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1 REVIEW - PRE-CALCULUS & DERIVATIVE

1 Review - Pre-Calculus & Derivative

1.1 Inverse Functions

Definition 1.1.1 (Inverse Functions). Functions that “undo” each other.

Example 1.1.2 Examples of Inverse Functions

f@)=ov+l<= flHa)=2-1
fle) =20 = @) = 12
fle) =1 = @)=+

Note: Not all functions have inverses.
Definition 1.1.3 (One-to-one function). f is an one-to-one function if:

f(z1) # f(x2) whenever x; # 5.

In df words, f never have the same value twice.
To testify if a function f is a one-to-one function, we apply the Horizontal Line Test (HLT):

Theorem 1.1.4 Horizontal Line Test (HLT)
f is one-to-one if and only if (iff) every horizontal line intersects the graph of f in at

most one point.

After knowing the Horizontal Line Test, we can have a look at the precise definition of
inverse functions.
Definition 1.1.5 (Precise Definition of Inverse Functions). Suppose f is a function with a
domain= D; and a range= R;. Now consider a function g with a domain= D, and a range=
R,. Then, f and g are inverses of each other iff:

1. Dy = Ryand D, = Ry;

2. f(g(z)) =xVor e Dyand ¢g(f(x)) =z Vo € Dy.

Here are some notes to that formal definition:

1. In order for f to have an inverse, it must be one-to-one.

2. If f has an inverse g, then we usually write f~!(z) = g(z).
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1 REVIEW - PRE-CALCULUS & DERIVATIVE 1.2 Exponentials and Logs

3. If the point (a, b) is on the graph of f(x), then the point (b, a) is on the graph of f~!(z).

Proof 1.Symmetry of Inverse Functions

" (a,b) on f(x)
Sofla)=10
Take the inverse on both sides, and we get:

7 (f(a)) = f7H(b)
ca=f'(b), ie., (b,a)on f(z)

Extending from the third point of the note, we come to the graph property of inverses.

Theorem 1.1.6 Graph Property of Inverses
If f(z) has an inverse, then the graphs of f(z) and f~!(z) are reflections of each other
through the line y = .

1.2 Exponentials and Logs

Recall the graph of y = «*, where a > 0 and ¢ # 1. When 0 < a < 1, the exponential function
decreases as = increases. When a > 1, the exponential function increases as x increases.

Theorem 1.2.1 Exponentials and Logs as Inverse Functions
The inverse of f(z) = a®is f~*(z) = g(z) = log, =, and:

Dy = (—00,00), Df-1 = (0, 00);

Ry = (0,00), Rf-1 = (—00,00).

Extension 1.1 Extension for the Relationship
log,x =y<=a’"=uz:
{abgaﬂc =z Va € (0, 00)

log,(a*) =2 VreR

Here, what makes the domain of x different is the which function x firstly go through. In the first
expression, x firstly goes through the log function, hence having a limited domain. However,
going through the exponential function first will not limit the domain of x.
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1 REVIEW - PRE-CALCULUS & DERIVATIVE 1.3 Derivatives

There are several properties of Logs, and the next chunk lists some of them.

Theorem 1.2.2 Properties of Logs

log, v +log,y =log,(z +y)  log, 2" =rlog,x

1
log, x — log, y = log, <£> log, x = O %
( log, a

Natural Log is another essential concept.
Definition 1.2.3 (Natural Log). Natural Logs are logarithms with base e ~ 2.71828 - - -

We write log, x = Inz.

1.3 Derivatives

Recall some basic rules of derivatives:

Theorem 1.3.1 Rules of derivatives

d xr xr
@(6 )=e
d 1
— .
dx(nx) T
d
d—(ax) =a"lna
T
d 1
d—(logax) rlna

Example 1.3.2 Find the derivative of

fz) =1n ((x2 +33:§i7_x4— 10)>

Method 1 |We can simply differentiate the function using chain and quotient rules. How-
ever, this will make the process overcomplicated.

Method 2 | Use properties of logarithms to simply the expression first:

} —In [(® + 3)(Tz — 10)]

W=

B (:135 _ 4)1/3 B 5
J(z) =1 (22 +3)(Tz — 10)] =In [(a: —4)

_ %m(f —4) = In(a? + 3) — In(7z — 10).




1 REVIEW - PRE-CALCULUS & DERIVATIVE 1.4 Inverse Trigonometric Functions

Now, we can easily compute the derivative of f(x):

(z° +3) —

1

Z. —10)

3 51 (7Tx — 10)
5t 2T

3(25—4) 2243 Tx—10

['w) = 75 — 10

1.4 Inverse Trigonometric Functions

Recall the definition of inverse trigonometric functions and the restrictions on their domains.

Theorem 1.4.1 Domain of inverse sine function

The sine function y = sinz with domain= [—g, g] and range= [—1, 1] has the inverse
function of y = sin~!(x) = arcsin(z) with domain= [—1, 1] and range= [—g, g}

Because they are inverse of each other, we have the following properties holding true:

sin~!(sin(r)) = Vo € [—g, g}

sin(sin™!(z)) =2 Vz e [-1,1]

Moreover, we have:

y = sin"'(z) <= sin(y) =, y € [—g, g] :

Similarly, we can define the restrictions on the domain of other inverse trigonometric
functions.

Also recall derivatives of inverse trigonometric functions.



2 INTEGRATION TECHNICS

2 Integration Technics

2.1 Integration by Parts

Definition 2.1.1 (Integration by Parts). The formula of integration by parts is given by:

/udv:uv—/vdu

Proof 1.Integration by Parts To begin with, we consider the product rule for differentiation:

f(@)g'(x) + g(x) f'(x)

o
8
=
=
<
—~
=
I

The proof begins with attempting to take the integral of the both sides of this product rule.

4 (f(2)g(x)) = (f(2)g (&) + g(x) f'(2)) da
.a/h«ﬂwmm>:/kﬂwym»+mmfm»dx

f@w@F:/ﬂ@ﬂ@¢r+/ﬁ@f@Mx

=
.1/ﬂw¢@wu:fwmu»—/m@f@nu

u= f(x) du= f'(x) |
If we let , we also have , and the formula becomes:
dv = ¢'(z)

v =g(z)

/ud@:uv—/vdu.

Example 2.1.2 Example 1

/x3lnx dx




2 INTEGRATION TECHNICS

2.1

Integration by Parts

1
u=Inzx du = —
Let , so we have 1¢
dv = 23 v= -zt
4
1 1 1
.'./x?’lnxdx zlnx~1x4 —/Zx4 . de
1
= —2'lnz — 1/263 dx
4 4
L 4 L oy
— 4t lny — —
e — +C
Example 2.1.3 Example 2
/(:v — 1)’ da
Let , SO we have 1
dv = &% v=—e"
5
/(x —1)e*d=-e"(x—1) — / 5659” dz
1
_ 0T -1 _— be
e(x —1) 55 ¢ +C
Example 2.1.4 Example 3

2
/x3e‘” dx

Method 1 | Integration by Parts

2
xT

Firstly, let’s examine / e’ dux.

substitution:
dd

Letu =2 = — =2z = du=_2zdz.

To solve this integration, we can consider using u-

ar
However, there is an additional x that we have no way to eliminate. Hence, we consider to

2 2 . < 2
separate r’¢” into z? and xze® .




2 INTEGRATION TECHNICS 2.1 Integration by Parts

u = z2 du = 2z

Let , SO we have
2 332
dv = ze* v= | xe¥ dzx

1
We now want to compute v first: Let u = 2%, du = 2z dz. So we have / ze dz = 3 / e du =
Lo 1 .
—e’ . l.e.,v = —¢e".
2 2

Now, using integration by parts, we can compute the original integral.

1 1
/x?’ew2 dr = —22e* — /21: cZe” dx
2 2

1 5 .2 2
—— e ed
2356 /1‘8 xXr
1 5.2 1 2
= — — —e* C
2356 26 +

Method 2 | Substitution

Letw = 22, dw = 2z dx.

. . U= w du =1
Now, we can apply integration by parts: Let , we have
dv =e¥ v=e"
1 1
§/wew dw = 3 (wew — /e“’ dw)
1 1
= §wew — iew +C
1
= §ew(w -1)+C
1

Example 2.1.5 Example 4




2 INTEGRATION TECHNICS 2.1 Integration by Parts

u=Inzx du=1
Let , SO we have z

dv=1 V=1
1
,',/lnwdx—xlnx—/;-xdx
=zlher—2+C
=z(lnzx—-1)+C
Example 2.1.6 Example 5
/cos(lnx) dz
u = cos(In ) du = —sin(lnzx) - —
Let , S0 we have x
dv=1 V=2

/cos(ln x)dz = zcos(Inz) + /sin(ln x) dz

. . . u = sin(ln z)
Let's use integration by parts again: , now we have
dv=1
1
du = cos(lnzx) - —
X
V=2

sin(Inz) dz = zsin(lnz) — /Cos(ln x) dx

2 [ cos(lnzx) dz = z[cos(Inz) 4 sin(lnz)] + C

-/
/ cos(Inz) dz — z cos(Inz) + zsin(lnz) — / cos(Inz) da
/
-/

1
cos(lnz) dox = 3% [cos(Inz) + sin(Inz)] + C

10



2 INTEGRATION TECHNICS 2.1 Integration by Parts

Example 2.1.7 Example 6

4
/ eVe dx
1

Evaluate / eV® dz first.
Recall in Example 3, Method 2, we applied substitution first: Let w = z'/2.
1, 1
= -7 /2 — —_ —
So we have dw 295 dx 5012 dz e dx.
code = 2w dw

.'./eﬁd$:/ew2w dw
:2/ewwdw

. . U= w du=1
Now, we can apply integration by parts: Let , so we have
dv=e"

.'./eﬁdx:wew—/ewdw

=we’ —ew+C
=(w—-1)e"+C
= (Vz—1eV"+C

Example 2.1.8 Example 7
Use integration by parts to derive the following formula:

1 _ ) n—1 _
/cos"acda:: ~cos" ' xsinx + cos" % x dx
n n

11



2 INTEGRATION TECHNICS 2.1 Integration by Parts

LHS = /cos" z dx

= /cos”_1 x - cosx dx

n—1

u=cos" 'z
Now we can use integration by parts: Let , so we have
dv = cosx
du=—(n—1)cos" ?zsinz
v=-sinz

/Cos”_1 z - cosx dr = cos" ' xsinx + /(n — 1) cos" 2 wsin’x dz

Use trigonometric identity: sin?z = 1 — cos®

" /COS"J: dr|=cos" tzsinz + (n — 1) /cos”_2 z(1 — cos® z) dz

=cos" txsinz + (n —1) /Cos."_2 rdz —|(n—1) /cos":c dz

/Cos"x dz 4+ (n—1) /cos”:c dr = cos" ' wsinz + (n — 1) /COSan dw

(1+n-— 1)/cos”xdx:cos"_1xsinx+(n— 1)/cos"_2xdx

1 —1
/Cos” rdr==cos" 'zsinz + n /cos"_2 x dx
n n
= RHS
.. LHS = RHS.

Remark 2.1 Remark from Example 7
1. Split cos™ x to cos™ ! x cos x

2. Use trigonometric identities

At this time, we can introduce the hyperbolic trigonometric functions: sinh and cosh.

12



2 INTEGRATION TECHNICS 2.1 Integration by Parts

Definition 2.1.9 (Hyperbolic Trigonometric Functions). Hyperbolic trigonometric functions
are defined in the following ways:

sinhz = sinh(z) = %
cosh x = cosh(x) = %

We can compute derivatives and integrals of hyperbolic trigonometric functions by defi-
nition of them.

Theorem 2.1.10 Basic Calculus of Hyperbolic Trigonometric Functions

—(sinhz) = — (—e’“" = —el“> = ¥4 T = eare”

= = cosh
dz dr \2° 2 2° T3 2 CoSE
d d /1 1 1 1 r—e”®
a(coshx) =1 (ﬁex I 56_35) = 56”3 - ée_x = % = sinhx

/sinhx dx = coshz + C

/Coshx dx = sinhx + C

Remark 2.2 Remark There is no sign change as the ordinary trigonometric functions.

Example 2.1.11 Example 8

/:1: sinh x dx

. . u=ax du =1
Use integration by parts: Let , so we have

dv = sinh z v = cosh z

.'./xsinhxdx:xcoshm—/coshxdx

=gcoshx —sinhz +C

13



2 INTEGRATION TECHNICS 2.1 Integration by Parts

Example 2.1.12 Example 9
2x
/ T g
(14 2x)2

Firstly, we use substitution: Lett =1+ 2z = 2z =t — 1. Sowehavez = $(t — 1) = dz =
1

5 dt.

2

1

x€2m §<t — 1)€t_1 1
S —dr= | A—m . —dt
(1+ 2x)? 12 2
1 t—1)e"t
_1 / (=D .

4 12
1 I 1,
1
u=-
Now, we can use integration by parts to compute [ Te~': Let t , S0 we have
dv = et!
1
du = t_2
v=e"1

Te® 1/1 ., 1, 1,
/mdl‘zz(ze +/t_26 dt—/t—ze dt)

]‘ t—1
= — C
4te +
Substitute t = 22 + 1 back:
xe?® 1
d — 2x+1—1 C
/(1—|—2x)2 T A2 )¢ *
1 2
- = 2L
e "

Example 2.1.13 Example 10
Use integration by parts to establish the “reduction formula”:

/x”ex dz = 2"e® — n / 2" e dx

14



2 INTEGRATION TECHNICS 2.2 Trigonometric Integrals

n n—1

u=x du = nx
Let , SO we have

dv = e* r

V=¢€

. LHS = /x”ex dr = x"e" — /nx"‘lex dx
=zx"e" —n / 2" tet dx

= RHS

2.2 Trigonometric Integrals

In this section, we will use trigonometric identities to integrate certain combinations of trigono-
metric functions.

Example 2.2.1 Example 1

/ sin®  cos z dx

We use simple substitution to do this integration: Let u = sin z, so we have du = cos z da:

.'./sin3:1:cosa:d:z7:/u3du

1y
= - C
4u+

1
:ZSin4m+C'

Example 2.2.2 Example 2

/ sin® z cos? z dz

15



2 INTEGRATION TECHNICS 2.2 Trigonometric Integrals

Letu = cosz, sowe have du = —sinz dr = —du =sinz dzx
" /sin2 rcos’z -siny dr = / (1 — cos®z) cos® z(—du)

/COSQZE—COS x(—du)
/u4—u du

u’ 3“+C

cos5x—§cos z+C

1
5
1
5

Example 2.2.3 Example 3

/ sin? z cos? x dz

Here, it is not clear that the identity sin? x + cos? z = 1 will help.
Let’s try half angle formula:

1 1
sin? ) = 5(1 — c0s26); cos* 0 = 5(1 + cos 20)

1 1
/sinzxcoszx dz = /5(1 — cos 2:1:)5(1 + cos2x) dz

1
:1/1—cosz2xdyc

Use the half angle formula again:

1

/sm T COS xdx—i/l—cos x dx
1 1
1/1—5 1+COS4I)dI
1 1 1
- | = — =—cosdx dx
4 2 2
L + 4o+ C
= -1 + —sindx
8 32

16



2 INTEGRATION TECHNICS 2.2 Trigonometric Integrals

Theorem 2.2.4 In general, to evaluate / sin™ x cos™ x dx

o If either m or n is odd:

— Separate out part of the integral as “du”

- Use trigonometric identities to rewrite remaining parts in terms of an appro-
priate u substitution.

e If both m and n are even, then use half angle formulas.

Example 2.2.5 Example 4

/ sin® 5z cos® b dx

Both m = 3, n = 3 are odd, so we can use either for du: Let’s use du in the form of cos 5z dx
/ sin® 5z cos® b dz = /sin3 5z cos® bz cos hr dx
= /sin3 52(1 — sin® 5x) cos 5z dx

Letu =sinbx = du = 5cosbx dx

/Sin3 52 cos® 5x dw = /u3 (1 — u2) % du
% u? —u’ du
% (}lu‘l— %uﬁ) +C = %sm‘lx— %sm x4+ C
Example 2.2.6 Example 5
/ sec' ztan' z dz

17



2 INTEGRATION TECHNICS 2.2 Trigonometric Integrals

Recall:
1. sin®z +cos?z = 1

sinfz cos’x 1 9 9
5 — =——>— = tan"z +1=sec’x
cos?T  Ccos*T  COS*T

2. Ifu =tanz, du = sec’ z dz

/ sect ztan* z dx

sec? ztan* zsec? z dx

tan 1:—1—1 tan* r sec? z dz

Il
\\\

tan T + tan x) sec? x dx

Let u = tanz, du = sec? x du:

',/Sec4mtan4atda7:/(u6—l—u4) du

1 1
:?u7+gu5+0

1 1
= ?tan7x+5tan5x—|—(]

Theorem 2.2.7 In general, to evaluate / tan™ x sec” x dx

e Ifeither m is odd or n is even:

- Separate out part of the integrand as “du”.

