4 − 1

3
t3 + 4t

2

−3

=
245

6
.

□

Theorem 5.2.6. The line integral depends on the path in general. Line integral depends on

the orientation of the path.



−C

f(x, y) ds = −


C

f(x, y) ds.

Definition 5.2.3 (Vector Representation of Line Integrals). Let r(t) = 〈x(t), y(t)〉 = x(t)̂i +
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y(t)̂j. Then,r′(t) = x′(t)̂i + y′(t)̂j. So,



C

f(x, y) ds =

 b

a

f(r(t))
r′(t)

 dt

Definition 5.2.4 (Line Integrals in Spaces).



C

f(x, y, z) ds =

 b

a

f(x, y, z)


dx

dt

2

+


dy

dt

2

+


dz

dt

2

dt

=

 b

a

f(r(t))
r′(t)

 dt,

wherer(t) = 〈x(t), y(t), z(t)〉.

Theorem 5.2.7. Specially, if f(x, y, z) = 1, we have

L = length of the curve C =



C

ds =

 b

a

r′(t)
 dt.

Example 5.2.3. Evaluate


C

y sin z ds, where C =






x = cos t

y = sin t

z = t

, 0 ≤ t ≤ 2π (the circular helix).

Answer.

x(t) = cos t, y(t) = sin t, z(t) = t, 0 ≤ t ≤ 2π

x′(t) = − sin t, y′(t) = cos t, z′(t) = 1.

So, r′(t)
 =


sin2 t+ cos2 t+ 1 =

√
1 + 1 =

√
2.



C

y sin z ds

 2π

0

sin t · sin t(
√
2) dt

=
√
2

 2

0

π sin2 t dt

=
√
2

 2

0

π
1

2
(1− cos 2t) dt

=

√
2

2


t− 1

2
sin 2t

2π

0

=
2

2
(2π) =

√
2π.

□
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Example 5.2.4. 1. Find the vector representation of the line segment starting at (2, 0, 0)

and ending at (3, 4, 5).

Answer.

r(t) = (1− t)〈2, 0, 0〉+ t〈3, 4, 5〉, 0 ≤ t ≤ 1

= 〈2− 2t+ 3t, 4t, 5t〉

= 〈2 + t, 4t, 5, 〉, 0 ≤ t ≤ 1.

□

2. Evaluating


C

ydx+ zdy + xdz, where C is the line segment from the previous question.

Answer.

x(t) = 2 + t, dx = dt, y(t) = 4t, dy = 4dt, z(t) = 5t, dz = 5dt.


C

ydx+ zdy + xdz =

 1

0

4tdt+ 5t(4)dt+ (2 + t)(5)dt

=

 1

0

29t+ 10 dt

=


29

2
t2 + 10t

1

0

=
29

2
+ 10 =

49

2
.

□

Definition 5.2.5 (Line Integrals of Vector Fields). Let F = P î+ Q̂j+Rk̂ be a continuous force

field on R3. We want to compute the work done by this force in moving a particle along a

smooth curve C.

x

y

z

C

P0

Pn

Pi−1

Pi

P ∗
i

T̂

∆S
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So, we divide C into n sub-arc with length ∆S. Particles moves along curve C from Pi−1 to Pi

in the direction of the unit tangent vector T̂(t∗i ) at P ∗
i . The work done by the force F in moving

from Pi−1 to Pi is

W ≈ F · D = F(x∗
i , y

∗
i , z

∗
i ) · T̂(t∗i )∆S.

So,

W = lim
n→∞

n

i=1


F(x∗

i , y
∗
i , z

∗
i ) · T̂(t∗i )


∆S

=



C

F(x, y, z) · T̂(x, y, z)ds

=



C

F · T̂ ds

where T̂ is the unit tangent vector at the point (x, y, z).

Since ds =
r′(t)

dt and T̂(t) =
r′(t)r′(t)

 , we have

W =

 b

a


F(r(t)) ·

r′(t)r′(t)



· |r′(t)| dt

=

 b

a

F(r(t)) ·r′(t) dt

Therefore, for a continuous vector field F defined on a smooth curve C given by a vector

functionr(t), a ≤ t ≤ b, the line integral on F along C is



C

F · dr =

 b

a

F(r(t)) ·r′(t) dt =


C

F · T̂ ds.