- Use trigonometric identities to rewrite remaining parts in terms of an appro-
priate u substitution.

e If mis even and n is odd, then will likely need integration by parts.

Example 2.2.8 Example 6

/ sec xtan® x dx

18



2 INTEGRATION TECHNICS 2.2 Trigonometric Integrals

Letu = secx, du = secxtanz dx

'./secxtan3xdx— tan® z sec x tan x dz

/
_/(seczx—l) sec tanz d
/(

Example 2.2.9 Example 7

/ tan? z sec x dx

/taanseca:d / sec? m—l secx dx

sec xdx—/secxdw

= /sec?’xdx—ln|seca:—i—tanx| +C

. . u = secxr
To find [sec®*z dz, we use integration by parts: Let , so we have
dv = sec’z
du =seczrtanx

v =tanx

" /tan2xsecxdx :/se(:?’:cd:c—ln]sec:c—l—tanx]+C’

=seczrtanz — /secxtanQ:de —In|secx 4+ tanz| + C

" 2/tan2xsecx dr =secxtanx — In[secx + tanz| 4+ C

/f9n2frqprw”dr: —secrtany — —1In !qp(’fr—g-‘mhq“!—g—p

19



2 INTEGRATION TECHNICS 2.3 Trigonometric Substitutions

Theorem 2.2.10 To evaluate integrals involving sin (mz) and cos (nx)

. /sin (mx) cos (nz) dx, use

sin A cos B = % (sin (A — B) +sin(A+ B))
. /sin (mx) sin (nz) dzx, use

sin Asin B = % (cos (A — B) —cos (A+ B))
. /COS (max) cos (nz) dx, use

1
cos Acos B = 5 (cos (A — B) +cos(A+ B))

Example 2.2.11 Example 8

/ sin 3z sin 2z dx

Here A=3z, B=2xr = A—b=2x, A+ b= 5zx:

1
c.sin3zsin 2z dr = / 3 (cosz — cosbx) dz

1 1
zisinx—§-gsin5m+0

1
= §sinx—1—osin5x+0

2.3 Trigonometric Substitutions

In some cases, a u substitution is obvious.

20



2 INTEGRATION TECHNICS 2.3 Trigonometric Substitutions

Example 2.3.1 Example 1

/l‘\/a2 — 22 dx, fora >0

1
Let u = a® — 22, sowe have du = —2z dx = —3 du = z dz.

However, in other cases, an appropriate « substitution is not so obvious.

Example 2.3.2 Example 2

/\/aQ—xzdx, fora >0

Let z = asinf, so we have dz = a cos 6 df.
.'./\/@2—x2dx:/\/aQ—cﬂsinzH-acost@

:a/y/a2 (1—sin20) -cosf do

= a/VaQCos20-COSHd9

= a2/c0520 do

Use half angle formula:

1
a2/00529d9:a2-5/(1—1—00829) de

a2

1
a2
= E(Q—f—sin@cos@)—kc

21



2 INTEGRATION TECHNICS 2.3 Trigonometric Substitutions

Now, we need to get z:
r=asing = sinf=— = 0=sin"! (f) To find cos §, we use a right angle triangle.

a a
7 2
“ x .c.cosf = —
; a
2 — 2
2
.'./\/aQ—xde: (0 4 sinf cosb) + C

a
2
2 2 _ 2
- N\ LNl a PG
2 a a?

Theorem 2.3.3 Table of Trigonometric Substitutions

Expression Substitution Identity
a? — x2 x = asin b, —ggegg 1 —sin?6 = cos? 6
Va2 + 22 r = atan, —g<9<g 1+ tan? 0 = sec? 0
s 37 5 5
2 — a? x:ase00,0§9<§orﬁgé<7 sec’d — 1 = tan“0

Example 2.3.4 Example 3

1

—  dzx
22?2 +4

Let z = 2tan 6, so we have dx = 2sec? 6 d6:

1

1
S| ——dx =
/xQ\/x2+4 /4tan29\/4tan29+4

1
= / - 2sec? 0 do
4tan? 04/4 (tan?6 + 1)

1
= -2sec? 6 do
/ 4tan? O/ 4 sec?

1
- - 2sec? 0 df
/ Ltan2f-2sech - °

1 sec 6
N é_l/tan29 a0

1
T

-2sec? f db

1 cos

= - | =522 df
4,/ 4420
cos? 6

n D IVaY




2 INTEGRATION TECHNICS 2.3 Trigonometric Substitutions

Letu = sin#, du = cos d6:

_— -1 [ —
Y +C 1 +C
B 1
~ 4sinf
We need to go back in terms of z:
r=2tanf = tanf = g
x2+4 ) x
T c.sinf =
x2+4
0
2
1 1
o dr=—-—7—+C
Va0 T T dsimg
x2+4
=— C
dx +
Example 2.3.5 Example 4
dx
———, wherea > 0
/ Va2 —a?’

Let x = asec6, then we have dz = asectand do:

/ dx B asecftanf df
) Va2 —a? a?sec2 ) — a?
asec@tanf do
a? (sec?f — 1)
B asecltanf do

Va2 tan? 6
_/asec@tan@de

atand

= /sec@d@

=In|tand +sect| + C

23



2 INTEGRATION TECHNICS 2.4 Partial Fractions

Now, we want the answer in terms of z:
T a . . .

r = asec = secl = —, cosf = —. Using a right angle triangle, we can find tan6:
a T

a . tanf =
2

T2 — g2

dx a
=In +C
VE—@ |V —aqe
2.4 Partial Fractions
Recall that we know how to find common denominators:
1 1 r+1—x+1 2

x—l_x—i-l:(x—l)(x—i-l) z?2—1

Now, let’s compare which side of the equation, the left-hand side or the right-hand side, is
easier to integrate. The answer is the left handed side is easier to integrate:

/ 1—1 dx:/ldaz—/ldx
r—1 z+1 r—1 r+1

=lnjz—1]—-lnlz+1/+C

=1In

x+1'+0

Example 2.4.1 The Goal of Partial Fractions

Given something like

5 , “undo” the common denominator. That is, if possible,
I —

find constants A and B such that

2 A B

(x—1)(x+2) x—1+$+1

2 2 A B
/mQ—ldm_/(:U—l)(:c—i—Z)dx_/:c—ldx+/:c+1dx

Then,
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2 INTEGRATION TECHNICS 2.4 Partial Fractions

Theorem 2.4.2 Basic Idea of Partial Fraction Decomposition

Given: a rational function, f(z) = %, where P(z) and @Q(x) are polynomials with
degree(P(z)) <degree(Q(z)).
Goal: write f(z) as
P(z)
= —“L=F+Fkh+  +F,
f(l') Q(I') 1 2 k
A Az + B

where each F; looks like

(ax + b)" o (ax? + bx + )

Theorem 2.4.3 Approach to get Partial Fraction Decomposition

1. If degree(P(z)) >degree(Q(z)), use long division to get

olynomial + new—P(:z:)
BEY new Q(z)

2. Factorize ()(x) as much as possible to get terms like

(ax + b)" (linear terms)

(cwc2 + bz + ¢)"(irreducible quadratic terms)
3. For each (ax + b)", the decomposition contains:

Ay " Ay T An
(ax +b)  (az +b)? (ax +b)»

For each irreducible quadratic (axz? + bz + ¢)", the decomposition contains:

Axy + By i Axo + By oot Ax, + B,
(ax?+br+c) (az?+bxr+c)? (ax? 4+ bx + c)”

4. Use algebra to find all A; and B;

Example 2.4.4 Example 1

dz

/x3—6x2+5x—3
2 —1
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2 INTEGRATION TECHNICS 2.4 Partial Fractions

Because degree(numerator) >degree(denominator), we need to run a long division

r—06
22 +0— )3 — 622 + 5x — 31

3+ 02?2 —

—62% 4+ 62— 3
—622—0x+ 6
6x —9

2 —62 +5r—3  (z—6)(a*—1)+ (6z—9)

2 —1 2 —1
6x —9
= (x —6) 1
Factorize the denominator:
6z —9 6x —9
—6) — = 6
(=6 -7 = =0 - e

Partial fraction decomposition:

6:—9 _ A B
(z—1)(z+2) -1 z+1
Find A and B:
A N B Alx+1)+Bx—1) 6z — 9
r—1 x+1  (z-D@+1)  (z—-1)(z+1)
Method 1 | Solving system of equation:

(A+ B)x =6z A+B=6 A=-3/2

= =
A—B=-9 A—B=-9 B=15/2

Plug-in roots (Does not always apply)

Alx+1)+ Bx—1)=6x—9

Letz =1:
Al+1)+B(1-1)=6(1)—9 = 24=6—-9=-3

A=-S
2
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2 INTEGRATION TECHNICS 2.4 Partial Fractions

Letz = —1:

A(-141)+B(-1-1)=6(-1)-9 = —2B=—-6-9=—15

Find the integral:

23 — 622 +5x—3 3 1 15 1
/ o] dx—/(x—6)~l—(—5-—x_1+7-x+1)dx

30 1 15[ 1
— [(z—6)de—2 de + = d
/(x 6) d 2/93—1 SRS R

1 3 15
:5:152—63:—§ln|aj—1|+51n]a:+1]—|—0

Example 2.4.5 Example 2

T+ 2
/(x2+2x+1)(x—1) de

Because degree(numerator) <degree(denominator): Nothing to do here.

Factorization:
x+ 2 T+ 2

@2 +20+)x—1) (z+1)2%@x—1)

Decomposition:
T+ 2 A B C

Gr2@—1) o411 (w12 z-1
Find A, B, C: Start by Substituting roots:

r+2=Alx+1)(z-2)+ Bz —1)+C(z + 1)
Letz = 1:
1+42=A0+1)(1-1)+B1-1)+C(1+1)? = 3=0-A+0-B+4-C
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2 INTEGRATION TECHNICS 2.4 Partial Fractions

Letz = —1:

—142=A(-14+1)(-1-1)+B(-1-1)+C(-1+1* = 1=0-A-2B+0-C

1
SB=—Z
2
To find A, we need another equation that does not cancel the A term. Let’s try some
numbers other than the roots:

Letz = 0:

0+2=A40+1)(0-1)+BO0-1)+C(0+1)?* = 2=-A-B+C

/ T+ 2 31 (] L3 1
) @242+ D(w—1) 4 x+1 2) (z+1)2 4 z-1
Integration:
T+ 2 3 L3
" dr = . dz
(x2+2x 4+ 1)(z — 1) 4 :E+1 x—l—l 4 r—1
Ik 1/ el f e
4 x+1 2 :c+1 4) r—1

3 3

To find / 2,useu substitution: Let v = = + 1, so we have du = dx
. 1 2
L mdx: = fraclu® du
:—u_l
B 1
o or+1
T+ 2 3 1 1 3
der = —-1 -—=-(——— -1 —1|+C
/(x2+2x+1)(x—1) r=—gnlr =3 ( x—|—1>+4n|x I+
3 3
= ——1 1 -1 -1 C
gl oy F ke 1
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2 INTEGRATION TECHNICS 2.4 Partial Fractions

Example 2.4.6 Example 3

dx

/4x3—3x2+6$—27
xt + 922

Because degree(numerator);degree(denominator), nothing to do here.
Factorization:
o' +92° = 2%(2* +9)

Remark 2.3 Terms in this Example x* is a linear term, whereas x* + 9 is an irreducible
quadratic term.

Decomposition:

4x3—3x2+6x—27_4x3—3x2+6x—27_A+ B +C’a:+D
xt 4 922 B 2(2? 4 9) S x o 22 2249

Find A, B, C, D:

cAr® — 32% + 62 — 27 = Ax(2® 4+ 9) + B(2® +9) + (Cx + D)2?
= A2 + 9Az + Ba® + 9B + Cx® + Da?
= (A+C)z* + (B + D)z* + 9Axr + 9B

Matching the coefficient:

( 4
A4+C=4 A=2/3
B+D=-3 B=-3

=
9A =6 C=4—A=10/3
(9B = 27 | D=-3-B=0

Cdat =32 +6x—-27 2 1 3+10 T
22(x? +9) 3 2z 22 3 2249

Integration:

'/4x3—3x2+6x—27 /2 1 3+10 T
o x4 + 922 3z 22 3 2249

2 1 1 10 x
S —de -3 Sde+~— d
3/x37 / ”%3/ﬂ+9$

2
:—ln]az\—3 1
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2 INTEGRATION TECHNICS 2.5 Improper Integrals

d
Use u-substitution to find / x dz: Letu = 22 + 9, we have & 2¢ = du =2xdz
2 +9 dz
T 1 1 1 1 9
473 — 322 + 6x — 27 2 1 10 1
: dr=ZInjz| -3(-1)=+—=-=In|z*+ 9|+ C
/ 022 x 3n|:zc| ( )x+3 2n|:r+|—|—
2 3 5
=ZInjz|+ =+ =In|z*+9|+C
3 r 3

2.5 Improper Integrals

Before starting the discussion on improper integrals, we need to first define proper integrals.

b
Definition 2.5.1 (Proper Integrals). An integral / f(z) dz is considered to be proper iff:

1. [a,b] is a finite interval, and
2. f(x)is continuous on [a, b].

If either of the two properties is not satisfied, the integral is called improper.

By examining the definition of proper integrals, we know there are two types of improper
integrals. Type I improper integrals fail to satisfy the first condition, and is called infinite
intervals; Type Il improper integrals do not satisfy the second condition and is called discon-
tinuous integrals.
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2 INTEGRATION TECHNICS 2.5 Improper Integrals

2.5.1 TypelImproper Integrals: Infinite Intervals

Theorem 2.5.2 General Procedure to Solve Type I improper Integrals

1. To solve / f(z) dz, we go through the following procedure:

t
If / f(z) dz exists V¢t > a, then
o} t
/a f(z)de = tlggo ) f(z) dz.

b
2. To solve / f(x) dz, we go through the following procedure:

b
If / f(z) dz exists V¢ < b, then
t

/_;f(x)dx: lim /tbf(x)dx.

t——o0

3. Provided the limits exist as finite numbers, we define the integral converges.

4. If both / f(x) dxr and / f(x) dz are convergent, then we define:

/Zf(m)dm:/;f(x)dx—i—/aoof(x)dm

Example 2.5.3 Example 1

o) tl
/ —dz = lim —dx
1

X t—o00 11‘

¢
= lim {ln |:1:|}

t—o00

= lim (In(¢) — In(1))

t—o00

= lim In(t) = oo
t—o0

31



2 INTEGRATION TECHNICS 2.5 Improper Integrals

. o . R A
.. Since the limit D.N.E. as a finite number, / — dx is divergent.
1T X

Example 2.5.4 Example 2

. o : <1 .
.. Since the limit exists as a finite number, / —; dx is convergent.
1 X

[e.e]
o . . 1
Extension 2.1 Generalization For what values of p is the integral / —dz convergent?
1 T

We have already donep = 1, in which we know the integral is divergent.
So let’s assumep # 1:

t—o00 t—o00

1 ¢
= lim g P
t—oo | —p + 1 1

= lim L -t(l_p)——l
t—oo \ 1 —p 1—p

1
— ] [ —— (1_ ) —_
= thm 1 (t p 1)

/ — dz = lim — dx = lim x_p dz
1

o Ifp>1,thenl —p < 0: we havet'=? — 0 ast — oo.



2 INTEGRATION TECHNICS 2.5 Improper Integrals

As the limit exists as a finite number, the integral is convergent.

e Ifp<1,thenl —p> 0: wehavet' ™ — ccast — cc.

/ i dx = lim L (t(l_p) - 1) = 00.
1

xP twoo 1l —p

Since the limit D.N.E. as a finite number, the integral is divergent.

Remark 2.4 Summary

—dx is

/00 1 .| convergentif p>1
1 P

divergentif p<1

Example 2.5.5 Example 3

& 1
d
/_oo1+x2 !

SR | 0 1 >
dr = d dz.
/_001+x2 v /_ool+x2 x+/0 1+a2 "

Note: We can do both of these separately, but in the case, the graph of y =

metric about the y-axis.
0 00
1 1
/ dr = / dx
oo L+ 22 o 1422

dz, recall the following properties:

T2 IS sym-

* 1
To evaluate /
o 1

+ 22

1.

1
/ dzr =tan 'z +C
1+ 22

2. The graph of t = tan 6 and the graph of ¢t = tan=! 6.
3.

tan"'(0) = 0;0 — oo, tan"' 0 = g

[e'e} 1 t 1 t
dz = lim dz =limt — oo tan~ 'z
o 1+ 2 t—oo Jo 14 x2 0

= lim (tam_1 t —tan~! 0)

t—o00

Ty

NN

33



2 INTEGRATION TECHNICS 2.5 Improper Integrals

Because the limit exists as a finite number, the integral is convergent.

< 1 < 1
/ dx:2/ dx
oo L 2? o 1+ a2

2.5.2 Type Il improper Integrals: Discontinuous Integrals

s N

Theorem 2.5.6 General Procedure to Solve Type II improper Integrals

1. If f is continuous on [a, b) and discontinuous at b:

/f(:v)d:v— lim tf(x)dx

t—=b= Jq,

Note: we only cares about the left side limit in the boxed formula.

2. If f is continuous on («, b] and discontinuous at a:

LLbfmﬁdx::hml[bf@ﬂdx

t—at

3. Provide the limit exists as finite numbers, the integral converges.

4. If f is continuous on [a, b] but has a discontinuity at ¢, where a < ¢ < b, and if both

G b
/ f(z) dz and / f(z) dx converges, then

Kﬂ@mz[ﬁ@m+[ﬂ@m

Example 2.5.7 Example 4
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2 INTEGRATION TECHNICS 2.5 Improper Integrals

It can be easily determined that this is a type Il improper derivative because

r—2>0
= x> 2.
r—2#0
Hence, f(z) ! is not continuous at 2
y J\T) = xr = 4.
vV —2

[
r = 11m
) JJ— t—2+ ,I‘—

:tif;a{?ﬁ]
= Jim (2v3-2v7-2)
=2V/3-0=2V3

Because the limit exists as a finite number, the integral is convergent.

Example 2.5.8 Example 5

. .. .
f(z) = . Is discontinuous at x = 1.

31 | 31
/ d:z::/ d:z:—i—/ dx
o r—1 o v—1  x—1

dx:

1
Evaluate /
0

r—1

1 t
1 1
/ dz = lim dz
o v—1 t=1- Jo v —1
t
= lim {ln\x—lq
t—1— 0

= lim (In|t — 1| +1In1)
t—1-

=In|0]+0=—-oc0

1
1

Because the limit D.N.E. as a finite number, the integral / 1 dz diverges.
o T —
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2 INTEGRATION TECHNICS 2.5 Improper Integrals

3
1 . .
Hence, / 1 dz is also divergent.
o T—

Theorem 2.5.9 Comparison Test for Improper Integrals

Purpose: Test to see if integral converges, without actually computing the result.
Procedure:

Suppose f and g are continuous functions with f(z) > g(x) Vz > a. Then

1. If / f(z) dz is convergent, then / g(x) dz is also convergent.

b b
2. If / g(x) dz is divergent, then / f(z) dz is also divergent.

Example 2.5.10 Example 6

o 1 —x
/ +e e
1 x

e >0

l4e P >1
1+4+e7® 1
. > =

T x

As / — dx is divergent, / e dz is also divergent.
1 X 1 z
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3 DIFFERENTIAL EQUATIONS

3 Differential Equations

3.1 Introduction to Ordinary Differential Equations

Physical quantities often change with time (e.g. population changes with time), or position.
So we model how quantities change with derivatives (Rates of change).

Definition 3.1.1 (Ordinary Differential Equations (ODE)). An equation relating an unknown
function of one variable to one or more of its derivatives.

Definition 3.1.2 (Solutions of an ODE). A function that satisfies the ODE.

Definition 3.1.3 (Order of an ODE). The highest order derivative in the ODE.

Example 3.1.4 Example
Consider the ODE: 2%y" — 3xy’ + 3y = 4a”.

/ d_y ! @

- dx’y - dx?’

1. Order of the ODE: order = 2 because y” is the highest order derivative.

Here, the variable is not explicitly stated, so we assume y = y(x), y

1
2. Verify that y = 63:7 + x + 23 is an solution of the ODE.

) 1
Substitute y = 6x7 +z+

7
Ly = 6x6+ 1+ 322

y' =T2°+6
7 1 .
. LHS = 2%y" — 329/ + 3y = 2*(72° + 6) — 395(6:56 + 1+ 32%) + 3(6x7 +x+2°)
7 1
:7x7+6x2—§x6—3x—9x3+§x7+3m

_ (7—z+l)x7+(6—9+3)x3+(3—3)x

In general, it can be difficult to find a solution with a given ODE. There’s not one general
method for all ODEs.

Example 3.1.5 The Learning Curve
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3 DIFFERENTIAL EQUATIONS 3.1 Introduction to Ordinary Differential Equations

One model: The more you know, the slower you learn more about the task.

If y(t) =percentage of a task learned over time, then d_i decreases as y increases.

Suppose we are told: rate a person learns = percentage of task not yet learned. Then we
can derive this differential equation:

dy
—Z =100 — y(¢).
e y(t)

Observations:

1.

d
d—y>0 = 100 — y(t) > 0 = y(t) < 100
a

That is, as long as a person has not learned everything, the rate at which they are
learning is > 0.

2.
d
d—y <0 = 100—y(t) <0 = y(t) > 100
T
This does not make sense in this application. How can a person know more than
everything?
3.
dy
— =0 = 100—y(t) =0 = y(t) = 100
dx
Note: y(t) = 100 is a solution of the ODE.
Proof 1.Proof
dy
t)=100 = — =0
y(t) ”
dy
S LHS=—==0
dt
RHS = 100 — y(t) = 100 — 100 = 0

.. LHS = RHS

|
Definition 3.1.6 (Equilibrium Solutions). Constant solutions, like y(¢) = 100, are called
equilibrium solutions to the ODEs.
Show that y(¢) = 100 + Ce~*, where C is a constant, are solutions of the ODE.

d
y(t) = 100+ Ce ™t = d—i =0 Ce
d
-.LHS = d—gt’ = —Ce™", RHS = 100 — y = 100 — (100 4+ Ce™") = —Ce™"
- LHS = RHS, i.e,y = 100 4+ Ce~" are solutions of the ODE
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3 DIFFERENTIAL EQUATIONS 3.2 Direction Fields and Euler’s Method to Solve ODEs

Remark 3.1 Remark
» (' is a constant that depends on an initial condition.

* An initial value problem (IVP) is an ODE with an initial condition.

1. Solve the IVP: % =100 —y, y(0) =0
We know the general solution of the ODE is y(¢) = 100 + Ce ™"

y(0)=0 = 100+ Ce® =0 = C = —100

. y(t) = 100 — 100e".

d
2. Solve the IVP: d—i’ — 100 — y, y(0) = 10
We know the general solution of the ODE is y(¢) = 100 + Ce™*:

y(0) =10 = 100+ Ce’ =10 = C = —90

s y(t) =100 — 90e".

3.2 Direction Fields and Euler’s Method to Solve ODEs

Recall from Calculus I that the derivative of y(x), j—i is the slope of y(z).

Theorem 3.2.1 Derivative as Slope

d
If d—i = F(z,y), then F(z,y) is the slope of y(z) at the point (z,y). As a result, F(z,y)
gives the direction of y(x) at the point (z, y).

This theorem leads to our understanding of the direction fields. Basically, we draw a short
line representing the direction of the function pointing to at a certain point on a grid.
Definition 3.2.2 (Direction Fields (Slope Fields)). Draw small lines indicating slope for a
bunch of points.

The Euler’s Method is a crude way to approximate solutions of ODEs. The basic idea is the
following:

» Think of direction field as a set of sign posts that point in certain directions.

* Pick a starting point (initial condition)
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3 DIFFERENTIAL EQUATIONS 3.2 Direction Fields and Euler’s Method to Solve ODEs

» Take a small step in direction indicated by the slope.
 Stop at a nearby point, and calculate a new slope.

» Take a small step in direction indicated by the slope.

A detailed version of the Euler’s Method: Assume :—z = F(x,y) -
e Start at (xo, yo) (This is the initial condition)
* Slopeis F(z,y)
e Chooseanewxz; =xo+h
e We need to find y. To do this, we use slopes:

Y1 — Yo
1 — Zo

= F(f’?myo)

Y = Yo + (x1 — z0) F (0, yo)
=yo+ (xo + h — o) F(x0,y0)
=y + h - F(xo,y0)

* New slope: F(z1,y1)
e Choosenewzy, = z; + h
 Find y,, using slopes:

Y2 — U1
To — 1

Yo =y1 + h-F(x1,y)

= F(xlayl)
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3 DIFFERENTIAL EQUATIONS

3.3 Separate Variables to Solve ODEs

Theorem 3.2.3 The Euler’s Method

e Given an IVP: j_y = F(z,y). y(zo) = 4o
T

e Generate points:

$1:x0+h
I'Qzl'l—f—h
$3:$2+h

where / is a small number.

* The curve through the points (z;, y;) is an approximate solution of y(x) of the IVP.

y1 = Yo + hF(zo,v0)
Yo = y1 + hF(z1,y1)
ys = Yo + hF(z2,y2)

Example 3.2.4 Example
d
Consider the IVP: - = — %, y(0) =1
dx Y

Use Euler’s method to approximate y(0.3) with 2 = 0.1.

w NN R O3

0.3 ] 0.9698

T Yn dy/dx Yn + 1
0 1 0 1+01x0=1
0.1 1 —0.1 1—-0.1x0.1=0.99

0.2 099 | —0.202 | 0.99 — 0.1 x 0.202 = 0.9698

3.3 Separate Variables to Solve ODEs

In this section, we will consider techniques to solve ODEs with the following form:

dy
_— = F g
. (z,y)

We can separate F'(z,y) as a product of:
* g(x): afunction only of z.

e f(z): afunction only of 3.

41
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3 DIFFERENTIAL EQUATIONS 3.3 Separate Variables to Solve ODEs

To solve, move z-stuff to one side and y-stuff to the other side. Then, integrate.

1
= /wdy _ /g(m) d, f(y) # 0.

Extension 3.1 Notes on the Process
* To do this, we need to assume f(y) # 0.

* Ify = a is a constant such that f(a) = 0, theny = a is a valid solution to the ODE.
Proof 1.Proof

y=a dx

- LHS = % =0; RHS = f(a)g(z) =0-g(xz) =0

. LHS = RHS, i.e., a solution to the ODE.

Theorem 3.3.1 Separate Variables to Solve ODEs
To solve separable ODEs, j_y = g(z) f(y):
i

. Solve/ﬁdy: /g(x) dz.

 Find constants y = a where f(a) = 0 (these are also solutions).

Example 3.3.2 Example 1

dy x
Solve —= = —=, y(0) = 1.
Oeix yy()

/ydy:/—xdx
1 1

2 2
2 — C
2y 2x +

' = -2+ C
Substitute z = 0, y = 1:

1=-0+C = C=1

=il = 24P =1
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3 DIFFERENTIAL EQUATIONS

3.3 Separate Variables to Solve ODEs

Example 3.3.3 Example 2

d
Solve <Y — x2q?
T

1
/Edy:/ﬁdx, > #£0 = y#£0

/y_2dy:/x2dw

1 .
-1 3
_ —— C
Y 3a:+
1 1,
- C
(0 ?f%Jr
B 1
v= %x?’—i-C

*. all solutions are: y = — andy =0

1
%x3+C

Example 3.3.4 Example 3

Sometimes, we need to be creative. Solve the following ODE:

d
—y:xy—Qy—i—x—Q.
dx

dy
dz
=(z—-2)(y+1)

yle =2)+ (z - 2)

Now, we can do the separation of variable easily:

1
/ﬁdy:/(x—Q)dx,y—i—lyéO, y#—1
1
ln|y+1|:§x2—2x+0
T
y+1=de ez %
y:iA.e%xzfzr’

where A can be any positive or negative constant; A cannot be 0.
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3 DIFFERENTIAL EQUATIONS 3.3 Separate Variables to Solve ODEs

~. All solutions are given by: y = pm A - e2*” "2 and y = —1.

Note: In this case, if we allow A to also be 0, we can write all solutions as

y==+ Ae2™ 2 _ 1,

Example 3.3.5 Example 4

Newton’s Law of Cooling states that the rate of change of temperature of an object is
proportional to the difference between the temperature of the object and its surroundings.
Set up and solve an ODE for this application.

1. Set up the ODE:
Let T'(t) be the temperature of the object, ¢ is the time passed by, and T

2. Solve the ODE: T
— = _K(T-T,
P ( )

Assume T} is a constant (maybe a big assumption)

/T_lTS dT:/—Kdt, T —T, #0(T #T,)

|7 —Ty =—-Kt+C
T —T,=e K0 = 0. Kt = =Kt
where A can be any positive or negative constant.7 = Ae ™' + T,

. All solutions are: T = Ae Xt + T, and T = T,

If we allow A to be 0, we can write all solutions as

T(t) = Ae X' + T,

Example 3.3.6 Example 5
Solve the IVP:
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3 DIFFERENTIAL EQUATIONS 3.4 ODE Models for Population Growth

/4u3du:/t3—|—tdt

1 1
4.y =P+ 2+ C
U 1 —1—2 +
1 1
4 5 2
= —t —t C
U 1 +2 +
Substitute t = 0 !
=0, u=——=:
V2
1 4
— ) =0 = (C=-
(-5)
1 1 1
4 4 2
— A 2y -
eyt tet g
1 1 1
=/ —tt4 24 =
b \/4 Tttty

3.4 ODE Models for Population Growth

In this section, we consider some ODEs that are used to model population growth under cer-
tain assumptions.

1. Law of Natural Growth:
Here we use the simple assumption that growth rate is proportional to population size.
Let P(t) =Population size at any time ¢.

Then 4P
— =k-P
dt
Note: I dP dP/dt Rateof growth
. = / _ nateo 5“’ — = “Relative growth rate”
P dt P population size
1dpP
=5 = Relative growth rate.

The OED: % = kP is separable.

dpP

— = [ kdt

%=1

In|P|=kt+C = |P|=e"T¢=¢e". M
P = +eY . et = Oyt
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3 DIFFERENTIAL EQUATIONS 3.4 ODE Models for Population Growth

where () is any positive or negative constant.
. P=Cie" and P=0.

If we also allow C; to be 0, all solutions are P(t) = Ce*.
IfP(O):PO,thenCl-ek'():Po = Clzpo

Theorem 3.4.1 Natural Growth ODE Model and Solution

dp
IVP:  — =kP, P(0) = P,

Solution: ~ P(t) = Pye™

Example 3.4.2 Example 1
Suppose:

» Bacteria grows with constant relative growth rate,
* count of bacteria was 400 after 2 hours, and

e count of bacteria was 25, 600 after 6 hours.

How long did it take for the population to double Fy?

From the first condition, we know the ODE above is applicable in this example. So

dpP
we assume — = kP.
From the second and the third condition, we get

P(2) = 400 Pye?t = 400 I
—
P(6) = 25600 Ppe = 25600 11

I Pyeb* ~ 25600

I~ P2 400

We know P(2) = 400:

. Pye®* = 400
Ppe*2®) = 400
Pye™® = 400
8P, = 400

Py = 50
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3 DIFFERENTIAL EQUATIONS 3.4 ODE Models for Population Growth

P(t) — 5061/21n(8)t
— 506t/2 In(8)
= 50¢™("%)
=50 82

So we need to find ¢ such that:

50 - 84/2 =100
8% =2
ln(8t/2) = In(2)

t
3 In(8) = In(2)

f 9 In(2) 2In(2) 2In(2) 2
~ 7 (8 ()  3m(2) 3

2. The Logistic Model:
A more realistic model is that population growth should level off, and approach a “car-
rying capacity” because of limited resources.
Assumptions:

dpP
e If Pis small, then - & kP.
* As P grows, the relative growth rate decreases as P increases.