Theorem 5.2.8. If F = P î + Q̂j +Rk̂ is a vector field andr = x(t)̂i + y(t)̂j + z(t)k̂, then



C

F · dr =

 b

a

F(r(t)) ·r′(t) dt

=

 b

a

〈P (x, y, z), Q(x, y, z), R(x, y, z)〉 · 〈dx
dt

,
dy

dt
,
dz

dt
〉 dt

=

 b

a


P (x, y, z)

dx

dt
+Q(x, y, z)

dy

dt
+R(x, y, z)

dz

dt


dt

=

 b

a

Pdx+Qdy +Rdz
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Example 5.2.5. Evaluate


C

Fdr, where F = xŷi + yẑj + zxk̂ and C =






x = t

y = t2

z = t3

, where

0 ≤ t ≤ 1.

Answer.

x(t) = t, dx = dt; y(t) = t2, dy = 2tdt; z(t) = t3, dz = 3t2dt

So, 

C

F · dr =

 b

a

Pdx+Qdy +Rdz

=

 1

0

xydt+ yz(2t)dt+ zx(3t2)dt

=

 1

0

t3 + 5t6 dt

=


1

4
t4 +

5

7
t7
1

0

=
1

4
+

5

7
=

27

28
.

□

5.3 The Fundamental Theorem of Line Integral

Theorem 5.3.1 (The Fundamental Theorem of Line Integral).



C

∇f · dr = f(r(b))− f(r(a)),

where C is a smooth curve with vector function r(t), with a ≤ t ≤ b and f is a differentiable

function of two or three variables whose gradient vector, ∇f, is continuous on C

Proof.

Let I be the line integral defined by

I =



C

∇f · dr.
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Then,

I =

 b

a

〈fx(r(t)), fy(r(t)), fz(r(t))〉 · 〈x′(t), y′(t), z′(t)〉dt

=

 b

a

(fx(r(t))x′(t) + fy(r(t))y′(t) + fz(r(t))z′(t))dt

=

 b

a


∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

+
∂f

∂z

dz

dt


dt

=

 b

a

d

dt
(F(r(t))dt = f(r(b))− f(r(a)).



Remark (Independence of Path). Let C1 and C2 be two paths that have the same initial

and terminal points.

x

y

C1
A

B

C2

We know that, in general, 

C1

F · dr ∕=


C2

F · dr

But we can show 

C1

∇f · dr =



C2

∇f · dr

The key difference here is that we may not be able to find a function f whose gradient

∇f = F, the vector field.

Definition 5.3.1 (Conservative Vector Function). We say that vector function F is conserva-

tive if there exists a function f(x, y, z) such that ∇f = F.

Theorem 5.3.2 (Testing Conservative). A vector field F = P î+ Q̂j+Rk̂ is conservative and P ,

Q, R have continuous first order partial derivatives if

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y
.

Theorem 5.3.3 (Independence of Path). The line integral of a conservative vector field de-

pends only on initial and terminal points and is independent of path.
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Definition 5.3.2 (Independence of Path). Let F be a continuous vector field with domain D.

We say that


C

F · dr is independent of path if



C1

F · dr =



C2

F · dr

for any two paths C1 and C2 in D that have the same initial and terminal points.

Lemma 5.1. Let


C

F · dr be independent of path where C is a closed path, then


C

F · dr = 0.

Proof.

Divide C into two paths, C1 and C2.

Then, 

C

F · dr =



C1

F · dr +


C2

F · dr

=



C1

F · dr −


−C2

F · dr.

Since F is independent of path, we have



C1

F · dr =



−C2

F · dr.

So,


C

F · dr = 0.

C1
A

B

C2



Lemma 5.2. If


C

F · dr = 0 for every closed path in D, then


C

F · dr is independent of path in

D.

Proof.

We have


C

F · dr = 0 for any closed C in D.

0 =



C

F · dr =



C1

F · dr +


C2

F · dr

=



C1

F · dr −


−C2

F · dr
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So,


C1

F · dr =



−C2

F · dr.

Therefore, F is independent of path.



Theorem 5.3.4. From Lemma 5.1 and Lemma 5.2, we have


C

F · dr is independent of path in

D if and only if


C

F · dr = 0 for every closed C in D.

Theorem 5.3.5 (Test for Conservation). If the vector field F = P î + Q̂j + Rk̂ is conservative

and P , Q, R have continuous first order partial derivatives, then the following is true:

∂P

∂y
=

∂Q

∂x
;

∂P

∂z
=

∂R

∂x
;

∂Q

∂Z
=

∂R

∂y

Proof.