* Relative growth rate should be negative if P gets too large.

That is AP
— >0 for P< M
dt

P
O1—<0 for P> M
dt

where M is the “carrying capacity” of P.

An ODE model that incorporates these assumptions is:

%:kP(l—z),k>0,M>O
Notice: P AP

P=0 = M%O ENkP

P>M = £>1 = %<0



3 DIFFERENTIAL EQUATIONS 3.4 ODE Models for Population Growth

P dpP
P<M — <1 —
< = M< = dt>0

The equilibrium (constant) solutions are:
dpP

P
E:O:> kP(l—M):O = P=0orP =M.

Note: This model does not take into account if the population is too small, then the
population becomes extinct.
Finding all solutions of the OED:

dP P
T (1-5)

dt
P
54 s~ =kdt, P#£0, P#M
P(1-4)
Using partial fractions:
LM _ A B
rl-L£y PM-P) P M-P

=M=AM-P)+B-P
P=0= M=A-M = A=1
P=M= M=B-M = B=1
1 1
/{F M—P} dP—/kdt

In|P|—In|M — P| =kt + Cy

+

1 =kt+C
n M—P’ + (1
‘Mpplzekt—i-CH:eClekt
P
M_P::i:ec1_ekt
= CeM

where C can be any positive or negative constant. Now, solve explicitly for P:

P = Ce'(M — P) = CMe* — Ce' P
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3 DIFFERENTIAL EQUATIONS 3.4 ODE Models for Population Growth

(1 + C’ekt) P =CMeM

_ CMeM
(14 Ceht)
_ OM
ekt C
M M q
o lehpl Aet 41 - C
Note: If P(0) = R, then
M M — P,
L P = A+l A= 1=
A+1 0 0 0 PO
Therefore: \
P(t) =
M — P,
Okt 1 1

0

Theorem 3.4.3 Logistic Growth ODE Model and Solution
Assume M is the “carrying capacity” of the population.

dpP P
: M .
General Solution: P(t) = —————, where A is a constant.
14+ Ae—*
_ M-PR

IfP(0) = Fy, then: A

Fy

When does the population grow fastest?

That is, when is (il_l[t) maximized? i.e., we want to find when i (£> =0.

de \ dt
d /dP\ d P
— (=) == —_pPl1=- =
i (o) =a (-r(-3)
P P
kP (1—-—)+kP(0-—
(1=37) = (0-37)
P P
kP (1-———
(=5 3)

) 2P , P
kP <1 — M) {We know P’ = kP (1 M)}

(-5 E)
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3 DIFFERENTIAL EQUATIONS 3.5 Linear Equations

The boxed part will be 0 if:

P =
minimum growth rate {
maximum growth rate P

3.5 Linear Equations

In section 3.3, we learned an approach to solve separable ODES. But what do we do if the ODE
is not separable? The answer is that we need another approach. In this section, we consider
an approach to solve linear ODEs, which have the general equation:

dy

P P(r)y = Q(x),

where P(z) and Q(z) are functions of z.
We can derive an approach to solve this ODE:
Let
I(SL‘) _ efP(:p) dz

This is called the integrating factor.

Note: q q
@) = [/ 7]
_ JP@ae, 4
—e P d =
= e/ P@dv . p(y)
= I(x)P(x)
d
- L (@)] = I(2) P(z)
Scale the ODE:
dy
s P(a) = Q)
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3 DIFFERENTIAL EQUATIONS 3.5 Linear Equations

By product rule:
L)) = Sy + 1)
= I(x)P(x)y + ](:r)j—z

I(2)y = / [(2)0() de + C
V=1 [/I(m)@(m) de+C

Note: Plus the constant before dividing I (x) to both sides of the equation.

Theorem 3.5.1 Integrating Factor Method to Solve Linear ODEs
For linear ODEs:
dy

&t Pla)y = QM)

1. Computing the integrating factor: I(z) = e/ ’(*) 4 and simplify

2. Set up the equation:

~
integrate and simplify

3. Solve for y:
1

o) = 7= ( [ 1@ s+ )

Example 3.5.2 Example 1
Solve the ODE:
zy — 4y = 2%°
The ODE is not in the standard form.
d 4
% oY= ’e” = - P(z) = ——, Q(z) = 2°€”
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3 DIFFERENTIAL EQUATIONS 3.5 Linear Equations

o () = el P@)de — e 4% qp = e tine _ 4

[I(x)y] = I(2)Q(x) = 2~ *2°” = xe”

Uu=1mx du = dx
Let , SO we have
dv =e*dx v ="
/xex dx = ze® — /em dz

=zxe’ —e"+C
S A(x)y =z — e+ C
Ty =xe® — e+ C

y = z°e® — zte® + Ox?

Example 3.5.3 Example 2

Solve the ODE: 1
d_i +2zy =z, y(0)=-3.

I(z)y = / I[(2)Q(z) dz = / ¢z da

Letu =2> = du=2zxdx

1 1 1 1
,',/e”’jxdxzi/e“Qxdx:§/e“du:§e“—l—C:§e$2—|—C’

2 1 2
Ty=—e" +C
e’y 26 +
1 2
=—+Ce™”
Y 2+ e
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3 DIFFERENTIAL EQUATIONS 3.5 Linear Equations

Substitute y(0) = 3:

1
—3:§+Ceo
17
C=-3--=_"
2~ 72
1T
y=5735°

Example 3.5.4 Example 3
Solve the ODE:

:Cy’+3y:a:ln(3+(3052:c), x>0

P(zx) = ;

’ Q(fL’) _ 1H(3+COSQ$) = ](ZL‘) _ efP(a:) de _ 63]% de _ e3lnx _ 1’3

Sy = /I(x)@(x) dz

iy = /x3 ln(3 + cos? a:) dx

This is not easy to integrate.

Sometimes, we will stop here and write the solution as:

y = L {/x?’ln(3+cos2x) dx

3

Example 3.5.5 Example 4
Solve the ODE:

xy +y = —ay?

Try to put it into the standard form:

dy 1 9

dm—i_Ey:_y

However, this is still not in the standard form.
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3 DIFFERENTIAL EQUATIONS 3.5

Linear Equations

In this case, we will try substitution:

du_ oy oy du du
de dz dx de dz
du 1
)T R
dz + x “
du 1
 _ Zu=1
dx a:u
1
This is in the standard form: P(z) = ——, Q(z) =1
x

v 'u=In|z|+C
u=zxln|z|+ Cx
. 1

SR ::cln]x\—l—Cx

Theorem 3.5.6 General Approach of Substitution in Linear ODEs

If we have an ODE: g
= + Pla)y = Qa)y",

where n # 0, n # 1 Then, use substitution:

1-n

u=1vy

Example 3.5.7 Example 4 - Explained

Ifn=2u=y"2=y!
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3 DIFFERENTIAL EQUATIONS 3.5

Linear Equations

Extension 3.2 Extension from the General Approach Ifn = 1:

j—§+P<> = Qly
=+ Pla)y - Q) =
Yt (Pl) - Q) y =0

This equation can be solved by separable variable or linear ODE.

dy

Separable

(Qz) = P(z))y

[ 1= foo-

Linear ODE| [(z) = ¢/ P(@)-Q(@) dz
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4 SERIES

4 Series

4.1 Sequences

In section 4, we will study the very important topics of infinite sequences, and infinite series
(i.e., adding an infinite sequence of numbers).

In section 4.1, we will introduce the concept of infinite sequences.
Definition 4.1.1 (Sequence). A sequence is a function where the domain is the positive integers.

Example 4.1.2 Example 1
Consider the sequence:

10 10
a,=— = ORf(n)=—, neZ".
n n

a; = 10

A9 — 5
a9 = 1
ai100 = 0.1

Note: the trend of «,, is growing to 0.

Example 4.1.3 Example 2
Consider the sequence:

a; =1
ag = —2
as =3
ay = —4
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4 SERIES 4.1 Sequences

This is an alternating sign sequence. This sequence is alternating between larger and
larger positive and negative numbers.

Remark 4.1 Notations Sequences are often written with brackets:

ULt {aad.
&

n

An important question to answer in this section is that “Does the sequence {a, } has a definite

trend, or is it indecisive, as n increases?” That is, does lim a,, exist? If the limit exists, is it
n—oo

finite?

lim a, = L If Lisfinite = converges; otherwise, diverges.

n—o0

Definition 4.1.4 (Convergence of a Sequence).

e If lim a, = L (i.e., exists), we say the sequence {a, } converges to L.

n—oo

e If lim a, = +oo or does not exist (D.N.E.), we say the sequence {a, } diverges to L.

n—oo

Definition 4.1.5 (Formal Definition of Convergence). lim a, = L if for every (small) ¢ > 0,
n—oo
there is an integer n such that:

la, — L| < ¢ |whenevern > N

The boxed inequality stands for —¢ < a, — L <c(i.e.,, L —e < a, < L +¢).
Note: N depends on e. If ¢ is tiny, then N may need to be large.

A
a2
o
L+5 ............................ .........................
L o e
Oy,
L—E ....................................................
.ag
d 2 3 7 NN+IN+2
Butforn > N, a,, will be in the envelope L—¢ and L+-=. a1
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4 SERIES 4.1 Sequences

Theorem 4.1.6 Function Method to Find Sequence Limit

Suppose f(z) is a function defined for all (not just integers) x > 1, and f(n) = a,,n =
1’ 27 5000

e If lim f(z) =L, then lim a, = L;

n—oo n—00

o If lim f(z) = +o0, then lim a, = +oo.

n—oo n—oo

That is, we can then use techniques from Calculus I to find limits.

Example 4.1.7 Example 3

3n3 .
Does {T converge or diverge?
e n

3n3 323
Ay = 67’ Let f(il?) = o2z

Look at the limit, and we find it in indeterminant form, so we will use L'Hopital’s rule:

I 33 oy 922 oy 18x I 18 _ 0
xl—glo e N xl{go e2x N xl—glo 4e2 N xl—glo Se2 -
3 3
lim 2 =0,
n—oo e<n
Example 4.1.8 Example 4

Does {(—1)"} converge or diverge?

Ifnisodd: a, = —1
Ifniseven: a, =1
The sequence is oscillating between —1 and 1 and never converges to a single number.

<. lim (—1)" D.N.E.

n—o0

Theorem 4.1.9 Absolute Value Theorem
If lim |a,| =0, then lim a, = 0.
n—0o0 n—oo

Note: The limit must be 0. If the limit is not 0, we cannot use this theorem.
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4 SERIES 4.1 Sequences

Example 4.1.10 Example 5
1 n
Does { (—5) } converge or diverge?

It looks like the sequence converges to 0, but to state this, we need the absolute value
theorem.

Example 4.1.11 Example 6
Does {(—1)”2} converge or diverge?
671

n n

Let f(z) = ' This limit is in the indeterminant form, so we apply L'Hopital’s rule:
el’

. .1
lim — =1lim — =0
r—o00 et z—o00 et

and by absolute value theorem, lim (—1)”ﬁ = 0.

n—o00 en

Example 4.1.12 Example 7

2
Does {(—1)” T2

} converge or diverge?

= |a,| =

1+n?

Method 1 |Function and L'Hopital’s Rule:
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4 SERIES 4.1 Sequences

2

1422

Let f(z) =

This limit is in the indeterminant form, so we apply L'Hopital’s rule:

x? 2

z—00 | —+ ;C2 z—00 20

2 1/..2
= 1
lim _r lim ﬂ = lim

: 1 . 2
Because lim — =0, lim =1
. T—00 [L’z z—00 | + [L’z
In either case,
72
lim =1+#0,

z—oo 1 + 12
so we cannot use the absolute value theorem.
Notice:

e Ifnislarge and odd, the sequence converges to —1.

e If nis large and even, the sequence converges to 1.

2
(=) n does not converge to a single limit.
1+ n? & &
n

n2

oo lim (=)

n—00 + n?

D.N.E.

Remark 4.2 An Important Sequence Suppose we have a sequence {r"}, wherer is a real num-
ber.

lim ™ =0if|r| <1 and lim |r"| = oo if|r| > 1
n—00 n—00

Example 4.1.13 Example 8

n

2
Does {(—1)"37} converge or diverge?

2 2 2n
Zl=Z<1,th —1)"=
‘ 3‘ 3 < e sequence {( ) 3

Because r| = ‘——‘ = } converges to 0.
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4 SERIES

Theorem 4.1.14 The Squeeze Theorem
Ifa, <b, <c¢,Vnand lim a, = L, lim ¢, = L.

n—oo n—oo

Then, lim b, = L.

n—oo

Example 4.1.15 Example 10

Find
. \nCOST
s
cosn cosn
n = (15 oy = 17

. cosT .. ) T

If we write f(x) = | 5 |, we cannot find the limit use LHopital’s rule. So, we need an
T

alternative method, which is to use the squeeze theorem.

Note: —1 < cosn <1
-1 < , COS T 1
P e e
1
By absolute value theorem, lim —— =0, lim — = 0.
n—o0 n n—oo M,
.. By squeeze theorem,
. nCOSTL
Ve =0

Example 4.1.16 Example 11
2\" .
Does { (1 + E) } converge or diverge?

2\" 2\"
Let f(z) = (1 + —) , and consider lim (1 + —) .
i T—00 X

2 n
1+ —) is in the indeterminant form of 1°°. To use L'Hopital’s rule:
X

lim
T—r 00
2\” 2 In(1+ 2
y:<1+—) :}]ny:;pln(l_k_):#
T T =

In(1+2
Solim Iny = lim u (which is in indeterminant form of g

T—00 T—00 1
x
1 2
1+2 (_z2) . 2
= lim ——— = lim 5 =2
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4 SERIES 4.1 Sequences

2\" )
lim (1 + —) = lim ¥ = elimemoollny) — o2
T

T—00 T—00

1 n
oo lim (1 + —) = e,
n— 00 n

Definition 4.1.17 (Monotone Sequences).

* Monotone increasing sequence: a,, < a,1 foralln > N, where N is a finite number.

* Monotone decreasing sequence: a,, > a,; foralln > N, where N is a finite number.

Extension 4.1 Extension from the Definition of Monotone Sequence Every bounded monotone
sequence converges.

e D

Theorem 4.1.18 Methods to show a sequence is increasing or decreasing
1. Show either
apt1 — ap > 0 = ay4q > a, = increasing
OR

apy1 —ap <0 = apq < a, = decreasing

2. Show either
An+1

>1 = a4 > a, = increasing
anp,

OR

an+1

<1 = a1 <a, = increasing
an

3. Define f(z) with f(n) = a,.
Then
f'(z) >0 = increasing

OR
f'(r) <0 = decreasing

Example 4.1.19 Example 12

n

Does {—'} converge or diverge?
n.
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4 SERIES 4.2 Infinite Series

1. Find an expression for a,,1:

3l 33

n+1)  nl(n+1)

Ap41

2. Find an expression for

n

it 1 3.3 a3
= aYL - _— = —_— e — = —_—
an e, nlln+1) 30 n+1l

3. Is the sequence increasing for decreasing?

An+1 3

a, n+1

<1Vn >3

S any < a, Vn >3 = The sequence is decreasing for n > 3.

n

4. Show {3—'} is bounded:

a; = g =3
ay = 37: 4.5
az = 5 =4.5
We know from step three, that as > a4 > a5 > ag > -- -, so the sequence is bounded

above by 4.5.

n

Note also that — is always positive, so the sequence is bounded below by 0.
n!

n

3
Because {—
n!

0). — n! as the factorial grows faster than exponential.

is a bounded monotone decreasing sequence, it converges (converges to

4.2 Infinite Series

In this section, we start to look at adding up an infinite number of terms, which is called an
infinite series:

Zak:a1+a2+a3+---
k=1
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4 SERIES 4.2

Infinite Series

Example 4.2.1 Example 1

L\
Note: we could also write this as Z (5)
k=1

Definition 4.2.2 (Partial Sums). Consider

Zak:a]_+a2+a3+a4+---+an+an+1+---
k=1

Then

3

S, = ar=a1 +axt+ag+ag+---+ay,
k=1

is called the nth partial sum.

Example 4.2.3 Example 2
Consider .
> (Bi+2),
=1
The 4th partial sum is

Si= (3i+2)=(3+2)+(6+2)+(9+2)+(12+2) = 38.

i=1

Definition 4.2.4 (Convergence/Divergence of Infinite Series). If Z a; = S (finite), then we

i=1
say the series converges; otherwise, we say the series diverges.
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4 SERIES 4.2 Infinite Series

Theorem 4.2.5 Partial Sum to Test Convergence

Suppose S,, = Z a; is the nth partial sum.

=1

If lim S, = S, then Z a; = S.

n—00 -
=1

Example 4.2.6 Example 3
Show that

converges, and find its sum.

Look at S,,:
" /1 1 1 1 1 1 1 1 1 1
= —_—— — :1—— —_—— = —_—— — _—— = —
S ;(k /<:+1) ( 2>+(2 3)+( 4)+ (n n+1> n+1

This is called a telescoping series.

o lim S, = lim (1— L )zl

Thus,
S
—~\k k+1
Example 4.2.7 Example 4
Show that

> (5573)
p (k:2+3k+2

converges, and find its sum.

ki =) :3,2 (&)

1

Partial fractions: Assume
A B 1

il Er2 RrD)(E+2)
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4 SERIES 4.2 Infinite Series

A+B=0 A=1
(A+B)k+(2A+B)=1 = =
2A+B=1 B=-1
1 1 1

T D(kr2) k+l kr2

i 3 _3°° I
"kiﬁ+3k+2_ k+1 k+2

Find the partial sum:

- 3 1 1
S"—;k;2+3k+2_3 <k+1_k+2)

k=1

1 1 1 1 1 1 1 1
=3 |(= - = P —_ _

{(2 PGP O )

1 1
=3 = —

(2 n+2>

1 1 3

lim S, = lim 3 ( = — =2

Thus,

i;_§
Lk +3k+2 2

Example 4.2.8 Example 5: Geometric Series

E ar* ' =a+ar+ar* +ar*+ -
k=1

=a(l+r+7r*+7r°+---), a # 0 and r are constnats
Find the nth partial sum:

S, = —a+ar+art+art+--+ar" 2+ ar”
k=1

-2
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We will need to simplify this to find lim S,,:

n—o0

rS,=ar+ar’+ar® +ar* +-- +ar"t +ar”

_art4ar —art+ - ar™ — ar™

S, —1S,=a—ar+ar—ar®+ar
=a—ar"
(1=r)S,=a—ar"

a— ar™

S, = 1
)
—ar™ £ if|r] <1
Find lim S, = lim - _ ) 1= I
n—o00 n—soo 1 —1 50 lf|7“‘ >1

Remark 4.3 Geometric Series

[e.9]

ar" ' =a+ar+ar®+ar’+---

n=1
=a(l+r+r+r°+--), a#0
a .
* converges to 7 if|r| <1
- T
e divergesif|r| > 1
Example 4.2.9 Example 6
> k-1
PR

3kl £=\3 3 \3 3

o . . 2
Here, this is a geometric sequence with a # 1, r = 3

2
= 3 < 1 = converges

=21 a1 _
11— 12

k=1
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Infinite Series

Example 4.2.10 Example 7

o . . 2
This is a geometric sequence with a = 3=

2
o |lrl = = <1 = converges
3 g

k=1

Remark 4.4 Important Series

* Harmonic Series (Diverges):

i1—1+1+1+1+
~n 2 3 4

* Alternating harmonic Series (Converges to1n(2) ):

o0

> 1)"—11—1 L,
o n o 2 3 4
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4 SERIES 4.2 Infinite Series

Theorem 4.2.11 Properties of Infinite Series

1. Suppose Z a, and Z b, both converges. Then:

n=1 n=1

oo oo
E ca, = C E (07
n=1 n=1

(e}

Z(anibn) = ian —i—iibn
n=1 n=1

n=1

2. For any positive integer k,

Zan:a1+a2+a3+'--

n=1

and

Z Up = Qgy1 + Opg2 + Qpy3 + -0
n=k+1
either both converge or both diverge.
In other words, throw away the first k terms of an infinite series will not affect its
convergency or divergency.

Example 4.2.12 Example 8
= 1
Show that ngl = diverges.

o0

1. . . .
Z — is the harmonic series that diverges.

n
n=6

1
- also diverges.
nz: n—+95 &
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4 SERIES 4.2 Infinite Series

Thgoorem 4.2.13 nth Term Test
If Z a, converges, then lim a, =0.

n—00
n=1

This means:

e If lim a, # 0, then Z a, must diverge.
n—o0

n=1

e If lim a, =0, then § a, might converge or diverge.
n—oo
n=1

Example 4.2.14

Diverge: harmonic
Converge: alternating harmonic

Example 4.2.15 Example 9
i n+ 2
—~ on — 3
2 1
lim — e # 0 (By L'Hopital’s rule)

nmoo5n—3 5

o0

2 .
Z 5” i 3 must diverge by nth term test.
n —

n=1

Example 4.2.16 Example 10

£

Look at the terms separately:

> <3—n + (=) (§)1> R (H)n <§>1>

n=3
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4.2

Infinite Series

Thus,

o0

n=3

3
This is a geometric series with a = (_) ==

ORI MORSO)
:G) 1+%+...+(é) ]
s

1
| = 3 <1 = converges

NSgge (/371
..;;(3 )= = -5

[N O]
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4 SERIES 4.3 Integral Test and Estimates of Sums

4.3 Integral Test and Estimates of Sums

Theorem 4.3.1 Integral Test

Suppose Z a, is a “positive term” series, and let f(z) be a function with f(n) = a,
n=1
If

* f(2)20¥r > 1
e f(z)is continuous Vz > 1

* f(z) is decreasing Vx > 1

Then

ian and /Oof(x)dx

either both converge or both diverge

Y Y
y = f(z) y=J@)
N o
o> o
\\,'\
area a @a
- Q»@ o N NN o o>
area @.\Q‘,’\ Zea E \ k A
1 2 34 Z 123 4
. Fig. 2
Proof 1.Proof: Integral Test Fig.1 &
In Fig. 1:
Z a, < / f(z) dx
n=2 1
Thus,

. Z a, diverges — / f(z) dz diverges.
1

. / f(z) dx converges — Z a, converges.
1

In Fig. 2:
Zan > / f(z) dx
n=1 1
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4 SERIES 4.3 Integral Test and Estimates of Sums

Thus,

. Z a, converges — / f(z) dz converges.
1

. / f(z) dz diverges —- Z a,, diverges.
1

Example 4.3.2 Example 1

SN
Show that the harmonic series, E —, diverges.
n

n=1

Let f(z) =

1. Show

- B~

(x) satisfies conditions for integral test:

* f(x) = i >0 Vz > 1, obvious.
——; isdefined vz > 1
x)is dlfferentlable Vo >1

(93)
I
f(z) is continuous vz > 1
) =

flx) === <0 Ve>1
= f(z)is decreasmg Ve > 1

2. Use the integral test to show Z diverges:

= lim(Int —1In1)

t—o00

= limIlnt =00
t—o0

<1
/ — dzdiverges
Lz

=1
By the integral test, Z — also diverges.
n

n=1
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4 SERIES 4.3 Integral Test and Estimates of Sums

Example 4.3.3 Example 2

. A 1 .
Consider the series E —> where p > 0 is a constant.
n

n=1

Note: p = 1 = harmonic series = diverges. So consider p # 1:

1
Let f(z) = i xP

1. Show that f(z) satisfies conditions of integral test:

1
'f(x):ﬁ>() Ve >1landp >0

pH
.. f(x) us continuous Vx > 1 and p > 0.

e f'(z) = —L isdefined Vz > 1 and p > 0.
s

e fl(r) = 5% <0Vzx > landp > 0.
= f(x)is decreasing Vx > 1.

o
. . . 1
2. Use the integral test to determine convergence or divergence of E — p# 1L
n
n=1

Recall from section 2.5:

< q .| convergentifp > 1
/ — dxis
1 2P divergentifp <1
By the integral test:
=1 .| convergentifp > 1
Z - dx 18
1 divergentifp <1
Remark 4.5 p-Series
— 1 . . .
Z — converges ifp > 1, and diverges ifp < 1.
n
n=1

Example 4.3.4 Remainder Estimation

o0

How can we estimate S = E (i,

n=1
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4 SERIES 4.3 Integral Test and Estimates of Sums

* Choose fixed (large) value to replace oo, and complete
Sp=) ar~S.
k=1

e Question: How good is this estimation?

R,=S8 -5, (residual/reminder)
=(ay+ay+az+ -+ an+ api1 + appot+ o)
— (a1 +as+ag+---+ay)
= Op41 + Api2 T Apyg -

Our new question is: How big is R,,?

Let f(z) be a function with f(z) = a, we can draw the following figures.
Y Y
n T n+1 z
From Fig. 1,
Area: anq1 + apyo2 +angs+- =Ry
/ f(z)dx > R,
From Fig. 2,
Area: apy1 + apyo + apyz+ - = R,
/ f(z)dx <R,
n+1
That is,

/noo f(l’)deRné/:of(x)dx

+1
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4 SERIES 4.3 Integral Test and Estimates of Sums

Theoreorgl 4.3.5 Remainger Estimate for Partial Sums
IfsS = Z apand S, = Z a;, = nth partial sums, and

k=1 k=1

R,=5—-5,,

then

/n:f(x) dr < R, < /:o f(x) dz

where f(x) is a function with f(n) = a,.

Example 4.3.6 Example 3
> 1
Consider the series kz:; W

1. Show that this series converges by the integral test.

2. How many terms do we need in

Sp =

k=2

k(In k)2

so that S, is accurate estimation to 0.01?
That is, we want to choose n large enough so that

R, < 0.01.

We know
> 1 Lo
———dr = 1i ——d
/n z(lnz)? R z(Inz)?

I 1 n 1
=lm|—+ —
t—00 Int Inn

1

Inn
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4 SERIES 4.4 Comparison Tests
.. we need )
— < 0.01
Inn
Inn > 100

n>e'% (2.7 x10%)

This is a really large number!

4.4 Comparison Tests

Theorem 4.4.1 Basic Comparison Test
Suppose Z a, and Z b, are positive terms. Then

1. If Z b, converges and a,, < b, Vn,

then Z a, also converges.

2. If Z b, diverges and a,, > b, Vn,

then Z a, also diverges.
Example 4.4.2 Example 1
= 1
Consider th i
onsider eserles; N
1. Compare ! and L.
' P vn—1 vn
! > ! Vn > 2
— > —=Vn
vn—=1"n —

1 o 1 L 1
2. Z 7 = sum,_, 15 isa divergent p-series with p = 3
n=2

By the comparison test,

i 1 also diverges.
—~ Vn—1

n

Example 4.4.3 Example 2
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4.4 Comparison Tests

4 SERIES
Consider the series Z -1
nd+1
n—1 n n 1
° < =
n+1 nd34+1 nd3 n?

oo

1. . .
. Z — Is a convergent p-series withp=2>1

n=1
.. By comparison test,
i n-1 also converges
= n3 41 8OS-
Example 4.4.4 Example 3
Consider the series
25

R
5 =1 5"
"2

n=1

-(5)

.. By comparison test,

6", . . .
( ) 1sa dlvergent geometric sequence with

6
=->1
=3

o n

6
251

also diverges.

Z isa convergent

k=1

p-series withp =2 > 1.

Example 4.4.5 Example 4
Consider the series ; (ik%—_l;z IE:];:—_ 4;2)
(2k 1)(k*—1) CRE-1Dk-1)(k+1)  (2k-1)(k-1) (2k)(k) 2k? 2
(k +1)(k2+4)2 (k4 1)(k? +4)2 N (k% + 4)2 < (k% + 4)? < (k2)2 k2
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4 SERIES 4.4 Comparison Tests

.. By comparison test,

= (2k — 1)(k* — 1) |
Z (k+1)(k% 4 4)? also converges.
k=1

Example 4.4.6 Example 5

oo
) ) 1
Consider the series E —
n
n=1

1 1
= < =
S e

1
o
o)

1. . .
hd E E 1sa Convergent p-Series Wlthp =2>1
n=1

there fore By comparison test,

o0

1
E — also converges.
n

n
n=1

Theorem 4.4.7 Limit Comparison Test
Suppose Z a, and Z b, are positive term series. If

lim &% — C, where C' > 0 is finite,

n—0o0 n

then either both series converge or both series diverge.

Example 4.4.8 Example 6

=2
Consider the series
; Vn+2
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SERIES 4.4 Comparison Tests

.. By limit comparison test,

i 2 5 also diverges.
—\/n+

Example 4.4.9 Example 7
“ n24n+1
Consider the series _—
; n* + n?2
2 1 1
e Leta, = nnt and b, = —
n* 4+ n? n?
[ )
_an . onP4n4l (n® +n+ 1)n?
lim — = lim ————— -n“ = lim
n—oo by, n—ooo N —+ n? n—»00 n2(n2 —+ 1)
Con?4+n+1
= lim
n—oo n2-4+1
1+2+ %
= lim — n2 —1>0
Rl ies. with
Z 3 1s a convergent p-series, with p = 2 > 1.
n=1

.. By the limit comparison test,

“n24+n+1
Z — 5 also converges.
= n +n
Example 4.4.10 Example 8
. o= 1
Consider the series Z peEsy
n=1
1 1 1
* Leta, = niti/n - pl/n and b, = n
.1, ) 1 . 1
L\ Ryl el s
We need to find lim n» :

n—oo
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4 SERIES 4.4 Comparison Tests

Let f(z) = x+, look at lim z+ is in indeterminant form oc’.

T—r00
lim ™" = lim ex ™% = elimeoee 5
T—00 T—00

1
Find lim —— in indeterminant form of by applying L'Hopital’s rule:
(0. 9]

rT—o00
1
Inz = 1
lim — = lim £ = lim — =0
r—o00 I T—00 r—00 I
o lim 27 = lim ™% = Moo 7 — 0 =
Tr—r00 T—r00

oo lim nr = lim as =1 (By the function method)

n—oo Tr—r 00
a 1
Sdlim 2 =lim—===1>0
n—00 bn n—00 nl/” 1
[oe)
. Z l is the harmonic series, divergent
n ’ sent.
n=1
.. By the limit comparison test,
=1
Z peEs Y also diverges.
n=1
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4 SERIES 4.5 Alternating Series Test

4.5 Alternating Series Test

Remark 4.6 Review of Important Series

oo

Geometric: Zar”‘lza(1+r+r2+---), a#0
n=1

if|r| < 1 the series converges, and Z ar"t =

n=1

a

1—7r

[e.o]

converges ifp > 1

p — Series: (prove with integral test)

1
p
n=1 n

divergesifp <1

R N i
Harmonic: E — diverges (prove with integral test)
n
n=1

[e.e]

. . 41
Alternating Harmonic: E (—1)""'= converges to In 2
n

n=1

However, the alternating harmonic series was not proven to be convergent in previous sec-
tions, which will be done in this section.

Proof 1.Convergence of Alternating Harmonic Series Consider the partial sum:

k=1
—(1ely T . gt
- 2 n o n+ Zn—1 2n 2 4 2
[P

_ 1 + 1 —+ + + !
T n41 n+2 2n—1 2n

2n 1 2n 1
— Z = We need to find ,}LIEOS?”:;}EEO Z L

Nt k=n+1
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4 SERIES 4.5 Alternating Series Test

From Fig.1, we know
n+1 2n = J, v
2n
SQn S —dz
n e
From Fig.2, we know
1 1 2n+1 1
+—2> / —dx
n+1 2n il T
2n+1
SZn 2 —dx
n+1 x

2n+1 1 2n 1
/ —dxr < 5,, < / —dx
n+1 € n T

Do the integrals:

2n+1 q 2n+1 2 1
/ —dx = [lnx] zln(2n+1)—1n(n+1):1n( nt )
R n+1 n+1

n n
That is,
2 1
( nt ) < Sy, <In?2
n—+1
Notice,
2 1 241
lim In nt = lim In +1/n
=In2
Iim In2=1n2
n—0o0

oo Whenn —o00: In2<S5,,<In2
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4 SERIES 4.5 Alternating Series Test

By the squeeze theorem,

lim Sy, =1n2
n—oo
ie.,
- 1
> (=)= =2
n=1 n

However, we still need a test for other alternating series.