Since F is conservative, there exists a function f such taht

F = ∇f = fx̂i + fŷj + fzk̂.

So,

P î + Q̂j +Rk̂ = fx̂i + fŷj + fzk̂.

That is,






P = fx

Q = fy

R = fz

=⇒






∂P

∂y
= fyx = fxy =

∂fy
∂x

=
∂Q

∂x

∂P

∂Z
= fzx = fxz =

∂fz
∂x

=
∂R

∂x

∂Q

∂z
= fzy = fyz =

∂fz
∂y

=
∂R

∂y



Example 5.3.1. Consider the vector field

F = Ax sin(πy)̂i +

x2 cos(πy) +Bye−z


j + y2e−zk̂.

1. For what values of A and B is the vector field F conservative?

Answer.

We know: P = Ax sin(πy), Q = (x2 cos(πy) +Bye−z), R = y2e−z.
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Then, by Theorem 5.3.5, we should have

∂P

∂y
=

∂Q

∂x
;

∂P

∂z
=

∂R

∂x
;

∂Q

∂Z
=

∂R

∂y
.

From
∂P

∂y
=

∂Q

∂x
, we know Axπ sin(πy) = 2x cos(πy), so A =

2

π
.

From
∂P

∂z
=

∂R

∂x
, we know 0 = 0.

From
∂Q

∂Z
=

∂R

∂y
, we know −Bye−z = 2ye−z, and thus B = −2. Therefore,

F =
2x

π
sin(πy)̂i +


x2 cos(πy)− 2ye−z


j + y2e−zk̂

Now, since F is conservative, we can find an f such that ∇f = F.

So, we have
∂f

∂x
=

2x

π
sin(πy).

f =


2x

π
sin(πy) dx+ g(y, z) =

x2

π
sin(πy) + g(y, z).

Hence,
∂f

∂y
= x2 cos(πy) +

∂g

∂y
= x2 cos(πy)− 2ye−z.

∂g

∂y
= −2ye−z

g(y, z) =


−2ue−z dy + h(z)

g(y, z) = −y2e−z + h(z).

So,

f =
x2

π
sin(πy)− y2e−z + h(z)

So,
∂f

∂z
= −


−y2e−z


+

dh

dz
= y2e−z. Then, we would have

dh

dz
= 0, and thus h(z) = 0.

Therefore,

f =
x2

π
sin(πy)− y2e−z

□

2. Using your answer in the previous question to evaluate


C

F · dr, where C is
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(a) The curver = cos(t) + î + sin(2t)̂j + sin2(t)k̂.

Answer.

Since we have r(0) = 〈1, 0, 0〉 = î and r(2π) = 〈1, 0, 0〉 = î, we know that r(t) is a

closed curve. Therefore, by Theorem 5.3.4, since F is conservative, we have



C

F · dr = 0.

□

(b) Curve of intersection of the paraboloid z = x2 + 4y2 and the plane z = 3x− 2y from

(0, 0, 0) to

1,

1

2
, 2



Answer.

By Theorem 5.3.1, the Fundamental Theorem of Line Integral, we know



C

F · dr = f(r(b))− f(r(a)).

So, 

C

F · dr =


x2

π
sin(πy)− y2e−z

(1,1/2,2)

(0,0,0)

=
1

π
− 1

4e2
.

□

5.4 Green’s Theorem

Green’s theorem gives the relationship between a line integral around a simple closed curve

C and a double integral over the plane D bounded by C.

Definition 5.4.1 (Simply Connected Regions). Simply connected regions are regions that ev-

ery simple closed curves in D enclosed only points that are in D.

x

y

C

D
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Theorem 5.4.1 (Green’s Theorem). LetC be positively oriented piecewise-smooth simple closed

curve in the plane, and let D be the region bounded by C. If P and Q have continuous partial

derivatives on an open region that contains D, then



C

Pdx+Qdy =



D


∂Q

∂x
− ∂P

∂y


dA.

Remark. “Positively oriented” means the direction is counter-clockwise.

Example 5.4.1. Evaluate I =



C

x4dx+ xydy, where C is the following oriented triangle:

x

y

D
C

1

1

Answer.

By Green’s Theorem, we have

I =



C

x4dx+ xydy =



D


∂Q

∂x
− ∂P

∂y


dA.

Since P = x4 and Q = xy, we know
∂Q

∂x
= y and

∂P

∂y
= 0. Therefore,

I =



D

(y − 0) dA =

 1

0

 1−x

0

ydydx =

 1

0


1

2
y2
1−x

0

dx =
1

2


1

3
(1− x)3

1

0

=
1

6


(1− 1)3 − (0− 1)3


=

1

6
.

□

Example 5.4.2. Evaluate


C


3y − esinx


dx+


7 +


y4 + 1


dy over C as x2 + y2 = 9.

Answer.
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By Green’s Theorem,



C


3y − esinx


dx+


7 +


y4 + 1


dy =



D


∂Q

∂x
− ∂P

∂y


dA

=



D

(7− 3) dA

= 4



D

dA

= 4A(D) = 4(9π) = 36π.

□

Remark (A Special Case). We can see that if
∂Q

∂x
− ∂P

∂y
= 1, we have



C

Pdx+Qdy =



D


∂Q

∂x
− ∂P

∂y


dA =



D

dA = A(D).

Also,

A(D) =



C

x dy = −


C

y dx =
1

2



C

xdy − ydx.

Theorem 5.4.2 (Extension of Green’s Theorem 1). We can extend Green’s Theorem to finite

union of simply connected regions:

C1

C2

C3

D1

D2



C

Pdx+Qdy =



D

∂Q

∂x
− ∂P

∂y
dA.

Proof.

Let I =



C

Pdx+Qdy. Then,

I =



C1∪C3

Pdx+Qdy +



C2∪(−C3)

Pdx+Qdy

=



D1

∂Q

∂x
− ∂P

∂y
dA+



D2

∂Q

∂x
− ∂P

∂y
dA

=



D

∂Q

∂x
− ∂P

∂y
dA.
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Theorem 5.4.3 (Extension of Green’s Theorem 2). Green’s Theorem can be applied to regions

with holes (regions that are not simply connected):



C

Pdx+Qdy =



D

∂Q

∂x
− ∂P

∂y
dA.

Example 5.4.3. Evaluate


C

y2dx+ 3xydy along C as the following:

D
x2 + y2 = 4

x2 + y2 = 1 x

y

Answer.

Use the extension of the Green’s Theorem:

I =



C

y2dx+ 3xydy =



D

(3y − 2y) dA =



D

y dA.

Change to polar coordinates: 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, y = r sin θ.

I =

 π

0

 2

1

r sin θ · r drdθ =

 π

0

sin θ dθ

 2

1

r2 dr

=

− cos θ

π
0


1

3
r3
2

1

= (−(−1)− (−1))


8

3
− 1

3



= 2


7

3


=

14

3
.

□

Example 5.4.4. Evaluate


C


x2 − xy


dx +


xy − x2


dy, where C is given by the following tri-

angle.

x

y

(0, 0) (2, 0)

(1, 1)

D

Answer.
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This question is left as an exercise so the steps are omitted, but the answer should be

I = −4

3
.

□

5.5 Curl and Divergence

Definition 5.5.1 (Divergence and Curl). For a vector field F = P î + Q̂j +Rk̂, we define diver-

gence and curl as

div F = ∇ · F =


∂

∂x
,
∂

∂y
,
∂

∂z


· 〈P,Q,R〉

=
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

curl F = ∇× F =



î ĵ k̂
∂

∂x

∂

∂y

∂

∂z

P Q R



=


∂R

∂y
− ∂Q

∂Z


î −


∂R

∂x
− ∂P

∂z


ĵ +


∂Q

∂x
− ∂P

∂y


k̂

=


∂R

∂y
− ∂Q

∂Z


î +


∂P

∂z
− ∂R

∂x


ĵ +


∂Q

∂x
− ∂P

∂y


k̂

Example 5.5.1. Find the divergence and curl of the vector field

F = xŷi +

y2 − z2


j + yzk̂

Answer.

div F = ∇ · F =


∂

∂x
,
∂

∂y
,
∂

∂z


·

xy,


y2 − z2


, yz



=
∂

∂x
(xy) +

∂

∂y


y2 − z2


+

∂

∂z
(yz)

= y + 2y + y = 4y.
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curl F = ∇× F =



î ĵ k̂
∂

∂x

∂

∂y

∂

∂z

xy y2 − z2 yz



=


∂

∂y
(yz)− ∂

∂z


y2 − z2


î + (0− 0)̂j +


∂

∂x


y2 − z2


− ∂

∂y
(xy)


k̂

= (z + 2z)̂i − 0 + (0− x)k̂

= 3ẑi − xk̂.