Theorem 4.5.1 Alternating Series Test
If the alternating series:

(e 9]

Z(_l)n_lbn

n=1

satisfies b, > b,,+1 and lim b, = 0, then the series converges.

n—oo

Proof 2.Proof To see why the series converges:

[Adding non-negative numbers]

Son = (by — ba) + -+ + (ban—1 — b2p)
[Subtracting non-negative numbers]

=0y — (bg —bs) — -+ — (bap—2 — bap—1) — by,
by > by = by —by >0, ,byy1 > bayy = bop—1 —bgy, >0

This means:

e Even numbered partial sums are increasing non-negative numbers

* But they are bounded above by b,
e lim Sy, converges to, say, S.
n—oo
Now, let’s consider odd numbered partial sums:
Sont1 = b1 — by + b3 — by + - 4 ba—1 — bay + bayi1
- SQn + b2n+1
lim S2n+1 = lim (Szn + bgn+1)
n—oo n—oo

= lim Sgn + lim b2n+1
n—00

n—00
=5+0
. lim 82n+1 =S5 = lim Sy,
n—»00 n—»00
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4 SERIES 4.5 Alternating Series Test

Example 4.5.2 Example 1
Consider the series Z n~1/?

n=1

.. . . . 1
This is a divergent p-series, with p = 3 <1

Example 4.5.3 Example 2
Consider the series » "(—1)"n""/?

n=1

Notice:

1 1
'bn:m7bn+1=m

: 1
"= e =0

.. By the alternating series test,

Y (~1)"n"'/* converges.

n=1

Example 4.5.4 Example 3
Consider the series Z(—l)"Jrl

n=1

n2
n3+4

n2

n3+4

This is an alternating series, with b,, =

2

e Let f(z) = xf—+4 with f(n) = b,

2z(z® 4+ 4) — 2%(32%) 22" + 8x — 32!
(23 + 4)2 o (23 + 4)2
8z —at
o (z3 + 4)2
r(xd—8) x(2—xz)(2?+ 2z +1)

T (@42 (2% + 4)?

fi(x) =
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4 SERIES 4.5 Alternating Series Test

s f(w) <0Vr > 2

. f'(z) is decreasing Vx > 2

2
b, = 3n+ 1 is decreasing Vn > 2 [by the function method]
n
_ n? _ 1/n
Pl ey i ey

.. By the alternating series test,

E 1" converges.
n:l( ) nd +4 vers
Example 4.5.5 Example 4
Consider the series Y
;( ) 2n+1

In this case, the series diverges because

m
n—oo

= lim

[the n-th term test]

1

270

2+1/n

e Show that b, is decreasing:
z+1

flz)=In (

Example 4.5.6 Example 5
Consider the series > (—1)" ' In { ©
onsider the series n:1( ) n( " )
Here, b, = In (n i 1)
n
1 1+1
e lim ln(n+ ) = lim ln( i /n) =In(1)=0
n—oo n n—o00

Let f(z) =In (T) with f(n) =b,, z > 0.

r+1

T

) = In(z +1) — In(z)
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4 SERIES 4.6 Absolute Convergence and the Ratio and Root Tests

, (R R
L fi(x) = E——x(m+1)<0‘v’x>0

.. By the alternating series test,

G 1
Z:(—l)"*1 In <n+ > converges.
n

) is decreasing Vx > 0

x +
e
) is decreasing by the function method

4.6 Absolute Convergence and the Ratio and Root Tests

Definition 4.6.1 (Absolute Convergence). If Z la,,| converges, then we say that Z a, is
absolutely convergent.

Theorem 4.6.2 Absolute Convergence Test
If Z a, is absolutely convergent, then it is convergent.

Example 4.6.3 Example 1
Consider the series Z(—l)”‘l—

1 1
— n—1 —
Here a,, = (—1) = and |a,| = =

Notlce

Z la,| = Z — is a convergent p-series.

n= 1

- 1
Z(— I —; is absolutely convergent.
n

n=1

Example 4.6.4 Example 2

1
Consider the series Z(—l)”%
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4.6 Absolute Convergence and the Ratio and Root Tests

1
Here a,, = (—1)"— and |a,| =

converge.

1

NG Vi

O — 1 . :
Notice: E la,| = E T1sad1vergent p-series.
n

n=1 n=1

" Z(—l)"% does not converge absolutely.
n=1

[e.e]

. . . . 1
However, in section 4.5, we used the alternating series test to show that Z(—l)"— does

Vn

n=1

.. In this case, we say

o)

1. .
E (—1)"—=is conditionally convergent.
n

7

n=1

Sometimes, we may need to combine tests.

Example 4.6.5 Example 3
Consider the series Z(—l)”

1
n3+1

n=1

|an| =

o0 o 1
";|an|zzn3+l

nd+1°

1 <
n3 +1

n=1

1

n3
00
1. . .
L E -3 1S a Convergent p-Series, Wlthp = 3.
n
n=1

* By comparison test,

o0

1
Z 51 must converge as well.
n

n=1

.. By absolute convergence test,

n 1
Z(—l) - converges absolutely
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Theorem 4.6.6 Ratio Test for Series

o If lim |2 = L < 1, then Z a, is absolutely convergent.

n—00 | Gy

o If lim |2 =L > 1, then Z a, diverges.

n—o00 | Gy,

o If lim = L =1, then we don’t know — we need to use a different test.

n—oo Qp

Example 4.6.7 Example 4
Use the ratio test to determine if Z e "n! converges.
n=1
! 1)! ! 1
en entl en-e
L1 ! 1) en 1
.‘.lima+ ‘— M~e—:hm nt ‘—oo>1
n—oo | a, n—soo| em-e n! n—00
.. By the ratio test,
Z e "n! diverges.
n=1
Example 4.6.8 Example 5
o 2
Use the ratio test to determine if Z Z_” converges.
n=1
n? (n+2)? (n+1)?
an g —7 an+1 g =
on on+1 o .2
N [ . |ln+1)2 27 o n?+2n+1
. lim = lim |———  —| = lim |——
n—00 | n—00 n .9 n2 n—00 2n?
1+2 1/n?
~ fim ‘ +2/n+1/n
n—o00 2
1
—-<1
2
.. By the ratio test,
o0 2
Z Z—n converges absolutely.
n=1
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Theorem 4.6.9 Root Test for Series
e If lim {/|a,| =L < 1, then Z a, is absolutely convergent.
n—oo

. If}g& V/|a,| = L > 1, then Z a,, diverges.

e If lim {/|a,| = L =1, then we don’t know — we need to use a different test.

4.6 Absolute Convergence and the Ratio and Root Tests

n—oo
Example 4.6.10 Example 6
o (204 3)"
Use the root test to determine if Z( nt ) converges.
— 3n+2
2n +3\"
Ay —
3n+2
. (203N 2n+3
© i Y lan] = Hm (3n+2> =
2+3/n
= 11m
n—oo |34+ 2/n
—2<1
-3

.. By the root test,

Z <2n i 3) converges absolutely.

Example 4.6.11 Example 7
Consider the series Z (
n=1

2n+3
3n+ 2

2n+3 . 2+43/n 2

— — 229
b 3n + 2 noee 3+ 2/n 37

.. By the n-th term test,

i 2n + 3 diverges
3+ 2 8eS.
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4.7 Practice Using Various Tests for Series

Example 4.7.1 Example 1

. . e=n—1
Consider the series Z
=1

n3+1

n—1 n—1 n 1

L4 < <
nd+1 n3 nd  n?

(o]
. Z - is a convergent p-series, with p = 2
n=1
n—1 1
< o)
nd+1 n?

.. By comparison test, because

[e.e]

Z n-1 also converges
— nd+1 8es.

Example 4.7.2 Example 2
Consider the series Z

n=1

n+1
n3+1

n+1 n—l—l_l 1

nd+1 n3 n? n3

1. .

. E — Is a convergent p-series, with p = 2;
n=1 n
o0

1. . .
E —; is a convergent p-series, with p = 3.
n

n=1
L (n+1 > /1 1 21 >~ 1
Z( n3 ) :Z (ﬁJrﬁ) IZﬁJrZﬁalsoconverges.
n=l1 n=1 n=1 n=1
n+1 n+1
.. By the comparison test, because < ,
Y P n3+1 n3
n+1
Z 3 also converges.
—n +1
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Example 4.7.3 Example 3
= n?—1
Consider the series 1"

;( ) n?+1

n?—1

n=(=1)"
an = (=" 57
: : e L1 —1/n?
diman =l (1) = o () g = DNE A0

(a, alternates between 1 and —1 when n — oo, and it never goes to 0).
.. By the n-th term test,

> n?—1
E 0 diverges.
n:l( ) n?+1 vers
Example 4.7.4 Example 4
o0 2n
n
Consider the series —_
nz:l (1+mn)3n

G fv:w - ((1 fn)fﬂ)n

o o n? . n?
JNim /lan| = Jim, (m)‘ = Ay
2 3
= lim n . 1/n
n—00 (1+n)3 1/n3
1
= lim L
=0<1
.. By the root test,
i n—zn converges absolutely.
— (1 + n)Sn
Example 4.7.5 Example 5
e 4
n
Consider the series -1
1 1 Z( ) 4n

n=1
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4 SERIES 4.8 Power Series

4
n
n — -1)"—
an = (=1
nt n+1)4 n+1)*
N
4 4 4-4
. ny1| . (n+1)* 4n L (n+1)*
e | T T | T T
4 4
= lim (n+1) '1/n
n—00 4nt 1/n?
1 4
o (1)
n—o0 4
! <1
4
.. By the ratio test,
4
Z(—l)”Z—n converges absolutely.
n=1

4.8 Power Series

In this section, we consider series that include powers of a variable z, for example:

oo

g Cnxn =cCyt+ar+ CQI2 + CgZE3 + C4ZE4 + -

n=0

where ¢, ¢1, - - - are constants (think of this as an infinite degree polynomial).

Example 4.8.1 Example 1

Use long division to find a series expression for f(z) = . i "
l+x+a?+---
1-2140-24+0-2240-2340-23 4 ---
1— =z
Xz
r— 2°
I2
1'2 — 5(73
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4 SERIES 4.8 Power Series

1

. _ _ 2 R
.f(x)—1_$—1+x+x + - —le"

Notice: For the series to converge, we need |z| < 1.

In this case, 23, 2%, - -- approach zero.
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4.8 Power Series

(e}

Note:

By the ratio test,

if

Suppose L = lim '
n—o0

Theorem 4.8.2 Important Question: For what values of = does Z cp,x" converge?

n=0

o Ifzx = O,thenZCnx” = CO"‘leE‘f‘CQl‘Q‘f‘"' =
n=0

oo
E :Cnﬂf converge51fx —0.
n=0

e If z # 0, use the ratio test:

_ n _ n+1 __ n
Ap = Cpx ,Apyt1 = Cpt1T = Cp+1T - T

1 .
= |z| < 17 Observations:

o Ani1 . Cni1Z" - T
. lim = lim | ——
n—00 | Ay n—00 Cn{L‘”
o Cn+1 0 Cn+1
= lim -x| = lim ||
n—o00 Cp n—o0 Cp
0 Cn+1
= |z| lim
n—o00 Cn,
An+41 : g
"*1| (L can be infinity)
Qn
o
Z c,x" converges absolutely
n=1
. |a . |c
lim |2 = |z] - lim |22 =L |z| <1
n—oo | Qp n— o0 -
-IfL=0,thenlL: |z[=0-|z|=0<1VzeR
oo
Z cp,x” converges Vo € R
n=0
- If L = oo, then L - |z| is never less than 1 for = # 0.
o
Z cp,x” only converges when x = 0
n=0

n=0

(Z cp,x" never converges Vo # O)
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4 SERIES 4.8 Power Series

Example 4.8.4 Example 2
o0 n
Find the radius and interval of convergence for: %
n n
n=1
Let a" mH " x
an = -, aTL —_= =
n3® TN T (4 1)30 T (n41)3- 37
Ratio test:
o lan _ - x (n+1)3"+
lim =1 .
n—00 | n—00 (n—|— 1)3 3n anrl
. i n
= lim |- -
1350 |n+1
= m lim |—
3 nooo|n+1
_ 7] 1
3 nmeo|14+1/n
_lal
3
This series converges absolutely if % <1l=|z[/<3,-3<z<3

.. Radius of convergence: R = 3.
To find an interval, check the end points: z = +3

e When z = 3:

= 3" =1
;n-(‘i”:;ﬁ

This series is a divergent harmonic series.

e Whenz = —3;

~—~

—(=3)" (="
; n(3n) ; n

This series converges by the alternating series test.

.. The interval of convergenceis —-3<x<3 OR z€[-3,3).

Example 4.8.5 Example 3
2n n
Find the radius and interval of convergence for: Z x' :
n.
n=0
QN o 2n+1xn+1 LI YL
Leta, = i1 = =

n!’ (n+1)!  (n+1)n!
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4.8 Power Series

Ratio test:
2m . x™ . g n!

(n+1)nl 20 g7
2z
n+1

Ap+1

lim

n—00

= lim
n—oo

Qn

= lim
n—oo

1
n+1
=2lz[-0=0<1 forallz

= |2z| lim
n—oo

.. Radius of convergence: R = oo
Interval of convergence: —oco<zx<oo OR 1z € (—o0,00)

Definition 4.8.6 (Power Series in (x — a)).

ch(x—a)”:cg—i-cl(x—a)+02(x—a)2+63(x—a)3+---

n=0

where ¢, ¢1, - - - and a are constants.
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4 SERIES 4.8 Power Series

Theorem 4.8.7 To find the radius and interval of convergence

e Again use ratio test to find:

- n+1
li Cny1(@ — a) = lim |(z — a) Bl
n—00 Cn(:[‘ = CL)n n—0o0 Cn
. Cn+1
= |z — a| lim
n—oo CTZ

Cn+1
Cn

n—oo

=|lxr—a|-L lL:lim

|

e Convergesif|z —al-L <1

- If L = 0, then converges for all :

. R = oo, Interval: (—oo, 00)

— If L = oo, then converges only if z = a.
“R=0

- If 0 < L < oo, then converges for

| \<1:> 1< <1
Tr—a I I r—a I

1 1
a— - <r<a+ +
Interval L L

and possibly the end points

1
..R—Z

Example 4.8.8 Example 4
Find the radius and interval of convergence for: i(—l)"M
. n=1 4"1\/5 ‘
r—2)" x — 2)ntt x—2)(x—2)"
Lot = | T2 (o = | =2 | |@ =2 —2)
47\ /n 4rtly/n 4+ 1 447 \/n+1
. lim Intt| _ i (r=2)(—2) LA
n—oo | Ay, n—oo | 4.4 . \/mn + 1 ({E—2)n
I T — 2
= lim .
n—00 4 vn+1

-2
= |2 |hm

[
o /
B |x—2|

4




4 SERIES 4.9 Representation of Functions as Power Series

|z = 2|
4

.. Radius of convergence: R = 4

For convergence, we need <l=|z—-2 <4

Interval: -4 <2 —-2<4 = —2<x2<6

Check the end points:
e When z = —2:
S R =Y e =Y s =Y
This is a divergent p-series, with p = % <1
e When z = 6: . - '
;(— 4n\/— Z 4n\/— ;FU”W

This series converges by the alternating series test.

cInterval: —2<2x <6 OR =z e (-2,6]

4.9 Representation of Functions as Power Series

Theorem 4.9.1 Differentiating Power Series
If

chx—a '=cote(r—a)+elz—a)l+e(z—a)P+clz—a)+---,

n=0

and radius of convergence R > 0.
Then, f(z) is differentiable on the interval (¢« — R,a + R), and

f'(x) =04 c; + 2co(z — a) + 3cs(z — a)? + 4eq(x — a)® + - - -
i ._1 | Only valid within the interval of convergence.
= nep(r —a . .
Not valid at the end points even they converge.
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4 SERIES 4.9 Representation of Functions as Power Series

Theorem 4.9.2 Integrating Power Series
If

f@) =3 calw—a)" = co+ ez — a) + ez — a)* + csla — 0)* + ealo — @) + -+

and radius of convergence R > 0.
Then, the indefinite integral of f(z) is

/f(sc)dx: [co(a:—a)+%(a:—a)2+%Z(x—a)g—ir%(m—a)4+%(x—a)5+~- +C

-~ = Cn n
c+zn+1(x—a) 1
n=0

And if [s, t] is fully contained in the interval of convergence (not even at the end point),

then the definite integral is

/:f(x)dx:g%/:cn(x—a)”dx

Example 4.9.3 Example 1
Consider f(z) = Z(—l)"a:” .

n=0

flz) = Z(—l)”x” = Z(—a:)” is a geometric series, with r = —x
n=0 n=0
(a) Find the radius and interval of convergence.