□

Theorem 5.5.1 (Properties of Curl, Divergence, and Gradient). Let f be a scalar field and F

be a vector field. Suppose f and F are all smooth and have all partial derivatives continuous,

then

1. ∇ ·

∇× F


= 0 or in words, div (curl F) = 0

Proof.

∇ ·

∇× F


=


∂

∂x
,
∂

∂y
,
∂

∂z


·

∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y



=
∂

∂x


∂R

∂y
− ∂Q

∂z


+

∂

∂y


∂P

∂z
− ∂R

∂x


+

∂

∂z


∂Q

∂x
− ∂P

∂y



=
∂2R

∂x∂y
− ∂2Q

∂x∂z
+

∂2P

∂y∂z
− ∂2R

∂y∂x
+

∂2Q

∂z∂x
− ∂2P

∂z∂y

= 0



2. ∇× (∇f) = 0 or in words, ∇× (gradient f) = 0

Proof.

∇× (∇f) =



î ĵ k̂

∂

∂x

∂

∂y

∂

∂x

∂f

∂x

∂f

∂y

∂f

∂z



=


∂2f

∂y∂z
− ∂2f

∂z∂y


î −


∂2f

∂x∂z
− ∂2f

∂z∂x


ĵ +


∂2f

∂x∂y
− ∂2f

∂y∂x


k̂

= 0
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Remark. If F is conservative, then F = ∇f and

curl F = curl (∇f) = 0.

Theorem 5.5.2. If F is a vector field on R3 and its component functions, P , Q, and R, have

continuous partial derivatives and curl F = 0, then F is conservative.

Example 5.5.2. Show that

F(x, y, z) = y2z3̂i + 2xyz3̂j + 3xy2z2k̂

is a conservative field and find a function f such that F = ∇f.

Answer.

Note that

curl F =



î ĵ k̂
∂

∂x

∂

∂y

∂

∂z

y2z3 2xyz3 3xy2z2



= 0

Also, y2z3, 2xyz3, and 3xy2z2 are in R3 and have continuous partial derivatives.

Therefore, by Theorem 5.5.2, F is conservative.

Now, we can find the f such that ∇f = F.

So,
∂f

∂x
î +

∂f

∂y
ĵ +

∂f

∂z
k̂ = y2z3̂i + 2xyz3̂j + 3xy2z2k̂

That is,
∂f

∂x
= y2z3;

∂f

∂y
= 2xyz3;

∂f

∂z
= 3xy2z2.

From
∂f

∂x
= y2z3, we have f = xy2z3 + g(y, z)

So,
∂f

∂y
= 2xyz3 +

∂g

∂y
= 2xyz3.

We have
∂g

∂y
= 0, which means g(y, z) = h(z).

So,
∂f

∂z
= 3xy2z2 +

dh

dz
= 3xy2z2

Similarly,
dh

dz
= 0, so h(z) is a constant function.

Hence,

f = xy2z3 + C
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□

Definition 5.5.2 (Laplace Operator/Laplacian). The Laplace operator (or laplacian) is denoted

as ∇ ·∇ or ∇2 and is defined by

∇2 =


∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2



Theorem 5.5.3 (More Properties). Let f and g be scalar fields and F and G be vector fields.

Define
(fF)(x, y, z) = f(x, y, z)F(x, y, z)

(F · G)(x, y, z) = F(x, y, z) · G(x, y, z)

(F × G) = F(x, y, z)× G(x, y, z)

Suppose f , g, F and G are all smooth and have all partial derivatives continuous, then

1. ∇ ·

F + G


= ∇ · F +∇ · G

2. ∇×

F + G


= ∇× F +∇× G

3. ∇ ·

fF


= f∇ · F + F ·∇f

4. ∇×

fF


= f∇× F + (∇f)× F

5. ∇ ·

F × G


= G ·∇× F − F ·∇× G

6. ∇ · (∇f ×∇g) = 0

7. ∇×

∇× F


= ∇(∇ · F)−∇2F

Theorem 5.5.4 (Stoke’s Theorem). LetS be an oriented piecewise-smooth surface that is bounded

by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let F be

a vector field whose components have continuous partial derivatives on an open region in R3

that contains S, then 

C

F · dr =



S

∇× F · dS
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