For a geometric series to converge,
rf=-z[=lz[ <1
- .Radius: R=1
Interval: —1 <z < 1 (It does not converge at end points)
(b) Find f’(z) [only valid for z € (—1,1)]

f(x):Z(—l)”x":1—x+x2—x3+x4—x5+--~

n=0

()= 0142 — 327+ 45 — Bt
— Z(_l)nnmn—l
n=0
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4 SERIES 4.9 Representation of Functions as Power Series

(©) Find/f(:p) dz [only valid for x € (—1,1)]

) = S 1t

1 1
4 5 6
T 4+ | +C
3 4 50 6"

(d) Find / f(x) dx
0
Not possible because [0,2] is not fully contained in the interval of convergence
<_17 1)

Theorem 4.9.4 One approach to find power series representation of f ()
Recall: Geometric series converges if |r| < 1, and

Zar”:a~|—ar~l—ar2+ar3+---

n=0

=a(l+r+r"+r’+---)

. a
S 1l—v
. . . 1 a
In a previous example in section 4.8, we looked at 1 =7 =a=1,z=r
— (03 —
1 = .
L= ; x
Example 4.9.5 Example 2
. . . 1
Find a power series representation for f(z) = 7
T
Make f(x) ! look like —— Note
x) = :
2+ 1—r
1 1 1/2 1/2 a

2+x 20+2/2) 1+z/2 1—(—z/2) 1—r
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4 SERIES 4.9 Representation of Functions as Power Series

I -
:>CI,—§,’T‘——§
S = ‘—5‘ =5 < 1 = |z| < 2 Then, o is the sum of a geometric series with
I ¢
a=3r=73 )
1_T:a(1+r—|—r2+r3—|—~')

Remark 4.7 Remark We will do many examples that use geometric series, but we may also need

to be creative.

Basic approach:

: oo — 1 —
. Smrththabaszcserzesl_x :;x , x| < 10Rm:;u ,Jul <1

. . 1 1 . e o .
 Try to relate a given function to [, 0Ty, using multiplication, substitution, differ-

entiation, or integration.

Example 4.9.6 Example 3
1

T3

Find a power series representation for f(x)

Here we can use substitution, with u = z°.

Start with
1 = .
1_u:Zu , Jul <1
n=0

Using u = x*:

o0

=> (@), |2° <1

n=0

1
1—2a3
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4 SERIES 4.9 Representation of Functions as Power Series

1 - 3n
..f(x)zl_mgznzzox |zl <1

Example 4.9.7 Example 4
x

Find a power series representation for = —

e First, notice:

B FE S I I
14922 1+922] 7 [1—(-922)

e Using u = —92?, we get:
1 1 -
= =Y (=92, |- 92°| < 1
11922 11— (—922) nz:%( w)" =97
= ngn ,.2n 1
= (=1)r9"a™, [3z] < 1 R=2
n=0

f(r) = —— :x{ ! } :xi(—n”mx%, 2] <%

> 1
= e e < g

n=0 3
Example 4.9.8 Example 5
. . . T
Find a power series representation for f(z) = (e
* First, notice
1
— 51 -
=5 o]
* Now, how to write e in terms of - u?
Differentiation:
d 1 d 1
- _ — 1 — -1 = —(]1 — —2 —1) =
dz {1 —x] dx (=27 (1=2)7(=1) (1—x)?
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4 SERIES 4.9 Representation of Functions as Power Series

s f(e) = 1—2)7 = o {(1—1’)21 :533%[@1
e

:5x~dx LZ:%ITL] ;) <1

o
= 5x-an”_1, lz| <1
n=0

oo
= Z5nx”, lz| < 1
n=0

Example 4.9.9 Example 6
Find a power series representation for f(z) = tan~'z

oo -
* We need something like = Z u”, Ju| <1
=0

1—u "
e Recall: )
_ -1, _
f(z) = tan x—/1+x2dx
Now look at
1 1 . 2\n . n_.2n
T s T - ) = e el <
n=0 n=0

-y (—1)"/1;2" da

n=0
2n+1

> xr
= 1" C <1
> (N gy + O I

Since C' can be any constant, we can take C' = 0.

00 2n+1
. _ -1, _ n ¥
cof(x) =tan” = ng_o(—l) 1’ lz] <1
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4 SERIES 4.10 Maclaurin and Taylor Series

Example 4.9.10 Example 7

: r—tan"lx
Evaluate the integral / —— dv
T

e From the previous example:

. o0 x2n+1
tan” " x = - <1
o =3 (-1 e
x3+ 5 47 29
= r— — _ _— e e .
7 9
* Now: 1 B a5 T 9
r—tan "r=rx—|\r——+———+———
( 3 5 7 9 )
_x?’ x5+x7 x9+
3 5 7T 9
x—tan_lx_l x3 x5+x7 x9+
3 C g3 3 5 7 9
2 xt 2
===+ = ——+--
5 7 9

s
|
o+
E%w%
L
8
o,
=
I
| = \wl»—

|
8
|
|
|
|
|
|
|
|

3 35 57 79
o i m3 5(35 ZE7 +
3 35 57 7-9
0 1,2n—1
= Z(—l)"‘1 , o<1

2n—1)2n+1)

3
Il
_

4.10 Maclaurin and Taylor Series

Question: Given a function f(z that is continuously differentiable, can we find constants

o, C1, Ca, - - - such that

[e.9]

f(z) = Z cpx™?

n=0

flz) =) cpa”
n=0

2 3 4
=co+ 1T + cox” +c3x” + ey + -
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4 SERIES 4.10 Maclaurin and Taylor Series

Then,
« f(0)=cotc1-04c3-04---=cp
0
o f/(x) =c1 + 2com + 3ezx? + degx® + - -
/
/ 0
= f(0)=c = clzf(o)_fl(')
o f"(x) =2cy+ 2 3c3x + 3 - degr? + - -
//0 ”O
= ["(0) =2c; = 02:f ( ):f (0)
2 2!
* f”/(x>:2'303+2-3~4C4x+...
///O ///0
:>f///(0):2.303 = 3= f2'(3) _ f3(| )

In general, if f(x) has n continuous derivatives, then

R0

n!

Cn

Note:
e £ is the nth derivative of f(z)
* fO(z) = f(z)
c 0 =1

Definition 4.10.1 (Taylor series and Maclaurin series). A Taylor series about = = « is defined
as

% n)(g
fw) =3 Wy

= J@)+ ) —a) + T oy Ty

A Maclaurin series is a special case of a Taylor series with a = 0, i.e.,




4 SERIES 4.10 Maclaurin and Taylor Series

Example 4.10.2 Example 1
Find a Maclaurin series for f(z) = In (z + 1).

f7 () £ (0)
=0 f(z) =In(1+x) f(0)=In(1) =
n=1| fl@)=g5;=0+2)" f(0)=1
fra)=-(1+a)7? f"(0) = -
3 f@)=201+2)" J"(0) =2
n=4| fO)=-2-3(1+2)"* | fD0)=-2-3=-3!
n=5|fz)=2-3-41+2)"°| fO0)=2-3.-4=4!

o 1@ = £0) + £+ T 0

_0 1 2 = 3! 4
—I—a:—gx —1—5 —Ex —i—gx—i—
[E2 173 1‘4 ZL’5
:x——z —l——3 T +—5 —

00
§ ’I’Llaj

Example 4.10.3 Example 2
Find the radius and interval of convergence for the previous example.

Apply ratio test: |a,| = " —, |ans1| = Tt
Qn| = O — =
PPy n T T 1 T et
Clim |2 = i | 2T 2y ml= |z| lim =zl <1
.. Radius of convergence: R = 1.
Check the end points:
e Whenz = —1:
S LD e DT EDTED N 1 1
_1 n 1( — — _1 = .

Harmonic series — divergent.
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4 SERIES 4.10 Maclaurin and Taylor Series

e When z = 1: . .
Sy sy

Alternating harmonic series — convergent

.. Interval of convergence: —1 < <10Rz € (—1,1]

Example 4.10.4 Example 3
Use the Taylor series
In (1 e 1
a(1+2) = 21 el <

to find a Taylor series (about = = 0) for In (1 + 7x).

In(L+u) = Z(—wl%n
n=1
Letu = Tz: .
7 n
In(1+7z) = ;(—1)n—1( z) T < 1
- . LT 1
=T el < g
Example 4.10.5 Example 4
Find a Taylor series for f(x) = In () aboutz = 1
f(=) F(1)
n=0| f(@) =) (1) =0
n=1| flo)=1t=a" ra=1
n= f'() =~ (1) =-1
n=3 f"(x) =223 (1) =2
n=4| fO)=-2-3z7* | fW(1)=-2-3= -3
n=>5|fOx)=2-3-427° | fO(1)=2-3.-4=4!
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4.10 Maclaurin and Taylor Series

n!
= 10+ -1+ E @ e Bl g
:o+(x—1)+;—11(x—1)2+g—i(x—1>3+_4—f’!(x—1)4+;ii(x—1>5+---
:(x_D_(:1:—21)2+(x—31)3_(m;l)4+(x;1)5+
-yl

Exercise: Show that radius of converges is R = 1.

Example 4.10.6 Example 5

Find a Taylor series for f(x) = e* about x = 0 and the radius of convergence of it.

—0| f)=¢ | FO)=1
o) =e | F(0)=1
)= et | 10 =1

1

Apply the ratio test: a,, =

T ) altn 1

n

. Qi1 " - x n!
. lim = _ . —
n—oo | @y, n—+00 n'(n + 1) xm
. 1
= |z| lim =0<1 Vx
n—oo |+ 1

.. Radius of convergence: R = cc.

Example 4.10.7 Example 6

Find a Taylor series for f(x) = cosz about = 0 and the radius of convergence of it.
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4 SERIES 4.10 Maclaurin and Taylor Series

f"(=) F(0)
n=0| f(z)=cosx f(0)=1
n=1]| f(z)=—sinx f(0)=0
n=2| f'(x)=—cosx | f'(0)=—-1
n=3| f"(z)=sinz f70)=0
n=4| fYw)=cosz | fP0)=1

(0)=0

n=>5| fOz)=—sinx | fO
n=6| fO@)=—cosz | fO0)=-1

(n) an zan
—~ n 2! 3!
0 1 0 1
_ 2 Y3, L a4 YV 5 L1 6
=1+0 £L‘—2|SE —|—3!3: +4!x —|—5'w 6,x+
{E2 1'4 1'6 o mZn
=1 - — — — 1"
TR TP DI oy

2n 2(n+1) p2nt2 2 2

3 . — X — —=
meﬂwﬂmowﬁw%k—@mpVMHV Q+1)  2n+1) @o)l2n+1)2n+2)

(2n)!
2n+1 2n+2) x?n

. . An+1
. lim =
n—oo

Qn

n—)oo’ 2n+1) 2n+2)‘
1

= 22| li
= i S e T

n—o0

‘:O<1 YV

.. Radius of convergence: R = oc.

Remark 4.8 Important Taylor/Maclaurin Series
xr - xn
=2 T
n=0
2n

cosT = Z(—l)"én)'

n=0
‘ o . X2n+1
SIN T = Z(-l) W
n=0

Note: They converges for all x
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4 SERIES
Example 4.10.8 Example 7
Find a Taylor series about x = 0 for f(z) = ze*".
0 n 2 u3 4
e _Zoﬁ R T
Let u = 22
22 > (xQ)n > 20
D D D D
n=0 n=0
) 0 :L,2n 0 x2n+1
fla)=ze” =a) =D —
n=0 n=0
Example 4.10.9 Example 8
> 2n
Find the sum of the series ;(-1)”%.
D () => (-1)"%
—t 62 (2n)‘ — (2n)'
> r2n
Recall: cosz = ;(—1)” o)
S R
> =cos(5) =%
— (2n)! 6
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4 SERIES 4.11 Application of Taylor Polynomials

4.11 Application of Taylor Polynomials
4.11.1 Taylor Inequality

Definition 4.11.1 (nth degree Taylor Polynomial Approximation). If a Taylor series for f(z)
about x = «a is given as

o ) (g
fw) =3 oy
(0

n!

1@ e @)

fla) + (@)@ - )+ 1 .

(z—a)* +-+ (x—a)"+---

then the nth degree Taylor polynomial approximation of f(z) about z = a is

"(a "(a (n) a
:f(a)+f’(a)(a:—a)—|—f2—(!)(:1:—a)2—|—f3—(!)(x—a)3+-~+fn!( )(:c—a)”

Note: T,,(z) is a polynomial approximation of f(x):

Example 4.11.2 Example 1

(a) State the Taylor series for f(z) = ¢” about z = 0.

k xQ 1;3 x4

_k:_oox__ L E
flz)=e _Zk!_1+x+2!+3!+4!+
k=0

(b) Find the degree 1 Taylor polynomial approximation of f(z) about z = 0.

Ti(x)=1+=x

(c) Find the degree 3 Taylor polynomial approximation of f(z) about z = 0.

2 xS

Tg(x):1+x+§+§
1 1

—1 t2, 1.3
—|—x+2:17 —|—6x
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SERIES 4.11 Application of Taylor Polynomials

Question: How good are Taylor polynomial approximations? (Consider 7} (z))

* Taylor series about = = a:

1) = @) + P —a) + D0 @ o Ty

* Consider 7} (x):

Ti(z) = f(a) + f'(a)(z — a)

e Assume |f"(z)] < M for |x —a| < d

So=M < () < M

Example 4.11.3 Illustration

f(z) =sinz, f'(z) =cosz, f'(x) = —sinz
SN (x)] = —sinx| <1
Take M =1

* Because f”(x) < M, the inequality still holds if we integrate:

/:f"@)dtg/:Mdt

0] < |reFa—o?|
F(&) ~ (@) < Fa)(x —a) + (o — a)? (0~ a)
@) < [fa) + @)= o) |+ 5 (o — o)
11 (x)
f(e) S @) + 5o~ a)?
flr) ~ Tula) < 5 (x — a)
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4 SERIES 4.11 Application of Taylor Polynomials

Theorem 4.11.4 Taylor Remainder Inequality
Suppose

* the Taylor series for f(x) is given by:

* and the nth degree Taylor polynomial approximate is given by:

(g ™(q
1@~ T =3 D = o) + f@@—a) 4+ LD ay

If | f"*+Y(z)| < M for |x — a| < d, then

r—al™™, |r—al<d

Example 4.11.5 Example 2
Consider f(a) = cosz

(a) Find a 4th degree Taylor polynomial approximation to f(x) about z = g (or equiva-

lently, at a = g).

LG oy R Ty
1) ()

n= f(x) =cosx I (
n= f'(x) =—sinx | f (%
n= f”( ) 3)

n= f"(x) =sinz | f"(3) =
n=4| f9x)=cosz | f&W (E) :%
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SERIES 4.11 Application of Taylor Polynomials

2
(b) How good is the approximation when 0 < z < ill
That is, use the Taylor inequality to find an upper bond.
The remainder:
M

’Rn(l’” S ka — a|n+1’ ’f(n-l—l)(gj)‘ S M

Heren:4,n+1:5,a:g:

15
|Ry(z)] < = ‘x . 5] . where | f®) ()| < M
To find M:
f(x) =cosz, f'(v) = —sinw, ---, fD(z)=cosz, fP(r) = —sinz.

2
fO(2)] = | —sinx §1,f0r0§x§—W:M:1
f -

So far, we have

1 |5 2m
Bi@)| < le-3| 0o <

3

Now, we need to ask: How large can ’x — g‘S beon(0 <z < 2%?

This is a maximum problem on a closed interval.

.. The maximum occurs at a critical point of g(z) = ‘ac - gf or at one of the end
points.

Recall: Try g(z) = |u| = Vu2 = (u?)"/?

dg d ‘_ﬂ‘ _‘ _7r4d ‘_ﬂ‘ _5’ .m
dx_dxx?) _m3dx$3 _xS

.y . T
.. Critical points: x = 3
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Example 4.11.6 Example 3
Consider f(z) =Inz

(a) Recall from section 4.10, we found the Taylor series for f(z) = Inz ata = 1:

fla) = > (-

N (z = D"
k=1

(b) Fina a Taylor polynomial of degree n = 3 at a = 1 to approximate f(z).

(x —a)* (z—a) 1

T3=(x—1)— 5 T 3 :(x—a)—g(x—l)Q—l—%(x—l)?’

(c) Use Taylor’s inequality to estimate the accuracy of the approximation f(z) ~ T3(z)
for0.9 <z <11

M
(@) = gyl — el a=1n =8 n+1=4
|fm ) (z)| < Mon0.9<z <11
M
Rs(z) < — |z — 1%, |fPD(z)] < Mon0.9 <z <1.1

!

W

e Weneedto find max |f®(x)]
0.9<2<1.1

fx)y=Inz, fl(a)=a7", f'(x=)—2? f"(z)=227% fY(z)=—627"

o |f ()| = % find maximumon 0.9 < z < 1.1
T
Notice: |—; | is decreasingon 0.9 <z < 1.1
T
6 6
@) == < —— =M

* Weneed to find max |z —1|.
0.9<z<1.1
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4 SERIES 4.11 Application of Taylor Polynomials

Here, the max occurs at eitherz =0.9o0orz = 1.1

S 09-1=11-1]=01

1
o 0.9213%(1.1 |z — 1| 0.1 Toi
[ ]
6 1 6 1
|Ry(z)] < 22 =

4110 41(0.9)4 107

Example 4.11.7 Example 4
Consider f(z) = In (1 + 2x)

(a) Find a Taylor polynomial of degree n = 3 ata = 1 to approximate f(z)

K
= i+ rme -+ I @y El ey
f0(2) ) (%)
k=0 () =In(1+ 2x) f(1)=1In3

=1 f(z)=2(1+2z)"! fry=2
k=2 | fa) = —4(1+22)2 | (1) = —

k=8| fr@) =160 4200 | )= 2
k=4 fW(z) = —-96(1 + 2z)~*
1) = f0) + 0 -0+ E @ 12 T gy
2 41 , 16 1 ;
:ln(3)+§(:c—1)—g-§( - 1) 8 Eg(x—l)
:ln(3)—|—§(:17—1)—§(x—1)2+8—1(x—1)3

(b) Use Taylor’s inequality to estimate the accuracy of the approximation f(z) ~ T3(z)

117



4 SERIES 4.11 Application of Taylor Polynomials

for0.5 <z <15
M
|R,(2)] < m|x—a|”“, a=1,n=3n+1=4
n !
[P () < M

M
Rs(w)| < pple =11

96
— (4) — — —4 fry _—
M 0.5?:?%(1.5 /@) 0.5%3?1.5 | —96(1 +22)™ 0.5%3?1.5 (14 22)4

* Notice, (1 + 2z)*is increasing forall 0.5 < z < 1.5. = ; is decreasing for

96
(14 2z)
all 0.5 < z < 1.5. .-, maximum occurs at z = 0.5, i.e.,

96 9%6 96

M= =— = — =
(1+2x05)* 21 16

e Similar to the previous example, |z — 1|* is largest at either x = 0.5 or z = 1.5:

1
e —1* < |15 - 1]* =0.5]* = g O 05<w<l5

4.11.2 Approximating Derivatives

Recall that a Taylor series of f(z) about a point a is:

"(q "(aq (4)a
f2(!)(z—a)2+—f (| )(z—a)3++f 45)

3l (z—a)4—|—---

f(z) = fla) + f'(a)(z — a) +

Now, consider two forms of this Taylor series:

l. Usez =z +handa = z:

" 1" (4)
f($+h)Zf(x)+f'(9:)h+f;f)h2+fS('x)h3+—f44'($)h4+---

2. Usez=x—handa = z:

" e @ (g
f(q:—h):f(x)—f’(x)h—i-fz(! )h2—f3(! )hB—i——f 4!( )h4—|—'--
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4 SERIES 4.11 Application of Taylor Polynomials

Remark 4.9 For these Taylor series to exist, we need:

* f to be “sufficiently smooth” (i.e., the derivatives f™ (z) exist in an open interval contain-
ingz,n=0,1,2---)

* The series must converge (i.e., the terms in the series must go to 0 sufficiently fast. )

Theorem 4.11.8 Approximating f'(x) using “forward finite difference”
Use the first Taylor series:

" " (4)
f(x+h):f(x)+f’(x)h+f2(!$)h2+f3(!x)h3+f 4!(x)h4+---
aes e (4) T
fla+h) - @) = P+ Ly L0y S
ot W= 16) _ gy, 1@, 1o SO

2! 3! 4]

(. /

N
If h is small, truncate. i.e., discard these terms

Forward difference approximation of f'(x):

- f(@)

Q

Recall: The definition of derivative is

/ 1 f(:E—f-h)—f(:E)
f'(x) = lim .

h—0

flx+h) = f(x)

However, if we take h too small on a computer, we can run into other errors.

.. If we take h small, we can use as an approximation of f'(z).
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4 SERIES 4.11 Application of Taylor Polynomials

Theorem 4.11.9 Approximating f'(x) using “backward finite difference”
Let’s use the second Taylor series:

@) £@),5 , 90,

fl@=h) = f(z) = f[@h+—; 3 TR
" " (4)
f(x—h)—f(x):—f'(x)h+f2(!‘”>h2— f3(!x)h3+—f 4!(9“")h4+~--
fl@) = fla=h) @), f@),, fU);
7 = @) = S Ty = T e

N J/

~
If h is small, discard these terms

Backward difference approximation of f’(x):

f(z) — flx—h)
h

s fl(w) =

Theorem 4.11.10 Approximating f’(z) using “centered finite difference”
Subtract the second Taylor series from the first:

Ofz+ 1) = F@) + b+ LDpe L@ Sy

ol 3l Al
@f(z—h) = f(z) — f'(x)h + f’/z(!“') h? — f/;(!x)h?’ + %h‘* 4.

S O=-@ :f(x+h)— flx—h)=2f(z)h+ %f’"(m)h‘q’ + %f@(m)ff +

" (5)
:f’(x)+\f 3(!"”)h2+ f55!("”)h4+~-

TV
If we take h small, discard these terms

J/

Centered finite difference approximation of f’(z):

fx+h) = flz—h)

s () & o7

Generally, the centered finite difference approximation is better than forward or backward
differences.
Notes: If . = 0, then
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4 SERIES 4.11 Application of Taylor Polynomials

So,
flx+h)—f(z) 0 flx+h)—flx—h) O
h =5 and h ~0

These are indeterminant forms to the computer, so it will return “Not a Number” (i.e., NaN).

Theorem 4.11.11 Approximating f/”(z) using “centered finite difference”
Add the two Taylor series:

OF (@ + 1) = f@) + Faph+ gy Py TO@ 0y

2! 3! 4l
" " (4)
@f(e 1) = fa) ~ e+ Lpe - LDy To @y
SO+ @ :flz+h)+ f(z—h) =2f(z)+2- #h? + %f(4)(a:)h4+ %f(ﬁ)(x)h6+...
(4) (6)
Fz+h) + flz—h) —2f(z) = f(@)2+2- L 44,@) piyo. L 66,“"’) L
_h) — (4) (6)

f(ﬂc+h)+f(har:2 h) — 2f(z) :f”(x)+?-f 4!(x)h2+2_ f66!($)h4+--;

N
If h is small, truncate these terms

Centered finite difference approximation of f”(z):

fx+h)—2f(x) + f(z —h)
h2

S (@) &
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5 PARAMETRIC EQUATIONS & POLAR COORDINATE

5 Parametric Equations & Polar Coordinate

5.1 Parametric Equations

Definition 5.1.1 (Parametric Curves). Use parametric equations (functions) to define points
on a curve:

For each value of ¢, we get a point (z,y) = (f(¢), g(t)).

Example 5.1.2 Example 1
Consider the functions z = f(t) = ¢, y = ¢g(¢) = ¢t + 1. Eliminate the parameter ¢ to find
a Cartesian equation of the curve.

r=t,y=t+1
sy=x+1

A line with slope = 1, y-intercept (0, 1)

Note: The graph of any function y = h(z) can be represented parametrically.
Proof 1.Proof If h(z) is a function, the points on its graph can be written as

(z,y) = (2, h(z))

We can define parametric equations:
z=[f(t) =t y=yg(t)=h(t)

(z,y) = (£, (1))

BUT, not all parametric curves can be written as functions.

Example 5.1.3 Example 2

Consider the functions = = f(t) = t* — 2t, y = g(t) = t + 1. Eliminate the parameter ¢
to find a Cartesian equation of the curve.

r=t"—-2, y=t+1
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5 PARAMETRIC EQUATIONS & POLAR COORDINATK.2 Calculus with Parametric Curves

St=y—1
=y —1)7 -2y —1)
=y —2y+1-2y+2

v=y—4dy+3

Example 5.1.4 Example 3

Consider the functions = = f(t) = cost, y = g(t) = sint, with 0 < ¢ < 27 Eliminate the
parameter ¢ to find a Cartesian equation of the curve.

T =cost, y =sint

22 4+ y* = cos’t +sin’t =1

5.2 Calculus with Parametric Curves

Example 5.2.1 Example 1
Consider a curve C' defined by parametric equations

r=2t,y=t"—1 -1<t<2

¢ Eliminate ¢:

t_ZL’
2

* Points on C'lie on the parabola

* The slope of the tangent line to the curve C at a point is:

1
h'(x) = gt = t
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5 PARAMETRIC EQUATIONS & POLAR COORDINATK.2 Calculus with Parametric Curves

» That is, we found a slope of tangent suing only ¢.

Question: How do we find the slope of the tangent line of a curve directly from parametric
equations?

* Suppose x = f(t), y = g(t) are parametric equations for a curve C.
* Suppose C can be represented as y = h(z), where h(z) is a function of z [C is a function.]
e Assume f, g, and h are differentiable (and continuous)
* The point (f(t), g(t))ison C.
Sy =h(z) = g(t) = h(f(1))
= ¢'(t) =N (f(t))f (t)[Chain Rule] = h'(z) f'(t)
t

= | (z) = 928

’f/(t)%o

—

Another way to write this:

dy dy/dt| dy dt dz

dz — dz/dt BTN TR

Remark 5.1 Remark

d d
. [fd_f = f'(t) = 0 and d_?z{ =¢'(t) # 0, then C has a vertical tangent line.

d d s . .
. [fd_f = f'(t) =0 and d_%t/ = ¢'(t) =, then it’s in the indeterminant form.

o If % =4¢'(t) =0and i—f = f'(t) # 0, then C has a horizontal tangent line.
Example 5.2.2 Example 2

Suppose C' has parametric equations

r=t-3t,y=t>—-5t—1,teR

dy dy/dt  2t—5

dr  daz/dt 312 -3
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5 PARAMETRIC EQUATIONS & POLAR COORDINATK.2 Calculus with Parametric Curves

Att = 2, slope of the tangent:

dy 4—-5 1
Mtan = —— 5o a2 " a

dr|,_, 2x4-3 9
The point corresponding to t = 2:
(f(2)7 g<2)): (23_3X27 22_5X2_1>:<27 _7)

.. The tangent line: y — yo = m(z — xo)

1

Theorem 5.2.3 Concavity of C
2

j z If ¢/ is differentiable, then:

Concavity is defined by the 2"¢ derivative, —-
X

Py _ 4o 1)
dz?2  dz dz/dt

Computing Areas with Parametric Curves

Recall: The area between curve (graph) of F(z) from z = ato x = b, with a < b, is:

b
A= / F(z)dx
Question: What do we do fi the curve is given by parametric equations, x = f(t), y = g(t)?

v=[f(t) = de=f(t)dt, F(z) =y =g(t)

a= [Tyw= [egoroa

where « is the starting ¢ for the curve C (i.e., the ¢ corresponding to (a, F'(a))) and g is the
ending ¢ for the curve C (i.e., the ¢ corresponding to (n, F'(b))).

Example 5.2.4 Example 3

Find the area of a circle with radius r by integrating with appropriate parametric equa-

tions.
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5 PARAMETRIC EQUATIONS & POLAR COORDINATE 5.3 Polar Coordinate

Parametric equations for a circle centered at the origin, radius= r:
x = f(t) =rcost, y = g(t) = rsint, f'(t) = —rsint

Using symmetry, let’s find area on the top half and double it.

0
A= 2/ (rsint)(—rsint) dt

0 |
= —27"2/ sin®t dt = 27’2/ 5(1 — cos2t) dt
s 0

1 " 1 1
=r? [t— QSiHQtL =r? |:(7T —0) — (isin%r— §SiH0):|

= 7r?

Or, we can also just do a corner of the circle:

0
A= 4/ (rsint)(—rsint) dt
w/2

5.3 Polar Coordinate

Definition 5.3.1 (Polar Coordinates).

P(r, 6)

r

We can use polar grids to plot points on the polar coordinates.
Notice that the points (3, 7/4), (3, 97/4), and (3, —77 /4 are all the same point.
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5 PARAMETRIC EQUATIONS & POLAR COORDINATE 5.3 Polar Coordinate

Theorem 5.3.2 Transforming between Polar and Cartesian Coordinates

)
IP(:C, y) = (r, 0)
27
// I
" \y =rsind
L l
/é |
O x =rcost x
x =rcosb, y =rsinf
o+t =r? tand = 2
x
Example 5.3.3 Example 1

If the polar pointis (r, 0) = (4, 37), find the corresponding Cartesian point.

z=rcosl =4cos3r = —4
y=rsinf =4sin3r =0

oo P(z,y) = (—4,0)

Example 5.3.4 Example 2
If the Cartesian point is (z,y) = (—1, —/3), find a corresponding polar point.




5 PARAMETRIC EQUATIONS & POLAR COORDINATE 5.3 Polar Coordinate

.‘.P(—Q,g) or P(Q,g)

Note: the point is at the 3" quadrant.

Example 5.3.5 Example 3
Given the polar equation » = 4sin 6, find a corresponding Cartesian equation for the
same curve.

r=4siné
r-r=4-r-sinf (multiply both sides by ).
r? =4 - (rsinf)
o2+t =4y
2+’ —4y=0
P24y —dy+4=4
2?4 (y—2)*=4

.. This is a circle centered at (0, 2), with a radius = 2.

Example 5.3.6 Example 4
1

Given the polar equationr = ——,
P q " T T 2sing

find a corresponding Cartesian equation for
the same curve.

r(1+2sinf) =1
r-+2rsinf =1

Vat+y?P+2y=1

Example 5.3.7 Example 5
Given the Cartesian equation y = 2x — 1, find a corresponding polar equation for the
same curve.
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5 PARAMETRIC EQUATIONS & POLAR COORDINATE 5.3

Polar Coordinate

y=rsinf, x =rcosf

c.rsinf = 2rcosf —1

r(2cosf —sinf) =1
B 1
~ 2cosf —sinb

Example 5.3.8 Example 6

Given the Cartesian equation z? = 4y, find a corresponding polar equation for the same
curve.

r?cos? 0 = 4rsin 6

B 4sin 6 B sin 6 1
"~ cos2f cos@ cosH
.r=4tan0sech

Theorem 5.3.9 Tangents to Polar Curves
Consider » = f(6), then

x =rcosf = f(f)cos¥, y=rsinf = f(0)siné

are parametric equations.
.. Use conclusion from the previous section:

& p0)cost— f(8)sin, W~ f(6)sin0+ F(6) st

do
cdy _ dy/do _ f'(0)sin6 + f(0) cost sing + f(6) cos b
“dr dxz/d0  f(0)cos® — f(0)sinf 4 cosf — f(0)sin6
Note: atr = 0:

dr
96 CO8 0

dr :
r—0 qgSiné

dy
dx

sin 6

,—o cos®

dr
= tanf, —
. an,de%()
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5 PARAMETRIC EQUATIONS & POLAR COORDINATE 5.3

Polar Coordinate

Example 5.3.10 Example 7
Consider the polar equation r = cos # + sin 6.
Find the slope of the tangent line at § = 7 /4.

dr

de
Cdy  $sinf+ f(0)cos
“dr 4 cosf — f(6)sin6

(cos — sinf) sin O + (cos @ + sin @) cos 0

(cos@ — sinf) cos ) — (cos @ + sin 0) sin 6

= —sinf + cos = cos — sin O

=... [The middle steps are omitted.]

1 +sinf

- 1—sind
Cdy|  1+sin? 1492
Cdzly,,, l-—sing 1_\/75
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